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 Abstract 
 This  study  aims  to  develop  an  automated  solution  for  assigning  area  of 
 industry  codes  to  businesses  based  on  the  contents  of  their  business 
 descriptions.  The  Swedish  standard  industrial  classification  (SNI)  is  a  system 
 used  by  Statistics  Sweden  (SCB)  for  categorizing  businesses  for  their 
 statistics  reports.  Assignment  of  SNI  codes  has  so  far  been  done  manually  by 
 the  person  registering  a  new  company,  but  this  is  a  far  from  optimal  solution. 
 Some  of  the  88  main  group  areas  of  industry  are  hard  to  tell  apart  from  one 
 another,  and  this  often  leads  to  incorrect  assignments.  Our  approach  to  this 
 problem  was  to  train  a  machine  learning  model  using  the  Naive  Bayes  and 
 SVM  classifier  algorithms  and  conduct  an  experiment.  In  2019,  Dahlqvist  and 
 Strandlund  had  attempted  this  and  reached  an  accuracy  score  of  52  percent  by 
 use  of  the  gradient  boosting  classifier,  but  this  was  considered  too  low  for 
 real-world  implementation.  Our  main  goal  was  to  achieve  a  higher  accuracy 
 than  that  of  Dahlqvist  and  Strandlund,  which  we  eventually  succeeded  in  - 
 our  best-performing  SVM  model  reached  a  score  of  60.11  percent.  Similarly 
 to  Dahlqvist  and  Strandlund,  we  concluded  that  the  low  quality  of  the  dataset 
 was  the  main  obstacle  for  achieving  higher  scores.  The  dataset  we  used  was 
 severely  imbalanced,  and  much  time  was  spent  on  investigating  and  applying 
 oversampling  and  undersampling  as  strategies  for  mitigating  this  problem. 
 However,  we  found  during  the  testing  phase  that  none  of  these  strategies  had 
 any positive effect on the accuracy scores. 

 Keywords:  Machine  learning,  text  classification,  SNI,  Naive  Bayes,  SVM, 
 oversampling, undersampling. 
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 1 Introduction 
 This  chapter  will  provide  a  brief  introduction  to  the  problem  this  thesis  aims 
 to solve. 

 SNI  is  a  standard  used  in  Sweden  and  stands  for  Svensk 
 Näringsgrensindelning  (which  roughly  translates  to  Swedish  industry 
 classification).  In  the  SNI  system,  a  five-digit  code  is  assigned  to  a  new 
 business  upon  registration.  The  purpose  of  the  SNI  code  is  to  enable  easy 
 categorization  of  companies  based  on  which  area  of  industry  they  belong  to, 
 as  well  as  by  their  more  specific  roles  within  their  areas  of  industry.  Thus,  the 
 SNI  code  is  important  for  tracking  statistics  and  can  help  gather  information 
 on  similar  companies  in  the  same  industry  [11].  Statistics  Sweden  (SCB)  rely 
 on  the  SNI  system  when  producing  reports  on  Sweden’s  economic  and 
 industrial growth. 

 Traditionally,  the  responsibility  for  selecting  the  right  SNI  code  has  been  put 
 on  the  person  registering  a  new  business.  This  is  problematic  since  many  of 
 the  categories  are  quite  similar,  and  as  a  consequence,  incorrect  assignments 
 due  to  the  human  factor  are  common.  Assigning  the  correct  SNI  code  upon 
 registration  is  of  high  importance,  since  incorrect  assignments  will  lead  to 
 inaccurate statistics reports. 

 In  this  thesis,  we  attempt  to  solve  this  problem  by  developing  a  machine 
 learning  model  capable  of  automatically  assigning  an  SNI  number  from  the 
 contents  of  a  company  description.  This  is  done  in  the  form  of  an  experiment, 
 where  the  effects  of  using  different  input  variables  on  the  trained  and  tested 
 model  are  documented  and  analyzed.  To  provide  context,  we  discuss  the  SNI 
 system  in  further  detail,  and  explain  the  technologies  and  challenges  involved 
 in  developing  an  automatic  solution.  In  the  final  chapters,  the  results  of  the 
 experiment  are  presented  along  with  our  subsequent  analysis  and 
 conclusions. 

 1.1 Background 
 Statistics  and  the  subfield  of  business  statistics  is  the  application  area  of  this 
 thesis  project,  as  we  aim  to  solve  a  real-world  problem  for  Fortnox  AB: 
 automatic  assignment  of  SNI  codes  based  on  company  descriptions.  An 
 effective  solution  to  this  problem  would  lead  to  fewer  incorrect  assignments, 
 resulting  in  more  accurate  statistics  reports.  It  would  also  do  away  with  the 
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 costs  involved  with  the  manual  assignment  of  SNI  codes,  as  well  as  make  the 
 process of starting a new business more streamlined. 

 The  research  area  of  this  thesis  project  is  computer  science  ,  and  more 
 specifically,  the  subfield  of  Artificial  intelligence.  Artificial  intelligence  is  the 
 field  of  study  devoted  to  the  development  of  systems  and  machines  capable 
 of  exhibiting  human-like  intelligence.  Within  Artificial  intelligence,  Machine 
 learning  is  the  subfield  that  we  expect  our  thesis  to  be  most  focused  on.  This 
 is  the  field  that  focuses  on  the  learning  process,  and  how  to  use  data  to  train 
 an AI system - commonly referred to as a  model  - for  a specific task. 

 The  real-world  value  of  our  implementation  will  come  from  its  ability  to 
 interpret  the  company  description  of  a  business  and  make  an  informed 
 decision  about  its  SNI  code  classification.  Consequently,  we  expect  that  the 
 system's  understanding  of  human  language  may  be  a  central  challenge.  For 
 this  reason,  Natural  language  processing  (NLP)  is  another  AI  subfield  that  is 
 likely  to  be  relevant.  NLP  is  the  field  devoted  to  enabling  computers  to 
 understand, interpret and generate human language. 

 1.2 Related work 
 Dahlqvist  and  Strandlund  used  Natural  language  processing  and  machine 
 learning  to  aim  for  automation  of  being  able  to  predict  a  Swedish  business 
 from  their  company  description  and  assign  the  correct  SNI  code  [1].  With  the 
 use  of  classification  methods,  they  analyzed  the  business  description  to  create 
 a  model  that  will  place  the  industry  in  the  area  they  belong  to.  Dahlqvist  and 
 Strandlund’s  thesis  project  was  done  in  collaboration  with  Statistics  Sweden, 
 and  the  goal  was  to  go  from  manual  labor  to  using  their  machine  learning 
 model in their day-to-day production. 

 Unfortunately,  they  were  unable  to  achieve  an  accuracy  higher  than  52 
 percent,  which  was  considered  too  low  to  implement  their  solution  in 
 day-to-day  production.  Our  approach  will  make  use  of  similar  methods  for 
 training  and  testing  our  models,  but  we  will  also  explore  other  options 
 available  in  order  to  improve  the  prediction  rate.  Hopefully,  we  will  manage 
 to create a model that can be implemented in a production environment. 

 Gao,  He  and  Chen  claim  that  with  the  rapid  development  of  machine  learning 
 techniques,  textual  analysis  methods  can  be  of  great  use  for  finance  research 
 [2].  They  started  their  research  by  first  exploring  the  most  common  and 
 recently  developed  techniques  for  text-based  classifications.  They  then 
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 proceeded  to  implement  and  compare  the  results  of  these  techniques  against 
 the  U.S.  and  Chinese  markets.  The  goal  was  to  achieve  an  effective  way  of 
 classifying a company’s area of industry. 

 In  Gao,  He  and  Chen’s  research,  a  combination  of  the  word  embedding 
 scheme  latent  semantic  indexing  (LSI)  together  with  k-means  clustering  gave 
 a  result  that  is  comparable  to  the  standard  global  industry  classification 
 standard  (GICS).  GICS  is  a  tool  that  helps  to  define  global  industries  and 
 classifying  securities  by  industry.  It  also  assigns  a  company  a  code  consisting 
 of  eight  digits,  making  it  similar  to  the  Swedish  SNI  system.  Similarly  to  this 
 study,  we  will  explore  different  techniques  used  for  text-based  classification, 
 but we will specifically use the SNI as our base measure. 

 According  to  Kim,  Kang,  Bae  and  Jeon,  the  rapid  changes  in  the  current 
 economy  may  force  a  company  to  emerge,  enter  or  exit  an  industry  much 
 faster  than  we  have  seen  before  [3].  With  this  fast  pace,  they  deem  the 
 traditional  industry  classifications  to  not  be  optimal  and  that  they  have  certain 
 limitations.  Thus  they  present  an  alternative  method  for  improvements  to  the 
 existing  industry  classifications.  This  includes  applying  a  text  mining 
 technique  used  to  resolve  dimensionality  problems  in  high-dimensional  texts. 
 Using  machine  learning,  they  managed  to  avoid  the  so-called  “curse  of 
 dimensionality”.  They  claim  that  this  approach  can  help  improve  existing 
 text-based  classification  performance  in  predicting  industry.  They  also  show 
 results  that  their  approach  is  better  than  existing  industry  classification 
 systems. 

 In  order  to  enhance  their  proposed  method,  they  deem  it  necessary  to  analyze 
 unstructured  data  in  financial  reports.  Similarly  to  Kim,  Kang,  Bae  and  Jeon’s 
 study,  we  will  work  with  text-based  classifications  to  determine  the 
 company's industry type from their description. 

