
 Bachelor Degree Project

 Challenges with Measuring
 Software Delivery Performance
 Metrics
 - A case study at a software organisation

 Author: Yamo Gebrewold
 Author: Johanna Wirell
 Supervisor: Tobias Olsson
 Semester: VT 2023
 Subject: Computer Science

 Abstract
 Online software businesses constantly face new challenges. Businesses are competing to
 deliver high-quality software solutions to their end users as quickly as possible. The
 performance of a software team in terms of software delivery needs to be measured to
 identify bottlenecks and understand what can be improved [1] .
 This project is a case study of a software organisation that delivers online web solutions
 for a business. The organisation strives to follow a DevOps mindset and work
 data-driven by collecting data, learning from it and acting on the learnings. Our method
 to perform the case study was to study existing data collected by the organisation and
 conduct interviews with software professionals to get their insights about the software
 delivery performance of three software teams within the organisation.
 We focus on two metrics - deployment frequency and lead time for change - which
 measure the throughput of a software team and how often and fast it can deploy changes
 to production.
 Software organisations that adopt a DevOps approach are facing challenges with
 collecting data about their software delivery performance and learning from that data to
 improve their throughput. We aim to identify these challenges and discuss various
 problems that software organisations need to be aware of when measuring software
 delivery performance.
 We present the results from the interviews and collected metrics, analyse them and
 discuss them, as well as give suggestions on future research.
 We observe that there are multiple factors impacting software delivery performance and
 various challenges with measuring it accurately. This is related to the way of reporting
 data reliably and developing models to study and understand the collected data.

 Keywords: software delivery performance, DORA metrics, deployment frequency,
 lead time for change, DevOps speed metrics

 1

https://paperpile.com/c/WN31SF/8x2y

 Preface
 We want to thank our supervisor Tobias Olsson from Linnaeus University who assisted
 us throughout the project and gave insightful ideas and suggestions, and Daniel Toll
 from Linnaeus University for aiding us during the process of working with the thesis.
 We also want to thank the software organisation that allowed us to perform the case
 study and use their data and resources to gain insights into their processes and ways of
 working. We enjoyed the process of the case study and learned a lot about software
 engineering, DevOps and DORA metrics.

 2

 Contents
 1. Introduction 4

 1.1. Background 6
 1.2. Related work 6
 1.3. Problem formulation 7

 1.3.1. Research questions 7
 1.4. Motivation 8
 1.5. Results 8
 1.6. Scope/Limitation 8
 1.7. Target group 9
 1.8. Outline 9

 2. Method 10
 2.1. Research project 10
 2.2. Research methods 10

 2.2.1. Pre-study 11
 2.2.2. Interviews 11
 2.2.3. Data collection 11
 2.2.4. Data collection of DORA metrics 12
 2.2.5. Analysis of the DORA metrics 13
 2.2.6. Analysis of the interview data 13

 2.3. Reliability and Validity 13
 2.3.1. Reliability 13
 2.3.2. Validity 14
 2.3.3. Selection of methodology 14
 2.3.4. Sampling strategy and size justification 14
 2.3.5 Triangulation 15

 2.4. Ethical considerations 15
 3. Theoretical background 16

 3.3. Definition of terms 16
 3.3.1. Continuous integration, continuous delivery and continuous deployment 16
 3.3.2. DevOps 16
 3.3.3. DORA metrics 16
 3.3.4. Inter-team dependencies 19
 3.3.5. Deployment 20

 3.4. Organisation structures and processes 20
 3.4.1. Structures 20
 3.4.2. Processes 21

 4. Research project – Implementation 23
 4.1. Hypotheses 23
 4.2. Data collection of DORA metrics 23

 3

 4.3. Interviews 24
 4.3.1. Conducting interviews with software engineers 24
 4.3.2. Collecting interview data conducted by the DevOps team 25

 4.4. Data processing 25
 5. Results 26

 5.1. Deployment frequency metrics 26
 5.2. Lead time for change metrics 27
 5.3. Interviews conducted by us 28

 5.3.1. Interview with Team 1 28
 5.3.2. Interview with Team 2 29
 5.3.3. Interview with Team 3 30

 5.4. Interviews conducted by the dedicated DevOps team 31
 5.4.1. DORA usage statistics 31
 5.4.2. Software release process statistics 32
 5.4.3. How DORA metrics are used in software teams 32
 5.4.4. Goals and suggestions regarding software release processes 33

 6. Analysis 35
 6.1. Deployment frequency average 35
 6.2. Lead time for change average (days) 36
 6.3. RQ1 Is there a significant difference in the DevOps speed metrics between
 teams? 37
 6.4 RQ2 What are some of the causes for fluctuations in DevOps speed metrics? 38
 6.5 RQ3 What are some of the challenges with measuring DevOps metrics and
 learning from the data? 40

 7. Discussion 41
 8. Conclusions and future work 44
 9. References 46
 A Appendix 47

 A.1 Interview questions 47

 4

 1. Introduction
 This is a 15 HEC Bachelor’s thesis in computer science. The thesis investigates the
 topic of the software engineering cycle and more importantly the process of delivering
 software. It is based on a case study at a software organisation which develops solutions
 for an online business. The main focus is on measuring software delivery performance
 and more specifically the speed aspect of delivering software.

 The case study aims to investigate the challenges that software teams experience
 with measuring software delivery performance. It explores concepts such as deployment
 frequency and lead time for change metrics. It also explores the release processes of
 various software teams.

 Throughout the case study, data is collected from interviews with software
 practitioners as well as other relevant metric data from the product teams and compared
 within teams to gain new insights about successful strategies and potentially recurring
 problems.

 Our study will focus on the two first metrics which are deployment frequency and
 lead time for change. Both of these metrics measure the throughput and speed of a
 software team in terms of software delivery [2] . This is a main priority of this study
 since quick software deliveries are a key business goal in all professional software
 organisations, and it is therefore interesting to learn how deployment frequency and lead
 time for change can differ between software teams.

 5

https://paperpile.com/c/WN31SF/gXD4

 1.1. Background
 The need for delivering software quickly is ever-growing in today’s industry. Businesses
 all over the world compete to have an online presence and sell their products through
 software solutions. This implies that the software must be delivered fast, and the
 software must meet the expectations of the customer.

 A modern practice in software delivery is continuous integration and continuous
 deployment (CI/CD) which can be described as a methodology that emphasises the use
 of automation to enhance software delivery at every stage of the software development
 process. CI/CD improves the speed of delivering software by automating the
 deployment process. [3]

 The goal is to deploy software as often as possible, even daily, and ship the latest
 changes to the end users which would increase customer satisfaction. This will
 inevitably come with the risk of a drop in the quality of the software. It, therefore,
 becomes crucial that the processes of testing changes in regression are well-defined and
 proven to fulfil the needs of the business.

 The DORA (DevOps Research and Assessment) organisation has researched the
 topic of software delivery performance and identified four key measurable metrics
 known as the four key DevOps metrics or the DORA metrics. These metrics are
 deployment frequency, lead time for change, time to restore service and change failure
 rate. The first two metrics deal with the speed of software delivery, and the two other
 metrics deal with the quality of software delivery.

 The thesis will examine the challenges of measuring software delivery performance.
 The case study will explore the factors that affect the deployment frequency as well as
 the lead time from committing changes to the deployment to production. To gather data
 for our research, we will conduct interviews and collect metrics from product teams at a
 software organisation which is part of an online business. Through this research, we
 hope to provide insights into the best practices and strategies for improving the software
 delivery process. Ultimately, this thesis aims to contribute to the advancement of
 software engineering practices and support the development of high-quality software
 solutions in a fast-paced and competitive industry.

 1.2. Related work
 Since our thesis project revolves around the topic of software delivery performance, the
 most relevant papers in this field are the “State of DevOps” reports from recent years
 and more importantly the most recent one [2] . This report is relevant as it discusses the
 concept of DORA metrics 1 and relates that to recent industry data from software
 companies which can be an interesting reference while performing the case study.

 One of the most important and relevant papers written about the DevOps metrics is
 the paper called “Measuring software delivery performance using the four key metrics
 of DevOps” by M. Sallin et. al [1] which discusses the practice of automating the metric

 1 We use the terms DORA metrics and DevOps metrics interchangeably. We don’t distinguish between
 them.

 6

https://paperpile.com/c/WN31SF/4QCdw
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/8x2y

 measurement as well as the value of measuring DevOps metrics. The authors of this
 paper also mention that there is no scientific research made on the topic of DevOps
 metrics and measuring software delivery performance, which made them resort to grey
 literature. Additionally, the work of Forsgren called “Accelerate: The Science of Lean
 Software and DevOps” [4] is of relevance and introduces the theory of the four key
 DevOps metrics.

 As Sallin et al. mentioned there is much grey literature written on the topic of
 DevOps metrics and measuring software delivery performance [1] . A relevant grey
 literature is the “DevOps Trends” survey conducted by Atlassian, where participants
 shared their insights and experiences regarding DevOps practices. Participants voiced
 their opinions on the benefits of improved collaboration, faster software delivery, and
 increased efficiency that DevOps can bring to an organisation. However, they also
 highlighted challenges such as skill gaps, managing legacy infrastructures, and the need
 for cultural adjustments within the organisation to fully embrace DevOps principles. [5]

 Furthermore, the “State of Agile Report” by State of Agile is relevant to our work as
 it provides valuable insights into the adoption of agile methodologies, which can greatly
 influence and contribute to the understanding of factors affecting lead time and
 deployment frequency in software development processes. [6]

 Another relevant grey literature is the “Technology Radar” by ThoughtWorks as it
 focuses specifically on the key metrics related to software delivery and DevOps
 practices. This report offers significant perspectives and recommendations for
 measuring lead time and deployment frequency. [7]

 1.3. Problem formulation
 This thesis investigates a research gap regarding the factors that impact software
 delivery performance metrics and more importantly deployment frequency and lead
 time for change. While previous studies have focused on the usefulness and value of
 measuring DevOps metrics as well as discussing the topic of automating the metric
 measurement [1] , this study shifts the focus to the factors that affect the DevOps metrics
 and also expands the discussion on the value of DevOps metrics. This study also
 discusses the challenge of measuring the DevOps metrics accurately.

 At the time of writing, we did not find any concrete case studies that investigated
 how specific software teams measure software delivery performance. The studies that
 we found focused on conducting surveys with a broader population of software
 engineers about the overall usefulness of DevOps metrics, whereas our study consists of
 interviews with practitioners that have adopted the DevOps metric measurement.

 1.3.1. Research questions

 Our study aims at investigating the challenges of measuring and improving software
 delivery performance. Consequently, we formulate the following research questions:

 7

https://paperpile.com/c/WN31SF/uRmC
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/h1Qt
https://paperpile.com/c/WN31SF/wtVL
https://paperpile.com/c/WN31SF/mU8Y
https://paperpile.com/c/WN31SF/8x2y

 ● RQ1 Is there a significant difference in the DevOps speed metrics 2 between
 teams?

 ● RQ2 What are some of the causes for fluctuations in DevOps speed metrics?
 ● RQ3 What are some of the challenges with measuring DevOps metrics and

 learning from the data?

 1.4. Motivation
 From a societal point of view, improved software delivery performance can ultimately
 save software engineers time and effort. In e-commerce, for instance, retailers will be
 able to test and deploy new features more quickly, providing customers with a more
 dynamic and satisfying shopping experience. This can lead to increased customer
 satisfaction, which in turn can boost the economy and improve the overall quality of life
 in the community.

 Another key motivation is that the time during which the software is not yet
 deployed is the time during which the software does not generate money. If we
 hypothetically presume that a new feature will generate a 1% higher cart value per
 successful purchase, and this new feature is postponed for several months due to factors
 causing a low software delivery performance, then the business will lose out on
 potential income during that period.

