
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer Science

23 | LIU-IDA/LITH-EX-A--23/022--SE

Predicting Vulnerabilities in Third Party
Open-Source Software using Data

Mining and Machine Learning
Techniques

Förutse sårbarheter i programvara med öppen källkod från tredje part
med hjälp av datautvinning och maskininlärningstekniker

by

Frida Andersson
Albin Öberg

Supervisor : Navya Sivaraman
Examiner : Simin Nadjm-Tehrani

External supervisor : Maria Stegberg and Sofia Malmbratt

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publiceringsdatumunder förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för en-skilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av up-phovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräverupphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar avteknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sedkräver vid användning av dokumentet på ovan beskrivna sätt samt skyddmot att dokumentet ändras eller presen-teras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärligaanseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a period of 25years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to download, orto print out single copies for his/hers own use and to use it unchanged for non-commercial research and educa-tional purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the documentare conditional upon the consent of the copyright owner. The publisher has taken technical and administrativemeasures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her work is accessedas described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its procedures for publicationand for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/.

© Frida AnderssonAlbin Öberg

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

In recent years, the use of third-party open source software (OSS) has increased significantly, mak-
ing software security a critical concern. Predicting vulnerabilities in OSS can be a daunting task due to
its complexity and the large volume of code involved. In this report, the use of data mining techniques
and machine learning models to predict vulnerabilities in third party OSS is explored. The data used
in this study was collected from GitHub repositories, where each repository consists of different pack-
age features fetched through the GitHub API. Repositories with reported vulnerabilities, CVEs, were
then mapped to the corresponding vulnerability in the National Vulnerability Database (NVD).

The study used data mining techniques to analyze a large dataset with data from third-party OSS,
and identified patterns and relationships between GitHub repository features and reported vulner-
abilities. The dataset consisted of over 30 000 instances of OSS packages. Furthermore, the study
employed various machine learning models to predict known vulnerabilities. The result showed that
the best machine learning mode had an accuracy of 91,7% in predicting vulnerabilities in third-party
OSS, and a precision of 0.90 for the positive class, representing repositories with reported CVEs.

Furthermore, the study revealed relationships between GitHub repository features and vulnera-
bilities. For instance, the analysis uncovered that the number of stars and forks has the highest impact
on the predictions performed by the machine learning models. This finding enables more efficient de-
tection of vulnerabilities in third-party OSS, thereby enhancing the overall security of digital systems.
Overall, this study provides an approach for vulnerability prediction in third-party OSS and sheds
light on important relationships between GitHub features and reported CVEs that were previously
unknown.

Acknowledgments

We would like to extend our heartfelt gratitude to all those who have contributed to the successful
completion of this master thesis. Firstly, we would like to express our sincere appreciation to our ex-
aminer Simin Nadjm-Tehrani and our supervisor Navya Sivaraman at Linköping University for their
guidance and support throughout the entire research process. Their insights, and valuable feedback
have been instrumental in shaping our research and helping us achieve our academic goals.

Additionally, we would like to extend our deepest appreciation to our supervisors, Sofia Malm-
bratt and Maria Stegberg at Saab, for their exceptional support, encouragement, and guidance
throughout the research process. Their knowledge and guidance have been crucial in making this
thesis a success.

Finally, we want to express our sincere appreciation to Oscar Olsson, who has generously devoted
his time and expertise to guide us through the intricate process of identifying the best approach for
this study. His invaluable insights have been essential in choosing the right approach for this study.
We are truly grateful for his support and guidance.

Linköping, May 2023
Frida Andersson and Albin Öberg

iv

Acronyms

ANFIS Adaptive Neuro Fuzzy Inference System 2, 3,
8–10, 13, 16, 26–29, 37–40, 43, 45, 48

CPE Common Platform Enumeration 3, 24, 29
CVE Common Vulnerabilities and Exposures 2–4,

13, 14, 20–24, 29–31, 33–37, 40–47
CVSS Common Vulnerability Scoring System viii, 3,

4, 15, 22, 23, 30, 41, 43, Glossary:
CWE Common Weakness Enumeration 3, 4, 13, 15,

22, 24, 29

NVD National Vulnerability Database 2–4, 13, 15, 16,
21, 24, 26, 31, Glossary: NVD

OSS Open Source Software 1, 2, 26, 47, 48, Glossary:
OSS

PCA Principal Component Analysis 3, 5, 22, 24, 30

RFC Random Forest Classifier 12, 27, 37–40, 43, 47

SVC Support Vector Classifier 27, 37–40, 43, 45
SVM Support Vector Machine 3, 7, 8, 12–15, 26, 29,

43

VDM Vulnerability Discovery Model 16

v

Glossary

NVD The National Vulnerability Database is the U.S.
government repository of vulnerability data.
The database includes information of secu-
rity checklists, security related software flwas,
product names, and impact metrics. Glossary:
NVD

OSS Computer software that is released under a li-
cense in which a copyright holder grants users
the rights to use, study, change, and distribute
the software and its source code to anyone and
for any purpose. Glossary: OSS

vi

Contents

Abstract iii

Acknowledgments vi

Contents vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 1
1.3 Research Questions . 2
1.4 Delimitation . 2
1.5 Contributions . 2

2 Theory 3
2.1 Software Vulnerabilities . 3
2.2 Data Mining . 5
2.3 Machine Learning . 7
2.4 Model Evaluation . 11
2.5 Related Work . 13

3 Methodology 17
3.1 Programming Tools . 18
3.2 Data Collection and Preparation . 18
3.3 Building the Feature Space . 22
3.4 Finding Patterns in the Dataset . 24
3.5 Predicting Vulnerabilities and Severity Level in Repositories 26
3.6 Model Evaluation . 27

4 Results 29
4.1 Collected Data . 29
4.2 Built Feature Space . 30
4.3 Found Patterns in the Dataset . 32
4.4 Predicted Vulnerability of a Repository . 37
4.5 Predicted Severity Level of a Repository . 39

5 Discussion 41
5.1 Results . 41
5.2 Method . 44
5.3 The Work in a Wider Context . 45

6 Conclusion 47
6.1 Future Work . 48

Bibliography 49

vii

List of Tables

2.1 Score thresholds for CVSS v2 and CVSS v3 . 4
2.2 Confusion matrix for binary classification . 12

3.1 Five packages with most reported CVEs . 22

4.1 Dataset columns with GitHub repository and NVD metadata 29
4.2 Balanced dataset between repositories with and without reported CVEs 30
4.3 Mapping of severity level from Common Vulnerability Scoring System (CVSS) v2 to v3 . . . 30
4.4 The encoded severity level and their distribution . 30
4.5 Columns and their description of the built feature space . 32
4.6 K-means cluster distribution . 34
4.7 Top cluster-correlated features . 34
4.8 Short labels generated for association rules visualization . 35
4.9 Optimal hyperparameters for target variable has_CVE . 37
4.10 Averaged accuracy for target variable has_CVE . 38
4.11 Averaged classification report for the severity indicator based on 5-fold cross-validation . . . 38
4.12 Top 3 feature importances from 5-fold cross-validation . 39
4.13 Hyperparameter tuning for severity_encoded with chosen values in bold 39
4.14 Averaged accuracy for target variable severity_encoded . 40
4.15 Averaged classification report for each severity level based on 5-fold cross-validation 40

viii

1 | Introduction

This master thesis project aims to investigate how vulnerabilities in third-party open source software
can be predicted using data mining and machine learning techniques. The project was executed at Saab
and this chapter consists of an introduction to the problem, involving motivation, research questions,
delimitation, and contributions.