 1.3 Problem formulation 
 We  intend  to  use  the  bachelor's  thesis  Predicting  the  Area  of  Industry  by 
 Dahlqvist  and  Strandlund  as  a  starting  point  of  our  thesis  [1].  Our  models  will 
 be  trained  and  tested  on  a  much  larger  dataset  than  theirs,  consisting  of 
 615 163  company  descriptions  with  assigned  SNI  codes.  Dahlqvist  and 
 Strandlund's  best  model  was  able  to  correctly  predict  52  percent  of  the 
 companies’  area  of  industry.  This  score  was  considered  too  low  to  justify  an 
 implementation of an automatic system based on their model. 
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 1.3.1 Research questions 

 Research question  Description 

 RQ1  Which of the two classification methods - 
 Multinomial Naive Bayes and SVM - show the 
 most potential in the context of assigning SNI 
 codes based on company descriptions? 

 RQ2  What is the effect on accuracy and f1-score of 
 applying over- and undersampling on the 
 imbalanced dataset? 

 RQ3  Can an accuracy higher than 52 percent be 
 achieved, and what can be identified as the 
 biggest obstacle in reaching high scores? 

 1.4 Motivation 
 The  end  goal  of  this  thesis  project  will  be  to  develop  a  model  that  can  reach  a 
 higher  score  than  that  of  Dahlqvist  and  Strandlund's  best-performing  model. 
 Ideally,  the  accuracy  of  our  model  will  also  be  high  enough  for  Statistics 
 Sweden  to  be  able  to  use  it  for  an  automatic  system.  Fortnox  AB  has 
 expressed  a  strong  interest  in  a  model  that  could  be  used  as  the  basis  for  such 
 a solution. 

 However,  even  if  we  should  fail  to  achieve  the  goal  of  developing  a  model 
 that  can  be  used  by  Statistics  Sweden,  our  thesis  will  still  have  a  scientific 
 value.  Our  findings  may  be  of  help  to  future  developers  attempting  to  solve 
 the same problem, or one of similar nature. 

 At  its  core,  SNI  number  assignment  is  a  very  straightforward  classification 
 task.  As  such,  a  machine  learning-trained  classification  model  seems  like  an 
 ideal  solution.  One  of  the  main  challenges  involved,  however,  is  the  very 
 limited  amount  of  data  provided  in  a  company  description.  This  is  why 
 Natural  language  processing  and  other  preprocessing  methods  play  a  very 
 important  role  in  the  project.  In  order  to  achieve  a  high  accuracy,  the  text  data 
 must  be  processed  so  that  the  model  can  fully  make  use  of  every  single  word 
 that carries meaning. 
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 1.5 Results 
 Our  best-performing  Naive  Bayes  and  SVM  models  were  able  to  reach  an 
 accuracy  of  56.13  percent  and  60.11  percent  respectively.  This  means  that  we 
 succeeded  in  our  goal  to  reach  a  higher  score  than  that  of  Dahlqvist  and 
 Strandlund,  but  our  results  are  probably  still  too  low  to  justify  a  real  world 
 implementation. 

 However,  one  should  take  into  account  that  Dahlqvist  and  Strandlund  limited 
 themselves  to  the  30  most  frequently  occurring  classes  while  we  only 
 excluded  classes  with  less  than  ten  samples,  which  was  only  three  classes 
 with  them  having  3,  1,  1  occurrences.  The  amount  of  classes  included  has  a 
 big  effect  on  accuracy  scores,  making  an  eight  percent  increase  a  bigger 
 improvement  than  it  might  seem.  Excluding  classes  can  result  in  a  boost  in 
 accuracy,  but  it  comes  at  the  expense  of  the  quality  of  the  solution  and  may 
 drastically  reduce  its  usefulness  for  real-world  implementation.  For  this 
 reason, we wanted to include as many classes as possible. 

 We  believe  that  one  of  the  success  factors  was  that  we  had  access  to  a  larger 
 dataset  than  that  of  Dahlqvist  and  Strandlund  -  615  163  samples  versus  7846. 
 However,  just  as  Dahlqvist  and  Strandlund  considered  their  poor  quality  data 
 to  be  their  main  obstacle  towards  reaching  higher  scores,  our  experiment  was 
 also  hampered  by  a  less  than  optimal  dataset.  Our  dataset  was  severely 
 imbalanced,  with  62  710  samples  in  the  largest  class  as  opposed  to  less  than 
 ten  in  the  smallest.  We  tried  using  oversampling  and  undersampling  to 
 mitigate  this  problem,  but  in  the  end  neither  of  these  techniques  had  any 
 positive effect on our results. 

 1.6 Scope/Limitation 
 When  choosing  what  programming  language  to  use,  we  considered  both 
 Python,  Java,  and  R,  as  these  are  all  very  popular  languages  for  machine 
 learning  applications.  While  we  were  both  somewhat  more  familiar  with 
 Java,  Python  seemed  like  the  better  choice  because  of  its  large  number  of  AI 
 libraries. For our IDE we chose Jupyter Notebook. 

 With  the  huge  variety  of  machine  learning  algorithms  available,  we  had  to 
 limit  ourselves  to  those  we  believed  best  suited  for  our  particular  problem. 
 The  Naive  Bayes  algorithm  has  a  track  record  of  high  effectiveness  for  text 
 classification  -  its  relatively  low  level  of  complexity  and  high  speed  would 
 allow  for  quick  training  and  testing  of  new  models  [6].  The  SVM  algorithm 
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 was  specifically  suggested  by  Dahlqvist  and  Strandlund  as  a  classifier  worth 
 exploring further in the context of SNI code predictions [1, p. 10]. 

 Early  on  we  made  the  decision  to  focus  on  the  first  two  digits  of  the  SNI  code 
 -  which  represent  the  88  main  areas  of  industry  -  rather  than  making  use  of 
 the  full  five-digit  code  and  assigning  sub-categories  as  well.  We  decided  that 
 we  could  make  an  attempt  at  building  an  hierarchical  system  for  assigning 
 full  SNI  codes  only  if  we  reached  a  very  high  accuracy  with  the  two 
 digit-system. 

 We  considered  using  TensorFlow,  which  has  a  reputation  for  being  a  good 
 end-to-end  platform  for  producing  AI  solutions  to  real  world  problems. 
 However,  developing  our  application  within  the  context  of  a  large  framework 
 would  have  required  us  to  spend  much  of  our  time  learning  how  to  use  the 
 framework  effectively.  For  the  same  reason,  we  rejected  the  idea  of 
 attempting to solve the task by using a neural network. 

 Instead,  we  settled  upon  an  iterative  approach:  we  would  start  out  small  with 
 developing  a  Jupyter  Notebook  application  that  wouldn’t  be  much  more 
 complex  than  our  past  machine  learning  projects.  We  would  then 
 continuously  experiment  with  Natural  language  processing  through  the 
 library NLTK, Scikit-learn and other preprocessing methods. 

 1.7  Target group 
 Our  implementation  will  be  of  use  for  Statistics  Sweden,  as  well  as  for  both 
 existing  and  new  companies.  Making  the  step  of  picking  the  correct  SNI 
 number  automatic  with  our  implementation,  we  prevent  mistakes  from 
 happening.  This  will  also  target  people  working  with  machine  learning  that 
 will  be  interested  in  good  practice  regarding  similar  data  structure  works  in 
 the future. 

 1.8 Outline 
 In  the  following  chapters,  Chapter  2  covers  the  picked  method  we  chose  to 
 use  during  this  project,  while  also  going  over  how  we  took  ethical  decisions 
 into  account  during  the  project.  It  also  covers  how  we  worked  to  make  our 
 project  reliable  and  valid.  Chapter  3  will  be  an  explanation  of  the  theoretical 
 background  and  also  cover  our  reasoning  of  why  there  exists  a  knowledge 
 gap  and  how  we  intend  to  work  with  it.  The  implementation  will  be  covered 
 in  Chapter  4  going  over  all  the  realizations  and  all  the  steps  taken  to  reach  our 
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 results.  The  results  will  be  discussed  in  Chapter  5  where  we  will  present  all 
 the  raw  results.  In  Chapter  6  we  analyzed  the  results  and  covered  what 
 conclusions  we  can  take  from  our  experiments.  Chapter  7  covers  the 
 discussions  over  the  project's  findings.  Lastly,  to  finish  it  up  we  have  Chapter 
 8  where  we  discussed  our  conclusions  and  what  can  be  done  for  future  work 
 for further improvements on the subject. 
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 2 Method 
 We  decided  that  the  best  fitting  methodology  for  this  project  was  to  do  it  as 
 an  experiment  ,  as  finding  which  model  would  be  the  most  suitable  would  be 
 an iterative process of training and testing models on different settings. 

 This  goes  hand-in-hand  with  the  concepts  of  independent  variables  and 
 dependent variables  commonly used in experiments. 

 2.1 Research Project 
 This  project  was  initiated  by  the  company  Fortnox  AB.  They  are  looking  for 
 a  solution  to  automate  the  process  of  assigning  correct  SNI  numbers  based  on 
 only  a  company’s  description.  In  order  to  automate  this  process  we  will  be 
 testing  different  machine  learning  algorithms.  To  conduct  the  test  we  decided 
 that  we  will  follow  the  methodology  of  experimentation.  Using 
 experimentation,  we  aim  to  gather  the  data  needed  to  answer  our  research 
 questions stated in 1.3.1. 

 2.2 Research Methods 
 In  order  to  solve  the  research  problem,  we  conducted  several  experiments  on 
 the  data  set  that  we  received  from  Fortnox  AB.  Since  machine  learning  is  a 
 field  that  is  heavily  reliant  on  empirical  evaluation  and  experimentation,  we 
 decided  that  an  experimentation  methodology  was  the  most  appropriate  way 
 to  reach  our  solution.  Finding  which  model  is  the  most  suitable  would  be  an 
 iterative process of training and testing with different settings. 