 Furthermore, research on issues related to software delivery can bring additional
 economic benefits by identifying and addressing bottlenecks in the deployment and
 testing process, streamlining operations and reducing costs associated with delays and
 rework.

 1.5. Results
 We expect that the results will provide insights into the best practices for maintaining
 high software delivery performance and the role of CI/CD in improving the
 development process. Another area of investigation is the release processes that have
 proven to be successful and the most effective strategies for deploying software in terms
 of time to market. By addressing these research questions, our study will provide
 practical recommendations and pitfalls for software teams to improve the software
 development process.

 1.6. Scope/Limitation
 This project will be limited to investigating the state of a single software organisation
 and its software teams. The project is also mainly focused on the context of web
 frontend engineering which may not make it as applicable to other types of software
 engineering such as mobile application development since the release processes may
 differ and the way that end users get software updates is also fundamentally different.

 The project’s main concern is the release processes of the engineering teams which
 are to a big extent manifested in the two metrics of deployment frequency and lead time

 2 DevOps speed metrics here is a reference to deployment frequency and lead time for change. DevOps
 quality metrics deal with the time to restore service and change failure rate metrics.

 8

 for change. The project will not look into other metrics such as change failure rate or
 time to restore service.

 The project is focused on the topic of software delivery. It will not discuss other parts
 of the software development lifecycle such as designing, implementing or testing
 software.

 1.7. Target group
 The target group for this information is primarily software engineers who are currently
 adopting continuous deployment and delivery practices and seeking ways to optimise
 their processes.

 Moreover, other members of production teams such as project managers, product
 owners, and DevOps specialists may also find this information useful. These individuals
 play a crucial role in ensuring the successful development and deployment of software
 products and are often responsible for making decisions relating to the adoption of new
 technologies and development practices. Therefore, they may be interested in
 understanding the strategies and best practices used by product teams to improve the
 lead time from code commit to release in production.

 1.8. Outline
 We have organised the report in the following way. In Chapter 2, we discuss the method
 that we have selected for conducting the case study as well as the topic of reliability,
 validity and ethical considerations. Chapter 3 contains the theoretical background of the
 problem area and discusses terminology related to the context of the case study, as well
 as describes the structure and processes of the studied software organisation. In Chapter
 4, we describe the steps that we followed to execute the method of our case study.
 Chapter 5 presents the results that we collected from executing our method, such as the
 interview answers and the reports. Chapter 6 and 7 analyse and discusses the collected
 results from the case study. In Chapter 8, we summarise the findings of our case study
 and give suggestions for future work.

 9

 2. Method

 2.1. Research project
 This project was initiated at a software organisation which develops web solutions for
 an online business. This organisation which consists of multiple product teams has
 gathered data about software delivery performance and other data about the software
 engineering processes. Some teams have measured for a smaller period of less than a
 year, and some have not measured this at all.

 We planned to investigate the strategies applied by the software product teams in
 terms of releasing to production to learn about best practices for deploying continuously
 and delivering software at a fast pace. We wanted to identify the recipes for success at
 these teams and address the potential technical challenges that they may have faced.

 We aimed to perform a collection and analysis of the existing data to gain a better
 understanding of what teams are doing well and what can be improved in terms of
 release processes.

 We also intended to interview software practitioners to gain their insights on the
 interpretation of the existing data and get a better view of what the data can indicate
 regarding the state of development workflows and increase the validity of the results.

 2.2. Research methods
 We plan to collect and analyse data about two of the four common software delivery
 performance metrics (DORA metrics) that the product teams have gathered over time,
 namely deployment frequency and lead time for change. We believe that this data is
 useful for understanding which teams perform well and which do not in terms of
 software delivery and that it will help us learn more about proven strategies and
 technical challenges. We decided to not gather data about other metrics such as failure
 rate and time to restore service due to lack of data as well as time constraints.

 Finally, we aim to conduct interviews with software practitioners and look at the data
 together with them to gain a better understanding of how the data should be interpreted.
 We chose to not conduct surveys at the cost of less generalisability due to lack of time.
 We also decided to shed more insights on the topic by using data from previous
 interviews with product teams conducted by the DevOps team about the overall DORA
 metrics usage and software release processes of the teams.

 To ensure the credibility and validity of our findings, we chose to adhere to the case
 study guidelines proposed by Runeson and Höst [8] , which are widely used in software
 engineering research. In addition, we decided to leverage established methods utilised in
 previous case studies such as Debbiche et al. [9] study on similar topics and Ionzon’s
 and Jägstrand’s [10] general software development case study.

 In summary, our research methodology involves conducting interviews with software
 professionals and collecting relevant metrics to provide new insights. By following
 established research guidelines and utilising appropriate data analysis methods, we

 10

https://paperpile.com/c/WN31SF/Ycjn
https://paperpile.com/c/WN31SF/JwM0
https://paperpile.com/c/WN31SF/cSRE

 aimed to provide credible and informative findings that can be used to inform future
 software development projects.

 2.2.1. Pre-study

 The research team has had a background in software development and therefore brought
 some level of experience related to the study. This background allowed us to approach
 the research with a nuanced understanding of the challenges and opportunities
 associated with DevOps in software development projects. Additionally, our experience
 in software development enabled us to ask informed questions during the interviews and
 interpret the data collected in the context of software development practices.

 2.2.2. Interviews

 One essential data collection method was semi-structured interviews with software
 professionals who have hands-on experience with DevOps. These interviews will
 hopefully provide valuable insights into the challenges, opportunities, and effective
 strategies for measuring DevOps metrics in software development projects.

 To ensure consistency in data collection, we developed a set of predefined questions
 that cover various topics related to software delivery performance. These questions were
 built on initial questions asked in interviews conducted by the dedicated DevOps team
 of the organisation with other teams. These questions are listed in the Appendices
 section. However, the interviews were decided to be semi-structured to allow for
 flexibility and spontaneity. This means that follow-up questions and prompts were to be
 used to explore interesting points in more detail or to clarify any ambiguities.

 All interviews conducted by us were initiated by explaining the purpose of the
 interview and also clarifying that the answers are to be anonymous and the data is going
 to be protected by destroying the original recordings after the transcription.

 The interviews were then transcribed and archived in a public GitHub repository
 [11] .

 2.2.3. Data collection

 We invited software practitioners of the software organisation to participate in
 interviews. The interviews were conducted physically or virtually and recorded for later
 analysis.

 We focused our interviews on a single software development organisation. This
 decision was made to ensure a deeper understanding of the DevOps metric measurement
 implementation within this organisation, as well as to facilitate the interview process by
 having easier access to potential interviewees.

 We recruited interviewees from various teams within the organisation who have
 hands-on experience with DevOps metric measurement implementation, focusing on
 software engineers. These interviewees were chosen based on their roles, expertise, and
 availability. We also ensured that we have a diverse set of interviewees to capture
 different perspectives and experiences with DevOps metric measurement
 implementation.

 11

https://paperpile.com/c/WN31SF/xcIJ

 While we understood that limiting our interviews to a single company would reduce
 the generalisability of our findings, we believed that the in-depth insights we were to
 gain from this approach would still provide valuable insights into DevOps metric
 measurement implementation. In addition, we chose to supplement our findings with
 insights and best practices from the existing literature and case studies.

 To ensure ethical standards are met, all interviewees were informed of the study's
 purpose and their participation's voluntary nature. We also obtained their informed
 consent and ensured the confidentiality and anonymity of their responses.

 Even though the interviewees have not seen the results in a concrete form, the aim is
 to present the final results from the research in a planned event as requested by one of
 the engineering managers of the organisation.

 2.2.4. Data collection of DORA metrics

 Since we were concerned with software delivery performance, we focused on collecting
 DORA metrics from the product teams that measure them. More specifically, we
 collected the two metrics called Deployment Frequency and Lead Time for Change .
 These would in turn give insights into the process of software development within
 teams.

 The metrics collected would then be compared between teams to get an
 understanding of which teams perform better in terms of metrics, and that combined
 with the semi-structured interviews would provide new insights about the state of the
 teams, what can potentially improve the metrics and what can lower them.

 This study aims to focus on analysing metrics about software delivery. We, therefore,
 need data about how often product teams deploy to production. We also need data about
 how long it takes from code committed to code running in production. These two types
 of data will bring new insights about the throughput of the software teams which make
 up a significant part of overall software delivery performance.

 There has been wide interest from software organisations to measure this type of
 software delivery performance metrics, but the companies have stated that measuring
 DevOps progress is difficult, and there has not been a defined model or strategy for how
 to perform this measurement. Forsgren et al. attempted to search for a performance
 measurement of software teams which focuses on the global outcome in DevOps and
 not pure output, i.e. measuring the results that add business value instead of the mere
 amounts of work. The four key metrics of DevOps are today widely applied in today’s
 industry and used by companies such as Zalando, RedGate, HelloFresh, PBS and
 Contentful [1] . Sallin et al. noted that no scientific research had been done which
 suggests how to automatically measure the four key metrics of DevOps [1] . There is a
 big interest from software organisations to measure their software delivery performance.
 However, measurement of the four metrics is often done manually and through surveys
 [1] .

 To make sense of this data, we need to compare it between teams to learn why some
 teams may deploy more often than others and what enables them to deploy more

 12

https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/8x2y

 frequently than others and why some teams have shorter or longer lead times for change
 than others.

 As Höst and Runeson suggest [8] , a recommended approach to gather metrics is to
 use the Goal Question Metric method (GQM) in which goals are first formulated, and
 the questions are refined based on these goals, and after that metrics are derived based
 on the questions. In our case, we can not follow the GQM approach because we study
 already available data that has been collected over time by the software teams.
 Therefore, as researchers, we are aware that we can not control the quality of the
 collected data, and there is a risk of missing important data. We still believe that the
 collected data is of value and that many insights can be gained from analysing it.

 2.2.5. Analysis of the DORA metrics

 To analyse the data we collected from the software teams about deployment frequency
 and lead time for change, we conducted a common statistical test called the analysis of
 variance (ANOVA) test which has been defined as a statistical formula used to compare
 variances across the means or average of different groups. It can be used to determine if
 there is any difference between the means of different groups [12] . We used the results
 from this test to accept our null hypotheses or reject them. This analysis was then used
 to answer RQ1.

 2.2.6. Analysis of the interview data

 After completing the interviews, we transcribed the result and analysed the data. The
 analysis involved identifying themes and patterns across the data, as well as comparing
 and contrasting the strategies and experiences of different interviewees.

 In summary, the data collection of the raw data from teams was done first. Then, we
 analysed the raw data. After the data analysis and the new insights we learned from it,
 we then formulated interview questions. This data was then used to answer RQ2 and
 RQ3.

 2.3. Reliability and Validity

 2.3.1. Reliability

 To collect DevOps data, a centralised data source was used where product teams had
 submitted their information, resulting in a more reliable process.

 To improve the accuracy and reliability of the interviewing process and its responses,
 we recorded sessions instead of relying on note-taking or memorisation. However, we
 are aware that data analysis could be problematic as the data may be interpreted in
 various ways and its limited scope may restrict the generalisability and any drawn
 conclusions.

 Another factor that could affect reliability in terms of interviewing is if the
 interviewer is the same for all of the interviews. To mitigate this, we split up the process
 of interviewing between both researchers of this paper and let one researcher interview
 two of the teams, and the other researcher interviews the third team.

 13

https://paperpile.com/c/WN31SF/Ycjn
https://paperpile.com/c/WN31SF/sN07

 Although the semi-structured interview method offers flexibility, there is a risk that it
 leads to uneven questioning. To mitigate this risk, we ensured a standard set of
 questions for every interview.

 Reliability could also be affected by the risk that the questions are interpreted
 differently by each interviewee. To mitigate this, we attempted to explain our intent
 behind each interview question and also let the interviewees ask their questions about
 how they understood our interview questions. We also asked them to verify our
 understanding of their answers.