1.1 Motivation

The reliance on technology in various industries, including defense and security, has resulted in an
increased dependence on software. This has made software security a critical issue, and Saab, a high-
security organization, is no exception [55]. Saab uses third-party Open Source Software (OSS) to im-
prove the functionality, performance, and security of its products and services. However, the use of
OSS also increases the potential for vulnerabilities, as acknowledged in Saab’s Open Source Software
Policy [45]. To mitigate this risk, Saab strives to identify potential vulnerabilities in a timely manner.

The Open Web Application Security Project (OWASP) listed the use of vulnerable and outdated
software components as one of the top 10 security risks in 2021 [46]. One example of a consequence
of software vulnerabilities is the Zotob worm, which caused widespread disruption in 2005 after a
vulnerability in Microsoft Windows was exploited [37].

Moreover, vulnerabilities in OSS libraries can have severe consequences for the security of compa-
nies that use them. For example, the Equifax data breach in 2017 resulted from a missed OSS package
update and exposed the private data of over 145 million U.S. citizens [38]. To reduce this risk, organiza-
tions might need a governance or audit system in place to identify their overall exposure to third-party
OSS vulnerabilities [43]. In light of recent incidents like the Equifax data breach, there is increasing
recognition of the importance of managing third-party OSS vulnerabilities. As a consequence, this has
led to calls for the adoption of Software Bill Of Materials (SBOMs) as a way to improve transparency
and accountability in the software supply chain [57]. Thus, identifying and mitigating vulnerabilities
in third-party OSS can be seen as a critical component of effective software governance and risk man-
agement.

To address the issue of software vulnerabilities, various approaches have been proposed, including
machine learning and data mining techniques. Empirical studies have shown that machine learning
techniques can outperform common statistical methods [26] and have demonstrated promising results
in similar predictive tasks. Additionally, since much of the source code for OSS is publicly available,
attackers may be more likely to exploit discovered vulnerabilities, as they can obtain information about
the software’s weaknesses and how to best exploit them from the web. By predicting vulnerabilities in
third-party OSS, organizations like Saab can take a proactive approach to software security and reduce
the risk of cyber attacks.

1.2 Aim

The aim of this thesis is to investigate how data mining and machine learning techniques can be uti-
lized to predict vulnerabilities in third-party open-source software, as opposed to identifying or fixing
them. Predicting vulnerabilities refers to the ability to anticipate potential security issues before they oc-
cur, while identifying vulnerabilities involves finding and reporting on already-existing security flaws.
While both tasks are important for software security, this thesis focuses on the predictive aspect and
aims to evaluate the performance of different machine learning models in this context.

1

1.3. Research Questions

Additionally, the study aims to analyze the impact of various software characteristics on the likeli-
hood of security vulnerabilities and evaluate the performance of the chosen machine learning models
under various vulnerability severities. By achieving this aim, this study will contribute to the develop-
ment of more effective approaches to identify and mitigate vulnerabilities in third-party OSS, ultimately
benefiting software developers, users, and other stakeholders.

1.3 Research Questions

This thesis seeks to answer the following research questions:

1. How can data mining and machine learning techniques be used to predict vulnerabilities in third-
party open source software?

2. Which of the chosen machine learning models yields the highest accuracy for predicting vulnera-
bilities in third party open source software?

3. What is the relative impact of various software characteristics on the likelihood of a security vul-
nerability?

4. How do the chosen machine learning models perform on different types of vulnerabilities (e.g.
high-severity, low-severity)?

1.4 Delimitation

There are several limitations to this study that should be taken into consideration. This study only fo-
cuses on third-party OSS repositories available on GitHub and associated with Common Vulnerabiliteis
and Exposures (CVE) s in the National Vulnerability Database (NVD) . Therefore, the findings may not
be relevant to other types of software or repositories that do not have CVE associations. Furthermore,
the study only employs a selected number of data mining techniques and machine learning models.
Other techniques and models may yield different results, and their exclusion from this study may limit
the overall accuracy of the findings. Thirdly, the study is restricted to a specific set of features pro-
vided by the GitHub API, which may overlook other important features or metadata associated with
the repositories, such as commit history. Moreover, external factors such as user behavior or changes in
the software development environment that could impact the accuracy of vulnerability predictions are
not considered.

1.5 Contributions

The proposed framework for predicting vulnerabilities in third-party OSS consists of several key com-
ponents, including the data mining techniques clustering, isolation forest, and association rule mining,
and the machine learning models random forest, support vector machine, and Adaptive Neuro Fuzzy
Inference System (ANFIS) . The

• Identification of significant features for predicting vulnerabilities in third-party OSS, including
repository metadata obtained from the GitHub API.

• Utilization of clustering, isolation forest, and association rule mining to uncover patterns and
relationships in the repository metadata related to reported CVEs.

• Evaluating the performance of random forest, support vector machine, and ANFIS on predicting
vulnerabilities in third-party OSS.

demonstrate the potential of the proposed framework to enhance the security of third-party OSS by
detecting vulnerabilities before they are exploited by attackers. The framework offers a method that
can be applied to identify and predict vulnerabilities in third-party OSS repositories on GitHub, with
the ultimate goal of improving software security practices.

2

2 | Theory

This chapter describes software vulnerabilities and CVEs, which are unique identifiers assigned to vul-
nerabilities. It also explains data mining techniques like Principal Component Analysis (PCA) , cluster-
ing, association rule mining, and isolation forest, which are techniques used to analyze large amounts
of data. Additionally, the chapter describes three machine learning models: Support Vector Machine
(SVM) , ANFIS and Random Forest, and how they can be evaluated. Additionally, the chapter reviews
related work on vulnerability detection, data mining on GitHub repository metadata, and vulnerability
prediction using machine learning techniques, which provides a foundation for the research presented
in this thesis.

2.1 Software Vulnerabilities

This section provides the definition of software vulnerabilities and information about where these can
be found and how they have been established. Dowd et al. [15] defines vulnerabilities in software
systems as weaknesses that can be exploited by attackers. These vulnerabilities are specific flaws or
oversights in a piece of software that allow attackers to perform harmful actions, such as exposing
or altering sensitive information, disrupting or destroying a system, or taking control of a computer
system or program. The author also note that vulnerabilities can be thought of as a subset of software
bugs. A security vulnerability is a type of software bug that has the added potential for malicious
use, allowing attackers to launch attacks against the software and supporting systems [15]. Dowd
et al. state that most security vulnerabilities are software bugs, but not all software bugs are security
vulnerabilities. A bug must have a security-related impact or property to be considered a security issue;
in other words, it must allow attackers to do something they would not normally be able to do.