 The  experiment  methodology  is  good  practice  to  use  when  you  need  to 
 systematically  evaluate  and  compare  different  machine  learning  techniques  in 
 a  controlled  environment.  The  concepts  of  independent  variables  and 
 dependent  variables  are  commonly  used  in  experiments.  In  our  case  the 
 dependent  variables  would  be  our  performance  metrics  -  accuracy  and 
 f1-score  -  and  the  independent  variables  would  be  our  input  features.  Some  of 
 the  input  features  would  be  deciding  what  value  for  the  hyperparameters 
 inside  our  ml  classifiers,  whether  or  not  we  will  be  using  any 
 over/undersampling  methods  and  selecting  value  for  the  random  seed  that 
 will  be  used.  In  machine  learning  experiments,  all  known  independent 
 variables  are  usually  set  to  a  default  value,  and  for  each  round  of  experiment 
 only  one  variable  is  changed  in  order  to  observe  what  impact  it  has  on  the 
 dependent  variable  [14].  Per  definition,  experiments  require  that  one 
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 systematically  changes  one  or  more  variables  and  examine  their  effects  on  the 
 dependent  variable.  Consequently,  many  runs  of  experiments  would  have  to 
 be  carried  out  to  determine  the  conditions  for  achieving  a  high  result  that 
 could also be considered valid and reliable [15]. 

 When  conducting  each  of  our  experiments,  there  were  several  steps  of 
 preparing  the  data  that  had  to  be  done  before  it  would  be  used  to  train  and  test 
 the  machine  learning  model.  In  each  of  these  steps  there  were  also  many 
 different  variables  that  needed  to  be  tested.  The  testing  of  different  variables 
 was  conducted  in  an  iterative  manner  where  we  started  with  the 
 preprocessing of the data. 

 2.3 Reliability and Validity 
 After  reaching  an  accuracy  score  we  believed  would  be  the  highest  possible 
 within  our  timeframe,  we  would  proceed  to  thoroughly  test  the  code  and 
 model  to  ensure  a  high  reliability.  To  make  our  tests  more  reproducible  we 
 decided  to  use  a  consistent  random  seed  value  .  Using  the  same  seed  value 
 across  the  code  would  guarantee  that  the  same  sequence  of  random  numbers 
 would  be  used  every  time  the  code  was  executed.  We  would  also  run  the  code 
 on  both  of  our  computers  to  ensure  that  the  accuracy  remained  consistent  in 
 different environments. 

 Another  effort  to  ensure  reliability  that  we  decided  upon  would  be  to 
 double-check  that  we  had  documented  which  exact  versions  of  Python, 
 Jupyter  Notebook  and  imported  libraries  that  were  used  on  the  final  model. 
 We  will  make  sure  that  the  libraries  being  used  throughout  the  project  are 
 from  trustworthy  sources  with  high  reputation.  By  relying  on  said  libraries 
 rather  than  implementing  their  functionality  from  scratch,  we  aim  to  improve 
 the  validity  of  our  implementation  by  reducing  the  likelihood  of  errors  in  the 
 code. 

 The  data  provided  was  not  very  balanced,  as  some  of  the  SNI  main  categories 
 were  far  more  represented  than  others.  This  was  a  technical  challenge  that  we 
 identified  early  on,  and  that  we  concluded  could  make  the  trained  model 
 biased  towards  certain  categories  and  could  negatively  affect  its  accuracy.  We 
 addressed  this  by  experimenting  with  different  methods  for  mitigating  the 
 effects  of  unbalanced  data,  such  as  oversampling  and  undersampling  .  We  also 
 understood  that  this  would  be  an  issue  that  we  would  have  to  factor  in  when 
 evaluating the validity of our results. 
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 2.4 Ethical Considerations 
 It  is  difficult  to  envision  that  the  outcome  of  our  experiment  could  cause  any 
 direct  or  indirect  harm.  As  mentioned  above,  the  current  system  for  SNI 
 number  assignments  puts  full  responsibility  on  the  person  starting  the  new 
 business.  This  means  that  no  one  at  Statistics  Sweden  or  anywhere  else  is 
 likely  to  lose  their  job  when  an  automatic  solution  is  implemented.  Neither 
 does  it  seem  likely  that  our  very  task-specific  machine  learning  model  would 
 contribute  to  any  of  the  doomsday  scenarios  that  are  often  brought  up  when 
 discussing the risks associated with AI technology. 

 The  data  used  to  train  the  model  was  provided  by  Fortnox  AB.  Whether  the 
 included  businesses  have  given  their  consent  to  letting  their  business 
 description  and  SNI  number  be  used  as  machine  learning  data  should  be  more 
 Statistics  Sweden’s  responsibility  than  ours.  However,  considering  that  SNI 
 numbers  and  business  descriptions  are  publicly  available  and  could  hardly  be 
 considered  sensitive  information,  the  aspect  of  consent  doesn’t  stand  out  as 
 much of an ethical issue either way. 

 3 Theoretical Background 

 3.1 Machine learning 
 Machine  learning  is  a  subfield  of  artificial  intelligence.  It  is  devoted  to 
 exploring  processes  and  methods  for  enabling  computers  to  improve  their 
 ability  at  a  certain  task  by  learning  from  training  data.  This  project  is  an 
 example  of  supervised  machine  learning  ,  where  the  application  is  provided 
 with  training  data  in  the  form  of  a  set  of  input  observations,  along  with  the 
 correct associated classes. 

 The  goal  is  for  the  application  to  associate  parameter  values  in  the  input  data 
 with  the  different  classes.  After  being  trained,  the  performance  of  the 
 application  -  which  is  referred  to  as  a  model  -  is  evaluated  against  a  set  of 
 testing data where the correct classes are not provided [4, p. 59]. 

 3.2 Natural language processing (NLP) 
 In  the  1950s,  the  field  of  natural  language  processing  emerged  with  the 
 purpose  of  serving  as  a  bridge  between  artificial  intelligence  and  linguistics, 
 making  it  a  subfield  of  AI  and  linguistics.  NLP  techniques  enable  computers 
 to  understand,  interpret  and  generate  human  language.  NLP  can  be  used  in 
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 the  context  of  many  different  tasks,  including  text  classification  (which  is 
 described  below),  language  generation,  machine  translation,  named  entity 
 recognition  ,  sentiment analysis  ,  speech recognition  and  text summarization  . 

 NLP  techniques  are  applied  when  there  is  a  need  to  analyze  text  data.  Our 
 implementation  of  NLP  will  be  used  in  the  preprocessing  step  of  the  data,  this 
 step  is  only  required  to  run  once.  That  is  to  say  the  only  step  in  our 
 experiment  that  will  make  use  of  NLP  is  the  step  where  we  prepare  and 
 analyze  the  data.  In  order  to  analyze  raw  text  data,  inside  NLP  there  is  a  large 
 variety  of  tasks  you  can  choose  from.  The  tasks  we  selected  to  work  with  in 
 order to preprocess our data was: 

 1.  Sentence  boundary  detection  :  In  most  languages  one  can  tell  where 
 dividing  a  string  and  making  it  into  a  sentence  component  by  the 
 punctuations.  One  thing  that  complicates  this  task  is  when  it 
 encounters abbreviations or titles. 

 2.  Tokenization  :  This  task  separates  full  texts  into  words  and  identifies 
 individual  tokens.  It’s  important  to  keep  commas  and  punctuations  as 
 tokens  since  they  serve  as  useful  information  on  sentence  boundaries. 
 In  some  cases,  it  might  be  necessary  to  tokenize  multiple  words  such 
 as  rock  ‘n’  roll  into  a  single  token.  To  solve  this,  tokenization  is 
 commonly used with  named entity recognition  [4]. 

 3.  Stemming  and  lemmatization  :  Transforms  the  words  into  their  root 
 value  by  removing  suffixes,  normalizing  the  words  into  a  simple 
 common  base  form.  Stemming  and  lemmatization  do  have  some 
 differences.  Stemming  is  usually  a  process  that  cuts  off  the  ends  of  the 
 words  in  a  very  crude,  heuristic  way.  Lemmatization  methods  are 
 done  by  doing  a  vocabulary  and  morphological  analysis  of  the  words, 
 with  the  goal  of  returning  the  dictionary's  base  version  of  that  word 
 [17].  In  some  non-English  speaking  countries  where  the  language  is 
 very  synthetic,  there  are  cases  where  the  whole  sentence  can  be 
 replaced by a compound word [4]. 

 4.  Stop  word  removal  :  Is  a  task  that  aims  to  remove  words  that  don’t 
 add  much  information  to  the  text  but  which  are  frequently  used.  Some 
 examples of this are words such as “the”, “a” and similar. 
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 3.3 Text classification 
 Text  classification  is  a  technique  that  makes  use  of  machine  learning  and  in 
 some  cases  makes  use  of  NLP  to  analyze  and  structure  text,  so  that 
 information  can  be  gathered  from  it.  A  text  classifier  is  trained  and  tested 
 through  machine  learning.  It  is  then  used  to  classify  input  data  -  in  the  form 
 of open-ended text - into one of a predefined set of classes. 

 A  popular  example  of  text  classification  is  sentiment  analysis,  which  is  used 
 to  determine  whether  the  author  of  a  text  has  positive  or  negative  feelings 
 towards  a  certain  object.  For  example,  a  web  shop  can  use  sentiment  analysis 
 on  customer  reviews  to  determine  how  the  customers  feel  about  their 
 products [4]. 

 3.4 Bag of words 
 A  bag-of-words  refers  to  a  representation  of  a  text  document  where  the 
 included  words’  positions  in  the  original  document  have  been  ignored. 
 Instead,  only  the  frequency  of  each  word  is  kept,  which  makes  the 
 bag-of-words  representation  suitable  for  quantitative  analysis  [4,  p.  60]. 
 Individual  words  are  given  full  focus,  while  their  order  within  a  sentence  or  a 
 longer text is considered unimportant. 