 2.3.2. Validity

 Construct validity deals with interpreting theoretical constructs. Throughout this project,
 a common term used is the term deployment . Since deployment is a very broad concept
 and people can mean different things with it, there is a risk that the reader will interpret
 deployment in a different way than we intended. We chose to mitigate this risk by
 thoroughly describing what deployment means in the context of this project as well as
 how the DevOps metrics are related to the deployments.

 Internal validity deals with validating that the results and conclusions follow the
 collected data. Since we are interviewing members of the different product teams, one
 threat to validity could be that their personal opinions on their ways of working may
 dictate the answers that they provide, thus affecting our interpretation of the data and
 our conclusions. Another threat could be systematic errors in the data collection
 process.

 External validity deals with validating the justification of generalising the results. As
 this thesis was a case study, it was naturally restricted to one single case and could
 therefore not be generalised in a broader sense. We also only investigated three teams
 out of all software teams of the software organisation, which is a relatively small
 number and the generalisability is therefore not possible in this case study.

 2.3.3. Selection of methodology

 We considered other methodologies such as performing a controlled experiment and
 collecting the data by ourselves instead of relying on existing data collected by the
 organisation. Even though we were aware that we would gain more control by
 measuring and collecting the data on our own, the time constraints did not allow us to
 perform such a study.

 We also considered doing a more quantitative type of analysis, but since we were
 more interested in the reasons for fluctuations in software delivery performance metrics,
 it made more sense to do a more qualitative analysis.

 2.3.4. Sampling strategy and size justification

 Our sampling strategy was to select three teams that we labelled to be average, below
 average and above average as per recommendation from engineering managers and
 DevOps specialists who gave their views on the teams that they recommend analysing
 further based on their previous records of software delivery performance. We also

 14

 looked at their existing data on DORA metrics and decided to select them as subjects
 for the case study. We limited the number of teams to three out of all 21 software teams
 primarily because we would not be able to manage to analyse all the existing teams’
 data in a short period. We acknowledge that there could be a potential bias in following
 the recommendations of the engineering managers.

 2.3.5 Triangulation

 We designed our process of collecting data by starting with the raw data collection
 before anything else and then reading the already conducted interviews by the dedicated
 DevOps team with the other teams, and finally designing interview questions whích
 discuss things that have not already been discussed during previous interviews. In this
 way, we ensure that the interviews that we conduct are built on earlier findings and
 insights from both quantitative and qualitative data, and we avoid duplicated interview
 questions or questions that are not based on existing data.

 2.4. Ethical considerations
 To maintain the confidentiality of the business and colleagues, it was crucial that we
 refrain from divulging any personal information or sensitive information that could
 jeopardise the organisation’s operations. We took steps to anonymise all data collected
 and present it in a manner that omits specific details of the organisation.

 During the interviews, we recorded the sessions but ensured that the recordings were
 deleted once we had transcribed the responses. We also ensured that no personal
 information about the interviewees is included. We also requested one of the
 engineering managers to review the thesis and give their approval before it was sent for
 peer review.

 In terms of data collection, we only interviewed teams that had access to the DORA
 data. Additionally, we obtained consent from all interview participants to share their
 information in a thesis project while emphasising our commitment to ethical practices,
 such as anonymisation.

 We followed a formal process set up by the software organisation and signed a digital
 agreement with the rules and conditions for conducting a thesis project. We also went
 through the rules in a separate session together with an engineering manager and agreed
 to follow their guidelines throughout the process of writing the paper.

 For integrity purposes, we also sent the paper to an engineering manager to review it
 and give their approval before sharing it with the supervisor and examiner.

 15

 3. Theoretical background

 3.3. Definition of terms

 3.3.1. Continuous integration, continuous delivery and continuous deployment

 Continuous integration (CI) has been defined as a part of the development process that
 automatically builds an artefact and runs a series of automated tests for every code
 commit to assessing whether the code is ready to be deployed [2] . Continuous delivery
 is the practice that enables the team to deploy software to production or end users at any
 time and ensures the software is in a deployable state throughout its lifecycle [2] . It is
 important to note the difference between continuous delivery and continuous
 deployment - continuous delivery implies that a software build can be deployed at any
 time, whereas continuous deployment (CD) means that every software build is
 automatically deployed to production [2] .

 M. Shahin et. al. [13] describe continuous integration and deployment as a set of
 practices that enable organisations to frequently and reliably release new features and
 products. The frequency and reliability that the authors refer to are what this study aims
 to focus on. These practices enable software organisations to ship new features and
 patch bug fixes on a continuous basis which in turn increases customer satisfaction.
 Along with it comes a variety of approaches, tools and strategies to make continuous
 integration and deployment work as optimally as possible, as well as several challenges
 that CI/CD teams inevitably have to face.

 The practice of CI/CD emerged as an effect of the increasing demands of the
 competitive software industry to produce and deliver high-quality software at a high
 pace. Some benefits of CI/CD are customer satisfaction, quicker iterations of the
 software development life cycle, faster releases and automation of tedious deployment
 processes. [13]

 3.3.2. DevOps

 DevOps has been defined as a set of practices, tools, and a cultural philosophy that
 automates and integrates the processes between software development and IT teams
 [18] .
 The term first appeared in 2009 in social media coined by Patrick Debois [1] . DevOps
 has also been defined as a set of practices intended to minimise the time it takes from
 making a change to a system to placing it in production while ensuring high quality
 [19] .

 3.3.3. DORA metrics

 DORA is an organisation founded by Nicole Forsgren and Gene Kim which is famous
 for their annual “State of DevOps” report [14] . The DORA organisation has defined a
 set of four key performance indicators in DevOps that can be used to measure the
 performance of a DevOps team [1] .

 16

https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/dmhN
https://paperpile.com/c/WN31SF/dmhN
https://paperpile.com/c/WN31SF/n839
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/Nxvo
https://paperpile.com/c/WN31SF/iAWU
https://paperpile.com/c/WN31SF/8x2y

 The deployment frequency metric measures how often a team deploys to
 production. It is calculated by dividing the number of deployments by the total number
 of hours worked. A high deployment frequency indicates that a team can quickly and
 efficiently deploy to production, which can result in faster feedback and better-quality
 software.

 The lead time for change metric measures the time it takes for a team to make a
 change to a system and have it deployed to production. It is calculated by measuring the
 time from when a change is committed to the time it is deployed. A team’s ability to
 quickly deliver changes to production is reflected by a low lead time for change. A low
 lead time for change, similar to a high deployment frequency, results in faster feedback
 and higher-quality software.

 The time to restore service metric measures how quickly a team can restore services
 after a system outage or failure. It is calculated by measuring the time from when a
 failure occurs to when the service is restored. A low time to restore service indicates
 that a team can quickly identify and resolve issues, which can result in better
 availability and reliability of the system.

 The change failure rate metric measures the percentage of changes that result in a
 failure or require a rollback. It is calculated by dividing the number of failed changes by
 the total number of changes. A low change failure rate indicates that a team can deliver
 changes to production with minimal risk and disruption.

 By measuring these metrics, teams can identify areas for improvement and
 implement changes that can result in faster, more efficient software delivery.

 A high deployment frequency and low lead time for change indicate that the
 development team can deploy changes quickly to specific parts of the application
 without affecting the entire system, reducing the risk of errors and improving the overall
 efficiency of the development process [15] .

 One of the key software delivery performance metrics is deployment frequency that
 provides insights into the frequency at which a software team releases code to end users
 or deploys it to production environments. In simpler terms, it answers the question of
 how often software changes are made available to users or put into operation. [2]
 According to the State of DevOps report from 2022, high performers are considered to
 deploy on-demand, which can mean multiple deploys per day, medium performers have
 a deployment frequency between once per week and once per month, and low
 performers deploy between once per month and once every 6 months [2] .

 Deployment frequency is classified as daily when the median weekly day count with
 at least one deployment which is successful equals or is bigger than three days [16] . In
 simpler terms, to classify deployment frequency as daily, the software must be deployed
 on most working days. If the software is deployed most weeks, it will be weekly, and
 then monthly [16] .

 Deployment frequency is well defined by Forsgren et al. as the deployment of
 software to production, and as a result, other definitions are close to Forsgren’s
 definition. The definitions all share the inclusion of “number of deployments in a
 certain period”. Some mention that they only count successful deployments, and some

 17

https://paperpile.com/c/WN31SF/Tcge
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/mQX1
https://paperpile.com/c/WN31SF/mQX1

 explicitly mention deployments to production. Some include every deployment attempt
 even if it was not successful as this is a speed metric [1] .

 It is worth noting that different terms are used in various contexts like DORA
 metrics , DevOps metrics and the Four Key Metrics of DevOps (FKM) which are all
 terms for the same concept.

 It is important to note in this context that the metric is deployment frequency and not
 deployment volume. Therefore, it is not sufficient to show the volume of daily
 deployments or to show the average weekly deployment count [16] . In the context of
 the case study, the deployment frequency implies a counter of the number of
 deployments to different environments.

 Another topic is defining a successful deployment to production. It is up to the
 organisation to define this, like including deployments that are only to 5% traffic for
 example, but in general, any successful deployment to any level of traffic is included
 [16] . The organisation of this case study has decided that deployment to the production
 environment is when the deployment can be reached by users. If a deployment is made
 to a production environment for the sake of protected internal testing, then this is not
 considered to be a deployment to production per definition. By protected, we mean that
 the exact version number is hidden from end users.

 The process for collecting data for deployment frequency is integrated into the
 GitHub workflows. The typical way to collect deployment frequency metrics is to send
 a request to an API as a step of the workflow that is triggered when publishing a new
 version to production.

 After the request is sent to the API, data is generated in Amazon Web Services
 (AWS) and transformed into Azure Databricks. Reports can then be generated with
 Power BI.

 Another key software delivery performance metric is the lead time for changes,
 which answers the question “How long does it take to go from code committed to code
 successfully running in production?” [2] .

 As for the definition of lead time for change, all suggestions on the original
 definition by Forsgren measure the time a commit takes until it reaches production,
 whereas the only difference is the way that they aggregate (mean, median, etc.) [1] .
 Since it is a common practice to use version control for altering source code, the
 commit is defined as the change. The lead time is given by the time between the
 timestamp of the commit and the timestamp of the deployment [1] .
 According to the State of DevOps report from 2022, high performers have a lead time
 of between one day and one week, medium performers have a lead time of between one
 week and one month, and low performers have a lead time of between one month and
 six months [2] .

 To measure lead time for changes, two types of data are needed: the timestamp of the
 first commit, and the timestamp of the deployment [16] .

 In the context of the case study, lead time implies the time between the very first Git
 commit date and the date when the requirement was deployed.

 18

https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/mQX1
https://paperpile.com/c/WN31SF/mQX1
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/mQX1

 Solutions may only send data when a pull request has been merged. This is because
 many pull requests are closed and abandoned, and they are of no interest for
 measurement.

 A script is used for calculating the lead time. When calculating stop time for several
 merged pull requests, the script depends on a changelog generator. The file produced is
 then parsed and the stop time for the merged pull requests is sent to the API. Figure 4.1
 illustrates an example of a merged pull request to a branch. When a developer merges a
 feature branch into the master branch, a GitHub action, also known as a pipeline, runs in
 which the artefacts are deployed to the cloud using a service like Azure Blob Storage. In
 this pipeline, a script is executed which sends the timestamp for the first Git commit to
 an API which stores this data.

 Figure 3.1: Example of sending first Git commit date

 It is worth noting that the speed metrics are more precisely defined than the stability
 (quality) metrics, and as a result automating the measurement of speed metrics is easier
 than automating the measurement of quality metrics [1] .

 3.3.4. Inter-team dependencies

 According to Bick et al. [17] inter-team dependencies refer to coordination of activities
 between teams. In other words, situations where one team’s work or output depends on
 the work or output of another team.