2.1.1 Common Vulnerability and Exposures (CVE)

The CVE is a standard that identifies and names security vulnerabilities in a consistent way [40]. It
assigns a unique identifier to each confirmed and public vulnerability and provides information like
its description, affected software/system, Common Weakness Enumeration (CWE) ,Common Platform
Enumeration (CPE) , and CVSS. Figure 2.1 shows an example of a security vulnerability with an as-
signed CVE. In addition, the CVE has references to other sources of information like NVD, security
advisories, and patches. The standardized system is widely used by organizations and software ven-
dors across industries, making it easier to track and manage security risks and vulnerabilities across
different systems and vendors [40].

Figure 2.1: Example of a CVE with ID CVE-2018-12470

2.1.2 National Vulnerability Database (NVD)

The NVD and the National Checklist Program (NCP) have been providing information on security risks
to users worldwide since 2005 and is maintained by the National Institute of Standards and Technology

3

2.1. Software Vulnerabilities

(NIST) [5]. NVD was created to serve as a US government database for software vulnerabilities, using
open standards to offer reliable and inter-operable information of reported vulnerabilities [5].

The data in the database consists of reported and identified CVEs, the affected software or system,
the type of vulnerability, and the severity of the vulnerability. Additionally, the data includes informa-
tion about the vulnerability’s impact such as potential data loss or issues with confidentiality, integrity,
and availability of the affected system [5].

2.1.3 Common Vulnerability Scoring System (CVSS)

The CVSS score helps organizations understand the potential danger of a vulnerability in a systematic
way [54]. It assigns a numerical value to each vulnerability based on various factors such as the ease of
exploiting it, the level of access required, and the potential harm it could cause in terms of confidential-
ity, integrity, and availability of information [54].

The CVSS score is calculated using CVSS vectors that detail how the score is determined [54]. As
shown in Figure 2.2, these vectors include several metrics like Attack Vector, Attack Complexity, Privi-
leges Required, User Interaction, Scope, Confidentiality Impact, Integrity Impact, and Availability Im-
pact for CVSS version 3.0. These metrics takes different elements of the vulnerability into account
and are combined to a final CVSS score, which serves as a representation of the overall severity of the
vulnerability. For example, a vulnerability that can be easily exploited and has the potential to cause
significant harm will receive a higher score, while a vulnerability that requires specific conditions to be
exploited and has a limited impact will receive a lower score. However, as Anwar et al. [1] highlights,
the CVSS score has gone through different versions over time, with each version having its own char-
acteristics and methods for calculating the score. While both CVSS v2 and CVSS v3 scales between 0 to
10, v3 introduces a critical level of severity as presented in Table 2.1.

Figure 2.2: CVSS Score for CVE-2018-12470

Label v2 v3
None - 0.0
Low 0.0–3.9 0.1–3.9
Medium 4.0–6.9 4.0–6.9
High 7.0–10.0 7.0–8.9
Critical - 9.0–10.0

Table 2.1: Score thresholds for CVSS v2 and CVSS v3

2.1.4 Common Weakness Enumeration (CWE)

The CWE is a standardized list of common software security weaknesses used to identify, describe and
categorize them in a consistent manner [35]. Each CVE consist of one or more CWEs, which provides
a common language for describing software security weaknesses, making it easier for organizations
and software vendors to manage them. The CWE list includes different types of security classifications,
each with a specific CWE-id, description, examples, and potential impacts. The list also has a hierarchy
of weakness types, categorized to help the user easily understand and identify patterns and trends in
software vulnerabilities. A few examples of CWEs are [13]:

4

2.2. Data Mining

• CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-Site Scripting’)

• CWE-89: Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’)

• CWE-200: Information Exposure

• CWE-307: Improper Restriction of Excessive Authentication Attempts

• CWE-352: Cross-Site Request Forgery

2.2 Data Mining

Data mining is a process of discovering patterns, relationships, and insights from large amounts of data
[17]. Additionally, it is a crucial step in the data preprocessing phase and is important for identifying
useful information from collected data. This section highlights different data mining techniques and
describes their approach.

2.2.1 One-Hot Encoding

One-hot encoding for categorical features is a technique commonly used in data preprocessing for ma-
chine learning [14]. It involves representing categorical data with binary values, with each category
becoming a separate binary feature. This technique is typically applied to categorical features that do
not have any intrinsic ordering or ranking, such as colors or types of products.

2.2.2 Principal Component Analysis (PCA)

PCA is a statistical technique that aims to reduce the dimensionality of high-dimensional data while
retaining most of the information and variability [34]. PCA transforms the original data into a new set of
uncorrelated variables called principal components (PCs), which are linear combinations of the original
variables. The first PC captures the largest amount of variance in the data, and each subsequent PC
captures as much of the remaining variance as possible. By selecting a subset of PCs that explain most
of the variance, PCA can simplify complex data and reveal underlying patterns and structures. PCA
has many applications in various fields such as image processing, signal processing, data compression,
machine learning, and bioinformatics [28].

PCA is useful in machine learning when the data has high dimensionality, meaning it has many
features or variables that may be correlated, redundant, noisy or irrelevant [29]. By applying PCA,
machine learning practitioners can reduce the number of features and select the most informative ones
that capture most of the variance and structure of the data. This can help improve the performance
and interpretability of machine learning models by reducing noise, redundancy, and multicollinearity
in the data. In addition, PCA is useful in visualizing high-dimensional data by projecting it onto a
lower-dimensional space [29].

2.2.3 Clustering

Clustering is a technique used to group together similar data points based on their features [53]. Ac-
cording to Saxena et al. [53], K-means is one of the most popular clustering algorithms. The algorithm
involves choosing k clusters, and randomly selecting k data points to act as centroids for each cluster.
The algorithm then uses a distance measure to assign each data point to the cluster with the closest
centroid. The process is repeated, with the centroids being recalculated each time, until the centroids
no longer move. At this point, the data points are separated into their respective clusters. However,
there are limitations to the K-means algorithm, including difficulty in identifying the initial partitions
and the number of clusters, as well as sensitivity to outliers and noise [53].

One technique to determine the optimal number of clusters is the Elbow method [11]. The intuition
behind this method is that as the number of clusters increases, the Sum of Squared Distances (SSD)
decreases because the data points are closer to their centroids. SSD is a measure of the total distance
between each data point and its assigned cluster centroid, squared and summed. However, at some
point, adding more cluster will not provide much gain in SSD reduction, resulting in a less steep decline

5

2.2. Data Mining

in the curve, forming an elbow shape. When this point is reached the optimal number of clusters is
defined [11].

When applying clustering algorithms to data, it is essential to evaluate the quality of the resulting
clusters [56]. One common tool for this purpose is the silhouette score [56]. This metric measures the
similarity of each object to its own cluster compared to other clusters, and assigns a value between -1
and 1. A higher silhouette score indicates a more distinct and well-defined cluster. Despite its useful-
ness, the silhouette score has some limitations [56]. Shahapure and Nicholas [56] explains that it can be
sensitive to the shape and density of the clusters, and it assumes that the data is normalized.

2.2.4 Association Rule Mining

Association rule mining is a method that helps to find connections between different features in a big
dataset [32]. This is done by finding patterns that occur frequently and using those patterns to create
rules that describe how those pieces of data are related. An association rule is typically written in the
form of "if X then Y" or "X implies Y". The rule indicates that there is a strong correlation or association
between two variables X and Y. In mathematical notation, an association rule can be represented as:

X, Y Ñ Z (2.1)

This equation states that if items X and Y appear together, then there is a probability that item Z will
appear for the data point with a given confidence level. The arrow symbol (Ñ) denotes the implication
or the association between the variables. The items on the left side of the arrow are called antecedents,
and the item on the right side is called the consequent [32].