 The  words  of  the  source  text  are  mapped  to  a  vector  .  Gao,  He  and  Chen  uses 
 the following example to describe how the vector mapping works: 

 “For  example,  we  have  two  sentences:  ‘Here  are  a  white  cat 
 and  a  black  cat’  and  ‘Here  is  a  dog’.  The  set  of  words  used 
 here  are  Here,  are,  is,  a,  white,  black,  cat,  dog.  The  bag  of 
 words  vector  representation  of  these  two  sentences  are 
 [1,1,0,2,1,1,2,0] and [1,0,1,1,0,0,0,1].” [2, p. 2]. 

 3.5 Oversampling and undersampling 
 An  imbalanced  dataset  suffers  from  a  significant  skew  in  the  distribution  of 
 classes,  such  as  1:100  or  1:1000  examples  in  the  minority  class  to  the 
 majority  class.  This  can  have  a  negative  impact  on  the  training  and  testing  of 
 a  machine  learning  model.  Oversampling  and  undersampling  are  two 
 approaches  to  deal  with  this  issue  and  mitigate  the  effects  of  the  imbalance 
 [9]. 
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 The  basic  idea  of  oversampling  is  to  generate  new  samples  in  the  minority 
 classes.  There  are  several  different  methods  for  doing  this.  Naive  random 
 oversampling  generates  new  samples  from  existing  ones,  which  are  picked  at 
 random.  Two  other  popular  algorithms  are  Synthetic  Minority  Oversampling 
 Technique  (SMOTE)  and  Adaptive  Synthetic  (ADASYN).  Rather  than 
 duplicating  original  samples,  SMOTE  and  ADASYN  use  interpolation  to 
 generate new synthetic samples. 
 Undersampling  instead  attempts  to  balance  the  dataset  by  randomly  deleting 
 samples  in  the  majority  classes.  Like  with  oversampling,  there  are  a  number 
 of  different  algorithms  that  can  be  used.  A  prototype  generation  algorithm 
 creates  a  new  set  from  the  targeted  majority  class,  where  the  amount  of 
 samples  are  reduced  and  those  that  are  included  are  generated  from  the 
 original  data.  Prototype  selection  algorithms,  on  the  other  hand,  select 
 samples from the original set and use them to populate a new reduced set. 
 Oversampling  can  put  a  model  at  risk  for  overfitting,  and  the  backside  of 
 undersampling  is  that  it  can  result  in  loss  of  information  that  could  be 
 valuable to the model [8]. 

 3.6 Naive Bayes 
 The  Naive  Bayes  algorithm  is  a  common  and  fairly  basic  classification 
 algorithm  based  on  Bayes’  theorem  .  Bayes’  theorem  uses  prior  knowledge  of 
 conditions  that  may  be  related  to  an  event  to  determine  the  probability  of  it.  It 
 is stated mathematically with the following equation: 

 𝑃    ( 𝐴     |     𝐵 )   =  𝑃 ( 𝐵     |     𝐴 )   *   ( 𝑃     |     𝐴 )
 𝑃    ( 𝐵 )

 In  equation  3.1,  “P  (A  |  B)”  can  be  read  as  “the  probability  that  A  occurs 
 given  B”.  Bayes’  theorem  only  takes  one  attribute  into  account  when 
 calculating  the  probability  of  an  item  belonging  to  a  specific  category. 
 However,  a  Naive  Bayes  classifier  combines  several  attribute  inputs  to 
 determine  the  probability,  as  this  is  what  is  generally  needed  for  real-life  use 
 cases. 
 The  reason  the  algorithm  is  called  naive  is  because  it  makes  the  assumption 
 that  the  attributes  are  independent  of  one  another.  This  is  most  oftenly 
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 wrongful,  as  there  tend  to  be  relationships  between  attributes.  This  means  that 
 a  Naive  Bayes  classifier  can  never  be  assumed  to  calculate  an  item’s  actual 
 probability  of belonging to a class. 
 Despite  this  inherent  problem,  the  algorithm  also  has  several  strengths  such 
 as  high  speed  and  scalability,  and  Naive  Bayes  classifiers  have  turned  out  to 
 be  highly  useful  in  practice.  A  classifier  uses  Bayes’  theorem  to  calculate 
 probabilities  for  a  number  of  classes,  and  the  one  with  the  highest  score  is 
 then  selected.  This  has  proven  to  be  a  good-enough  solution  to  a  great 
 number of real-world classification tasks [6]. 

 3.7 SVM 
 Support-Vector  Machine  (SVM)  is  a  classifier  that  relies  on  kernel  methods, 
 which  are  all  developments  of  the  more  basic  Linear  Kernel  Classifier  .  The 
 Linear  Kernel  Classifier  first  calculates  a  center  point  in  space  for  each 
 category.  A  category's  center  point  is  based  on  the  average  of  each  attribute 
 value  for  every  included  example.  A  new  example  is  then  classified  based  on 
 which  of  the  categories'  center  points  it  is  closest  to  -  usually  this  is  measured 
 by Euclidean distance. 

 To  produce  more  accurate  results,  more  complex  versions  need  to  transform 
 the  data.  To  do  this  they  make  use  of  the  Kernel  Trick,  which  requires 
 measurements  between  dot-products  rather  than  between  coordinate  vectors 
 (which are usually used for measurements in Euclidean spaces). 
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 A  dot-product  is  a  single  numerical  value  calculated  as  the  sum  of  the 
 products  between  each  of  the  values  in  the  first  vector  and  their 
 corresponding values in the second vector. 

 𝑑𝑜𝑡 ( 𝑣  0 ,     𝑣  1 )   =     𝑣  0 
 0 

*  𝑣  1 
 0 
   +  𝑣  0 

 1 
*  𝑣  1 

 1 
+    ...    +  𝑣  0 

 𝑛 
*  𝑣  1 

 𝑛 
      

 The  Support-Vector  Machine  algorithm  uses  the  averages  of  each  category  to 
 determine  dividing  lines  between  them,  and  new  examples  are  then 
 categorized  based  on  their  position.  A  problem  with  this  approach,  however, 
 is  that  faraway  examples  will  affect  the  placement  of  the  lines,  but  only  the 
 examples  closest  to  the  dividing  lines  will  actually  be  relevant  to  determining 
 their exact placement. 

 To  mitigate  this  problem,  the  algorithm  makes  use  of  a  Support-Vector 
 Machine  which  finds  the  line  that  is  as  far  away  as  possible  from  each  of  the 
 categories  -  the  so-called  maximum-margin  hyperplane  .  The 
 maximum-margin  hyperplane  can  be  found  by  drawing  imaginary  lines 
 between  each  of  the  examples  in  a  category,  using  the  outermost  lines  to 
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 define  a  polygon  -  called  the  convex  hull  -  and  then  placing  the  hyperplane 
 exactly between the convex hulls of the two categories. 

 Defining  the  hyperplane  actually  doesn't  require  all  examples  to  be  taken  into 
 account,  but  only  those  closest  for  each  category.  These  are  referred  to  as  the 
 Support Vectors [7]. 
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 4 Research project – Implementation 
 This  chapter  contains  a  thorough  explanation  of  all  the  steps  involved  in 
 training  and  testing  a  model  in  the  context  of  this  experiment.  Starting  from 
 how  we  first  manage  the  data  sets  and  the  way  we  process  the  data  in  order 
 for  us  to  conduct  tests  with  our  different  algorithms  and  how  we  have  fitted 
 our models. 
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 We  will  also  cover  the  different  tweaks  that  have  been  made  for  all  the  used 
 methods  during  the  project,  which  were  tested  to  aim  for  a  better  result.  This 
 result  will  be  covered  later  in  Chapter  5,  where  the  results  of  each  test  with 
 different  tweaks  will  be  presented,  followed  by  Chapter  6  where  we  will 
 analyze the results. 

 4.1 Batch Execution 
 The  application  for  training  and  testing  models  use  two  Jupyter  Notebook 
 scripts: the  main script  and the  batch execution script  . 

 The  batch  execution  script  allows  the  main  script  to  be  run  several  times  with 
 different  input  arguments.  Input  arguments  are  defined  in  the  args  variable, 
 and the main script is executed by calling the  Run()  function. 

 Every  time  the  main  script  is  run,  the  results  and  input  arguments  are  saved  as 
 a  JSON  file  in  the  test-logs  folder.  For  easy  overview,  the  folder  also  contains 
 an  Excel  file  where  the  name,  date  and  accuracy  scores  of  the  test  are 
 appended automatically. 

 4.2 Read in Data 
 At  the  very  start  of  the  process,  the  popular  pandas  library  is  used  to  read  and 
 parse  the  data  from  the  CSV  files.  Once  the  data  has  been  loaded  into  a 
 pandas  DataFrame  object,  the  contents  of  the  DataFrame  are  checked  for 
 NaN  values.  This  is  done  by  a  simple  method  call:  df.fillna(‘  ‘).values  and  it 
 replaces any NaN values with a space. 

 Before  moving  on  to  process  the  company  descriptions,  we  extract  the  two 
 relevant  columns  from  the  DataFrame  -  the  company  descriptions  and  the 
 SNI  numbers  -  and  store  them  in  variables.  If  the  parameter  data_limit  has 
 been  set  to  a  number  lower  than  the  amount  of  rows  in  the  DataFrame,  the 
 columns  are  also  cropped  (this  is  to  facilitate  faster  testing  and  training  on  a 
 smaller dataset). 

 4.3 ApplyNLPtoInputTextData 
 In  this  step,  a  number  of  NLP  operations  are  performed  on  the  company 
 descriptions in the dataset to make them better suited for machine learning. 

 The  first  operation  performed  is  tokenization  .  This  is  the  process  of  breaking 
 up  a  string  of  text  into  semantically  useful  units  like  words  or  sentences.  In 
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 our  case,  the  company  description  is  tokenized  into  individual  words:  “We 
 build  houses  and  make  money”  becomes  “We”,  “build”,  “houses”,  “and”, 
 “make”, “money”. 

