
 Bachelor Degree Project

 Predicting SNI Codes from
 Company Descriptions
 - A Machine Learning Solution

 Authors: Erik Lindholm, Jonas Nilsson
 Supervisor: Johan Hagelbäck
 Semester: VT 2023
 Subject: Computer Science

 Abstract
 This study aims to develop an automated solution for assigning area of
 industry codes to businesses based on the contents of their business
 descriptions. The Swedish standard industrial classification (SNI) is a system
 used by Statistics Sweden (SCB) for categorizing businesses for their
 statistics reports. Assignment of SNI codes has so far been done manually by
 the person registering a new company, but this is a far from optimal solution.
 Some of the 88 main group areas of industry are hard to tell apart from one
 another, and this often leads to incorrect assignments. Our approach to this
 problem was to train a machine learning model using the Naive Bayes and
 SVM classifier algorithms and conduct an experiment. In 2019, Dahlqvist and
 Strandlund had attempted this and reached an accuracy score of 52 percent by
 use of the gradient boosting classifier, but this was considered too low for
 real-world implementation. Our main goal was to achieve a higher accuracy
 than that of Dahlqvist and Strandlund, which we eventually succeeded in -
 our best-performing SVM model reached a score of 60.11 percent. Similarly
 to Dahlqvist and Strandlund, we concluded that the low quality of the dataset
 was the main obstacle for achieving higher scores. The dataset we used was
 severely imbalanced, and much time was spent on investigating and applying
 oversampling and undersampling as strategies for mitigating this problem.
 However, we found during the testing phase that none of these strategies had
 any positive effect on the accuracy scores.

 Keywords: Machine learning, text classification, SNI, Naive Bayes, SVM,
 oversampling, undersampling.

 Contents
 1 Introduction 5

 1.1 Background 5
 1.2 Related work 6
 1.3 Problem formulation 7

 1.3.1 Research questions 8
 1.4 Motivation 8
 1.5 Results 9
 1.6 Scope/Limitation 9
 1.7 Target group 10
 1.8 Outline 10

 2 Method 12
 2.1 Research Project 12
 2.2 Research Methods 12
 2.3 Reliability and Validity 13
 2.4 Ethical Considerations 14

 3 Theoretical Background 14
 3.1 Machine learning 14
 3.2 Natural language processing (NLP) 14
 3.3 Text classification 16
 3.4 Bag of words 16
 3.5 Oversampling and undersampling 16
 3.6 Naive Bayes 17
 3.7 SVM 18

 4 Research project – Implementation 21
 4.1 Batch Execution 22
 4.2 Read in Data 22
 4.3 ApplyNLPtoInputTextData 22
 4.4 OutputCSVWithReplacedXColumn 23
 4.5 OutputListOfMostCommonWords 23
 4.6 RemoveCustomStopwords 24
 4.7 Filter low-occurring classes 24
 4.8 Bag of words 24
 4.9 Convert from occurrences to frequencies 25
 4.10 Train and Test Data Split 25
 4.11 Oversampling 25

 4.12 Undersampling 26
 4.13 Classification algorithms 26
 4.14 Evaluation 27

 5 Results 28
 5.1 Defining input parameters 29
 5.2 Custom stopwords list 30
 5.3 Split Training and Testing Data 30
 5.4 Undersampling and Oversampling 30
 5.5 Naive Bayes 30
 5.6 SVM 31
 5.8 Final results 32

 6 Analysis and Discussion 34
 8 Conclusions and Future Work 37
 References 41
 A Appendix 1 43

 1 Introduction
 This chapter will provide a brief introduction to the problem this thesis aims
 to solve.

 SNI is a standard used in Sweden and stands for Svensk
 Näringsgrensindelning (which roughly translates to Swedish industry
 classification). In the SNI system, a five-digit code is assigned to a new
 business upon registration. The purpose of the SNI code is to enable easy
 categorization of companies based on which area of industry they belong to,
 as well as by their more specific roles within their areas of industry. Thus, the
 SNI code is important for tracking statistics and can help gather information
 on similar companies in the same industry [11]. Statistics Sweden (SCB) rely
 on the SNI system when producing reports on Sweden’s economic and
 industrial growth.

 Traditionally, the responsibility for selecting the right SNI code has been put
 on the person registering a new business. This is problematic since many of
 the categories are quite similar, and as a consequence, incorrect assignments
 due to the human factor are common. Assigning the correct SNI code upon
 registration is of high importance, since incorrect assignments will lead to
 inaccurate statistics reports.

 In this thesis, we attempt to solve this problem by developing a machine
 learning model capable of automatically assigning an SNI number from the
 contents of a company description. This is done in the form of an experiment,
 where the effects of using different input variables on the trained and tested
 model are documented and analyzed. To provide context, we discuss the SNI
 system in further detail, and explain the technologies and challenges involved
 in developing an automatic solution. In the final chapters, the results of the
 experiment are presented along with our subsequent analysis and
 conclusions.

 1.1 Background
 Statistics and the subfield of business statistics is the application area of this
 thesis project, as we aim to solve a real-world problem for Fortnox AB:
 automatic assignment of SNI codes based on company descriptions. An
 effective solution to this problem would lead to fewer incorrect assignments,
 resulting in more accurate statistics reports. It would also do away with the

 5

 costs involved with the manual assignment of SNI codes, as well as make the
 process of starting a new business more streamlined.

 The research area of this thesis project is computer science , and more
 specifically, the subfield of Artificial intelligence. Artificial intelligence is the
 field of study devoted to the development of systems and machines capable
 of exhibiting human-like intelligence. Within Artificial intelligence, Machine
 learning is the subfield that we expect our thesis to be most focused on. This
 is the field that focuses on the learning process, and how to use data to train
 an AI system - commonly referred to as a model - for a specific task.

 The real-world value of our implementation will come from its ability to
 interpret the company description of a business and make an informed
 decision about its SNI code classification. Consequently, we expect that the
 system's understanding of human language may be a central challenge. For
 this reason, Natural language processing (NLP) is another AI subfield that is
 likely to be relevant. NLP is the field devoted to enabling computers to
 understand, interpret and generate human language.

 1.2 Related work
 Dahlqvist and Strandlund used Natural language processing and machine
 learning to aim for automation of being able to predict a Swedish business
 from their company description and assign the correct SNI code [1]. With the
 use of classification methods, they analyzed the business description to create
 a model that will place the industry in the area they belong to. Dahlqvist and
 Strandlund’s thesis project was done in collaboration with Statistics Sweden,
 and the goal was to go from manual labor to using their machine learning
 model in their day-to-day production.

 Unfortunately, they were unable to achieve an accuracy higher than 52
 percent, which was considered too low to implement their solution in
 day-to-day production. Our approach will make use of similar methods for
 training and testing our models, but we will also explore other options
 available in order to improve the prediction rate. Hopefully, we will manage
 to create a model that can be implemented in a production environment.

 Gao, He and Chen claim that with the rapid development of machine learning
 techniques, textual analysis methods can be of great use for finance research
 [2]. They started their research by first exploring the most common and
 recently developed techniques for text-based classifications. They then

 6

 proceeded to implement and compare the results of these techniques against
 the U.S. and Chinese markets. The goal was to achieve an effective way of
 classifying a company’s area of industry.

 In Gao, He and Chen’s research, a combination of the word embedding
 scheme latent semantic indexing (LSI) together with k-means clustering gave
 a result that is comparable to the standard global industry classification
 standard (GICS). GICS is a tool that helps to define global industries and
 classifying securities by industry. It also assigns a company a code consisting
 of eight digits, making it similar to the Swedish SNI system. Similarly to this
 study, we will explore different techniques used for text-based classification,
 but we will specifically use the SNI as our base measure.