One popular way to implement association rule mining is by using the Apriori algorithm, which
looks for frequently occurring items and generates rules based on those items [32]. To use the algorithm,
the dataset needs to be prepared by removing irrelevant or noisy data and turning it into a transactional
format. The algorithm then looks for frequently occurring items and uses those to generate candidate
itemsets. This process is repeated to generate larger itemsets until the algorithm finds the frequent
itemsets that meet the minimum support threshold. Once the frequent itemsets are found, the algorithm
generates rules that fulfills the minimum confidence threshold. This means that the rules are based on
data that occurs frequently enough to be considered reliable. The results from the Apriori algorithm
consists of [3]:

1. Support: refers to the frequency of occurrence of a particular itemset in the dataset. It indicates
how frequently the items in the itemset appear together in the dataset.

2. Confidence: measures the strength of the association between two items in an itemset. It measures
the proportion of transactions that contain both items in the itemset out of the total number of
transactions that contain the first item.

3. Lift: It is used to determine how much more often two items appear together than would be
expected if they were independent of each other. A lift value greater than 1 indicates that the two
items are positively correlated, and that the presence of one item increases the likelihood of the
other item being present. A lift value equal to 1 indicates that the two items are independent, and
a lift value less than 1 indicates a negative correlation, meaning the presence of one item decreases
the likelihood of the other item being present.

4. Conviction: measures how strongly the presence of the antecedent implies the presence of the
consequent in a dataset, taking into account the overall frequency of both items. Conviction val-
ues range from 0 to infinity. A value of 1 indicates independence between the two items, a value
greater than 1 indicates positive dependence, and a value less than 1 indicates negative depen-
dence.

5. Leverage: measures the difference between the observed frequency of co-occurrence of two items
in a dataset and the frequency that would be expected if the two items were independent. A lever-
age value of 0 indicates independence between the two items, while a positive leverage value indi-
cates that the two items occur together more often than expected. Intuitively, a negative leverage
value indicates that they occur together less often than expected.

6

2.3. Machine Learning

Once the frequent itemsets and association rules have been generated, their quality and usefulness
can be evaluated by measuring their support and confidence [3]. Additionally, the result can be vi-
sualized using various graphs and charts to gain insights into the relationships between the variables
[32].

2.2.5 Isolation Forest

Outlier detection is a technique used in data mining to find data points or patterns that don’t fit with
the expected behavior of a system or process [50]. There are many different ways to implement outlier
detection. However, according to Hariri et al. [20], isolation forest is a unique outlier detection algo-
rithm that utilizes its model-free nature, computational efficiency, scalability with parallel computing
paradigms, and effectiveness in detecting outliers. Unlike other algorithms that build profiles of data
to detect nonconforming samples, Isolation Forest leverages the fact that outliers are few and different.
It randomly selects features and splits values to construct a tree structure that isolates outliers with
shorter branches and normal data with longer branches.

2.3 Machine Learning

Machine learning has become increasingly popular in the field of data analysis and predictive mod-
eling [26]. There are a wide range of algorithms available for use, each with its own strengths and
weaknesses. In this background section, three commonly used models are presented: Support Vector
Machines (SVMs), Adaptive Neuro Fuzzy Inference System (ANFIS), and Random Forest.

2.3.1 Support Vector Machines (SVMs)

SVMs are a type of supervised machine learning models used for classification and regression analysis.
The algorithm identifies a hyperplane that separates the data into classes with the greatest margin,
which is defined as the distance between the hyperplane and the closest data points, also known as
support vectors [47]. The optimization problem in the linear case is represented as:

min
w,b

1
2

||w||2 subject to yi(w ¨ xi + b) ě 1, i = 1, . . . , n (2.2)

In this equation, xi and yi are the feature vectors and corresponding label for the ith data point, w is
the weight vector, b is the bias term and n is the number of data points. Moreover, if the independent
variables have a high correlation it can affect the performance of SVM:s by reducing the margin and
increase the complexity of the hyperplane. To deal with this problem, the algorithm implements a
solution called the kernel trick [22].

SVMs have advantages over other machine learning algorithms, such as k-nearest neighbors (kNN),
in that they cope well with data that is not linearly separable and are less prone to overfitting [42]. In
the case of binary classification, the algorithm seeks the maximum-margin hyperplane that separates
the two classes, as seen in Figure 2.3. However, in practice, the algorithm is modified to include a "soft
margin" that allows some data points to cross the margin without affecting the final result [44].

The Kernel Trick

In non-linear cases, the data is transformed into a higher dimensional space by using kernel functions,
such as polynomial or radial basis functions. By transforming the data, the kernel trick allows SVMs to
handle nonlinear and correlated data without increasing the computational cost [22]. The optimization
problem in this case becomes:

min
α

1
2

n
ÿ

i=1

n
ÿ

j=1

αiαjyiyjK(xi, xj) subject to
n

ÿ

i=1

αiyi = 0, 0 ď αi ď C (2.3)

In the equation, K(xi, xj) is the kernel function used to transform the input data into a higher-
dimensional space, αi and αj are Lagrange multipliers used to maximize the margin between support
vectors, and C is a regularization parameter used to balance the trade-off between maximizing the mar-
gin and minimizing the classification error.

7

2.3. Machine Learning

Figure 2.3: Illustration of the hyperplane that maximally separates two classes [49]

The kernel function adds an additional dimension to the data, which allows for better separation in
the higher dimensional space [44]. Figure 2.4 shows an illustration of the kernel trick. However, pro-
jecting into very high-dimensional spaces can result in the curse of dimensionality, where the number
of possible solutions increases exponentially as the number of variables increases, making it harder for
the algorithm to select the correct solution. Additionally, the risk of overfitting is significant since the
boundary between classes can be specific to the examples in the training data set. The linear SVM does
not use the kernel trick, but instead directly operates in the input space, while the non-linear version
applies the trick. Finally, the SVM can be generalized to a multi-class version by performing several
one-vs-rest classifications and selecting the class with the best separation.

Figure 2.4: Illustration of the kernel trick [49]

2.3.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

The comparative study by Dawar et al. [26] shows that the ANFIS algorithm is proficient in predict-
ing vulnerabilities in third-party software. The authors describe it as a combination of two types of
systems: artificial neural networks (ANN) and fuzzy logic systems. Siniša et al. [58] further explains
that the ANFIS model performs well for tasks like, guessing how a function behaves, predicting what
will happen in the future, and controlling systems. The model consists of a collection of components

8

2.3. Machine Learning

that each represent a rule in the fuzzy system, where the final answer consist of a mix of all of these
components with weights that are determined by the ANN. The weights are changed during training
to make sure the model produces accurate results.

Moreover, the correlation between independent variables can have a significant effect on the model’s
performance. If variables are highly correlated it causes multicollinearity, which can lead to unstable
parameter estimates and reduce the model’s predictive power. To deal with this problem, ANFIS uses a
technique called correlation analysis, a method which measures the strength and direction of linear rela-
tionships between two variables [48]. This technique can help in identifying and eliminating redundant
or irrelevant input variables with low or high correlation with the output variable [48].