 The  tokenization  is  followed  by  some  simple  operations  such  as  converting 
 the  tokens  to  lowercase  letters  and  removing  numbers  and  special  characters. 
 More  complex  operations  then  follow  -  stemming  and  lemmatization  ,  which 
 are  two  different  approaches  for  converting  words  to  their  meaningful  base 
 forms (for example, “going” becomes “go”). 

 The  company  description  is  also  checked  and  filtered  against  NLTK’s  built-in 
 list  of  so-called  stopwords  .  Stopwords  are  high-frequency  words  that  add 
 very  little  semantic  meaning  to  a  sentence,  for  example  at,  for,  is,  which,  to 
 (  vid,  för,  är,  vilken,  till  in  Swedish).  Aside  from  the  filtering  of  general 
 stopwords,  we  have  also  added  our  own  solution  for  filtering  out  stopwords 
 that  are  more  specific  to  our  data  -  this  will  be  described  in  further  detail 
 below. 

 4.4 OutputCSVWithReplacedXColumn 
 Applying  the  NLP  operations  to  the  data  takes  a  considerable  amount  of  time, 
 and  it  is  actually  not  necessary  to  do  this  every  time  the  code  is  run  and  a  new 
 model  is  trained.  If  the  data  and  the  NLP  operations  remain  the  same,  the 
 dataset  can  be  saved  after  processing  and  then  loaded  the  next  time  the 
 application is executed. 

 This  is  what  the  OutputCSVWithReplacedXColumn  function  is  used  for  -  it 
 takes  the  original  dataset  and  replaces  the  column  containing  the  company 
 descriptions  with  the  same  column  from  the  processed  dataset.  The  dataset  is 
 then  saved  as  a  new  CSV  file,  which  can  be  loaded  on  start-up  instead  of  the 
 original data. 

 4.5 OutputListOfMostCommonWords 
 OutputListOfMostCommonWords  is  not  meant  to  be  run  when  training  and 
 testing  the  model  -  it  is  a  function  that  was  used  in  the  process  of  creating  a 
 list  of  custom  stopwords.  The  function  counts  the  number  of  occurrences  of 
 words  in  the  dataset  and  orders  them  in  a  descending  list.  By  manually  going 
 through  the  list  and  deciding  which  of  the  words  should  be  filtered  out,  a  list 
 of custom stopwords can be created. 
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 This  was  how  we  created  our  lists  of  custom  stopwords,  where  for  example  a 
 word  like  “company”  was  considered  to  have  too  little  value  to  keep,  but 
 “publishing”  was  kept  as  it  indicates  a  specific  business  category.  A  hashtag 
 prefix means the word is considered valuable and should be kept. 

 4.6 RemoveCustomStopwords 
 This  is  the  function  that  is  responsible  for  actually  filtering  out  the  words 
 included  in  the  custom  stopwords  list.  It  opens  the  stopwords  text  file,  then 
 iterates  through  every  company  description  in  the  NLP-processed  dataset. 
 Every  token  matching  a  non-hashtag-prefixed  word  in  the  custom  stopwords 
 list is then removed. 

 Removing  custom  stopwords  is  a  much  faster  process  than  applying  the  NLP 
 operations, so it is performed every time the application is executed. 

 4.7 Filter low-occurring classes 
 From  the  very  start,  we  knew  that  one  of  the  major  challenges  of  our 
 experiment  would  be  the  extremely  imbalanced  dataset.  While  there  were 
 tens  of  thousands  of  instances  in  some  SNI  number  categories,  there  were 
 less  than  ten  in  some.  After  much  discussion  on  how  to  address  this  problem, 
 we  came  to  the  conclusion  that  we  had  to  exclude  the  categories  with 
 extremely  low  numbers  of  instances.  Allowing  these  underrepresented 
 categories to remain would cause problems in later steps. 

 We  set  the  limit  to  a  minimum  of  10  instances.  A  method  from  the  package 
 called  numpyindexed  is responsible for filtering out  the minority classes. 

 4.8 Bag of words 
 In  the  context  of  our  machine  learning  application,  a  word’s  number  of 
 occurrences  is  much  more  relevant  than  its  position  within  the  text.  So,  to 
 make  full  use  of  the  processed  company  descriptions  as  input  data  for  our 
 model, it is necessary to convert them to bag-of-words representations. 

 In  this  step,  we  apply  bag-of-words  conversion  to  our  raw  input  data  with  the 
 CountVectorizer()  method.  This  method  is  imported  from  the 
 sklearn.feature_extraxtion.text  library. 
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 4.9 Convert from occurrences to frequencies 
 The  class  TfidfTranformer  is  imported  from  the  same  library  as  the  bag-of- 
 words  method  used  in  the  previous  step.  By  using  this  class,  the  importance 
 of each word in the input data is measured. 

 Words  that  appear  often  will  generally  be  valued  higher  than  words  that  have 
 a  low  occurrence.  However,  a  high-frequency  word  will  get  a  lower  value  if  it 
 appears  frequently  in  a  great  number  of  categories,  as  opposed  to  if  it  is  only 
 recurring  in  a  few  categories.  there  will  be  some  words  with  high  frequency 
 across many descriptions that will result in them having lower values. 

 For  our  use  case,  we  apply  two  TfidfTransformer  methods  -  fit()  and 
 transform()  -  on  our  input  data  (the  bag-of-words  converted  company 
 descriptions).  An  informative  scheme  on  the  word  frequencies  in  the  input 
 data  -  where  every  word  now  has  a  weight  value  assigned  to  it  -  is  returned 
 and assigned to the input variable. 

 4.10 Train and Test Data Split 
 In  order  for  us  to  follow  good  practices  it  is  necessary  to  split  the  data  into  a 
 training  set  and  a  testing  set  so  that  the  model  can  first  be  trained  on  one  set 
 of  data  and  then  tested  against  another.  We  opted  to  make  use  of  the 
 sklearn.model_selection  method  called  train_test_split  ,  as  this  method 
 provides you with an easy way to adjust the proportions of the splits. 

 During  this  part  of  the  experiment  we  did  many  variations  of  parameters,  like 
 trying  out  different  split  proportions,  and  checking  whether  using  a  stratify 
 method  yielded  a  different  result.  The  use  of  stratified  parameters  can  give  a 
 better representation of each class in our dataset. 

 4.11 Oversampling 
 In  order  to  make  our  dataset  more  balanced  as  the  datasets  classes  had  a  large 
 difference in occurring instances. 

 As  mentioned  above  in  Chapter  4.6,  the  dataset  initially  had  classes  with  as 
 low  as  one  instance,  which  caused  a  lot  of  difficulties.  Even  though  the  least 
 represented  classes  are  filtered  out  by  the  numpyindexed  method  call,  the 
 remaining  dataset  is  still  severely  imbalanced.  So  in  this  step,  oversampling  is 
 applied  to  mitigate  the  effects  of  the  imbalance  by  expanding  the  minority 
 classes. 
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 We  have  been  running  experiments  using  both  random  oversampling  (ROS) 
 and  SMOTE  in  order  to  see  what  works  better  with  our  dataset.  During  our 
 experiments  with  oversampling,  the  sampling_strategy  that  is  most 
 commonly  used  is  the  default  setting  all  ,  which  is  the  one  we  started  with. 
 This  strategy  iterates  over  all  classes  and  expands  them  to  the  size  of  the 
 largest  class.  For  each  experiment  we  used  one  of  the  sampling  methods,  so 
 which  one  was  used  is  clearly  stated  as  an  input  variable.  The  different 
 parameters  one  can  choose  from  is  minority,  not  minority,  not  majority.  For 
 each  of  these  parameters,  rounds  of  tests  will  be  conducted.  Another 
 parameter  that  both  ROS  and  SMOTE  have  in  common  is  random_state 
 which is used to control the randomization of the algorithms. 

 When  working  with  SMOTE  we  also  have  a  parameter  called  k_neighbors 
 and  it  is  used  to  define  the  nearest  neighbor  in  order  to  define  a  neighborhood 
 for  the  synthetic  samples  [12].  During  our  experiments  with  SMOTE  we 
 decided to experiment with the values 1-10 for our  k_neighbor  variables. 

 4.12 Undersampling 
 As  described  in  chapter  3.6,  undersampling  takes  the  opposite  approach  to 
 dealing  with  the  imbalanced  dataset  by  removing  instances  of  the  larger 
 classes  to  make  them  more  similar  in  size  to  the  smaller  ones.  We  have 
 conducted  some  experiments  using  the  Random  Undersampling  (RUS) 
 method  in  order  to  make  this  happen.  When  using  undersampling  we  have 
 mostly  relied  on  the  default  setting  for  the  sampling_strategy  parameter, 
 which  reduces  all  classes  into  the  same  size  as  the  smallest  ones.  However,  it 
 is  inevitable  that  applying  undersampling  like  this  results  in  the  removal  of  a 
 lot of data that would have been valuable to the model. 

 4.13 Classification algorithms 
 Two  different  classification  algorithms  have  been  selected  for  training  and 
 testing models within the experiment. 

 As  mentioned  in  Chapter  3.6,  Naive  Bayes  has  proven  to  be  a  very  good 
 algorithm  when  it  comes  to  classification.  Our  implementation  uses  the 
 MultinominalNB  classifier  from  the  sklearn.naive_bayes  package.  The 
 parameter  alpha  is  set  to  different  values  in  different  tests,  to  see  which  value 
 produces the best results on our dataset. 
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 The  second  algorithm  that  we  have  decided  to  use  is  the  Support-Vector 
 Machine  (SVM)  algorithm  and  inside  of  the  SVM  we  decided  to  make  use  of 
 the  LinearSVC  .  SVM  offers  a  greater  number  of  adjustable  parameters  than 
 Naive  Bayes  -  the  ones  we  experiment  with  different  settings  for  are  C  and 
 class_weight  .  C  is  a  regularization  parameter  where  the  strength  is 
 proportionally  inversed  to  C  and  the  number  for  this  parameter  is  required  to 
 be  a  positive  number.  Where  a  lower  number  means  that  more  errors  during 
 training  is  allowed  than  if  you  use  a  large  number.  Class_weight  takes  the 
 values  of  y  and  adjusts  the  weight  automatically  according  to  the  class 
 frequencies [13]. 