 According to Kim, Kang, Bae and Jeon, the rapid changes in the current
 economy may force a company to emerge, enter or exit an industry much
 faster than we have seen before [3]. With this fast pace, they deem the
 traditional industry classifications to not be optimal and that they have certain
 limitations. Thus they present an alternative method for improvements to the
 existing industry classifications. This includes applying a text mining
 technique used to resolve dimensionality problems in high-dimensional texts.
 Using machine learning, they managed to avoid the so-called “curse of
 dimensionality”. They claim that this approach can help improve existing
 text-based classification performance in predicting industry. They also show
 results that their approach is better than existing industry classification
 systems.

 In order to enhance their proposed method, they deem it necessary to analyze
 unstructured data in financial reports. Similarly to Kim, Kang, Bae and Jeon’s
 study, we will work with text-based classifications to determine the
 company's industry type from their description.

 1.3 Problem formulation
 We intend to use the bachelor's thesis Predicting the Area of Industry by
 Dahlqvist and Strandlund as a starting point of our thesis [1]. Our models will
 be trained and tested on a much larger dataset than theirs, consisting of
 615 163 company descriptions with assigned SNI codes. Dahlqvist and
 Strandlund's best model was able to correctly predict 52 percent of the
 companies’ area of industry. This score was considered too low to justify an
 implementation of an automatic system based on their model.

 7

 1.3.1 Research questions

 Research question Description

 RQ1 Which of the two classification methods -
 Multinomial Naive Bayes and SVM - show the
 most potential in the context of assigning SNI
 codes based on company descriptions?

 RQ2 What is the effect on accuracy and f1-score of
 applying over- and undersampling on the
 imbalanced dataset?

 RQ3 Can an accuracy higher than 52 percent be
 achieved, and what can be identified as the
 biggest obstacle in reaching high scores?

 1.4 Motivation
 The end goal of this thesis project will be to develop a model that can reach a
 higher score than that of Dahlqvist and Strandlund's best-performing model.
 Ideally, the accuracy of our model will also be high enough for Statistics
 Sweden to be able to use it for an automatic system. Fortnox AB has
 expressed a strong interest in a model that could be used as the basis for such
 a solution.

 However, even if we should fail to achieve the goal of developing a model
 that can be used by Statistics Sweden, our thesis will still have a scientific
 value. Our findings may be of help to future developers attempting to solve
 the same problem, or one of similar nature.

 At its core, SNI number assignment is a very straightforward classification
 task. As such, a machine learning-trained classification model seems like an
 ideal solution. One of the main challenges involved, however, is the very
 limited amount of data provided in a company description. This is why
 Natural language processing and other preprocessing methods play a very
 important role in the project. In order to achieve a high accuracy, the text data
 must be processed so that the model can fully make use of every single word
 that carries meaning.

 8

 1.5 Results
 Our best-performing Naive Bayes and SVM models were able to reach an
 accuracy of 56.13 percent and 60.11 percent respectively. This means that we
 succeeded in our goal to reach a higher score than that of Dahlqvist and
 Strandlund, but our results are probably still too low to justify a real world
 implementation.

 However, one should take into account that Dahlqvist and Strandlund limited
 themselves to the 30 most frequently occurring classes while we only
 excluded classes with less than ten samples, which was only three classes
 with them having 3, 1, 1 occurrences. The amount of classes included has a
 big effect on accuracy scores, making an eight percent increase a bigger
 improvement than it might seem. Excluding classes can result in a boost in
 accuracy, but it comes at the expense of the quality of the solution and may
 drastically reduce its usefulness for real-world implementation. For this
 reason, we wanted to include as many classes as possible.

 We believe that one of the success factors was that we had access to a larger
 dataset than that of Dahlqvist and Strandlund - 615 163 samples versus 7846.
 However, just as Dahlqvist and Strandlund considered their poor quality data
 to be their main obstacle towards reaching higher scores, our experiment was
 also hampered by a less than optimal dataset. Our dataset was severely
 imbalanced, with 62 710 samples in the largest class as opposed to less than
 ten in the smallest. We tried using oversampling and undersampling to
 mitigate this problem, but in the end neither of these techniques had any
 positive effect on our results.

 1.6 Scope/Limitation
 When choosing what programming language to use, we considered both
 Python, Java, and R, as these are all very popular languages for machine
 learning applications. While we were both somewhat more familiar with
 Java, Python seemed like the better choice because of its large number of AI
 libraries. For our IDE we chose Jupyter Notebook.

 With the huge variety of machine learning algorithms available, we had to
 limit ourselves to those we believed best suited for our particular problem.
 The Naive Bayes algorithm has a track record of high effectiveness for text
 classification - its relatively low level of complexity and high speed would
 allow for quick training and testing of new models [6]. The SVM algorithm

 9

 was specifically suggested by Dahlqvist and Strandlund as a classifier worth
 exploring further in the context of SNI code predictions [1, p. 10].

 Early on we made the decision to focus on the first two digits of the SNI code
 - which represent the 88 main areas of industry - rather than making use of
 the full five-digit code and assigning sub-categories as well. We decided that
 we could make an attempt at building an hierarchical system for assigning
 full SNI codes only if we reached a very high accuracy with the two
 digit-system.

 We considered using TensorFlow, which has a reputation for being a good
 end-to-end platform for producing AI solutions to real world problems.
 However, developing our application within the context of a large framework
 would have required us to spend much of our time learning how to use the
 framework effectively. For the same reason, we rejected the idea of
 attempting to solve the task by using a neural network.

 Instead, we settled upon an iterative approach: we would start out small with
 developing a Jupyter Notebook application that wouldn’t be much more
 complex than our past machine learning projects. We would then
 continuously experiment with Natural language processing through the
 library NLTK, Scikit-learn and other preprocessing methods.

 1.7 Target group
 Our implementation will be of use for Statistics Sweden, as well as for both
 existing and new companies. Making the step of picking the correct SNI
 number automatic with our implementation, we prevent mistakes from
 happening. This will also target people working with machine learning that
 will be interested in good practice regarding similar data structure works in
 the future.

 1.8 Outline
 In the following chapters, Chapter 2 covers the picked method we chose to
 use during this project, while also going over how we took ethical decisions
 into account during the project. It also covers how we worked to make our
 project reliable and valid. Chapter 3 will be an explanation of the theoretical
 background and also cover our reasoning of why there exists a knowledge
 gap and how we intend to work with it. The implementation will be covered
 in Chapter 4 going over all the realizations and all the steps taken to reach our

 10

 results. The results will be discussed in Chapter 5 where we will present all
 the raw results. In Chapter 6 we analyzed the results and covered what
 conclusions we can take from our experiments. Chapter 7 covers the
 discussions over the project's findings. Lastly, to finish it up we have Chapter
 8 where we discussed our conclusions and what can be done for future work
 for further improvements on the subject.

 11

 2 Method
 We decided that the best fitting methodology for this project was to do it as
 an experiment , as finding which model would be the most suitable would be
 an iterative process of training and testing models on different settings.

 This goes hand-in-hand with the concepts of independent variables and
 dependent variables commonly used in experiments.

 2.1 Research Project
 This project was initiated by the company Fortnox AB. They are looking for
 a solution to automate the process of assigning correct SNI numbers based on
 only a company’s description. In order to automate this process we will be
 testing different machine learning algorithms. To conduct the test we decided
 that we will follow the methodology of experimentation. Using
 experimentation, we aim to gather the data needed to answer our research
 questions stated in 1.3.1.

 2.2 Research Methods
 In order to solve the research problem, we conducted several experiments on
 the data set that we received from Fortnox AB. Since machine learning is a
 field that is heavily reliant on empirical evaluation and experimentation, we
 decided that an experimentation methodology was the most appropriate way
 to reach our solution. Finding which model is the most suitable would be an
 iterative process of training and testing with different settings.