 These dependencies can arise due to shared code, data, or resources between the
 software. To ensure that the different teams work seamlessly together, the different
 teams need to coordinate their development efforts and manage their dependencies
 effectively.

 This can involve establishing communication channels between teams defining clear
 interfaces and construct, and aligning development and deployment processes. Effective
 management of inter-team dependencies can help to reduce conflicts and improve the
 overall quality and maintainability of the system.

 19

https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/uTHo

 3.3.5. Deployment

 Deployment in the context of this software organisation means releasing a new version
 of a solution to the production environment. When a version is deployed, it
 automatically reaches end users of the application.

 3.4. Organisation structures and processes
 In this section, we will briefly describe the structures of the organisation and its
 processes.

 3.4.1. Structures

 The organisation develops web solutions for an online business. The organisation
 develops two types of solutions:

 1. Customer-facing solutions. These are the solutions that are shipped to and used
 by end users, and the ones that we will investigate further in terms of DORA
 usage and software release processes.

 2. Supporting solutions. These provide tools and services that simplify and support
 the development of customer-facing solutions. They are not directly used by end
 users, but rather consumed by the customer-facing solutions.

 There is a one-to-many relationship between the teams and products. One team can
 own more than one product, and one product is owned by one team.

 Software teams consist of members with different types of expertise. A typical
 software team consists of software engineers, a technology lead, a solution architect,
 UX designers, a business analyst, a scrum master and a product owner.

 There is also much collaboration on a cross-functional level. Software engineers
 work together across teams to find general solutions to recurring problems. UX
 designers, business analysts and product owners also have joint meetings to synchronise
 their work, backlogs and product roadmaps.

 The architectures of the different solutions can vary a bit depending on the history of
 the solution and its natural evolution. However, there are common patterns for all
 customer-facing solutions. They consume services for data storage, internationalisation,
 UI libraries and core services that handle critical business logic.

 Figure 3.2 illustrates a typical architecture of a customer-facing solution.

 Figure 3.2 : Architecture of a customer-facing solution, reworked

 20

 3.4.2. Processes

 All the software teams of the organisation adopt and follow an agile mindset in the way
 of working, using the Agile Manifesto as a general guideline [36] . The aim is customer
 satisfaction, which is achieved by frequent delivery of high-quality software. The teams
 follow the fail early, fail fast approach and strive to continuously learn and adapt.

 The organisation is also actively adopting a DevOps way of working focusing on
 frequent deliveries with speed, quality and stability and getting feedback as early as
 possible.

 Software teams usually follow a type of Scrum or Kanban methodology of working.
 Software teams work in a sprint-based manner, where the work items of a sprint are
 planned and included, implemented, tested, deployed and finally presented to a bigger
 audience.

 Product owners prioritise work items in the backlog and synchronise roadmaps with
 each other to stay aligned with the upcoming work. Business analysts assess the current
 risks and drive actions to mitigate and minimise risks. The scrum master is responsible
 for coordinating the daily work of the team, supporting the team dynamics and ensuring
 that all team members can operate productively. Deployments are expected to happen
 frequently. The management members synchronise the overall objectives and goals with
 the software teams frequently to ensure that everyone shares a common view of the
 goals.

 From a technical point of view, all teams work in code repositories on GitHub.
 Software engineers can contribute to different code repositories when needed, and
 engineers may move between teams and support them when needed.

 Both the outer loop of the software development methodology, like merging code
 reviews, automating deployments and testing the system outcomes, and the inner loop
 of the software development methodology, like designing solutions, implementing them
 in code and testing them on different levels are similar for the software teams.

 Teams work autonomously, meaning that each software team is responsible for the
 whole software engineering lifecycle, from design to implementation and testing. There
 are overall guidelines that all teams are expected to follow, but the members of the team
 ultimately decide their internal tools and the way that they choose to operate.

 The main version control tool used by all teams is Git. Software engineers pick up
 work items from Jira, work on them in separate Git branches, make the required
 changes and create pull requests on GitHub to get feedback from their peer engineers. A
 pull request is then either accepted or declined by the code owners of the repository and
 merged into the main branch. Figure 3.3 illustrates the workflow of a software change
 from design to deployment.

 21

https://paperpile.com/c/WN31SF/yqou

 Figure 3.3: The workflow of a software change

 The process for deploying the software into the production environment may differ
 for some teams, but usually each software build is in a deployable state.

 Software teams are expected to measure the throughput and stability of their software
 deliveries through DORA metrics.

 The process for collecting the DORA metrics is integrated into the GitHub
 workflows that are developed and maintained by the engineers of each team. All teams
 that measure DORA metrics measure the same type of metrics using common GitHub
 workflows.

 22

 4. Research project – Implementation
 In this chapter, we will provide an overview of the case study activities. Section 4.1
 defines the main hypotheses of the case study. Section 4.2 discusses the collection of
 DORA metrics and reports to gain a deeper understanding of the performance and
 throughput of software teams within the organisation. In addition, Section 4.3 details the
 semi-structured interviews conducted with software engineers to gain insights into the
 challenges and factors that impact software delivery performance. Finally, Section 4.4
 explains how the collected data was analysed and processed in the case study.

 4.1. Hypotheses
 The null hypothesis for deployment frequency is that there is no significant difference
 in deployment frequency between the teams. The alternate hypothesis for deployment
 frequency is that there is a significant difference in deployment frequency between the
 teams.

 The null hypothesis for lead time for change is that there is no significant difference
 in lead time for change between the teams. The alternate hypothesis is that there is a
 significant difference in lead time for change between the teams.

 4.2. Data collection of DORA metrics
 In this section, we discuss the data collection process for our case study. We obtained
 reports for deployment frequency and lead time for change for three software teams and
 analysed their GitHub workflows integrated into the CI/CD pipelines.

 To ensure the case study’s primary focus on software delivery performance, it is
 essential to collect the DORA metrics of each software team within the organisation.
 This quantitative data collection is crucial to the overall outcome of the study since it
 can provide additional insights into how different teams perform in terms of software
 delivery.

 The software teams under investigation have collected data on deployment frequency
 and lead time for change over a specific period, which is stored on the Microsoft
 platform Power BI. We exported the data from Power BI to Excel sheets.

 To obtain technical information regarding the collection of DORA metrics, we
 analysed the GitHub workflows integrated into the software teams’ CI/CD pipelines.

 We began the data collection process by obtaining reports for DORA speed metrics
 including deployment frequency and lead time for change. As we had decided to select
 only three software teams due to time constraints (average, above average and below
 average), we asked engineering managers for their recommendations of teams that fulfil
 this criterion. We then selected three three software teams that we believed had varying
 scores in the area and analysed their data. We used the overall criteria from the State of
 DevOps report [2] to determine what is considered average performance. For reference
 purposes, we assigned the names Team 1 , Team 2 , and Team 3 to these teams, with Team
 1 being the above-average performer, Team 2 being average and Team 3 being below
 average.

 23

https://paperpile.com/c/WN31SF/gXD4

 4.3. Interviews
 In this section, we discuss the interviews conducted to gain a better understanding of
 how DORA metrics can be interpreted. We interviewed three software engineers, each
 from a different software team, and asked them questions related to their team structure,
 software development lifecycle, release process, deployment frequency and lead time
 for change, and factors that impact them. The interviews were semi-structured and
 followed a set of introductory questions about the background of the subject.

 4.3.1. Conducting interviews with software engineers

 A primary purpose of the case study is to gain a new understanding of how DORA
 metrics can be interpreted. Therefore, interviewing software practitioners was a
 significant activity of the case study.

 We used the case study paper of Höst and Runeson [8] as guidelines for conducting
 our interviews. As the goal of the interviews was to learn more about the challenges of
 the software delivery process, it was convenient to allow for flexibility and thus adopt
 semi-structured interviews as a way of interviewing.

 We created a list of questions to ask every interviewee. As the interviews were
 semi-structured, we didn’t necessarily follow the order of questions, and the interviews
 were more flexible.

 As suggested by Höst and Runeson [8] , we divided the interview into several phases:
 1. Present the overall objectives of the interview and the case study.
 2. Explain how the data from the interview will be used.
 3. Ask a set of introductory questions about the background of the subject.
 4. Ask the main interview questions and ensure the confidentiality of the interview

 and that sensitive information will be protected.
 5. Present the reports and discuss them with the interviewee.
 6. Summarise the major findings by the researcher at the end of the interview.

 The list of the main interview questions is as follows:
 1. Please explain your team structure.
 2. Please briefly explain your work process from sprint planning to release.
 3. How often do you aim to deploy to production?
 4. How quickly do you wish the time to be from the code commit to the code

 running in production (lead time for change)?
 5. Do you regularly look at DORA metrics? How do you act accordingly? If not,

 what may be possible reasons for not looking at it?
 6. How do you explain your deployment frequency report? (show report)
 7. How do you explain your lead time for change report? (show report)
 8. What are factors that may impact your deployment frequency?
 9. What are factors that may impact your lead time for change?

 We chose to look at the reports of deployment frequency and lead time for change
 together with the engineers to find explanations for potential causes that impact the
 metrics.

 24

https://paperpile.com/c/WN31SF/Ycjn
https://paperpile.com/c/WN31SF/Ycjn

 4.3.2. Collecting interview data conducted by the DevOps team

 The organisation’s dedicated DevOps team has conducted interviews with several
 software teams, covering topics such as collecting and using DORA metrics, as well as
 the software release process and CI/CD practices. Although this data does not directly
 answer any of our research questions, it provides valuable insights into the overall
 adoption of collecting and analysing DORA metrics by the software teams.

 We acknowledged the importance of incorporating the perspectives of the DevOps
 team in our research. Therefore, we carefully integrated their interview findings into our
 study from the beginning, to avoid duplication of any questions already asked during
 their interviews. This approach ensures a cohesive and comprehensive analysis of the
 organisation’s software delivery performance.

 4.4. Data processing
 To process the DORA metrics collected from the product teams, we used statistical tools
 and data visualisation techniques. We utilised data visualisation tools like Power BI,
 which enabled us to create interactive dashboards and graphs to identify trends and
 patterns in the data. We compared the metrics between teams to gain insights into their
 software development process and identify any trends and patterns in the data. We
 compared the metrics between teams to gain insights into their software development
 processes and identify any patterns or trends across the organisation. Our data
 processing methodology was documented in detail to ensure the transparency and
 replicability of our study.

 For the deployment frequency and lead time for change metrics, we analysed them
 by performing a common statistical test known as analysis of variance (ANOVA). We
 used Excel for performing the ANOVA data analysis and specifically the Analysis
 Toolpak add-in for Excel which has built-in functionality for executing ANOVA tests.
 We inserted the data that we had collected from the teams and ran the tests. We
 collected the results and observed the P-values to determine if the results hold as
 sufficient evidence to reject the null hypothesis. We defined the significance level to be
 0.05 as it is common to be a standard value.

 25

 5. Results
 In this chapter we present the results from the case study which contain software
 delivery performance metrics and the data from the interviews.

 5.1. Deployment frequency metrics
 Figure 5.1 illustrates the deployment frequency metrics for the three teams from July
 2022 to March 2023.

 The graph shows how often the three teams deployed to production during this
 period. The Y-axis represents the number of releases made per month. Each team is
 assigned a unique colour for clearer visualisation. We can note for example that Team 1
 deployed 5 times per month during August, October and January, whereas Team 2
 deployed 5 times in March. On the other hand, Team 2 only deployed once in July and
 January, and Team 3 only deployed once in August, December and January. It is also
 notable that Team 1 has always deployed more than once during this period.

 Figure 5.1: Deployment frequency metrics

 Table 5.1 illustrates the deployment frequency metrics for the three teams from July
 2022 to March 2023. The table shows numbers that represent the number of releases for
 each team from July to March. The first column represents the months. The table is
 grouped by columns.