 4.14 Evaluation 

 During  our  evaluation  function  we  will  start  with  training  the  model  against 
 our  training  set,  by  using  the  method  model.fit(X_train,  y_train)  we  can  use 
 this  for  all  the  models  in  order  to  train  them.  When  the  training  step  is  done 
 we  will  run  a  prediction  method  with  the  parameters  of  our  input  data  from 
 the  test  split  to  be  able  to  plot  how  the  model’s  predictions  are.  When  the 
 prediction  method  is  complete  we  will  be  running  a  method  to  calculate  the 
 accuracy  of  our  model's  predictions,  this  will  be  done  with  the  use  of  the 
 accuracy_score()  method  with  the  parameters,  test  labels  and  the  prediction 
 that  was  made  in  the  earlier  step.  When  we  have  calculated  our  accuracy  we 
 will  create  a  confusion  matrix  with  the  use  of  the  sklearn.metrics  library  to 
 import  confusion_matrix()  .  For  the  confusion  matrix,  we  will  provide  the  test 
 labels  and  the  predictions  as  parameters.  When  this  confusion  matrix  is  done 
 we  will  print  out  a  classification  report,  by  using  the  library  sklearn.metrics 
 we  can  make  use  of  the  classification  report().  Similar  to  the  previous  step 
 the  parameters  will  be  the  same,  test  labels  and  the  prediction  and  it  will  print 
 out  the  result  of  the  test.  When  we  have  printed  out  all  the  results  from  the 
 first  part  of  our  evaluate  function  we  will  continue  to  the  next  step  which  is  to 
 do a procedure called  5-fold cross-validation  . 

 The  purpose  of  cross-validation  is  to  estimate  how  well  a  machine-learning 
 model  can  handle  unseen  data.  It  is  a  procedure  that  uses  a  limited  amount  of 
 samples  in  order  to  see  how  well  the  trained  model  can  predict  data  that  it  has 
 never  seen  during  its  training  process  [10].  By  using  the  sklearn  library  we 
 can  import  a  method  that  is  called  cross_val_predict()  ,  where  we  will  provide 
 four  parameters.  The  first  parameter  will  be  for  the  model  we  are  using,  the 
 second  parameter  will  be  where  we  put  our  input  data,  the  third  parameter 
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 will  have  the  labels  data,  and  lastly,  the  fourth  parameter  will  decide  how 
 many  folds  it  will  be  during  this  process.  When  this  5-fold  procedure  is 
 completed  we  will  make  use  of  similar  methods  as  in  the  previous  step.  First, 
 we  will  start  with  calculating  the  accuracy  with  the  accuracy_score  method, 
 followed  by  using  the  confusion_matrix  method  and  lastly,  we  will  use  the 
 classification_report  .  When  this  step  is  printed  out  we  have  gotten  to  the  end 
 of  our  evaluate  function  and  can  start  to  look  at  the  results  of  the  model's 
 training. 
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 5 Results 
 5.1 Defining input parameters 
 The  batch  script  described  in  the  last  chapter  uses  a  default  set  of  input 
 parameters  defined  in  the  default_args  dictionary.  Certain  parameters  are  then 
 altered  for  each  test  in  order  to  evaluate  their  effect  on  the  result.  When  a 
 parameter  setting  has  been  concluded  to  be  optimal  or  near-optimal,  the 
 default_args  dictionary  is  then  changed  so  that  the  setting  that  results  in  the 
 highest  accuracy  score  and  f1-score  will  then  be  used  by  the  default  in  all 
 subsequent tests: 

 Argument  Default Value 
 name_of_data_file  “nlp_applied_data_0” 
 name_of_custom_stopwords_file  “custom_stopwords_1” 
 data_limit  900000 
 use_full_SNI_numbers  False 
 random_state  42 
 naive_bayes/on  True 
 naive_bayes/alpha  1 
 svm/on  True 
 svm/C  1 
 svm/class_weight  “balanced” 
 pipeline/on  False 
 split_training_and_testing_data/test_size  0.2 
 split_training_and_testing_data/stratify  False 
 under_sampling/on  False 
 under_sampling/sampling_strategy  “all” 
 filter_low_occuring_labels/on  True 
 random_oversampling/on  False 
 random_oversampling/sampling_strategy  “all” 
 SMOTE/on  False 
 SMOTE/k_neighbors  1 
 SMOTE/sampling_strategy  “all” 
 combine_under_and_oversampling/on  False 
 combine_under_and_oversampling/over_sampling_strategy  “minority” 
 combine_under_and_oversampling/under_sampling_strategy  “majority” 
 testing_methods/train_test_split  True 
 testing_methods/5-fold  True 
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 Note,  however,  that  not  all  of  these  parameters  were  changed  during  the 
 course  of  the  experiment.  In  the  following  chapter,  we  will  describe  the 
 process  of  how  we  determined  the  final  settings  for  all  of  the  parameters  that 
 we evaluated. 

 5.2 Custom stopwords list 
 We  had  produced  two  lists  of  custom  stopwords  to  use  with  the  tests. 
 custom_stopwords_0  were  the  more  forgiving  list,  while  custom_stopwords_1 
 would  exclude  more  words  (at  the  risk  of  excluding  words  that  could  be  of 
 value  to  the  model).  We  began  testing  using  custom_stopwords_1  ,  but  after 
 conducting  a  number  of  dedicated  Naive  Bayes  tests  for  evaluating  which  list 
 performed  best,  we  found  that  custom_stopwords_0  produced  a  better  result 
 than  both  custom_stopwords_1  and  using  no  custom  stopwords  list  at  all. 
 From  this  point  and  onward,  we  decided  to  make  custom_stopwords_0  the 
 default list to use. 

 5.3 Split Training and Testing Data 
 When  starting  with  the  train_test_split  implementation,  we  needed  to  decide 
 on  some  input  variables  to  start  with.  During  the  experiments  we  decided  that 
 the  variables  to  test  out  were  the  ones  called  stratify  and  test_size  parameters. 
 Our  starting  variable  for  this  was  0.2  for  the  test  size  while  not  having  any 
 stratify  parameter  enabled.  After  some  tests  were  conducted  and  also  through 
 some  discussions  we  finalized  that  the  best  parameters  for  this  part  were  to 
 use  stratify=y  ,  where  y  is  equal  to  the  labels  and  to  make  use  of  a  little 
 smaller  test  size  so  we  saw  the  best  results  from  having  our  test  size  set  to 
 0.15. 

 5.4 Undersampling and Oversampling 
 Undersampling  and  oversampling  turned  out  to  have  no  positive  effect  on 
 accuracy when used with neither the  Naive Bayes  nor  the  SVM  classifier. 

 5.5 Naive Bayes 
 The  tests  using  the  Naive  Bayes  classification  algorithm  finished  much  faster 
 than  those  using  SVM  ,  which  led  to  two  different  approaches  when 
 conducting  tests.  We  started  the  testing  process  by  running  a  large  number  of 
 tests  with  the  Naive  Bayes  classification  algorithm,  and  a  much  smaller 
 number of tests using  SVM  . 
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 The  Naive  Bayes  parameter  that  we  mainly  focused  on  was  the  alpha  value. 
 Alpha  is  a  hyperparameter,  which  means  it  is  a  parameter  whose  value 
 controls  the  learning  process  of  the  model.  Its  purpose  is  to  handle  the  issue 
 of  zero  probabilities,  and  it  is  sometimes  also  referred  to  as  the  smoothing 
 parameter  or  Laplace smoothing  [16]. 

 Our  default  setting  for  alpha  was  1,  and  we  quickly  noted  a  trend  in  the  test 
 results  -  raising  the  value  would  produce  worse  accuracy  scores,  and 
 lowering  it  would  increase  them.  A  setting  of  0.02  initially  gave  the  best 
 result  (test  a25,  accuracy:  54.10%  f1-score:  53%  in  the  train-test  split, 
 accuracy:  53.49%  f1-score:  52%  in  the  5-fold  cross-validation).  Through 
 further  testing,  we  found  that  0.016  and  0.017  achieved  an  even  better  result 
 (tests  a81-a82,  accuracy:  56.12%  and  f1-score:  54%  in  train-test  split, 
 accuracy: 55.32% and f1-score: 54% in the 5-fold cross-validation). 

 We  continued  to  try  out  undersampling,  random  oversampling  and  SMOTE 
 with  different  settings  along  with  alpha  value  0.017.  However,  neither  of 
 these  methods  had  a  positive  effect  on  the  accuracy  -  after  the  tests  had 
 finished, the best-performing Naive Bayes tests were still tests a81-a82. 

 5.6 SVM 
 During  our  testing  with  the  SVM  we  decided  to  find  the  most  optimal  value 
 for  the  parameter  C  .  As  mentioned  in  Chapter  4.13,  C  is  a  hyperparameter 
 used  in  SVM  that  handles  regularization.  This  number  decides  how  strict 
 errors  should  be  handled  during  the  training  process.  At  first  we  tried  with 
 values  in  the  range  from  0.1,  0.5,  1,  10,  100,  200  all  the  way  up  to  1000. 
 During  this,  we  could  clearly  see  that  the  time  needed  for  each  test  went  up 
 by  30-60  minutes  for  each  step,  at  least  in  the  hundreds  numbers.  While  time 
 was  also  taken  into  account  we  could  also  see  a  clear  decrease  in  the  scores 
 produced  from  this,  which  made  us  decide  to  not  go  that  high  with  our  C 
 parameter. 