 The experiment methodology is good practice to use when you need to
 systematically evaluate and compare different machine learning techniques in
 a controlled environment. The concepts of independent variables and
 dependent variables are commonly used in experiments. In our case the
 dependent variables would be our performance metrics - accuracy and
 f1-score - and the independent variables would be our input features. Some of
 the input features would be deciding what value for the hyperparameters
 inside our ml classifiers, whether or not we will be using any
 over/undersampling methods and selecting value for the random seed that
 will be used. In machine learning experiments, all known independent
 variables are usually set to a default value, and for each round of experiment
 only one variable is changed in order to observe what impact it has on the
 dependent variable [14]. Per definition, experiments require that one

 12

 systematically changes one or more variables and examine their effects on the
 dependent variable. Consequently, many runs of experiments would have to
 be carried out to determine the conditions for achieving a high result that
 could also be considered valid and reliable [15].

 When conducting each of our experiments, there were several steps of
 preparing the data that had to be done before it would be used to train and test
 the machine learning model. In each of these steps there were also many
 different variables that needed to be tested. The testing of different variables
 was conducted in an iterative manner where we started with the
 preprocessing of the data.

 2.3 Reliability and Validity
 After reaching an accuracy score we believed would be the highest possible
 within our timeframe, we would proceed to thoroughly test the code and
 model to ensure a high reliability. To make our tests more reproducible we
 decided to use a consistent random seed value . Using the same seed value
 across the code would guarantee that the same sequence of random numbers
 would be used every time the code was executed. We would also run the code
 on both of our computers to ensure that the accuracy remained consistent in
 different environments.

 Another effort to ensure reliability that we decided upon would be to
 double-check that we had documented which exact versions of Python,
 Jupyter Notebook and imported libraries that were used on the final model.
 We will make sure that the libraries being used throughout the project are
 from trustworthy sources with high reputation. By relying on said libraries
 rather than implementing their functionality from scratch, we aim to improve
 the validity of our implementation by reducing the likelihood of errors in the
 code.

 The data provided was not very balanced, as some of the SNI main categories
 were far more represented than others. This was a technical challenge that we
 identified early on, and that we concluded could make the trained model
 biased towards certain categories and could negatively affect its accuracy. We
 addressed this by experimenting with different methods for mitigating the
 effects of unbalanced data, such as oversampling and undersampling . We also
 understood that this would be an issue that we would have to factor in when
 evaluating the validity of our results.

 13

 2.4 Ethical Considerations
 It is difficult to envision that the outcome of our experiment could cause any
 direct or indirect harm. As mentioned above, the current system for SNI
 number assignments puts full responsibility on the person starting the new
 business. This means that no one at Statistics Sweden or anywhere else is
 likely to lose their job when an automatic solution is implemented. Neither
 does it seem likely that our very task-specific machine learning model would
 contribute to any of the doomsday scenarios that are often brought up when
 discussing the risks associated with AI technology.

 The data used to train the model was provided by Fortnox AB. Whether the
 included businesses have given their consent to letting their business
 description and SNI number be used as machine learning data should be more
 Statistics Sweden’s responsibility than ours. However, considering that SNI
 numbers and business descriptions are publicly available and could hardly be
 considered sensitive information, the aspect of consent doesn’t stand out as
 much of an ethical issue either way.

 3 Theoretical Background

 3.1 Machine learning
 Machine learning is a subfield of artificial intelligence. It is devoted to
 exploring processes and methods for enabling computers to improve their
 ability at a certain task by learning from training data. This project is an
 example of supervised machine learning , where the application is provided
 with training data in the form of a set of input observations, along with the
 correct associated classes.

 The goal is for the application to associate parameter values in the input data
 with the different classes. After being trained, the performance of the
 application - which is referred to as a model - is evaluated against a set of
 testing data where the correct classes are not provided [4, p. 59].

 3.2 Natural language processing (NLP)
 In the 1950s, the field of natural language processing emerged with the
 purpose of serving as a bridge between artificial intelligence and linguistics,
 making it a subfield of AI and linguistics. NLP techniques enable computers
 to understand, interpret and generate human language. NLP can be used in

 14

 the context of many different tasks, including text classification (which is
 described below), language generation, machine translation, named entity
 recognition , sentiment analysis , speech recognition and text summarization .

 NLP techniques are applied when there is a need to analyze text data. Our
 implementation of NLP will be used in the preprocessing step of the data, this
 step is only required to run once. That is to say the only step in our
 experiment that will make use of NLP is the step where we prepare and
 analyze the data. In order to analyze raw text data, inside NLP there is a large
 variety of tasks you can choose from. The tasks we selected to work with in
 order to preprocess our data was:

 1. Sentence boundary detection : In most languages one can tell where
 dividing a string and making it into a sentence component by the
 punctuations. One thing that complicates this task is when it
 encounters abbreviations or titles.

 2. Tokenization : This task separates full texts into words and identifies
 individual tokens. It’s important to keep commas and punctuations as
 tokens since they serve as useful information on sentence boundaries.
 In some cases, it might be necessary to tokenize multiple words such
 as rock ‘n’ roll into a single token. To solve this, tokenization is
 commonly used with named entity recognition [4].

 3. Stemming and lemmatization : Transforms the words into their root
 value by removing suffixes, normalizing the words into a simple
 common base form. Stemming and lemmatization do have some
 differences. Stemming is usually a process that cuts off the ends of the
 words in a very crude, heuristic way. Lemmatization methods are
 done by doing a vocabulary and morphological analysis of the words,
 with the goal of returning the dictionary's base version of that word
 [17]. In some non-English speaking countries where the language is
 very synthetic, there are cases where the whole sentence can be
 replaced by a compound word [4].

 4. Stop word removal : Is a task that aims to remove words that don’t
 add much information to the text but which are frequently used. Some
 examples of this are words such as “the”, “a” and similar.

 15

 3.3 Text classification
 Text classification is a technique that makes use of machine learning and in
 some cases makes use of NLP to analyze and structure text, so that
 information can be gathered from it. A text classifier is trained and tested
 through machine learning. It is then used to classify input data - in the form
 of open-ended text - into one of a predefined set of classes.

 A popular example of text classification is sentiment analysis, which is used
 to determine whether the author of a text has positive or negative feelings
 towards a certain object. For example, a web shop can use sentiment analysis
 on customer reviews to determine how the customers feel about their
 products [4].

 3.4 Bag of words
 A bag-of-words refers to a representation of a text document where the
 included words’ positions in the original document have been ignored.
 Instead, only the frequency of each word is kept, which makes the
 bag-of-words representation suitable for quantitative analysis [4, p. 60].
 Individual words are given full focus, while their order within a sentence or a
 longer text is considered unimportant.

 The words of the source text are mapped to a vector . Gao, He and Chen uses
 the following example to describe how the vector mapping works:

 “For example, we have two sentences: ‘Here are a white cat
 and a black cat’ and ‘Here is a dog’. The set of words used
 here are Here, are, is, a, white, black, cat, dog. The bag of
 words vector representation of these two sentences are
 [1,1,0,2,1,1,2,0] and [1,0,1,1,0,0,0,1].” [2, p. 2].

 3.5 Oversampling and undersampling
 An imbalanced dataset suffers from a significant skew in the distribution of
 classes, such as 1:100 or 1:1000 examples in the minority class to the
 majority class. This can have a negative impact on the training and testing of
 a machine learning model. Oversampling and undersampling are two
 approaches to deal with this issue and mitigate the effects of the imbalance
 [9].