The ANFIS model consists of two main parts: the premise and the consequence [31]. ANFIS also
uses real data from past situations to make connections between the premise and consequence parts
using rules. Figure 2.5 shows the structure of the ANFIS model Karaboga and Kaya [31] used in their
study which consists of five layers, including four membership functions and four rules.

Figure 2.5: Example of the ANFIS structure with two inputs and one output [31]

• Layer 1: the "fuzzification layer" which takes the input values (x and y) and turns them into fuzzy
groups using the membership functions. The shape of these membership functions is controlled by
the premise parameters (a, b, or c). These parameters are used to calculate how much each input
belongs to each membership function, see 2.4 and 2.5.

µAi (x) = gbellm f (x; a, b, c) =
1

1 +
ˇ

ˇ

x´c
a

ˇ

ˇ

2b (2.4)

O1
i = µAi (x) (2.5)

• Layer 2: is the rule layer. The nodes of this layer are fixed nodes and labeled with π to indicate
that they are multipliers. The layer output Wi represent the fuzzy strength of each rule and can be
expressed by equation 2.6.

O2
i = Wi = µAi (X) ˚ µBi (Y) i = 1, 2 (2.6)

• Layer 3: is called the normalization layer. The purpose of this layer is to calculate normalized fuzzy
strengths which belongs to each rule. The normalized value represents the ratio of the fuzzy
strength of the i:th rule with regards to the total of all strengths as given in the equation 2.7.

O3
i = wi =

wi
w1 + w2 + w3 + w4

i = 1, 2, 3, 4 (2.7)

9

2.3. Machine Learning

• Layer 4: is known as the defuzzification layer where the weighted values of each rule are calculated
in each node. This value is determined by using first order polynomial as given in equation 2.8.

O4
i = wi fi = wi(pix + qiy + ri) (2.8)

• Layer 5: represents the summation layer where the actual output is generated by summing the
outputs for each rule in the defuzzification layer according equation 2.9.

O5
i =

ÿ

wi fi =

řn
i=1 wi fi

řn
i=1 wi

(2.9)

According to a study by Lei et al. [33], the ANFIS model is trained using a combination of two
methods: gradient descent and least-square estimates. During the training process, the model performs
a forward-pass to determine the parameters for the consequent part using a least-square estimate and
then a backward-pass to update the premise parameters using gradient descent. The combination of
these two methods allows the ANFIS model to effectively find the optimal parameters that fit the input-
output data.

Gradient descent is an optimization algorithm that updates the model parameters in the direction
of the negative gradient of the cost function J(w) with a learning rate η, where t is the iteration step:

wt+1 = wt ´ η∇J(wt) (2.10)

Least-square estimates, on the other hand, is a method for finding the parameters that minimize the
sum of squares of the residuals between the observed data and the model predictions:

w˚ = arg min
w

J(w) = arg min
w

n
ÿ

i=1

(yi ´ f (xi; w))2 (2.11)

where yi is the observed data, f (xi; w) is the model prediction, and n is the number of data points.

2.3.3 Random Forest

Random forest consists of multiple decision trees [6] [39]. Decision trees are models used for classifi-
cation and regression tasks [39]. The tree is constructed by recursively splitting the data into subsets
based on the values of its features until each subset only contains a single class or a single predicted
value. The splitting process is determined by selecting the feature that results in the highest reduction
of impurity, where impurity is a measure of the homogeneity of the class distribution in the subset [39].

Random vectors are generated independently to control the growth of each tree in a random forest
using methods like bagging, random split selection, and randomizing outputs [6] In random forest
classification, each decision tree gives a prediction, and the trees in the forest then vote on the most
likely accurate result, with the most popular class being the final outcome [6]. An illustration of this can
be seen in Figure 2.6.

10

2.4. Model Evaluation

Figure 2.6: Random forest classifier illustration [2]

According to Gregorutti et al. [18], the relationship between independent variables can impact its
performance by causing redundancy when implementing the model. This means that multiple vari-
ables may provide similar information about the output variable, resulting in overfitting and reduced
interpretability. To address this issue, the random forest model uses a technique called variable im-
portance [18]. This method assesses the contribution of each independent variable to the prediction
accuracy and diversity of the model. Thus, it helps to identify and remove input variables that are
redundant or irrelevant and have low or negative importance scores. This approach can improve the
overall performance of the model and make it easier to interpret the results [18].

2.4 Model Evaluation

Model evaluation is a crucial aspect to address when developing machine learning models. This section
describes cross-validation techniques and performance metrics that are commonly used to evaluate the
effectiveness of machine learning models. Additionally, the section explains the concept of feature
importance analysis and how it can be applied to the previously explained machine learning models.

2.4.1 Cross-Validation

Cross-validation is a widely used technique for evaluating the performance of machine learning models
and avoiding overfitting [21]. The method helps to estimate the true prediction error of models and fine-
tune their parameters [4], thus ensuring the generalization ability of predictive models on independent,
unseen data.

K-fold cross-validation is a popular approach that divides the data into subgroups (folds) and trains
the model on k-1 folds while testing it on the remaining fold [4]. This process is repeated k times, each
time using a different fold as the test set, and the average test performance is used as the final evaluation
metric. Stratified K-fold cross-validation is a variation of K-fold that ensures the class frequency of the
target variable is preserved in each fold [4]. This approach is suitable for smaller datasets where truly
random sampling may lead to skewing of class proportions.

2.4.2 Performance Metrics

Performance metrics play a crucial role in determining the effectiveness of a machine learning model.
These metrics provide a way to measure and evaluate the accuracy of different models. The applica-
bility of the models is examined using their predictive capability. Most frequently used performance
metrics are accuracy, recall, precision, and F1 score [16] [8], which gives a general idea of how accurate
the predictions are. For a binary classification, there are four cases as shown in Table 2.2.

11

2.4. Model Evaluation

Predicted

Positive Negative

Actual Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 2.2: Confusion matrix for binary classification

Accuracy is the ratio of the number of correct predictions to the total number of predictions made
by the model and provides a measure of how often the model makes correct predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.12)

Precision is the ratio of the number of true positive predictions to the total number of positive pre-
dictions made by the model and measures the ability of the model to avoid false positive predictions.

Precision =
TP

TP + FP
(2.13)

Recall is the ratio of the number of true positive predictions to the total number of actual positive
cases and measures the ability of the model to identify all actual positive cases.

Recall =
TP

TP + FN
(2.14)

F1 Score is the harmonic mean of precision and recall, thus balancing the trade-off between precision
and recall. A high F1 score indicates a good balance between precision and recall, and a model with
high F1 score is preferred when the costs of false positive and false negative predictions are similar.

F1 Score = 2 ˆ
Precision ˆ Recall
Precision + Recall

(2.15)

2.4.3 Feature Importance Analysis

Feature importance analysis is a technique used in machine learning to determine which features or in-
put variables are most important for a predictive model. It is a key challenge in many practical aspects
of machine learning, as it helps measure and evaluate how different features are affecting the model
[52]. This analysis involves assigning a score to each feature based on its contribution to the model’s
performance [62]. The higher the score, the more important the feature is considered. Feature impor-
tance analysis can help in identifying the key factors that affect the model’s outcome, understanding
the relationships between features, and improving the model’s performance by removing irrelevant or
redundant features [62] [52].