 26

 Month
 Number of releases for

 Team 1
 Number of releases for

 Team 2
 Number of releases for

 Team 3

 July 2 1 2

 August 5 2 1

 September 4 3 2

 October 5 4 3

 November 2 2 2

 December 3 3 1

 January 5 1 1

 February 4 3 3

 March 4 5 2

 Table 5.1: Deployment frequency metrics

 5.2. Lead time for change metrics
 Figure 5.2 illustrates the lead time for change metrics for the three teams from July
 2022 to March 2023.

 The Y-axis represents the number of days it takes to go from code committed to code
 running in production. We can note that Team 3 has the highest spikes in the graph, and
 Team 1 has the lowest spikes.

 Figure 5.2: Lead time for change metrics

 27

 Table 5.2 illustrates the lead time for change metrics for the three teams from July 2022
 to March 2023. The table represents how long it took for each team to go from code
 committed to code running in production during a given month. The table is grouped by
 columns, whereas the first column represents the months.

 Month
 Lead time for change in

 days for Team 1
 Lead time for change in

 days for Team 2
 Lead time for change in days

 for Team 3

 July 0.83 36.36 30.39

 August 17.56 19.48 25

 September 6.5 7.07 42.53

 October 7.15 9.89 2.56

 November 7.14 17.89 34.66

 December 5.85 17.23 33.84

 January 4.42 21.27 40.6

 February 8.77 20.3 32.81

 March 5.61 8.83 31.01

 Table 5.2: Lead time for change metrics

 5.3. Interviews conducted by us
 We let the software engineers look at the graphs together with us to get their insights
 into how the data can be interpreted and learn about factors which may impact it.

 5.3.1. Interview with Team 1

 Team 1’s structure was described as follows:
 ● One product owner.
 ● A scrum master.
 ● Two to three UX designers.
 ● Six to seven software engineers.
 ● One person specialising in data collection from the application.

 Their way of working can be summarised in the following points:
 ● Communication is facilitated through Slack and Team meetings.
 ● The team works in two-week sprints and has sprint-related meetings every other

 week.
 ● The teams hold weekly check-ins to review their progress.
 ● They manage their development work through a backlog.

 Their release process can be described with the following points:

 28

 ● They release features (completed and partially completed) and bug fixes weekly.
 They aim to ensure a lead time of one week for the majority of commits.

 ● Features that are not ready for release are hidden behind feature flags.
 ● They deploy changes to a production environment for testing purposes which

 resembles the development environment before the release.
 ● They conduct a weekly test session on Monday.
 ● They release on Mondays if the test session is successful, otherwise they resolve

 issues and postpone the release to Tuesday or Wednesday.
 As for the DORA metrics, they stated that they don’t give due attention to them.

 Some of the reasons are:
 ● Lack of knowledge and experience to comprehend the significance of the data

 and what it signifies.
 ● Lack of training in understanding what data is being collected and why it

 matters.
 ● Lack of awareness of the data’s importance.

 When asked about reasons for fluctuations in the deployment frequency report, they
 answered:

 ● If they don’t release in a week, there are more releases the following week.
 ● The data was not accurately reflecting reality, probably due to changes to the

 DORA metrics script.
 ● Vacation time.
 ● The number of Jira IDs released, as some pull requests may not be linked to Jira

 IDs.
 ● The size of the tasks.

 When asked about factors that cause variations in the lead time report, they
 answered:

 ● Changes to the DORA metrics script which could cause inaccurate statistics.
 ● During summer, the team likely did not release every week. There could be

 periods of up to five weeks without any releases.
 ● The team’s workload.
 ● The team’s release schedule.

 However, despite these variations, the team’s average lead time of eight days
 suggests that the team is meeting its targets for weekly releases.

 5.3.2. Interview with Team 2

 When the engineer in Team 2 was asked about their team structure, they said that there
 are three software engineers, one UX designer, one half-QA engineer (working
 part-time) and one product owner.
 Their way of working could be summarised as follows:

 ● They follow a loose, Kanban-like sprint process.
 ● They follow Scrum routines but are not structured.
 ● They work in an investigative way and often open pull requests as drafts.

 Their release process can be described in the following points:

 29

 ● They try to keep their main branch clean and releasable.
 ● With their new QA engineer, they do integration testing and release testing.
 ● They have no fixed date for release but release when it makes sense.
 ● They aim to deploy to production as often as possible.
 ● They batch together a group of features and bug fixes in releases.

 We both agreed that the DORA metrics assume that a team works in a very concrete
 way, where they pick up tasks, implement them and release them. It presumes that you
 need to know what to do from the first commit, and that is rarely the case in their team.

 When asked if they regularly look at DORA metrics, they answered:
 ● They could not relate the numbers to what they had been doing during the

 previous few weeks.
 ● There could be an issue with how they report the data, or maybe they are just not

 used to the Power BI tool.
 From looking at the graphs for deployment frequency and lead time, we identified

 the following:
 ● We noted that some weeks were omitted and interpreted it to mean that the

 omitted weeks are weeks where no release was done, which was aligned with
 reality according to the engineer.

 ● The lead time charts were aligned with reality, indicating that they release twice
 a month.

 The engineer shared some general thoughts about DORA metrics which can be
 summarised as follows:

 ● A possible reason why many teams don’t look at the DORA data nor understand
 it can be that the data is only valuable if you have a continuous delivery
 approach, which is not the case for many of the existing products.

 ● If there is no continuous delivery setup, then the data will always be dependent
 on factors that are outside of the control of the engineers. When a feature is
 ready for release, it won’t reach production because it can be stuck for weeks
 due to the translation problem for example.

 5.3.3. Interview with Team 3

 The software engineer from Team 3 was also a member of the dedicated DevOps team
 and could provide answers to general DevOps questions concerning the organisation as
 a whole.
 Their team structure was described as follows:

 ● The team is shrinking since it is in hibernation mode.
 ● Before hibernation, there were 4-5 software engineers, two business analysts, a

 product owner, a UX designer, a tester and an architect.
 ● They had two backends in C++ and Java.
 ● Their frontend was in JavaScript and they had web services in Python.

 Furthermore, the engineer described their way of working as follows:
 ● They worked in Scrum up until hibernation, and then they switched to Kanban.
 ● The duration of a sprint was three weeks.

 30

 ● After each sprint, they promoted a release branch, tested it for 2-3 weeks
 manually, and then released it to production.

 When asked about their release process, they mentioned:
 ● Very often, they had one version unreleased, since they had already finished the

 previous sprint, and at the same time they were waiting for testing the current
 sprint but they hadn’t yet released the old version.

 ● Their aim to deploy to production was once per month.
 ● Their aim for lead time for change was at least a week.

 Some of the factors impacting the deployment frequency and lead time reports that
 the engineer identified were as follows:

 ● Loss of data as a result of issues with reporting the data with the correct
 environments.

 ● The bigger numbers show the state of normal sprints, and the downfalls are
 mainly hotfixes.

 ● The collected data was not only from the customer-facing application but also
 from the backend services. The backend had a different release cycle than the
 frontend.

 ● The manual testing process which could postpone releases.
 ● The translation problem, where dedicated translators need to translate texts to

 the different languages in the supported countries, which could take about a
 week.

 The engineer’s general thoughts about DevOps were as follows:
 ● Most of the teams don’t look at the data that they have collected. The DevOps

 team found out that most of the teams don’t understand the data that they have
 collected.

 ● The DevOps team aspires to conduct workshops with them to explain what it
 means.

 ● Two main factors for why teams don’t study the metrics are a lack of
 understanding as well as doubting the value of the data.

 ● Just merely looking at the data might not bring value in itself, but if a team
 aspires to improve their deployment workflows and become more effective
 when deploying, then this data can be very relevant to track the progress.

 5.4. Interviews conducted by the dedicated DevOps team

 5.4.1. DORA usage statistics

 Eleven software teams were asked by the DevOps team if they collect DORA speed
 metrics. Out of these eleven teams, six teams answered “Yes”.
 The eleven software teams were also asked if they use DORA speed metrics, in terms of
 looking at it frequently, interpreting it and learning from it. Out of the eleven teams, all
 answered “No”.

 31

 5.4.2. Software release process statistics

 During the interview, all eleven software teams were asked if they utilise continuous
 integration, and the answer was unanimously “Yes”. Additionally, the teams were asked
 about their use of continuous delivery, which refers in this context to the ability to fully
 automate release processes. It does not mean that every change is deployed, but rather
 that a team can automatically deploy to a staging environment, and when a decision is
 made deploy automatically to production. Five teams confirmed using continuous
 delivery, while two teams said they do not. One team reported that they deploy
 manually, and another stated that they rely on manual testing. Unfortunately, the
 remaining teams did not provide adequate responses. The interview also inquired about
 continuous deployment, where the production deployment occurs automatically after
 merging a pull request, and only two teams responded positively.

 5.4.3. How DORA metrics are used in software teams

 One team responded that they have integrated data collection of DORA speed metrics
 through their pipelines. They also suggested that their lead time is naturally short since
 there are only two software engineers in their team.

 Another team answered that they do not collect DORA metrics at the moment, and
 they experience problems with that since their product consists of two distinct projects
 (a frontend and a backend). The DevOps team responded that it is possible to collect the
 DORA metrics separately for each project.

 One team stated that they have recently started to gather DORA metrics. They also
 felt that using DORA metrics can be useful even if their team is small.

 One team said that they had been introduced to DORA metrics and the pipelines
 were set up in the repository. They don’t talk about it but they know what it is about.
 They would like to understand what information they can extract from the reports.

 Another team said that they don’t use DORA metrics as their development is
 currently on hold, but they showed interest in knowing more about it in the future.

 One team stated that they have not implemented DORA metrics as the project is in
 an early phase, but it is planned to be done in the future. Also, they do not yet deploy to
 production but only to a development environment at the moment.

 One of the teams said that they know nothing about DORA metrics. They only know
 that they are sending some data somewhere, but nothing else.

 Another team said that they are trying to look at the report but they are struggling to
 understand what they are looking at. They also hinted that they don’t feel that the data
 in the DORA report reflects the truth. They also track releases on GitHub. The DevOps
 team suggested that if they are collecting data for testing environments as well as
 production, there is an issue where some data will be missing in production depending
 on the workflow.

 One team said that they are not using the DORA metrics at all. They don’t think that
 they have the data and they don’t know where to check the data. They don’t know

 32

 anything about DORA metrics and would like some background information on why it
 is supposed to be used.

 One of the teams mentioned that they are actively using DORA metrics. They use it
 to analyse the team’s behaviour and possible problems in the way of working. They are
 interested in extending the DORA speed metrics with the DORA quality metrics (Mean
 Time to Recover and Change Failure Rate).

 One team stated that they don’t use DORA metrics at all. As with some other teams,
 they don’t know where to find the data, and even if they would, they doubt the value
 that it provides.

 5.4.4. Goals and suggestions regarding software release processes

 One team stated that since they are missing a tester in the team, pull requests are open
 for some time until another software engineer gets time to review and test it. This stops
 their pipelines. The team is working on automatic testing to speed up the process, but
 it’s not clear if their project will go on and it’s difficult to prioritise. They suggested
 having shared testers that work in different teams which could help small teams to speed
 up the release process. Another suggestion was to conduct a GitHub training for
 non-engineers like product owners and testers, as they sometimes are scared to work on
 GitHub.

 One team stated that their short-term goal is to have a functioning CI/CD solution for
 the backend. Their frontend team is fairly mature. They try to align more with the
 organisation’s ways of working like adopting GitHub action workflows and using Azure
 Artefacts instead of Node Package Manager (NPM). Long term they are looking to cut
 down their release cycles. The backend is deployed manually with a lot of manual
 testing. A release usually takes one to two days. An issue with making it faster is that
 one of the countries has additional steps that make it complicated.