 16

 The basic idea of oversampling is to generate new samples in the minority
 classes. There are several different methods for doing this. Naive random
 oversampling generates new samples from existing ones, which are picked at
 random. Two other popular algorithms are Synthetic Minority Oversampling
 Technique (SMOTE) and Adaptive Synthetic (ADASYN). Rather than
 duplicating original samples, SMOTE and ADASYN use interpolation to
 generate new synthetic samples.
 Undersampling instead attempts to balance the dataset by randomly deleting
 samples in the majority classes. Like with oversampling, there are a number
 of different algorithms that can be used. A prototype generation algorithm
 creates a new set from the targeted majority class, where the amount of
 samples are reduced and those that are included are generated from the
 original data. Prototype selection algorithms, on the other hand, select
 samples from the original set and use them to populate a new reduced set.
 Oversampling can put a model at risk for overfitting, and the backside of
 undersampling is that it can result in loss of information that could be
 valuable to the model [8].

 3.6 Naive Bayes
 The Naive Bayes algorithm is a common and fairly basic classification
 algorithm based on Bayes’ theorem . Bayes’ theorem uses prior knowledge of
 conditions that may be related to an event to determine the probability of it. It
 is stated mathematically with the following equation:

 𝑃 (𝐴 | 𝐵) = 𝑃 (𝐵 | 𝐴) * (𝑃 | 𝐴)
 𝑃 (𝐵)

 In equation 3.1, “P (A | B)” can be read as “the probability that A occurs
 given B”. Bayes’ theorem only takes one attribute into account when
 calculating the probability of an item belonging to a specific category.
 However, a Naive Bayes classifier combines several attribute inputs to
 determine the probability, as this is what is generally needed for real-life use
 cases.
 The reason the algorithm is called naive is because it makes the assumption
 that the attributes are independent of one another. This is most oftenly

 17

 wrongful, as there tend to be relationships between attributes. This means that
 a Naive Bayes classifier can never be assumed to calculate an item’s actual
 probability of belonging to a class.
 Despite this inherent problem, the algorithm also has several strengths such
 as high speed and scalability, and Naive Bayes classifiers have turned out to
 be highly useful in practice. A classifier uses Bayes’ theorem to calculate
 probabilities for a number of classes, and the one with the highest score is
 then selected. This has proven to be a good-enough solution to a great
 number of real-world classification tasks [6].

 3.7 SVM
 Support-Vector Machine (SVM) is a classifier that relies on kernel methods,
 which are all developments of the more basic Linear Kernel Classifier . The
 Linear Kernel Classifier first calculates a center point in space for each
 category. A category's center point is based on the average of each attribute
 value for every included example. A new example is then classified based on
 which of the categories' center points it is closest to - usually this is measured
 by Euclidean distance.

 To produce more accurate results, more complex versions need to transform
 the data. To do this they make use of the Kernel Trick, which requires
 measurements between dot-products rather than between coordinate vectors
 (which are usually used for measurements in Euclidean spaces).

 18

 A dot-product is a single numerical value calculated as the sum of the
 products between each of the values in the first vector and their
 corresponding values in the second vector.

 𝑑𝑜𝑡 (𝑣 0 , 𝑣 1) = 𝑣 0
 0

* 𝑣 1
 0
 + 𝑣 0

 1
* 𝑣 1

 1
+ ... + 𝑣 0

 𝑛
* 𝑣 1

 𝑛

 The Support-Vector Machine algorithm uses the averages of each category to
 determine dividing lines between them, and new examples are then
 categorized based on their position. A problem with this approach, however,
 is that faraway examples will affect the placement of the lines, but only the
 examples closest to the dividing lines will actually be relevant to determining
 their exact placement.

 To mitigate this problem, the algorithm makes use of a Support-Vector
 Machine which finds the line that is as far away as possible from each of the
 categories - the so-called maximum-margin hyperplane . The
 maximum-margin hyperplane can be found by drawing imaginary lines
 between each of the examples in a category, using the outermost lines to

 19

 define a polygon - called the convex hull - and then placing the hyperplane
 exactly between the convex hulls of the two categories.

 Defining the hyperplane actually doesn't require all examples to be taken into
 account, but only those closest for each category. These are referred to as the
 Support Vectors [7].

 20

 4 Research project – Implementation
 This chapter contains a thorough explanation of all the steps involved in
 training and testing a model in the context of this experiment. Starting from
 how we first manage the data sets and the way we process the data in order
 for us to conduct tests with our different algorithms and how we have fitted
 our models.

 21

 We will also cover the different tweaks that have been made for all the used
 methods during the project, which were tested to aim for a better result. This
 result will be covered later in Chapter 5, where the results of each test with
 different tweaks will be presented, followed by Chapter 6 where we will
 analyze the results.

 4.1 Batch Execution
 The application for training and testing models use two Jupyter Notebook
 scripts: the main script and the batch execution script .

 The batch execution script allows the main script to be run several times with
 different input arguments. Input arguments are defined in the args variable,
 and the main script is executed by calling the Run() function.

 Every time the main script is run, the results and input arguments are saved as
 a JSON file in the test-logs folder. For easy overview, the folder also contains
 an Excel file where the name, date and accuracy scores of the test are
 appended automatically.

 4.2 Read in Data
 At the very start of the process, the popular pandas library is used to read and
 parse the data from the CSV files. Once the data has been loaded into a
 pandas DataFrame object, the contents of the DataFrame are checked for
 NaN values. This is done by a simple method call: df.fillna(‘ ‘).values and it
 replaces any NaN values with a space.

 Before moving on to process the company descriptions, we extract the two
 relevant columns from the DataFrame - the company descriptions and the
 SNI numbers - and store them in variables. If the parameter data_limit has
 been set to a number lower than the amount of rows in the DataFrame, the
 columns are also cropped (this is to facilitate faster testing and training on a
 smaller dataset).

 4.3 ApplyNLPtoInputTextData
 In this step, a number of NLP operations are performed on the company
 descriptions in the dataset to make them better suited for machine learning.

 The first operation performed is tokenization . This is the process of breaking
 up a string of text into semantically useful units like words or sentences. In

 22

 our case, the company description is tokenized into individual words: “We
 build houses and make money” becomes “We”, “build”, “houses”, “and”,
 “make”, “money”.

 The tokenization is followed by some simple operations such as converting
 the tokens to lowercase letters and removing numbers and special characters.
 More complex operations then follow - stemming and lemmatization , which
 are two different approaches for converting words to their meaningful base
 forms (for example, “going” becomes “go”).

 The company description is also checked and filtered against NLTK’s built-in
 list of so-called stopwords . Stopwords are high-frequency words that add
 very little semantic meaning to a sentence, for example at, for, is, which, to
 (vid, för, är, vilken, till in Swedish). Aside from the filtering of general
 stopwords, we have also added our own solution for filtering out stopwords
 that are more specific to our data - this will be described in further detail
 below.

 4.4 OutputCSVWithReplacedXColumn
 Applying the NLP operations to the data takes a considerable amount of time,
 and it is actually not necessary to do this every time the code is run and a new
 model is trained. If the data and the NLP operations remain the same, the
 dataset can be saved after processing and then loaded the next time the
 application is executed.

 This is what the OutputCSVWithReplacedXColumn function is used for - it
 takes the original dataset and replaces the column containing the company
 descriptions with the same column from the processed dataset. The dataset is
 then saved as a new CSV file, which can be loaded on start-up instead of the
 original data.

 4.5 OutputListOfMostCommonWords
 OutputListOfMostCommonWords is not meant to be run when training and
 testing the model - it is a function that was used in the process of creating a
 list of custom stopwords. The function counts the number of occurrences of
 words in the dataset and orders them in a descending list. By manually going
 through the list and deciding which of the words should be filtered out, a list
 of custom stopwords can be created.

 23

 This was how we created our lists of custom stopwords, where for example a
 word like “company” was considered to have too little value to keep, but
 “publishing” was kept as it indicates a specific business category. A hashtag
 prefix means the word is considered valuable and should be kept.