Different methods are used for feature importance analysis, depending on the type of model being
used [59]. In Random Forest Classifier (RFC) , feature importance analysis is performed by measuring
the decrease in the model’s accuracy when a particular feature is removed. This is achieved by permut-
ing the values of a single feature and observing the effect on the model’s accuracy. Features with the
highest decrease in accuracy are considered the most important.

In the case of SVM with different kernels, the importance of each feature is measured by its con-
tribution to the decision boundary of the SVM. This is determined by the magnitude of the feature’s
weight in the SVM model. For SVMs using linear kernels, the feature importances are calculated us-
ing the coefficients of the linear SVM. Otherwise, for RBF kernels, permutation importance is used to
compute the feature importances. Permutation importance works by randomly shuffling the values of
each feature in the testing set and measuring the decrease in model performance [52]. The larger the

12

2.5. Related Work

decrease, the more important the feature is for the model. This process is repeated multiple times to get
a more accurate estimate of the feature importances.

For the ANFIS algorithm feature importance is calculated in the same way as for SVM, where each
feature is assigned a different weight which resembles the contribution to the decision boundary. Ac-
cording to Honda et al. [23], the consequent part of the fuzzy inference system rules is a linear com-
bination of the input variables, whereas the final output is the weighted average of each rule’s output.
Thus, by identifying which rules has the largest weights, the most important features can be extracted.

2.5 Related Work

The purpose of this section is to provide an overview and summary of previous research on the topic.
It includes an analysis of the use of machine learning models for vulnerability prediction, alternative
techniques that have been employed, the data utilized in other studies, and the approaches used to
collect that data.

2.5.1 Vulnerability Detection

This section will explain a number of studies which have been conducted to understand and improve
the methods used for vulnerability detection. Overall, the studies in this area highlight the importance
of considering the quality of data sources and real-world context for accurate vulnerability prediction.

Massacci et al. [36] raised the question in their study that if the data sources used do not com-
pletely capture the phenomenon that is interesting to predict, then the predictions may be optimal with
respect to the available data but unsatisfactory in practice. The authors conducted a comparison of
various vulnerability databases, based on the features of vulnerabilities they contained. The databases
were classified into three categories: multi-vendor databases (such as CVE and NVD), vendor-specific
databases (Microsoft Security Bulletin, Mozilla Foundation Security Advisories), and other databases
(such as OpenBSD Vulnerability Database). They found that most papers on vulnerability prediction
use vendor databases as they need references from security bugs to the corresponding code base, which
is not supplied in multi-vendor databases. Furthermore, the authors found that the majority of the data
sources used in prediction are bug-tracking databases or source version control, but the discovery date
and many other important features are often missing, which impacts the prediction power of the mod-
els. In conclusion, by focusing on the fundamental question which is the quality of the vulnerability
database and the data used to train the models, the study show that by using different data sources, the
results may differ.

Svensson [60] investigated the use of different vulnerability sources for vulnerability assessment and
compared the NVD with the Node Package Manager (NPM) security advisory. The study found that a
significant proportion of the vulnerabilities analyzed were only reported on one source, with 64.4% of
the scraped advisories and 49.0% of the fetched CVEs falling into this category. Additionally, the study
found that the NPM security advisory was the first source to report the majority of the vulnerabilities,
with 81.3% of the total vulnerabilities being initially published on this platform. Furthermore, some
information only exists on one source, such as CWE categories in NVD and information about the
status of the vulnerability on NPM. Therefore, Svensson argued that using NVD in combination with
NPM would provide the most comprehensive information about vulnerabilities, indicating a need to
combine NVD with other vulnerability sources that are often used for specific package managers.

Jimenez et al. [27] investigated the impact of real-world labeling on the performance of machine
learning models for vulnerability prediction. The study found that models trained on real-world la-
bels, which are labels derived from actual vulnerabilities found in software systems, including SQL
injection vulnerability or Cross-Site Scripting (XSS), performed better than models trained on simu-
lated labels, i.e., labels that are artificially generated for the purpose of training. The authors also found
that a combination of real-world and simulated labels could further improve the performance of the
models. Finally, the authors concluded that real-world labeling is an important consideration when
using machine learning models for vulnerability prediction and that the community needs to improve
its experimental and empirical methodology to ensure robust and actionable scientific findings. Ad-
ditionally, the study highlights the importance of considering the real-world context of the data when
training and evaluating machine learning models for vulnerability prediction.

13

2.5. Related Work

Perl et al. [47], presented a solution to reduce the high false-positive rate of source code analyzing
tools for identifying software vulnerabilities in open source repositories. To implement this method,
code-metric analysis was combined with metadata from code repositories. Then, GitHub commits were
mapped to CVEs to create a database of vulnerable commits. Finally, an SVM classifier was trained. The
method resulted in a 99 % reduction in false alarms compared to other source code analysis software.
The authors focused on four metric categories when extracting information from GitHub, where the
first category, Features Scoped by Project, used metrics such as programming language, star count, fork
count, and number of commits to highlight interesting metrics when searching for vulnerabilities in the
software. The other three categories, Features Scoped by Author, Features Scoped by Commit, and Features
Scoped by File, were considered less relevant for this thesis as they contained text-based features and
features that were more closely tied to specific commits.

2.5.2 GitHub Data Mining for Vulnerabilities Analysis

In recent years, GitHub has become a central hub for open-source software development, offering a
variety of collaboration tools for developers to work together on their projects. GitHub provides a
vast amount of data on software repositories, such as the number of stars, forks, commits, and issues.
Analyzing this data can provide insights into the development and security of these repositories. Ac-
cording to Gahffarian et.al [17], data mining techniques are effective tools that can be used in software
vulnerability analysis and discovery. This section highlights several studies that have used data mining
techniques to analyze GitHub repository data related to vulnerabilities.

Cosentino et al. [9] conducted a meta-analysis of more than 90 research papers that investigate the
use of data mining methods on GitHub data. The authors identify three main dimensions of these
papers: the empirical methods employed, the datasets used, and the limitations reported. The meta-
analysis reveals several concerns, including issues with dataset collection process and size. This issue
have been addressed by several other authors [7][51] which highlights the GitHub REST API restrictions
of number of requests per minute as a limitation to build a dataset. However, Cosentino et al. [9] discuss
the trade-off between mining data from GitHub using the API or existing datasets from third-party
services. They note that these solutions are currently contradictory with respect to their freshness and
curation, and require researchers to evaluate this trade-off carefully. The GitHub API allows developers
to access a limited amount of fresh and uncensored data, such as the latest snapshot of a project, but
there are limitations on API requests. In contrast, existing datasets and services provide curated data,
such as GHTorrent and BOA, but they are often out-of-date compared to the original data on GitHub.