 One of the teams stated that they now have a continuous delivery setup so that when
 a task is done, it’s deployed to production. They used to deploy once a month, but since
 the tester left the team, they have moved to a faster deployment system. They are very
 happy with the new release process, smaller deployment packages and more often with
 fewer changes. When there are translations needed, an email is sent and a week or so is
 given to the translators to do their part. They suggested improving the end-to-end tests
 and the environment where they are running. They are also migrating from Azure to
 GitHub Actions.

 One team stated that they are in general satisfied with their release process at the
 moment. Tagging and changelog generation is done manually, but they intend to
 automate this in the future. They are also interested in adopting best practices.

 One team mentioned that they are having some issues with Azure in general and that
 it would be nice to have additional assistance and guidance going forward.

 One team raised a problem with their release process, namely that they don’t have a
 strong workflow for patch releases. They release from the main branch, but after that,
 they keep working on the main branch when introducing new features. When they find
 critical bugs, they experience issues with the changelog generator. They concluded that

 33

 as long as they keep the main branch stable, they can always deploy new features with
 bug fixes. They believe that when they put features in the main branch, then it is
 releasable. They raised a concern that there is a constraint from the translators where
 they need two weeks to translate. This results in the team keeping the pull request alive
 despite being ready to deploy. They were aware that this impacts their lead time. They
 have a strong desire to release them as soon as they are ready, but currently, it is not
 possible due to the translation problem.

 One team mentioned that they are looking to improve their self-hosted runners since
 they have substantial end-to-end testing. There is an interest in the large runners from
 GitHub. It would be beneficial both from a financial perspective and also to free up
 engineering time from the team. Currently, there is a fair amount of effort going into
 maintaining and upgrading the solution for their runners. When they expand it will
 become tougher and more expensive. Their current end-to-end test suites are much
 slower running on their self-hosted runners compared to running them locally.

 Regarding their release process, they mentioned that their current workflow is that
 every pull request is tested automatically and also manually with the team. Every
 Monday, they create a new build that the team reviews. If it’s approved, they release it
 the same day. They are not currently comfortable releasing automatically. Their test
 suite is good, but it’s not extensive enough for them to feel comfortable deploying
 without manual verification. Their solution is fairly complex, and if they are to have
 tests for everything it will be cumbersome to maintain.

 Another team mentioned that they have an automatic release system in place, but the
 testing process needs to be improved to have it fully automated because they need to be
 sure that no issues are deployed with a new version. The team is also interested in using
 the GitHub Actions cache to speed up the build time of the pipelines. They are also
 interested in uploading compressed files in Akamai to speed up the release process and
 to start using the Akamai retention package for cleanup.

 One team stated that their release process is currently being improved, and it’s aimed
 to be so continuously based on the team’s findings, discussions and outcomes. One
 long-term goal is to have the process completely automated. Today, their production
 deployments are done manually. Developer items end up in the backlog, but not support
 requests. Items are typically refined and checked for unambiguity and clearness.
 Software engineers then pick the task from the top of the board, develop the feature,
 mark it as ready for test, and finally release it.

 34

 6. Analysis
 From the interviews conducted and the data collected from the software teams, it can be
 stated that the overall ambition of the software organisation is to be data-driven and to
 have a DevOps mindset when releasing and delivering software. There is ongoing work
 and aspirations from the teams to continue collecting data about DevOps and DORA, as
 well as let teams start collecting data if they haven’t already.

 While a majority of software teams are collecting data on DORA metrics, they are
 not actively using this data for learning or improving purposes. This is primarily due to
 a lack of understanding of collected data, doubts about its value, and concerns that the
 generated report may be misleading or misrepresentative of reality. Moreover, a reason
 why many of the product teams could not make sense of the data is that they don’t
 follow a continuous delivery approach, and therefore their data will always be
 dependent on factors that the software engineers can not control, thus making the data
 irrelevant for them as they can not impact it.

 Some of the reasons why some teams don’t collect DORA metric data are that they
 either have too little knowledge about what they are, they believe that it is complex to
 set up since they have different repositories for different services, or that their
 development is currently on hold.

 6.1. Deployment frequency average
 Table 6.1 shows the deployment frequency average values for the three teams. This
 table is grouped by rows. The columns show sum, average and variance values. We can
 note that Team 1 has the highest average value and that Team 3 has the lowest average
 value. Team 2 has the highest variance value which indicates that their data points are
 the most spread out compared to the other two teams.

 Team Sum Average Variance

 1 34 3.777777778 1.444444444

 2 24 2.666666667 1.75

 3 17 1.888888889 0.611111111

 Table 6. 1: Sum, average and variance values for deployment frequency

 35

 Team 6.2 shows the ANOVA results for the deployment frequency between and within
 the groups. It shows a set of different values related to the tests which are described in
 the captions. In our analysis, we are mainly concerned with the P-value as it will aid us
 in rejecting or accepting the null hypothesis. We can reject the null hypothesis as the
 P-value is less than our significance level of 0.05.

 Source of variation SS df MS F P-value F crit

 Between groups 16.222 2 8.111 6.394 0.006 3.403

 Within groups 30.444 24 1.2685

 Total 46.667 26

 Table 6. 2: ANOVA results for deployment frequency. Source of variation = The factor being measured to
 determine the extent of variation. SS (sum of squares) = The total sum of the squared differences from the

 mean for each variation source. df (degrees of freedom) = The number of independent pieces of
 information used to calculate the sum of squares, which is equal to the number of groups minus one for

 between groups and the number of observations minus the number of groups for within groups. MS
 (mean sum of squares) = The average sum of squares calculated by dividing the sum of squares by the
 degrees of freedom. F (overall F-value) = a statistical value that measures the ratio of the mean sum of

 squares between groups to the mean sum of squares within groups. P-value = The probability value
 associated with the overall F-value, indicating the statistical significance of the observed differences. F

 crit (critical F-value) = The critical value of F that corresponds to a significance level of α = 0.05, used to
 determine whether the observed differences are statistically significant or due to chance. [20]

 6.2. Lead time for change average (days)
 Table 6.3 shows the average lead time values for the different teams. The table is
 grouped by rows, where each row represents a team. We learn from the table that Team
 1 has the lowest average value, whereas Team 3 has the highest average value. Both
 Team 2 and Team 3 have high variance values which indicate their spread out data
 points, which can also be noted from the earlier Figure 5.2 which represents a graph of
 lead time for change.

 Team Sum Average Variance

 1 63.83 7.092 20.355

 2 158.32 17.591 77.961

 3 273.4 30.378 136.445

 Table 6. 3: Sum, average and variance values for lead time for change

 Table 6.4 shows the ANOVA results for lead time for change between and within
 groups. The caption gives brief explanations of what each column means. As with
 deployment frequency, we are mainly concerned with the P-value of lead time for
 change to reject or accept the null hypothesis. As we can observe, the P-value is less
 than 0.05 and we can therefore reject the null hypothesis.

 36

https://paperpile.com/c/WN31SF/2Obs

 Source of variation SS df MS F P-value F crit

 Between groups 2447.828 2 1223.914 15.640 0.000045 3.403

 Within groups 1878.091 24 78.254

 Total 4325.918 26

 Table 6. 4: ANOVA results for lead time for change. Source of variation = The factor being measured to
 determine the extent of variation. SS (sum of squares) = The total sum of the squared differences from the

 mean for each variation source. df (degrees of freedom) = The number of independent pieces of
 information used to calculate the sum of squares, which is equal to the number of groups minus one for

 between groups and the number of observations minus the number of groups for within groups. MS
 (mean sum of squares) = The average sum of squares calculated by dividing the sum of squares by the
 degrees of freedom. F (overall F-value) = a statistical value that measures the ratio of the mean sum of

 squares between groups to the mean sum of squares within groups. P-value = The probability value
 associated with the overall F-value, indicating the statistical significance of the observed differences. F

 crit (critical F-value) = The critical value of F that corresponds to a significance level of α = 0.05, used to
 determine whether the observed differences are statistically significant or due to chance. [20]

 6.3. RQ1 Is there a significant difference in the DevOps speed metrics
 between teams?
 From the data presented for deployment frequency in Table 6. 2, we note that the P-value
 was 0.0059 which is less than the significance level (0.05). Based on this, we can reject
 the null hypothesis and accept the alternate hypothesis which is that there is a
 significant difference in deployment frequency between the teams. As anticipated,
 Team 1 outperformed the other teams. This significantly higher rate of deployments
 suggests that Team 1 has excelled in efficiently delivering changes to the production
 environment, consistently maintaining a faster pace of deployment compared to other
 teams.

 As we first anticipated, Team 1 performed the best out of the three in terms of
 deployment frequency. Team 2 had a relatively average frequency of deployments, and
 Team 3 had the lowest performance of all.

 Based on the data presented for lead time for change in Table 6. 4, we observe that
 the P-value is also smaller than the significance level (0.05). Based on this, we can also
 reject the null hypothesis for lead time for change. Team 1 exhibited the best
 performance with an average lead time of 7 days. This indicates that Team 1 has been
 most efficient in delivering changes, with a short lead time from initiation to
 deployment. Team 2 fell, as suspected, in the middle range with an average lead time of
 roughly 17 days. This suggests that they have a moderate level of efficiency, taking a
 slightly longer time compared to Team 1 but still demonstrating a reasonably prompt
 deployment process. In contrast, Team 3 had the highest average lead time of 30 days.
 This indicates that they have been the least efficient in delivering software changes,
 experiencing a longer lead time compared to both Team 1 and Team 2.

 37

https://paperpile.com/c/WN31SF/2Obs

 6.4 RQ2 What are some of the causes for fluctuations in DevOps speed
 metrics?
 Factors that can affect the deployment frequency can be summarised as follows:

 ● The level of utilisation of automated processes.
 ● Absence of a well-defined release schedule.
 ● Dependence on factors that the software teams can not control.

 Based on the findings, it can be concluded that various factors can influence
 deployment frequency, including the process of manual testing after each sprint and the
 lack of automated deployment workflows. According to the interviews, manual
 processes were found to be slower and more error-prone than their automated
 counterparts, resulting in delays in the deployment frequency. The manual testing
 process, in particular, was identified as a bottleneck, as it requires software teams to
 invest more time in confirming that the code is release-ready. Additionally, the absence
 of automated deployment workflows contributes to the need for a manual release
 process, further slowing down the deployment frequency. Overall, the findings suggest
 that the implementation of automated processes can help streamline deployments and
 minimise errors, leading to more frequent and reliable software releases.

 Furthermore, the findings of the study suggest that having a well-defined release
 schedule is a crucial factor that affects deployment frequency. Teams that lack a
 well-defined release schedule tend to release software inconsistently, resulting in
 difficulties in understanding the reasons behind fluctuations in deployment frequency. If
 a team decides to release every third week for example, but the graphs show that the
 team has not followed this release schedule, then it could be easier to investigate why
 the deployments happen less often. Moreover, the absence of team members due to
 vacation time can also have a significant impact on the deployment frequency, as it can
 lead to challenges in maintaining a consistent deployment schedule. Therefore, software
 teams need to establish a clear release schedule and plan for potential disruptions, such
 as team member absences, to ensure a consistent deployment frequency.

 A recurring issue that arose was the reliance of the data on factors beyond the control
 of the software teams. One prominent example is the involvement of external translators
 responsible for translating application texts before the version can be released in
 different countries. The translators were only able to provide translations once a week at
 most, which prevented daily production deployments. However, this was a common
 issue across all teams as they are all within the same organisation, and the translation
 process follows the same pattern for each of the three teams.

 Factors that can affect the lead time for change can be summarised as follows:
 ● The level of utilisation of automated processes.
 ● Working methodology.
 ● Team size and workload.
 ● The size and complexity of code commits.
 ● Pull request handling.