 4.6 RemoveCustomStopwords
 This is the function that is responsible for actually filtering out the words
 included in the custom stopwords list. It opens the stopwords text file, then
 iterates through every company description in the NLP-processed dataset.
 Every token matching a non-hashtag-prefixed word in the custom stopwords
 list is then removed.

 Removing custom stopwords is a much faster process than applying the NLP
 operations, so it is performed every time the application is executed.

 4.7 Filter low-occurring classes
 From the very start, we knew that one of the major challenges of our
 experiment would be the extremely imbalanced dataset. While there were
 tens of thousands of instances in some SNI number categories, there were
 less than ten in some. After much discussion on how to address this problem,
 we came to the conclusion that we had to exclude the categories with
 extremely low numbers of instances. Allowing these underrepresented
 categories to remain would cause problems in later steps.

 We set the limit to a minimum of 10 instances. A method from the package
 called numpyindexed is responsible for filtering out the minority classes.

 4.8 Bag of words
 In the context of our machine learning application, a word’s number of
 occurrences is much more relevant than its position within the text. So, to
 make full use of the processed company descriptions as input data for our
 model, it is necessary to convert them to bag-of-words representations.

 In this step, we apply bag-of-words conversion to our raw input data with the
 CountVectorizer() method. This method is imported from the
 sklearn.feature_extraxtion.text library.

 24

 4.9 Convert from occurrences to frequencies
 The class TfidfTranformer is imported from the same library as the bag-of-
 words method used in the previous step. By using this class, the importance
 of each word in the input data is measured.

 Words that appear often will generally be valued higher than words that have
 a low occurrence. However, a high-frequency word will get a lower value if it
 appears frequently in a great number of categories, as opposed to if it is only
 recurring in a few categories. there will be some words with high frequency
 across many descriptions that will result in them having lower values.

 For our use case, we apply two TfidfTransformer methods - fit() and
 transform() - on our input data (the bag-of-words converted company
 descriptions). An informative scheme on the word frequencies in the input
 data - where every word now has a weight value assigned to it - is returned
 and assigned to the input variable.

 4.10 Train and Test Data Split
 In order for us to follow good practices it is necessary to split the data into a
 training set and a testing set so that the model can first be trained on one set
 of data and then tested against another. We opted to make use of the
 sklearn.model_selection method called train_test_split , as this method
 provides you with an easy way to adjust the proportions of the splits.

 During this part of the experiment we did many variations of parameters, like
 trying out different split proportions, and checking whether using a stratify
 method yielded a different result. The use of stratified parameters can give a
 better representation of each class in our dataset.

 4.11 Oversampling
 In order to make our dataset more balanced as the datasets classes had a large
 difference in occurring instances.

 As mentioned above in Chapter 4.6, the dataset initially had classes with as
 low as one instance, which caused a lot of difficulties. Even though the least
 represented classes are filtered out by the numpyindexed method call, the
 remaining dataset is still severely imbalanced. So in this step, oversampling is
 applied to mitigate the effects of the imbalance by expanding the minority
 classes.

 25

 We have been running experiments using both random oversampling (ROS)
 and SMOTE in order to see what works better with our dataset. During our
 experiments with oversampling, the sampling_strategy that is most
 commonly used is the default setting all , which is the one we started with.
 This strategy iterates over all classes and expands them to the size of the
 largest class. For each experiment we used one of the sampling methods, so
 which one was used is clearly stated as an input variable. The different
 parameters one can choose from is minority, not minority, not majority. For
 each of these parameters, rounds of tests will be conducted. Another
 parameter that both ROS and SMOTE have in common is random_state
 which is used to control the randomization of the algorithms.

 When working with SMOTE we also have a parameter called k_neighbors
 and it is used to define the nearest neighbor in order to define a neighborhood
 for the synthetic samples [12]. During our experiments with SMOTE we
 decided to experiment with the values 1-10 for our k_neighbor variables.

 4.12 Undersampling
 As described in chapter 3.6, undersampling takes the opposite approach to
 dealing with the imbalanced dataset by removing instances of the larger
 classes to make them more similar in size to the smaller ones. We have
 conducted some experiments using the Random Undersampling (RUS)
 method in order to make this happen. When using undersampling we have
 mostly relied on the default setting for the sampling_strategy parameter,
 which reduces all classes into the same size as the smallest ones. However, it
 is inevitable that applying undersampling like this results in the removal of a
 lot of data that would have been valuable to the model.

 4.13 Classification algorithms
 Two different classification algorithms have been selected for training and
 testing models within the experiment.

 As mentioned in Chapter 3.6, Naive Bayes has proven to be a very good
 algorithm when it comes to classification. Our implementation uses the
 MultinominalNB classifier from the sklearn.naive_bayes package. The
 parameter alpha is set to different values in different tests, to see which value
 produces the best results on our dataset.

 26

 The second algorithm that we have decided to use is the Support-Vector
 Machine (SVM) algorithm and inside of the SVM we decided to make use of
 the LinearSVC . SVM offers a greater number of adjustable parameters than
 Naive Bayes - the ones we experiment with different settings for are C and
 class_weight . C is a regularization parameter where the strength is
 proportionally inversed to C and the number for this parameter is required to
 be a positive number. Where a lower number means that more errors during
 training is allowed than if you use a large number. Class_weight takes the
 values of y and adjusts the weight automatically according to the class
 frequencies [13].

 4.14 Evaluation

 During our evaluation function we will start with training the model against
 our training set, by using the method model.fit(X_train, y_train) we can use
 this for all the models in order to train them. When the training step is done
 we will run a prediction method with the parameters of our input data from
 the test split to be able to plot how the model’s predictions are. When the
 prediction method is complete we will be running a method to calculate the
 accuracy of our model's predictions, this will be done with the use of the
 accuracy_score() method with the parameters, test labels and the prediction
 that was made in the earlier step. When we have calculated our accuracy we
 will create a confusion matrix with the use of the sklearn.metrics library to
 import confusion_matrix() . For the confusion matrix, we will provide the test
 labels and the predictions as parameters. When this confusion matrix is done
 we will print out a classification report, by using the library sklearn.metrics
 we can make use of the classification report(). Similar to the previous step
 the parameters will be the same, test labels and the prediction and it will print
 out the result of the test. When we have printed out all the results from the
 first part of our evaluate function we will continue to the next step which is to
 do a procedure called 5-fold cross-validation .

 The purpose of cross-validation is to estimate how well a machine-learning
 model can handle unseen data. It is a procedure that uses a limited amount of
 samples in order to see how well the trained model can predict data that it has
 never seen during its training process [10]. By using the sklearn library we
 can import a method that is called cross_val_predict() , where we will provide
 four parameters. The first parameter will be for the model we are using, the
 second parameter will be where we put our input data, the third parameter

 27

 will have the labels data, and lastly, the fourth parameter will decide how
 many folds it will be during this process. When this 5-fold procedure is
 completed we will make use of similar methods as in the previous step. First,
 we will start with calculating the accuracy with the accuracy_score method,
 followed by using the confusion_matrix method and lastly, we will use the
 classification_report . When this step is printed out we have gotten to the end
 of our evaluate function and can start to look at the results of the model's
 training.