 At  this  point,  we  also  had  a  discussion  regarding  the  use  of  5-fold 
 cross-validation  for  our  SVM  algorithm.  Time  was  a  deciding  factor  for  us  to 
 be  able  to  complete  the  thesis  project  on  schedule,  and  SVM  is  an  algorithm 
 that  takes  more  time  to  run  than  the  Naive  Bayes  algorithm.  Therefore  from 
 this  point  on  we  decided  to  not  include  any  more  5-fold  tests  for  our  SVM 
 experiments.  Also,  we  had  observed  that  the  5-fold  results  were  always  a 
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 small  margin  below  those  of  the  train-test  split  method,  which  made  it  more 
 time efficient to just rely on the latter. 

 After  some  more  testing,  we  found  that  the  best  looking  results  for  our  C 
 parameter  were  between  0.16,  0.17,  0.18  and  0.19.  From  this,  we  decided  to 
 take  the  median  value  which  is  0.175  which  we  rounded  up  to  0.18  (test  b64 
 accuracy:  59.89%,  f1-score:  58%  in  train-test  split).  Which  gave  the  best 
 result at this point in time and used it as a standard value for our  C  parameter. 

 When  we  had  our  C  parameter  decided,  the  next  step  in  our  testing  would  be 
 to  conduct  experiments  with  sampling  methods.  The  sampling  method  we 
 started  out  with  was  random  oversampling  .  In  sampling  strategies,  we  tried 
 out  different  settings  for  the  parameter  called  sampling_strategy  in  order  to 
 find  out  which  worked  best  for  our  data.  We  quickly  came  to  the  conclusion 
 that  random  oversampling  led  to  a  decrease  in  every  test,  the  only  times  it 
 was  only  a  slight  decrease  was  when  only  the  minority  got  sampled  or  when 
 we  used  the  sampling_strategy  to  increase  all  classes  with  under  200  samples 
 up  to  200.  With  this  number  we  could  see  it  could  reach  the  same  result  of 
 our  earlier  highest  achieved,  if  we  tried  to  increase  the  sampling  to  higher 
 numbers we discovered that it was decreasing again. 

 Running  tests  with  SMOTE  and  undersampling  also  resulted  in  decreased 
 accuracy  scores.  Even  when  we  tried  out  SVM’s  own  class_weight  parameter 
 and  set  it  to  balanced  ,  there  was  a  clear  decrease  in  how  our  model  performed 
 with all of the above methods. 

 5.8 Final results 
 After  adjusting  the  random_state  argument,  our  best  Naive  Bayes  model 
 produced  an  accuracy  score  of  56.13  percent  and  with  a  f1-score  of  54%  (test 
 a151).  Our  best  SVM  model  was  roughly  four  percent  better,  with  an  accuracy 
 score  of  60.11  percent  and  with  the  f1-score  being  59%  (test  b124).  To  ensure 
 that  these  results  were  reliable,  we  switched  computers  and  trained  and  tested 
 two  new  models  using  the  exact  same  input  parameters  (tests  a160  and  b160). 
 As  expected,  the  scores  of  these  models  were  identical  with  those  of  their 
 counterparts  b124  and  a151.  The  characters  “a”  and  “b”  in  the  test  names 
 refer  to  which  computer  the  test  was  executed  on,  so  for  example,  the 
 identifier b124 should be read as “test number 124 on computer b”. 
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 Argument  Default Value 
 name_of_data_file  “nlp_applied_data_0” 
 name_of_custom_stopwords_file  “custom_stopwords_0” 
 data_limit  900000 
 use_full_SNI_numbers  False 
 random_state  12 
 naive_bayes/on  True 
 naive_bayes/alpha  0.017 
 svm/on  False 
 svm/C  1 
 svm/class_weight  “balanced” 
 pipeline/on  False 
 split_training_and_testing_data/test_size  0.15 
 split_training_and_testing_data/stratify  True 
 under_sampling/on  False 
 under_sampling/sampling_strategy  “all” 
 filter_low_occuring_labels/on  True 
 random_oversampling/on  False 
 random_oversampling/sampling_strategy  “all” 
 SMOTE/on  True 
 SMOTE/k_neighbors  5 

 SMOTE/sampling_strategy 

 { "4": 200, "6": 200, "9": 200, 
 "12": 200, "16": 200, "18": 
 200, "32": 200, "35": 200, 
 "51": 200, "56": 200, "72": 
 200 } 

 combine_under_and_oversampling/on  False 
 combine_under_and_oversampling/over_sampling_strategy  “minority” 
 combine_under_and_oversampling/under_sampling_strategy  “majority” 
 testing_methods/train_test_split  True 
 testing_methods/5-fold  False 
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 Argument  Default Value 
 name_of_data_file  “nlp_applied_data_0” 
 name_of_custom_stopwords_file  “custom_stopwords_0” 
 data_limit  900000 
 use_full_SNI_numbers  False 
 random_state  5 
 naive_bayes/on  False 
 naive_bayes/alpha  1 
 svm/on  True 
 svm/C  0.18 
 svm/class_weight  null 
 pipeline/on  False 
 split_training_and_testing_data/test_size  0.15 
 split_training_and_testing_data/stratify  True 
 under_sampling/on  False 
 under_sampling/sampling_strategy  “all” 
 filter_low_occuring_labels/on  True 
 random_oversampling/on  False 
 random_oversampling/sampling_strategy  “minority” 
 SMOTE/on  False 
 SMOTE/k_neighbors  1 
 SMOTE/sampling_strategy  “all” 
 combine_under_and_oversampling/on  False 
 combine_under_and_oversampling/over_sampling_strategy  “minority” 
 combine_under_and_oversampling/under_sampling_strategy  “majority” 
 testing_methods/train_test_split  True 
 testing_methods/5-fold  False 
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 6 Analysis and Discussion 
 The  final  results  answer  RQ1  ,  as  SVM  beat  the  best  Naive  Bayes  score  by 
 four  percent.  With  our  best-performing  SVM-trained  model  reaching  an 
 accuracy  of  60.11  percent,  we  also  succeeded  in  answering  the  first  part  of 
 RQ3  :  an  accuracy  higher  than  Dahlqvist  and  Strandlund’s  52  percent  was 
 indeed  possible  to  achieve.  However,  even  if  it’s  an  improvement  it  seems 
 unlikely  that  this  score  will  be  considered  high  enough  to  implement  a 
 real-world solution with our model as the basis. 

 Our  dataset  of  615  163  company  descriptions  with  SNI  numbers  was  severely 
 imbalanced.  Much  time  was  put  into  mitigating  this  problem  with  methods 
 such  as  over-  and  undersampling,  and  excluding  extreme  minority  classes 
 from  the  training  and  testing  data  altogether.  However,  in  the  end  these  tactics 
 had  no  positive  effect  on  the  accuracy  scores.  In  the  case  of  our 
 best-performing  Naive  Bayes  and  SVM  models,  applying  over-  and 
 undersampling  only  either  led  to  lower  scores  or  had  no  effect  at  all.  So,  to 
 answer  RQ2  :  applying  over-  and  undersampling  to  our  imbalanced  dataset 
 did not produce any improvement in the performance metrics. 

 This  was  surprising,  as  we  had  expected  that  these  methods  would  play  a 
 crucial  role  in  finding  the  optimal  model.  In  comparison,  altering  the  alpha 
 value,  the  C  value,  the  random  state  value,  and  changing  the  custom 
 stopwords  list  all  at  least  led  to  minor  improvements  in  accuracy.  At  the 
 beginning  of  our  thesis  project,  we  were  made  aware  that  training  a  model  in 
 machine  learning  can  take  a  very  long  time  for  each  experiment.  Even  with 
 that  knowledge  when  playing  around  with  the  SVM  algorithms  C  parameter 
 and  using  5-fold  cross-validation,  it  took  us  by  surprise  how  much  time  each 
 experiment  ended  up  running.  Increasing  the  C  value  would  add  hours  to  the 
 execution  time  of  each  test,  even  when  executed  on  our  fastest  computer  - 
 some  tests  took  six  to  seven  hours  to  complete.  From  this,  we  can  only 
 assume  that  a  bigger  and  less  imbalanced  dataset  would  take  up  a 
 considerable amount of more time. 

 While  the  problems  caused  by  the  imbalanced  dataset  could  be  solved  by 
 using  a  better  dataset,  acquiring  one  is  easier  said  than  done.  The  dataset 
 we’ve  used  is  a  fair  representation  of  how  the  companies  in  the  Swedish 
 market  are  actually  distributed.  Big  hard-competition  industries  include  a 
 large  variety  of  companies,  while  small  niche  industries  have  much  fewer 
 companies. 
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 Another  issue  is  more  difficult  to  solve  as  it  is  very  closely  tied  to  the  nature 
 of  the  problem:  the  very  limited  amount  of  text  data  provided  in  a  company 
 description.  How  many  of  the  final  model’s  errors  are  caused  by  the 
 imbalanced  data?  And  how  many  are  caused  by  it  being  forced  to  guesswork 
 when presented with only a short sentence without any valuable words in it? 

 The  outcome  of  our  experiment  highlights  the  importance  of  a  balanced 
 dataset  when  training  a  machine  learning  model,  as  well  as  the  importance  of 
 providing  it  with  enough  data  to  actually  make  accurate  predictions  on  new 
 samples.  This  provides  us  with  an  answer  to  the  second  part  of  RQ3  :  the 
 biggest  obstacle  preventing  higher  scores  appears  to  be  dataset  imbalance 
 combined with low-quality data. 