 The findings indicated that the lead time for change is influenced by various factors
 that can affect the workflow and productivity of the software development teams. One

 38

 of the primary factors is the manual testing process, which often results in pending
 releases and delays in implementing changes. Manual testing can introduce bottlenecks
 in the development cycle as it requires human intervention which is both
 time-consuming and error-prone. The need for manual testing can slow down the lead
 time, especially when there are limited resources available or when there is a high
 volume of changes to be tested. Moreover, manual testing is susceptible to human error,
 which can result in longer lead times if issues are not detected and rectified promptly.
 This can have a cascading effect, causing subsequent delays in the release cycle and
 overall project delivery.

 Another important factor is the team’s working methodology, where a structured
 approach such as Scrum can lead to better planning and time management, resulting in a
 shorter lead time for change. Moreover, it is also essential to maintain an optimal team
 size and manage workload efficiency. While a larger team often delivers more software,
 it does not necessarily imply better lead time. A small development team with a short
 code review and testing process can lead to a lower lead time for change. When there
 are fewer engineers in a team, it is easier to coordinate and manage the code review
 process. Additionally, a shorter testing process can be beneficial for a small team, as it
 reduces the time required for testing and deployment. However, it is important to note
 that a smaller team can also lead to a lack of diversity in skills and perspectives, which
 can affect the overall quality of the code being produced. Therefore, it is important to
 find a balance between team size, testing process, and code review to ensure a
 consistent lead time for change while maintaining code quality. Additionally, lead time
 can also be influenced by factors such as vacations and other time off. By establishing
 effective processes and ensuring proper knowledge sharing within the team, the absence
 of team members can be managed more effectively. This allows for smoother operations
 and helps mitigate any significant disruptions to workflow and project timelines.

 Moreover, fluctuations in lead time for change can be affected by changes to the
 reporting scripts used to generate reports. This emphasises the importance of regularly
 reviewing and validating the accuracy of data reporting to avoid misrepresenting the
 actual lead time.

 Furthermore, the workload of the team can also affect the lead time for change,
 especially when many urgent tasks need to be completed. This can lead to delays in
 implementing other tasks, increasing the lead time for change. Therefore, the software
 team must prioritise and manage their workflow efficiently to reduce lead time for
 change.

 Additionally, smaller changes tend to be deployed more quickly, which could explain
 the shorter lead time for certain changes. Additionally, teams may sometimes start
 deployment on a specific feature but later prioritise other tasks, leading to the initial
 commit remaining inactive and resulting in a higher lead time for change. Therefore,
 while the average lead time provides valuable insights, it is essential to consider the
 context of each change. Other facts, such as the complexity of the change, prioritisation
 decisions, and external dependencies, can also impact the lead time. However, the teams
 need to keep these factors in mind. To enhance their lead time, they should consider

 39

 breaking down complex features into smaller components, enabling an increase in the
 number of deployments. This approach will ultimately lead to reduced lead time and
 improved development agility.

 Another significant factor that can affect lead time is the way pull requests are
 handled. If pull requests are opened as drafts at an early stage of an investigation, the
 time taken to implement the changes may not accurately reflect the overall lead time.
 This is because the time will be measured from the first commit which may only be a
 work-in-progress commit, thus not being relevant for measuring the overall time it takes
 to implement a task. On the other hand, one could argue that this data is still valuable,
 even if it is measured from the first commit in a draft pull request, as this indicates the
 start of a work item, and measuring from that point of time is more accurate for
 studying how long tasks take from the time of the investigation. It could also be aligned
 with the common Agile methodology stop starting, start finishing , and act as a way of
 measuring work-in-progress items.

 6.5 RQ3 What are some of the challenges with measuring DevOps metrics
 and learning from the data?
 The main challenges that the teams explicitly mentioned that they had faced when
 measuring DevOps metrics are:

 ● Issues with reporting the data in a manner that reflects reality.
 ● Issues with understanding the collected data.
 ● Doubts regarding the usefulness, value and significance of the DevOps metrics.

 We found that data collection and interpretation can pose challenges, leading to
 inaccurate reports that fail to accurately reflect the current reality. The inaccuracy in the
 collected data was in some scenarios an effect of the problems in the reporting scripts
 used to generate reports. Moreover, the link between issues and deployments is crucial
 for accurate reporting of deployment frequency. If this link is missing, the reports may
 not accurately reflect the actual deployment frequency.

 Additionally, the lack of understanding of the data was a general problem for the
 teams. The accuracy of the data was affected because the deployment of backend
 services and customer-facing applications were mixed. However, since the study was
 focused on the deployments that directly reach the end users, the mixed data was not
 relevant to the research and caused confusion.

 40

 7. Discussion
 The results from the case study highlighted the importance of understanding the
 technical and organisational challenges that software teams face when trying to adopt a
 DevOps approach. The findings suggested that these challenges can have a significant
 impact on software delivery performance, such as deployment frequency and lead time
 for change. Although the study was limited to one organisation, the findings are similar
 to what we observed in the State of DevOps report [2] .

 The State of DevOps report [2] further states that teams that rated higher on
 continuous delivery are more likely to have a higher frequency of deploying code to
 production and shorter lead time for changes, which can be supported by our findings as
 we noted that Team 1 who had the best scores of all the three teams were also the team
 that had the most stable release process of the three teams with a regular schedule of
 releasing every week and a process for testing.

 Through our research, we gained insights that measuring the four key metrics (lead
 time, deployment frequency, time to restore service, and change failure rate) [2] alone
 may not provide a comprehensive understanding of a team’s throughput. It became
 evident that other factors need to be taken into account to obtain a more accurate
 assessment.

 Additionally, we observed that the metrics collected from the investigated software
 organisation closely aligned with the metrics presented in the State of DevOps report
 [2] . This finding indicates that the metrics commonly used in computer science are
 consistent and applicable to different organisations, reinforcing their validity and
 usefulness in assessing software development and deployment processes.

 Furthermore, a comparison with other related work reveals that our findings align
 closely with the results reported in the existing literature. Our findings share similarities
 with the findings of Sallin et. al. [1] in several aspects. Like Sallin et al, we found that
 all teams worked in agile practice. The inherent flexibility of agile methodologies
 allows teams to adapt and perform optimally in diverse contexts. Additionally, we
 identified the importance of comprehensive documentation and efficient communication
 as crucial factors for achieving positive outcomes. One of our findings indicated that a
 well-defined release schedule was a key factor for the lead time for change and
 deployment frequency.

 Sallin et al. concluded that the metric measurements are generally considered to be
 valuable, whereas in our case study, we can confirm that many teams were, in general,
 interested in learning more about the value of the DevOps metrics, while some teams
 were not completely convinced of its value and usefulness. Sallin et al. also mentioned
 that software teams, in general, realise that the four key metrics do not cover all aspects
 which are considered as important for quality, speed and DevOps in general, which we
 can also confirm in our case study, since we learned that at least one team believed that
 the metrics don’t reflect the overall software delivery performance of a team due to it
 being measured on terms that do not match their reality, and the teams are aware that the

 41

https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/8x2y

 bare measurement of DevOps metrics is not sufficient for improving software delivery
 performance [1] .

 Furthermore, Sallin et al. mentioned that some software practitioners believe that a
 team has to have already the right mindset to get value from the measurement, which
 can be confirmed by our findings in the case study where at least one practitioner
 believed that if a team does not work in a structured agile way with a DevOps mentality,
 then the metrics will not be of much value [1] .

 We also discovered that none of the teams in our case study paid active attention to
 the DORA metrics that they had collected. The absence of knowledge and, in many
 cases, lack of interest in teams disregarding their metrics, inhibits them from gaining a
 comprehensive understanding of their strengths and weaknesses.

 One common reason that all respondents cited was a lack of understanding of the
 data and how to use it effectively. It may also be possible that the teams do not see the
 value of collecting and analysing this data, or that the generated reports are not
 providing useful insights.

 Another reason for this could be that the teams are overwhelmed with their daily
 work and do not have the time to invest in analysing the data. In such cases, we suggest
 that organisations should create a culture of continuous improvement where reviewing
 and analysing DORA metrics is an integral part of the software development process.

 To encourage the teams to pay more attention to their DORA metrics, it may be
 useful to provide training and support in data analysis, make the reports more accessible
 and understandable, and integrate the metrics into the team’s daily workflow. This way,
 the team can gain valuable insights into their processes, identify areas of improvement,
 and continuously optimise their software delivery performance.

 Sallin et. al. [1] arrived at a similar finding, as they highlighted the significance of
 giving attention to the metrics. They noted that the measurement of these metrics is
 often conducted manually and through surveys, resulting in a limited number of data
 points. This manual and survey-based approach to measurement restricts the granularity
 and accuracy of the collected data. It relies on self-reported information, which can
 introduce biases and inaccuracies. Moreover, the limited data of data points may not
 provide a comprehensive and representative view of the actual performance of the
 teams. In other words, Sallin to concluded that it is crucial for teams to actively review
 tier data and metrics to optimise their performance and achieve better long-term
 outcomes.

 Another interesting aspect to consider is the impact of company culture on software
 delivery performance. Our case study provided insights into the importance of
 organisational factors, such as collaboration, communication, and management support,
 in achieving successful outcomes in software development. These factors are often
 deeply embedded in a company’s culture, and changing them can be challenging.

 While it may be difficult to generalise our findings due to the unique factors that can
 impact software delivery performance for each organisation, the study’s results are still
 valuable for the software industry as a whole. It is crucial to raise awareness of the

 42

https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/8x2y

 challenges faced by software teams, as only then can solutions be designed to overcome
 these obstacles.

 Furthermore, the factors that can impact software delivery performance can vary a lot
 depending on the technical setup of a software team, the organisational factors that
 affect them, business requirements and so on. It is therefore not easy to generalise this
 type of findings, but the findings are nevertheless interesting for many software
 businesses in today’s industry. This finding can be backed up by the State of DevOps
 report [2] which also mentions that the effects on software delivery performance depend
 on the broader team context such as a team’s processes, strengths, constraints, goals and
 work environment.

 Even though we believe that three software teams are not that sufficient to be able to
 give an overall overview of the process of measuring software delivery performance, we
 still think that the findings are useful for other organisations aiming to start measuring
 deployment frequency and lead time for change.

 Furthermore, the research questions defined in Chapter 1 have been answered, and
 multiple factors that impact software delivery performance and more specifically
 deployment frequency and lead time for change have been identified. The challenges
 faced by software teams when measuring this performance have also been identified,
 which can range from data collection to data interpretation. Although the study was
 limited to three software teams, the findings are still useful for organisations looking to
 improve their software delivery performance.

 43

https://paperpile.com/c/WN31SF/gXD4

 8. Conclusions and future work
 This study focused on investigating the challenges of measuring software delivery
 performance. We defined the following research questions: RQ1 Is there a significant
 difference in the DevOps speed metrics between teams? RQ2 What are some of the
 causes for fluctuations in DevOps speed metrics? RQ3 What are some of the challenges
 with measuring DevOps metrics and learning from the data?

 To answer RQ1, we performed a statistical analysis of collected metrics from three
 software teams and concluded that there was a significant difference in both deployment
 frequency and lead time for change. We answered RQ2 by stating that some of the
 causes that can affect deployment frequency and lead time for change are the size and
 structure of the development team, the complexity of the codebase, and the efficiency of
 the testing and release process. Similarly, the lead time for change can be influenced by
 the testing process, team methodology, pull request handling, team size, and workload
 management. To optimise these metrics, it is important for software development teams
 to regularly review and improve their processes while balancing efficiency and code
 quality. We answered RQ3 by stating that some of the main challenges that teams faced
 were issues with reporting the data, understanding the data as well as doubting the value
 and usefulness of the data.