 28

 5 Results
 5.1 Defining input parameters
 The batch script described in the last chapter uses a default set of input
 parameters defined in the default_args dictionary. Certain parameters are then
 altered for each test in order to evaluate their effect on the result. When a
 parameter setting has been concluded to be optimal or near-optimal, the
 default_args dictionary is then changed so that the setting that results in the
 highest accuracy score and f1-score will then be used by the default in all
 subsequent tests:

 Argument Default Value
 name_of_data_file “nlp_applied_data_0”
 name_of_custom_stopwords_file “custom_stopwords_1”
 data_limit 900000
 use_full_SNI_numbers False
 random_state 42
 naive_bayes/on True
 naive_bayes/alpha 1
 svm/on True
 svm/C 1
 svm/class_weight “balanced”
 pipeline/on False
 split_training_and_testing_data/test_size 0.2
 split_training_and_testing_data/stratify False
 under_sampling/on False
 under_sampling/sampling_strategy “all”
 filter_low_occuring_labels/on True
 random_oversampling/on False
 random_oversampling/sampling_strategy “all”
 SMOTE/on False
 SMOTE/k_neighbors 1
 SMOTE/sampling_strategy “all”
 combine_under_and_oversampling/on False
 combine_under_and_oversampling/over_sampling_strategy “minority”
 combine_under_and_oversampling/under_sampling_strategy “majority”
 testing_methods/train_test_split True
 testing_methods/5-fold True

 29

 Note, however, that not all of these parameters were changed during the
 course of the experiment. In the following chapter, we will describe the
 process of how we determined the final settings for all of the parameters that
 we evaluated.

 5.2 Custom stopwords list
 We had produced two lists of custom stopwords to use with the tests.
 custom_stopwords_0 were the more forgiving list, while custom_stopwords_1
 would exclude more words (at the risk of excluding words that could be of
 value to the model). We began testing using custom_stopwords_1 , but after
 conducting a number of dedicated Naive Bayes tests for evaluating which list
 performed best, we found that custom_stopwords_0 produced a better result
 than both custom_stopwords_1 and using no custom stopwords list at all.
 From this point and onward, we decided to make custom_stopwords_0 the
 default list to use.

 5.3 Split Training and Testing Data
 When starting with the train_test_split implementation, we needed to decide
 on some input variables to start with. During the experiments we decided that
 the variables to test out were the ones called stratify and test_size parameters.
 Our starting variable for this was 0.2 for the test size while not having any
 stratify parameter enabled. After some tests were conducted and also through
 some discussions we finalized that the best parameters for this part were to
 use stratify=y , where y is equal to the labels and to make use of a little
 smaller test size so we saw the best results from having our test size set to
 0.15.

 5.4 Undersampling and Oversampling
 Undersampling and oversampling turned out to have no positive effect on
 accuracy when used with neither the Naive Bayes nor the SVM classifier.

 5.5 Naive Bayes
 The tests using the Naive Bayes classification algorithm finished much faster
 than those using SVM , which led to two different approaches when
 conducting tests. We started the testing process by running a large number of
 tests with the Naive Bayes classification algorithm, and a much smaller
 number of tests using SVM .

 30

 The Naive Bayes parameter that we mainly focused on was the alpha value.
 Alpha is a hyperparameter, which means it is a parameter whose value
 controls the learning process of the model. Its purpose is to handle the issue
 of zero probabilities, and it is sometimes also referred to as the smoothing
 parameter or Laplace smoothing [16].

 Our default setting for alpha was 1, and we quickly noted a trend in the test
 results - raising the value would produce worse accuracy scores, and
 lowering it would increase them. A setting of 0.02 initially gave the best
 result (test a25, accuracy: 54.10% f1-score: 53% in the train-test split,
 accuracy: 53.49% f1-score: 52% in the 5-fold cross-validation). Through
 further testing, we found that 0.016 and 0.017 achieved an even better result
 (tests a81-a82, accuracy: 56.12% and f1-score: 54% in train-test split,
 accuracy: 55.32% and f1-score: 54% in the 5-fold cross-validation).

 We continued to try out undersampling, random oversampling and SMOTE
 with different settings along with alpha value 0.017. However, neither of
 these methods had a positive effect on the accuracy - after the tests had
 finished, the best-performing Naive Bayes tests were still tests a81-a82.

 5.6 SVM
 During our testing with the SVM we decided to find the most optimal value
 for the parameter C . As mentioned in Chapter 4.13, C is a hyperparameter
 used in SVM that handles regularization. This number decides how strict
 errors should be handled during the training process. At first we tried with
 values in the range from 0.1, 0.5, 1, 10, 100, 200 all the way up to 1000.
 During this, we could clearly see that the time needed for each test went up
 by 30-60 minutes for each step, at least in the hundreds numbers. While time
 was also taken into account we could also see a clear decrease in the scores
 produced from this, which made us decide to not go that high with our C
 parameter.

 At this point, we also had a discussion regarding the use of 5-fold
 cross-validation for our SVM algorithm. Time was a deciding factor for us to
 be able to complete the thesis project on schedule, and SVM is an algorithm
 that takes more time to run than the Naive Bayes algorithm. Therefore from
 this point on we decided to not include any more 5-fold tests for our SVM
 experiments. Also, we had observed that the 5-fold results were always a

 31

 small margin below those of the train-test split method, which made it more
 time efficient to just rely on the latter.

 After some more testing, we found that the best looking results for our C
 parameter were between 0.16, 0.17, 0.18 and 0.19. From this, we decided to
 take the median value which is 0.175 which we rounded up to 0.18 (test b64
 accuracy: 59.89%, f1-score: 58% in train-test split). Which gave the best
 result at this point in time and used it as a standard value for our C parameter.

 When we had our C parameter decided, the next step in our testing would be
 to conduct experiments with sampling methods. The sampling method we
 started out with was random oversampling . In sampling strategies, we tried
 out different settings for the parameter called sampling_strategy in order to
 find out which worked best for our data. We quickly came to the conclusion
 that random oversampling led to a decrease in every test, the only times it
 was only a slight decrease was when only the minority got sampled or when
 we used the sampling_strategy to increase all classes with under 200 samples
 up to 200. With this number we could see it could reach the same result of
 our earlier highest achieved, if we tried to increase the sampling to higher
 numbers we discovered that it was decreasing again.

 Running tests with SMOTE and undersampling also resulted in decreased
 accuracy scores. Even when we tried out SVM’s own class_weight parameter
 and set it to balanced , there was a clear decrease in how our model performed
 with all of the above methods.

 5.8 Final results
 After adjusting the random_state argument, our best Naive Bayes model
 produced an accuracy score of 56.13 percent and with a f1-score of 54% (test
 a151). Our best SVM model was roughly four percent better, with an accuracy
 score of 60.11 percent and with the f1-score being 59% (test b124). To ensure
 that these results were reliable, we switched computers and trained and tested
 two new models using the exact same input parameters (tests a160 and b160).
 As expected, the scores of these models were identical with those of their
 counterparts b124 and a151. The characters “a” and “b” in the test names
 refer to which computer the test was executed on, so for example, the
 identifier b124 should be read as “test number 124 on computer b”.

 32

 Argument Default Value
 name_of_data_file “nlp_applied_data_0”
 name_of_custom_stopwords_file “custom_stopwords_0”
 data_limit 900000
 use_full_SNI_numbers False
 random_state 12
 naive_bayes/on True
 naive_bayes/alpha 0.017
 svm/on False
 svm/C 1
 svm/class_weight “balanced”
 pipeline/on False
 split_training_and_testing_data/test_size 0.15
 split_training_and_testing_data/stratify True
 under_sampling/on False
 under_sampling/sampling_strategy “all”
 filter_low_occuring_labels/on True
 random_oversampling/on False
 random_oversampling/sampling_strategy “all”
 SMOTE/on True
 SMOTE/k_neighbors 5

 SMOTE/sampling_strategy

 { "4": 200, "6": 200, "9": 200,
 "12": 200, "16": 200, "18":
 200, "32": 200, "35": 200,
 "51": 200, "56": 200, "72":
 200 }

 combine_under_and_oversampling/on False
 combine_under_and_oversampling/over_sampling_strategy “minority”
 combine_under_and_oversampling/under_sampling_strategy “majority”
 testing_methods/train_test_split True
 testing_methods/5-fold False