Horawalavithana et al. [24] conducted a study to compare user-generated content related to security
vulnerabilities on three digital platforms: Reddit, Twitter, and GitHub. The aim was to investigate the
correlation between the number of security vulnerabilities mentioned on the platforms, and whether
software development activities on GitHub could be predicted from discussions on Reddit and Twitter.
The authors also examined two repositories with the highest number of distinct CVEs mentioned dur-
ing the chosen timeframe to study the relationship between GitHub activity and the number of CVEs.
The study found that activities such as forking, watching, and pushing (number of commits) correlated
best with the number of CVEs. The pattern of GitHub pushes showed a similar trend with the number
of CVE mentions, as software patches are contributed to the repository code through GitHub pushes.
However, popularity measures such as fork and watch activities also showed a moderate correlation
with the number of CVE mentions.

Several other studies have explored the relationship between the metadata of GitHub repositories
and software vulnerabilities. Naveed [41] examined ten popular C++ source repositories on GitHub
and found no significant correlation between the frequency of vulnerabilities and repository metadata
such as stars, lines of code, and other attributes. However, Naveed acknowledged the limitations to
the study and suggests that more code repositories, including those for other languages, should be
analyzed in the future.

In another study, Ibrahim et al. [25] analyzed the top 100 open source PHP projects on GitHub and
found that project activities like branching, pulling, and committing had a moderate positive correlation
with the number of vulnerabilities. On the other hand, popularity factors like stars and watchers, as
well as other factors such as the number of releases, issues, and contributions, had little to no impact on
the presence of vulnerabilities [25]. Overall, project activity-related factors were found to be the most
influential in the prevalence of vulnerabilities in open source projects.

14

2.5. Related Work

Chatziasimidis and Stamelos [7] discusses the collection and analysis of data from GitHub reposi-
tories and users using data mining techniques. The authors describe the data collection process, which
involves using the GitHub API to retrieve data about repositories, such as metadata, commits, issues,
and pull requests. However, they encountered some challenges during the data analysis process. They
used the Apriori algorithm for extracting association rules in the dataset and K-means algorithm to dis-
cretize the feature values as the algorithm only works with discrete values and most GitHub features
are given in continuous values. One of the challenges in this step was the Zipf distribution of the num-
ber of downloads among the projects in the dataset. This distribution made it difficult to set the support
threshold for association rule mining, as it would exclude rare itemsets related to popular projects. To
address this, the authors used a confidence threshold of 0.75 and kept rules that detected rare itemsets,
while also ensuring that certain itemsets related to popular projects were included in the rules. The au-
thors were able to produce six association rules for successful projects, using the number of downloads
as a proxy for project success. They found that successful projects tended to exhibit characteristics such
as maturity, high activity, support to other users, active owners, small development teams, and owners
with a small number of other projects, and followers.

2.5.3 Vulnerability Prediction using Machine Learning

A number of studies have been conducted in the field of software vulnerability prediction, exploring
various techniques and models. These studies aim to use historical vulnerability data to predict future
vulnerabilities in software systems and to improve software security.

One of the early works in this area is by Edkrantz [16], who investigates the use of historic vulner-
ability data from the NVD and the Exploit Database to predict exploit likelihood and time frames for
unseen vulnerabilities. In the study, the author evaluates Naive Bayes, three different SVCs, Random
Forest, k-Nearest Neighbors, and a Dummy classifier, and found that the linear time SVM algorithm
achieved the highest prediction accuracy of 83 %. The study also found that the most important features
for vulnerability prediction were common words from vulnerability descriptions, external references,
and vendor products. Furthermore, the research demonstrated that when a considerable number of
common words were used, the NVD categorical data, CVSS scores, and CWE numbers became redun-
dant, as this information was usually included in the vulnerability description.

Another study by Han et al. [19] proposed a machine learning model to predict the severity of
software vulnerabilities using only the vulnerability description. The authors found that their Con-
volutional Neural Network (CNN) model was able to extract discriminative features of vulnerability
descriptions and outperformed other methods in predicting vulnerability severity.

Kamal and Raheja [30] also studied the use of three machine learning algorithms, random forest
regressor, K-nearest regressor and decision tree regressor, to predict the severity of software vulnerabil-
ities. The study used data from NVD to predict the CVSS v.3.* scores of un-scored software vulnerabil-
ities in the database and found the random forest regressor to perform best.

Chowdhury and Zulkernine [8] studied the use of complexity, coupling, and cohesion (CCC) metrics
to predict vulnerabilities in software. The authors presented a framework to automatically predict
vulnerabilities based on CCC metrics and conducted a large empirical study on fifty-two releases of
the Mozilla Firefox software. The study used four alternative data mining and statistical techniques,
including C4.5 Decision Tree, Random Forests, Logistic Regression, and Naive Bayes, and was able
to correctly predict a majority of the vulnerability-prone files. Furthermore, the authors found that
decision-tree based techniques such as C4.5 Decision Tree and Random Forests significantly outperform
Logistic Regression and Naive Bayes. The result of the report shows an accuracy over 90 % but a low
recall. The authors explain that this is a consequent of the imbalanced dataset where the predictor
becomes biased towards the overwhelming majority category.

Zhang et al. [61] conducted an empirical study using the NVD to predict time to next vulnerability
(TTNV) in software and compared the performance of logistic regression, decision tree, and Artificial
Neural Network (ANN) models. The authors used time, version (difference between two adjacent
instances of the versions), software name, and CVSS as predictive attributes and evaluated the models
using accuracy, precision, recall, and F1-score. The results showed that the data in NVD generally had
poor prediction capability, except for a few vendors and software applications, e.g., the models built for
Firefox. The authors discussed the main reasons for the difficulty of building good prediction models

15

2.5. Related Work

for time to next vulnerability (TTNV) from NVD and highlighted the low quality of the NVD data as a
main factor, such as missing information, vulnerability release time, and data errors.

A more recent study by Jabeen et al. [26] focused on the application of machine learning techniques
for predicting software vulnerabilities. The authors recognize the importance of addressing issues re-
lated to Vulnerability Discovery Model (VDM) and aimed to determine the effectiveness of machine
learning techniques in predicting future trends in vulnerability datasets. Through their empirical study,
the authors compare nine machine learning methods and three statistical VDMs, evaluating their per-
formance using both goodness of fit and predictive power criteria. The results of the study show that
machine learning models generally outperform the statistical methods, with the ANFIS model yielding
the best results for both performance metrics evaluated.

16

3 | Methodology

This chapter outlines the general methodology of the thesis, and Figure 3.1 shows an overview of the
workflow. Before the workflow began, a literature study was conducted which is presented in 2.5. This
literature study establishes the foundation for the workflow implementation and the selection of tech-
niques employed. The process started with collecting and preparing the dataset, which served as the
basis for building the feature space matrix used to apply data mining and machine learning techniques.
Following this, the data mining techniques, association rule mining, isolation forest, and clustering,
were applied to the dataset to help identify patterns and relationships in the data, thus partially an-
swering Research Question 1. Simultaneously, the dataset was divided and three machine learning
models were trained and evaluated. Combined with the methodology for applying data mining tech-
niques, this provided the results for answering Research Question 1. To answer Research Question 2,
each model was evaluated using the performance metric accuracy. Furthermore, the relative impact of
the independent variables were evaluated using feature importance analysis on the trained machine
learning models, thus addressing Research Question 3. Finally, to provide results for answering Re-
search Question 4, the machine learning models were used to predict the severity level of a repository.