 Another  approach  that  was  considered  at  the  beginning  of  the  experiment  was 
 to  train  a  model  on  company  names  rather  than  descriptions.  This  would  have 
 restricted  the  model  to  even  less  input  data  -  while  it  would  have  been 
 another  experiment  altogether,  it’s  easy  to  see  a  scenario  where  that  model 
 would  have  struggled  even  more  with  making  predictions  based  on  other  than 
 guesswork. 

 While  the  research  conducted  by  Gao,  He  and  Chen  and  Kim,  Kang,  Bae  and 
 Jeon  provided  interesting  and  unorthodox  angles  on  how  to  approach  the 
 problem,  Dahlqvist  and  Strandlund’s  study  was  by  far  the  most  relevant.  It 
 outlined  many  of  the  challenges  that  turned  out  to  be  specific  to  the  Swedish 
 SNI  code  system,  and  after  finishing  our  experiment,  our  results  and 
 subsequent  analysis  are  largely  similar  to  theirs.  They  too  were  hampered  by 
 a  low-quality  dataset  in  their  pursuit  of  high  accuracy  scores,  but  unlike  us 
 they  didn’t  actively  try  to  mitigate  the  problem  through  over-  and 
 undersampling. 

 Another  difference  worth  noting  is  that  Dahlqvist  and  Strandlund’s  dataset 
 was  much  smaller  than  ours  -  their  original  dataset  consisted  of  data  from  95 
 450  Swedish  companies  registered  between  2008  and  2019  with  at  least  one 
 employee.  Out  of  these,  they  decided  to  reduce  the  amount  even  further  by 
 using  a  subset  of  only  7846  companies  which  had  ten  or  more  employees, 
 based  on  a  claim  from  SCB  that  these  were  more  likely  to  have  high-quality 
 company  descriptions  [1,  p.  3].  This  approach  was  never  really  an  option  for 
 us,  as  our  dataset  didn’t  contain  any  other  information  than  company 
 descriptions and SNI codes. 
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 With  our  results  in  hand,  focusing  as  much  on  over-  and  undersampling  as  we 
 did  may  seem  like  a  wrongful  prioritization.  However,  it  can  be  argued  that 
 exploring  the  effects  of  these  methods  was  a  better  choice  than  just  leaving 
 the  obvious  problem  with  the  imbalanced  data  unaddressed.  It  should  also  be 
 emphasized  that  even  though  over-  and  undersampling  didn’t  have  any 
 positive  effect  on  our  results,  these  strategies  should  not  be  dismissed  as 
 useless.  In  a  different  context  than  with  our  specific  problem  and  dataset,  they 
 may very well produce an increase instead. 

 As  it  turns  out,  Natural  language  processing  also  ended  up  playing  a  much 
 smaller  role  in  our  experiment  than  we  had  anticipated.  Some  NLP  methods 
 were  applied  during  the  preprocessing  of  the  data,  such  as  stemming, 
 lemmatization,  tokenization  and  removal  of  general  Swedish  language 
 stopwords.  However,  the  possibilities  to  adjust  the  settings  of  these  methods 
 in  a  way  that  would  lead  to  higher  accuracy  or  f1-scores  seemed  very  limited. 
 Consequently,  no  particular  focus  was  placed  on  the  NLP  preprocessing  when 
 carrying out our tests. 
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 8 Conclusions and Future Work 
 With  the  increasingly  sophisticated  machine  learning  algorithms  of  today, 
 creating  an  automated  solution  for  the  SNI  code  system  has  never  seemed 
 like  an  impossible  task.  However,  the  importance  of  high-quality  data  in  the 
 machine  learning  process  shouldn’t  be  underestimated.  The  massive  amounts 
 of  data  produced  by  an  increasingly  digitalized  and  connected  world  has  been 
 a  key  enabler  of  the  last  decade’s  rapid  advancements  within  the  fields  of  AI 
 and machine learning. 

 In  the  case  of  the  SNI  code  system,  real  world  circumstances  limit  the 
 availability  of  data  as  the  model  has  to  be  trained  on  Swedish  company 
 descriptions  and  SNI  codes.  Unless  you  produce  a  dataset  of  made-up 
 company  descriptions  for  the  purpose  of  training  a  model,  you  will  have  to 
 make  do  with  data  gathered  from  actual  registered  companies.  Sweden  is  a 
 country  with  a  small  population  -  estimated  to  roughly  ten  million  people  in 
 2023  -  so  the  amount  of  available  company  descriptions  will  be  relatively 
 few.  Consequently,  the  training  data  available  for  the  areas  of  industry  that 
 are the least represented in Sweden will be severely lacking. 

 Our  experiment  was  a  success  in  the  sense  that  we  achieved  our  main 
 objective  -  with  our  top  score  of  60.11  percent,  we  reached  an  8.11  percent 
 accuracy  improvement  over  Dahlqvist  and  Strandlund’s  best  model.  In  our 
 particular  case,  over-  and  undersampling  turned  out  to  have  little  to  no  effect 
 on  the  end  result,  despite  being  go-to  methods  for  countering  problems  with 
 imbalanced  data.  Perhaps  unsurprisingly,  the  data  a  model  is  trained  and 
 tested  on  may  turn  out  to  have  a  much  larger  impact  on  its  performance  than 
 the preprocessing, algorithms and settings used when training it. 

 If  time  and  resources  had  allowed  it,  it  would  also  have  been  interesting  to 
 add  an  implementation  to  calculate  the  probabilities  of  the  output  from  the 
 SVM  classifier,  by  using  techniques  such  as  Platt  scaling  or  other  similar 
 methods.  Using  this  may  have  provided  us  with  a  clearer  image  of  the 
 probabilities  of  each  class,  from  which  we  could  have  created  a  top-5  ranking 
 list.  However,  in  order  to  avoid  overfitting  in  this  operation,  an  internal  5-fold 
 cross  validation  check  would  have  to  be  carried  out,  making  it  very 
 time-consuming to run tests with such functionality. 

 Dahlqvist  and  Strandlund,  who  completely  relied  on  the  gradient  boosting 
 algorithm,  concluded  their  thesis  by  stating  that  using  other  machine  learning 
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 algorithms  such  as  SVM  could  possibly  increase  accuracy.  They  also  stated 
 that  the  improvement,  however,  would  most  likely  not  be  very  significant. 
 Our  results  show  that  they  were  correct  in  both  of  these  assumptions. 
 Dahlqvist  and  Strandlund  also  came  to  the  conclusion  that  one  of  the  biggest 
 issues  that  they  had  to  combat  during  their  study  was  the  poor  quality  of  data. 
 They  mention  the  fact  that  there  is  no  baseline  of  reference  on  the  content  or 
 structure of a business description: 

 “Business  descriptions  containing  a  single  word  does  not 
 provide  much  information  about  the  area  of  industry.  For 
 example,  describing  a  business  with  only  the  word  cars  will 
 not  provide  any  information  if  cars  are  sold,  produced  or 
 for  rent,  which  would  all  yield  different  SNI  codes. 
 Antipole  of  these  businesses  is  those  who  try  to  write 
 everything  the  business  might  do  in  an  infinite  lifetime. 
 Their  main  business  might  be  the  production  of  cars,  but 
 they  will  include  the  sale  of  cars  to  allow  for  pivoting  if 
 circumstances change [1, p. 11].” 

 Furthermore,  Dahlqvist  and  Strandlund  expressed  their  hope  that  Statistics 
 Sweden’s  implementation  of  a  new  system  for  digital  annual  reports  -  DiÅR  - 
 would  lead  to  a  better  structured  dataset,  which  could  be  used  to  train  a 
 machine  learning  model.  Since  we  cannot  compare  Dahlqvist  and 
 Strandlund’s  dataset  to  ours,  we  can’t  be  certain  whether  our  higher  results 
 can be attributed to the SVM algorithm or to a somewhat better dataset. 

 The  fact  that  Dahlqvist  and  Strandlund  managed  to  reach  52  percent  with  a 
 much  smaller  dataset  -  615  163  samples  versus  7846  -  also  begs  the  question 
 whether  quantity  or  quality  is  the  key  to  an  optimal  dataset.  Our  dataset 
 consisted  of  only  company  descriptions  and  SNI-numbers,  so  we  had  no 
 other  data  that  could  be  used  to  distinguish  between  high  and  low  quality 
 samples.  A  dataset  as  large  as  ours,  but  with  additional  information  about  the 
 companies,  could  perhaps  allow  for  filtering  out  low-quality  samples  while 
 still providing the model with enough data? 

 Something  that  should  be  considered,  however,  is  that  out  of  the  88  main 
 groups,  Dahlqvist  and  Strandlund  chose  to  focus  on  the  30  most  frequently 
 occurring,  while  we  only  excluded  the  very  few  that  had  less  than  ten 
 samples  [1,  p.  7].  The  amount  of  categories  included  have  a  large  impact  on 
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 the  accuracy  of  a  model,  making  the  eight  percent  rise  a  much  bigger 
 improvement than the scores alone might suggest. 

 Whether  taking  the  different  approaches  into  account  or  not,  the  eight  percent 
 improvement  in  accuracy  is  highly  encouraging.  Today’s  booming  interest  in 
 AI  technology  will  most  likely  result  in  new  and  improved  methods  for  text 
 classification.  Combine  these  with  even  more  data  gathered  through  DiÅR, 
 and  the  next  attempt  at  developing  an  automated  SNI  code  assignment  system 
 may continue the trend towards even higher accuracy scores. 
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 A Appendix 1 
 The  source  code  for  our  Jupyter  Notebook  application  can  be  accessed  at 
 either of these two GitHub repositories: 

 https://github.com/Erkabubben/machine-learning-sni-code-from-company-de 
 scription 

 https://github.com/Sobaze/machine-learning-sni-code-from-company-descrip 
 tion 
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