 33

 Argument Default Value
 name_of_data_file “nlp_applied_data_0”
 name_of_custom_stopwords_file “custom_stopwords_0”
 data_limit 900000
 use_full_SNI_numbers False
 random_state 5
 naive_bayes/on False
 naive_bayes/alpha 1
 svm/on True
 svm/C 0.18
 svm/class_weight null
 pipeline/on False
 split_training_and_testing_data/test_size 0.15
 split_training_and_testing_data/stratify True
 under_sampling/on False
 under_sampling/sampling_strategy “all”
 filter_low_occuring_labels/on True
 random_oversampling/on False
 random_oversampling/sampling_strategy “minority”
 SMOTE/on False
 SMOTE/k_neighbors 1
 SMOTE/sampling_strategy “all”
 combine_under_and_oversampling/on False
 combine_under_and_oversampling/over_sampling_strategy “minority”
 combine_under_and_oversampling/under_sampling_strategy “majority”
 testing_methods/train_test_split True
 testing_methods/5-fold False

 34

 6 Analysis and Discussion
 The final results answer RQ1 , as SVM beat the best Naive Bayes score by
 four percent. With our best-performing SVM-trained model reaching an
 accuracy of 60.11 percent, we also succeeded in answering the first part of
 RQ3 : an accuracy higher than Dahlqvist and Strandlund’s 52 percent was
 indeed possible to achieve. However, even if it’s an improvement it seems
 unlikely that this score will be considered high enough to implement a
 real-world solution with our model as the basis.

 Our dataset of 615 163 company descriptions with SNI numbers was severely
 imbalanced. Much time was put into mitigating this problem with methods
 such as over- and undersampling, and excluding extreme minority classes
 from the training and testing data altogether. However, in the end these tactics
 had no positive effect on the accuracy scores. In the case of our
 best-performing Naive Bayes and SVM models, applying over- and
 undersampling only either led to lower scores or had no effect at all. So, to
 answer RQ2 : applying over- and undersampling to our imbalanced dataset
 did not produce any improvement in the performance metrics.

 This was surprising, as we had expected that these methods would play a
 crucial role in finding the optimal model. In comparison, altering the alpha
 value, the C value, the random state value, and changing the custom
 stopwords list all at least led to minor improvements in accuracy. At the
 beginning of our thesis project, we were made aware that training a model in
 machine learning can take a very long time for each experiment. Even with
 that knowledge when playing around with the SVM algorithms C parameter
 and using 5-fold cross-validation, it took us by surprise how much time each
 experiment ended up running. Increasing the C value would add hours to the
 execution time of each test, even when executed on our fastest computer -
 some tests took six to seven hours to complete. From this, we can only
 assume that a bigger and less imbalanced dataset would take up a
 considerable amount of more time.

 While the problems caused by the imbalanced dataset could be solved by
 using a better dataset, acquiring one is easier said than done. The dataset
 we’ve used is a fair representation of how the companies in the Swedish
 market are actually distributed. Big hard-competition industries include a
 large variety of companies, while small niche industries have much fewer
 companies.

 35

 Another issue is more difficult to solve as it is very closely tied to the nature
 of the problem: the very limited amount of text data provided in a company
 description. How many of the final model’s errors are caused by the
 imbalanced data? And how many are caused by it being forced to guesswork
 when presented with only a short sentence without any valuable words in it?

 The outcome of our experiment highlights the importance of a balanced
 dataset when training a machine learning model, as well as the importance of
 providing it with enough data to actually make accurate predictions on new
 samples. This provides us with an answer to the second part of RQ3 : the
 biggest obstacle preventing higher scores appears to be dataset imbalance
 combined with low-quality data.

 Another approach that was considered at the beginning of the experiment was
 to train a model on company names rather than descriptions. This would have
 restricted the model to even less input data - while it would have been
 another experiment altogether, it’s easy to see a scenario where that model
 would have struggled even more with making predictions based on other than
 guesswork.

 While the research conducted by Gao, He and Chen and Kim, Kang, Bae and
 Jeon provided interesting and unorthodox angles on how to approach the
 problem, Dahlqvist and Strandlund’s study was by far the most relevant. It
 outlined many of the challenges that turned out to be specific to the Swedish
 SNI code system, and after finishing our experiment, our results and
 subsequent analysis are largely similar to theirs. They too were hampered by
 a low-quality dataset in their pursuit of high accuracy scores, but unlike us
 they didn’t actively try to mitigate the problem through over- and
 undersampling.

 Another difference worth noting is that Dahlqvist and Strandlund’s dataset
 was much smaller than ours - their original dataset consisted of data from 95
 450 Swedish companies registered between 2008 and 2019 with at least one
 employee. Out of these, they decided to reduce the amount even further by
 using a subset of only 7846 companies which had ten or more employees,
 based on a claim from SCB that these were more likely to have high-quality
 company descriptions [1, p. 3]. This approach was never really an option for
 us, as our dataset didn’t contain any other information than company
 descriptions and SNI codes.

 36

 With our results in hand, focusing as much on over- and undersampling as we
 did may seem like a wrongful prioritization. However, it can be argued that
 exploring the effects of these methods was a better choice than just leaving
 the obvious problem with the imbalanced data unaddressed. It should also be
 emphasized that even though over- and undersampling didn’t have any
 positive effect on our results, these strategies should not be dismissed as
 useless. In a different context than with our specific problem and dataset, they
 may very well produce an increase instead.

 As it turns out, Natural language processing also ended up playing a much
 smaller role in our experiment than we had anticipated. Some NLP methods
 were applied during the preprocessing of the data, such as stemming,
 lemmatization, tokenization and removal of general Swedish language
 stopwords. However, the possibilities to adjust the settings of these methods
 in a way that would lead to higher accuracy or f1-scores seemed very limited.
 Consequently, no particular focus was placed on the NLP preprocessing when
 carrying out our tests.

 37

 8 Conclusions and Future Work
 With the increasingly sophisticated machine learning algorithms of today,
 creating an automated solution for the SNI code system has never seemed
 like an impossible task. However, the importance of high-quality data in the
 machine learning process shouldn’t be underestimated. The massive amounts
 of data produced by an increasingly digitalized and connected world has been
 a key enabler of the last decade’s rapid advancements within the fields of AI
 and machine learning.

 In the case of the SNI code system, real world circumstances limit the
 availability of data as the model has to be trained on Swedish company
 descriptions and SNI codes. Unless you produce a dataset of made-up
 company descriptions for the purpose of training a model, you will have to
 make do with data gathered from actual registered companies. Sweden is a
 country with a small population - estimated to roughly ten million people in
 2023 - so the amount of available company descriptions will be relatively
 few. Consequently, the training data available for the areas of industry that
 are the least represented in Sweden will be severely lacking.

 Our experiment was a success in the sense that we achieved our main
 objective - with our top score of 60.11 percent, we reached an 8.11 percent
 accuracy improvement over Dahlqvist and Strandlund’s best model. In our
 particular case, over- and undersampling turned out to have little to no effect
 on the end result, despite being go-to methods for countering problems with
 imbalanced data. Perhaps unsurprisingly, the data a model is trained and
 tested on may turn out to have a much larger impact on its performance than
 the preprocessing, algorithms and settings used when training it.

 If time and resources had allowed it, it would also have been interesting to
 add an implementation to calculate the probabilities of the output from the
 SVM classifier, by using techniques such as Platt scaling or other similar
 methods. Using this may have provided us with a clearer image of the
 probabilities of each class, from which we could have created a top-5 ranking
 list. However, in order to avoid overfitting in this operation, an internal 5-fold
 cross validation check would have to be carried out, making it very
 time-consuming to run tests with such functionality.