 Throughout the project, we have found interesting insights about the way that a
 software organisation collects data regarding software delivery performance. By looking
 at existing data from the software teams as well as interviewing software practitioners
 that work in some of the teams, we further took note of the problems that the
 organisation faces in the path of working in a data-driven way.

 Additionally, we found that there were many challenges with collecting data about
 software delivery in an accurate manner that reflects reality. We believe that the results
 are relevant for the software industry in general as they highlight interesting challenges
 that could be further investigated. For example, a recurring problem was that of data
 reporting and which can sometimes lack accuracy depending on what data is being
 reported, and in what context, environment. Another recurring problem was the problem
 of data being dependent on factors that the software teams can not control, such as
 external translators that need to translate application texts before the version can be
 released to the different countries. The teams also faced pure technical challenges such
 as having to deal with a complex setup and do manual work for releasing and testing as
 a result of that which prevented them from continuous delivery.

 We learned that working in a data-driven manner requires much active studying,
 effort and regular follow-ups on the collected data.

 We believe that we have bridged the knowledge gap to some extent, as there were no
 concrete case studies made on specific software organisations concerning DORA
 metrics, and this case study gave some insights into the problems that a software
 organisation could run into when adopting DORA metric collection.

 We believe that our case study was heavily focused on identifying the bottlenecks,
 problems and challenges that the software organisation was facing, and not so much on

 44

 developing solutions and strategies to make the organisation even more data-driven and
 opt for better releasing and testing processes.

 We are also aware that the data we used to perform our study is data that has been
 collected over some time and we can therefore not control it. If we had time, we would
 try to adapt the metrics to the way teams work to get more accurate data.

 A suggestion of future work in this regard would be to work on developing a model
 for continuous deployment and delivery and a set of routines that teams can adopt to
 actively optimise and automate their data collections as well as study and learn from
 their data to improve their ways of working and the outcome of their software
 deliveries.

 Another suggestion for future work would be to investigate further how the metrics
 should be measured depending on a team’s ways of working in terms of software
 development. For example, we found that teams that don’t work in a structured, typical
 Scrum manner but in a more Kanban-like way may not benefit much from measuring
 lead time for change as suggested in the general DORA guidelines. It would be
 interesting to analyse if there are other potential ways to measure this type of metric to
 see how a team performs in terms of software delivery.

 Since we chose to limit our focus to deployment frequency rather than deployment
 volume, another suggestion for future work is to expand on this research by examining
 the relationship between deployment frequency and other metrics, such as deployment
 volume and change failure rate. By exploring these additional factors, a more
 comprehensive understanding of the software development process and its efficiency
 could be gained.

 It would also be interesting to investigate if there are other metrics apart from the
 four defined key metrics that can be valuable to measure to further learn about a
 software team’s delivery performance.

 The impact of documentation quality on the DevOps metrics can also be worth
 investigating further, as the State of DevOps reports from 2021 [21] and 2022 [2] gave
 contradicting results and can therefore be an interesting area of research.

 It can also be worth expanding the investigation on the usefulness and value of the
 four defined metrics from the work of Sallin et al. [1] with new surveys asking a
 broader population of software practitioners. One area of investigation is the
 measurements of the technical practices mentioned in the State of DevOps report from
 2021 like loosely coupled architecture, trunk-based development, continuous testing and
 the use of open-source technologies [21] .

 Research on ways of working and how that can impact these metrics could also be of
 interest, like analysing how the size of user stories may impact how quickly changes
 reach production, and if it is more efficient to either break down stories into smaller
 pieces and deploy more often or group them and deploy them in one bigger chunk.

 To improve the generalisability of the findings, future research should investigate the
 challenges faced by software teams in different organisations and contexts.

 45

https://paperpile.com/c/WN31SF/OMSr
https://paperpile.com/c/WN31SF/gXD4
https://paperpile.com/c/WN31SF/8x2y
https://paperpile.com/c/WN31SF/OMSr

 9. References
 [1] M. Sallin, M. Kropp, C. Anslow, J. W. Quilty, and A. Meier, ‘Measuring software delivery

 performance using the four key metrics of DevOps, in Agile Processes in Software
 Engineering and Extreme Programming: 22nd International Conference on Agile Software
 Development, XP 2021, Virtual Event, June 14--18, 2021, Proceedings , 2021, pp. 103–119.

 [2] ‘2022 state of DevOps report’, Google Cloud .
 https://cloud.google.com/devops/state-of-devops (accessed Apr. 06, 2023).

 [3] H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD): A Practical
 Guide to Designing and Developing Pipelines . Apress, 2023.

 [4] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and
 DevOps: Building and Scaling High Performing Technology Organizations . IT Revolution,
 2018.

 [5] Atlassian, ‘Atlassian survey 2020 - DevOps trends’, Atlassian .
 https://www.atlassian.com/whitepapers/devops-survey-2020 (accessed May 22, 2023).

 [6] ‘16th State of Agile Report | resource center | digital.Ai’, Apr. 2023, Accessed: May 22,
 2023. [Online]. Available:
 https://digital.ai/resource-center/analyst-reports/state-of-agile-report/

 [7] ‘Technology Radar’, Thoughtworks . https://www.thoughtworks.com/radar (accessed May
 22, 2023).

 [8] P. Runeson and M. Höst, ‘Guidelines for conducting and reporting case study research in
 software engineering’, Empirical Software Engineering , vol. 14, no. 2, pp. 131–164, Apr.
 2009.

 [9] A. Debbiche, M. Dienér, and R. Berntsson Svensson, ‘Challenges When Adopting
 Continuous Integration: A Case Study’, in Product-Focused Software Process
 Improvement , 2014, pp. 17–32.

 [10] V. Ionzon and S. Jägstrand, ‘A Company Case Study: Examining criteria in cross-platform
 evaluation frameworks’, 2022. Accessed: Mar. 24, 2023. [Online]. Available:
 https://www.diva-portal.org/smash/record.jsf?pid=diva2:1673341

 [11] Y. Gebrewold, dora_metrics_interviews . Github. Accessed: May 22, 2023. [Online].
 Available: https://github.com/Yamo93/dora_metrics_interviews

 [12] H. W. Thompson, R. Mera, and C. Prasad, ‘The Analysis of Variance (ANOVA)’, Nutr.
 Neurosci. , vol. 2, no. 1, pp. 43–55, 1999.

 [13] M. Shahin, M. Ali Babar, and L. Zhu, ‘Continuous Integration, Delivery and Deployment:
 A Systematic Review on Approaches, Tools, Challenges and Practices’, IEEE Access , vol.
 5, pp. 3909–3943, 2017.

 [14] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble, ‘DORA Platform: DevOps
 Assessment and Benchmarking’, in Designing the Digital Transformation , 2017, pp.
 436–440.

 [15] E. Wolff, A Practical Guide to Continuous Delivery . Addison-Wesley Professional, 2017.
 [16] D. G. Portman, ‘Use Four Keys metrics like change failure rate to measure your DevOps

 performance’, Google Cloud Blog , Sep. 22, 2020.
 https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-de
 vops-performance (accessed Apr. 08, 2023).

 [17] S. Bick, A. Scheerer, and K. Spohrer, ‘Inter-team coordination in large agile software
 development settings: Five ways of practicing agile at scale’, Proceedings of the Scientific
 Workshop , 2016, [Online]. Available: https://dl.acm.org/doi/abs/10.1145/2962695.2962699

 [18] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, ‘DevOps’, IEEE Softw. , vol. 33, no. 3,
 pp. 94–100, May 2016.

 [19] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective .
 Addison-Wesley Professional, 2015.

 [20] Zach, ‘Complete Guide: How to Interpret ANOVA Results in Excel’, Statology , Nov. 30,
 2021. https://www.statology.org/interpret-anova-results-in-excel/ (accessed May 13, 2023).

 46

http://paperpile.com/b/WN31SF/8x2y
http://paperpile.com/b/WN31SF/8x2y
http://paperpile.com/b/WN31SF/8x2y
http://paperpile.com/b/WN31SF/8x2y
http://paperpile.com/b/WN31SF/gXD4
https://cloud.google.com/devops/state-of-devops
http://paperpile.com/b/WN31SF/gXD4
http://paperpile.com/b/WN31SF/4QCdw
http://paperpile.com/b/WN31SF/4QCdw
http://paperpile.com/b/WN31SF/uRmC
http://paperpile.com/b/WN31SF/uRmC
http://paperpile.com/b/WN31SF/uRmC
http://paperpile.com/b/WN31SF/h1Qt
https://www.atlassian.com/whitepapers/devops-survey-2020
http://paperpile.com/b/WN31SF/h1Qt
http://paperpile.com/b/WN31SF/wtVL
http://paperpile.com/b/WN31SF/wtVL
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
http://paperpile.com/b/WN31SF/mU8Y
https://www.thoughtworks.com/radar
http://paperpile.com/b/WN31SF/mU8Y
http://paperpile.com/b/WN31SF/mU8Y
http://paperpile.com/b/WN31SF/Ycjn
http://paperpile.com/b/WN31SF/Ycjn
http://paperpile.com/b/WN31SF/Ycjn
http://paperpile.com/b/WN31SF/JwM0
http://paperpile.com/b/WN31SF/JwM0
http://paperpile.com/b/WN31SF/JwM0
http://paperpile.com/b/WN31SF/cSRE
http://paperpile.com/b/WN31SF/cSRE
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1673341
http://paperpile.com/b/WN31SF/xcIJ
http://paperpile.com/b/WN31SF/xcIJ
https://github.com/Yamo93/dora_metrics_interviews
http://paperpile.com/b/WN31SF/sN07
http://paperpile.com/b/WN31SF/sN07
http://paperpile.com/b/WN31SF/dmhN
http://paperpile.com/b/WN31SF/dmhN
http://paperpile.com/b/WN31SF/dmhN
http://paperpile.com/b/WN31SF/iAWU
http://paperpile.com/b/WN31SF/iAWU
http://paperpile.com/b/WN31SF/iAWU
http://paperpile.com/b/WN31SF/Tcge
http://paperpile.com/b/WN31SF/mQX1
http://paperpile.com/b/WN31SF/mQX1
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
http://paperpile.com/b/WN31SF/mQX1
http://paperpile.com/b/WN31SF/uTHo
http://paperpile.com/b/WN31SF/uTHo
http://paperpile.com/b/WN31SF/uTHo
https://dl.acm.org/doi/abs/10.1145/2962695.2962699
http://paperpile.com/b/WN31SF/n839
http://paperpile.com/b/WN31SF/n839
http://paperpile.com/b/WN31SF/Nxvo
http://paperpile.com/b/WN31SF/Nxvo
http://paperpile.com/b/WN31SF/2Obs
http://paperpile.com/b/WN31SF/2Obs
https://www.statology.org/interpret-anova-results-in-excel/
http://paperpile.com/b/WN31SF/2Obs

 [21] D. Smith, ‘Announcing DORA 2021 Accelerate State of DevOps report’, Google Cloud
 Blog , Sep. 21, 2021.
 https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-
 of-devops-report (accessed May 15, 2023).

  

 A Appendix

 A.1 Interview questions

 1. Please explain your team structure.

 2. Please briefly explain your work process from sprint planning to release.

 3. How often do you aim to deploy to production?

 4. How quickly do you wish the time to be from code commit to the code running in
 production (lead time for change)?

 5. Do you regularly look at DORA metrics? How do you act accordingly? If not, what
 may be possible reasons for not looking at it?

 6. How do you explain your deployment frequency report? (show report)

 7. How do you explain your lead time for change report? (show report)

 8. What are factors that may impact your deployment frequency?

 9. What are factors that may impact your lead time for change?

 47

http://paperpile.com/b/WN31SF/OMSr
http://paperpile.com/b/WN31SF/OMSr
https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report
https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report
http://paperpile.com/b/WN31SF/OMSr