 Dahlqvist and Strandlund, who completely relied on the gradient boosting
 algorithm, concluded their thesis by stating that using other machine learning

 38

 algorithms such as SVM could possibly increase accuracy. They also stated
 that the improvement, however, would most likely not be very significant.
 Our results show that they were correct in both of these assumptions.
 Dahlqvist and Strandlund also came to the conclusion that one of the biggest
 issues that they had to combat during their study was the poor quality of data.
 They mention the fact that there is no baseline of reference on the content or
 structure of a business description:

 “Business descriptions containing a single word does not
 provide much information about the area of industry. For
 example, describing a business with only the word cars will
 not provide any information if cars are sold, produced or
 for rent, which would all yield different SNI codes.
 Antipole of these businesses is those who try to write
 everything the business might do in an infinite lifetime.
 Their main business might be the production of cars, but
 they will include the sale of cars to allow for pivoting if
 circumstances change [1, p. 11].”

 Furthermore, Dahlqvist and Strandlund expressed their hope that Statistics
 Sweden’s implementation of a new system for digital annual reports - DiÅR -
 would lead to a better structured dataset, which could be used to train a
 machine learning model. Since we cannot compare Dahlqvist and
 Strandlund’s dataset to ours, we can’t be certain whether our higher results
 can be attributed to the SVM algorithm or to a somewhat better dataset.

 The fact that Dahlqvist and Strandlund managed to reach 52 percent with a
 much smaller dataset - 615 163 samples versus 7846 - also begs the question
 whether quantity or quality is the key to an optimal dataset. Our dataset
 consisted of only company descriptions and SNI-numbers, so we had no
 other data that could be used to distinguish between high and low quality
 samples. A dataset as large as ours, but with additional information about the
 companies, could perhaps allow for filtering out low-quality samples while
 still providing the model with enough data?

 Something that should be considered, however, is that out of the 88 main
 groups, Dahlqvist and Strandlund chose to focus on the 30 most frequently
 occurring, while we only excluded the very few that had less than ten
 samples [1, p. 7]. The amount of categories included have a large impact on

 39

 the accuracy of a model, making the eight percent rise a much bigger
 improvement than the scores alone might suggest.

 Whether taking the different approaches into account or not, the eight percent
 improvement in accuracy is highly encouraging. Today’s booming interest in
 AI technology will most likely result in new and improved methods for text
 classification. Combine these with even more data gathered through DiÅR,
 and the next attempt at developing an automated SNI code assignment system
 may continue the trend towards even higher accuracy scores.

 40

 References
 [1] P. Dahlqvist-Sjöberg and R. Strandlund “Predicting the Area of Industry:
 Using machine learning to classify SNI codes based on business descriptions,
 a degree project at SCB,” (June 25, 2019). [Online] Available:
 https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1329995&dswid
 =-965 . [Accessed Jan. 24, 2023].

 [2] H. Gao, J. He and K. Chen “Exploring Machine Learning Techniques for
 Text-Based Industry Classification,” (June, 29 2020). [Online] Available at
 SSRN: https://ssrn.com/abstract=3640205 or
 https://dx.doi.org/10.2139/ssrn.3640205 . [Accessed Jan. 25, 2023].

 [3] D. Kim, H. Kang, K. Bae and S. Jeon “An Artificial Intelligence-Enabled
 Industry Classification and its Interpretation,” (March 2022). [Online]
 Available at emerald insight: https://www-emerald-com . [Accessed Jan. 25,
 2023].

 [4] D. Jurafsky and J. H. Martin, Speech and Language Processing , 3rd ed.
 draft, Stanford, CA, USA, 2023.

 [5] P. M. Nadkarni, L. Ohno-Machado, W. W. Chapman “Natural language
 processing: an introduction”. (Sept. 01, 2011) [Online] Available at Oxford
 Academic/JAMIA: https://doi.org/10.1136/amiajnl-2011-000464 . [Accessed
 Apr. 04, 2023].

 [6] J. Hagelbäck, Linnaeus University, Växjö, Sweden. Naïve Bayes
 Algorithm. (Aug. 30, 2019). Accessed Apr. 5, 2023. [Online Video].
 Available: https://www.youtube.com/watch?v=ipJAtpYxlrY

 [7] J. Hagelbäck, Linnaeus University, Växjö, Sweden. Applied ML - Kernel
 Methods and SVMs. (Feb. 14, 2018). Accessed Apr. 5, 2023. [Online Video].
 Available: https://www.youtube.com/watch?v=e3TzdioY2hI

 [8] imbalanced-learn “Problem statement regarding imbalanced data sets.”
 [Online]. Available: https://imbalanced-learn.org/stable/introduction.html .
 [Accessed Apr. 6, 2023].

 [9] J. Brownlee. “Random Oversampling and Undersampling for Imbalanced
 Classification.” (Jan. 5, 2020). [Online]. Available:
 https://machinelearningmastery.com/random-oversampling-and-undersamplin
 g-for-imbalanced-classification/ [Accessed Apr. 6, 2023].

 41

https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1329995&dswid=-965
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1329995&dswid=-965
https://ssrn.com/abstract=3640205
https://dx.doi.org/10.2139/ssrn.3640205
https://www-emerald-com.proxy.lnu.se/insight/content/doi/10.1108/INTR-05-2020-0299/full/html
https://doi.org/10.1136/amiajnl-2011-000464
https://www.youtube.com/watch?v=ipJAtpYxlrY
https://www.youtube.com/watch?v=e3TzdioY2hI
https://imbalanced-learn.org/stable/introduction.html
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/

 [10] J. Brownlee. “A Gentle Introduction to k-fold Cross-Validation.” (May
 23, 2018). [Online]. Available:
 https://machinelearningmastery.com/k-fold-cross-validation/ . [Accessed Apr.
 19, 2023]

 [11] Statiska Centralbyrån “Sökning efter SNI-kod” [Online]. Available:
 https://sni2007.scb.se/default.asp . [Accessed Apr. 19 2023].

 [12] imbalanced-learn “SMOTE“ [Online]. Available:
 https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampl
 ing.SMOTE.html . [Accessed May 04, 2023].

 [13] scikit-learn “sklearn.svm.LinearSVC” [Online]. Available:
 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.htm
 l#sklearn.svm.LinearSVC . [Accessed May 04 2023].

 [14] J. Brownlee. “Controlled Experiments in Machine Learning” (June 22,
 2018). [Online] Available:
 https://machinelearningmastery.com/controlled-experiments-in-machine-lear
 ning/ . [Accessed May 08 2023].

 [15] P. Langley “Machine Learning as an Experimental Science” Machine
 Learning 3, p 5-8 (1998). [Online] Available at Springer Link:
 https://link.springer.com . [Accessed May 08 2023].

 [16] V. Jayaswal. “Laplace smoothing in Naïve Bayes algorithm.” (Nov. 22,
 2020). [Online]. Available:
 https://towardsdatascience.com/laplace-smoothing-in-na%C3%AFve-bayes-a
 lgorithm-9c237a8bdece [Accessed June 5, 2023].

 [17] “Stemming and lemmatization” [Online] Available:
 https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatizati
 on-1.html [Accessed June 5, 2023]

 42

https://machinelearningmastery.com/k-fold-cross-validation/
https://sni2007.scb.se/default.asp
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://link.springer.com/
https://towardsdatascience.com/laplace-smoothing-in-na%C3%AFve-bayes-algorithm-9c237a8bdece
https://towardsdatascience.com/laplace-smoothing-in-na%C3%AFve-bayes-algorithm-9c237a8bdece
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

 A Appendix 1
 The source code for our Jupyter Notebook application can be accessed at
 either of these two GitHub repositories:

 https://github.com/Erkabubben/machine-learning-sni-code-from-company-de
 scription

 https://github.com/Sobaze/machine-learning-sni-code-from-company-descrip
 tion

 43

https://github.com/Erkabubben/machine-learning-sni-code-from-company-description
https://github.com/Erkabubben/machine-learning-sni-code-from-company-description
https://github.com/Sobaze/machine-learning-sni-code-from-company-description
https://github.com/Sobaze/machine-learning-sni-code-from-company-description