GitHub Security
Advisory

Fetch: Repository
names with CVEs Dataset

Repository name
CVE-id

Fetch: GitHub metadata
for repositories

Add GitHub
metadata to dataset

Fetch: CVE metadata
from NVD

Add CVE metadata to
dataset

Clean data and create
balanced dataset

GitHub
repositories

Dataset

Repository name
CVE-id
GitHub metadata

Dataset

Repository name
CVE-id
GitHub metadata
CVE metadata

NVD

Build feature spaceDataset

Severity encoded
Severity indicator
Processed GitHub metadata

Machine learning

Divide datasets

Random Forest
Classifier

Support Vector
Classifier

Adaptive Neuro
Fuzzy inference

Systems

Grid search &
Cross validation

Model evaluation

Data mining

Association rule
mining Clustering Isolation Forest

Table visualization Scatter plot Box plot
Scatterplot

Chosen rules
Features

correlated to
cluster

Features with
anomalies

Investigate correlation with reported CVEs Investigate predictive capability

Compare to related work and discuss findings

Figure 3.1: Overview of the applied methodology

17

3.1. Programming Tools

3.1 Programming Tools

The programming tools used in this thesis were primarily based on Python, with additional libraries
such as numpy 1 and pandas 2, used for their respective functionalities. Numpy was especially used
for numerical computations and mathematical operations, while pandas was utilized for creating
dataframes and preparing data. Additionally, scikit-learn 3 was used for its implementation of various
machine learning algorithms and statistical models.

To collect data from the external data sources, Postman 4 was employed for evaluating the APIs capa-
bility. This allowed for easy testing and exploration of the available endpoints and parameters, as well
as the ability to quickly iterate and modify API calls as needed. Overall, the selection of these libraries
was based on their well-established reputation, extensive community support, and robust functionality
in the field of data science and machine learning.

3.2 Data Collection and Preparation

In this thesis, a large part of the work consisted of mining data to build a feature space matrix. More
information about the chosen databases is presented in Section 2.1. This section describes how the data
collection process was carried out to collect the data from GitHub and NVD.

3.2.1 Data Collection

To ensure high-quality data and a real-world context for accurately predicting vulnerability severity
[27], a combination of these two sources of vulnerability data was chosen. Additionally, metadata from
code repositories was utilized to achieve a lower false-positive rate [47]. GitHub was used in addition
to NVD for collecting data, as studies have shown that certain metadata from GitHub is significant in
predictive tasks and has correlations to the number of found vulnerabilities and reported CVEs [25]
[24]. By integrating data from both sources, a more comprehensive understanding of the real-world
context was aimed for and an increase in the accuracy of vulnerability prediction was expected.

GitHub Data Collection

GitHub is considered the main data source used in this study. GitHub provides several open APIs that
enables users to extract information on security advisories and public repositories. The data collection
from GitHub was divided into two steps:

1. Gathering data from the GitHub Security Advisory Database

2. Gathering information about the repositories corresponding to a reported security vulnerability
in the GitHub Security Advisory Database

Initially, the plan was to use GitHub’s GraphQL API to collect all security advisories and use key-
words to search for the assigned repository. However, this approach was not feasible as the search API
had a rate limit of 30 searches per minute. To overcome this issue, a repository called security-advisories
was identified on GitHub 5. This repository contained all listed security advisories with reported repos-
itories. By using the GitHub REST API, it was possible to extract the URLs in the security advisories
repository for each separate folder in the repository. Figure 3.2 shows an example API call where the
marked URL represents the API URL for the folder advisories. By looping through the content URLs, the
download URL could be extracted and used to download the security advisory information in JSON
format. Figure 3.3 shows an example of the response given from the download URL which represents
the content for a reported security advisory. This could be found in a similar format in the GitHub
repository.

1NumPy: https://numpy.org/
2Pandas: https://pandas.pydata.org/
3Scikit-learn: https://scikit-learn.org/stable/
4Postman: https://www.postman.com/
5GitHub Security Advisory Database: https://github.com/github/advisory-database

18

https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://www.postman.com/
https://github.com/github/advisory-database

3.2. Data Collection and Preparation

Figure 3.2: API call for GitHub security advisory content

Figure 3.3: Example result from the download URL

19

3.2. Data Collection and Preparation

This approach increased the rate limit from 1800 requests per hour to 5000 requests per hour for a
specific repository. However, the GitHub REST APIs limitations have been discussed in several studies
[9] [7] [51], and with over 11,000 security advisories, it was crucial to address this issue. Although the
rate limit was increased, the amount of requests that needed to be handled exceeded 5000 per hour,
as each request represented one folder in the GitHub Security Advisory Database which contained
multiple folders to go through. To handle the limitation, multiple tokens were generated. The tokens
were stored in an array, and when the rate limit was reached, the token used could be replaced and
added to another array called usedTokens, allowing for a significant increase in the amount of fetches
possible. If the token list was empty, the usedTokens list was used where the same token was employed
until the rate limit was reset.

After retrieving all available advisories from the GitHub Security Advisory Database in the previous
step, the repositories connected to a CVE were identified. Each security advisory had an attribute called
urls which contained different URLs depending on the advisory. In most cases, the URL "Package"
provided a direct link to the GitHub repository, which was extracted and added to a new column named
package in the dataframe. However, for reported advisories with missing package URLs, an alternative
solution was implemented. The process was divided into three steps:

1. A check was made to see if any of the URLs contained the keyword "github.com". If this was the
case, the URL referred to a specific commit that could be used to locate the repository.

2. The packages that contained URLs were matched by name, owner, and language with rows that
were missing a repository link. These rows referred to the same packages, so the link could simply
be added to these repositories as well.

3. If none of the URLs contained the keyword "github.com", and no other rows contained the link
to the repository, the GitHub REST API was used to search for the package given the name and
ecosystem. The name value referred to the repository’s name, and the ecosystem referred to the
vendor. Additionally, the token solution was implemented to handle the rate limitation of the
API. Figure 3.4 shows an example API call to retrieve the package name for the repository openssl
with vendor RubyGems.

Figure 3.4: Example of the result when searching for repository

20

3.2. Data Collection and Preparation

After extracting the repository identifications, the GitHub REST API was reused to extract infor-
mation on the repositories with listed advisories. The API yielded complete matches throughout the
dataset since the name and owner were already extracted in the format owner/package-name. To create a
balanced dataset, as explained in section 3.2.3, this process was repeated for repositories without listed
CVEs.

In summary, by utilizing the GitHub REST API, it was possible to retrieve a significant amount of
informative data for each repository efficiently. Of the information returned by the API, the relevant
data was added to the dataset, with the exception of dependencies and the number of commits, which
were difficult to gather without having ownership of the repository.

NVD Data Collection

After creating the dataset with information from GitHub, the next step in the data collection phase
involved collecting additional information on the identified CVEs using the NVD API. To ensure that
the information collected from NVD pertained only to the CVEs that had corresponding repository
information in the dataset, the NVD API was used to retrieve data only for those specific CVEs. Figure
3.5 shows an example API call to retrieve the NVD metadata for CVE-2020-14422.

The collected NVD metadata, including the severity of the vulnerability, the CWE category, and a
textual description of the vulnerability was added to the existing dataset. Inconsistencies between the
GitHub Security Advisory Database and the NVD were identified, and resolved by cross-checking the
data. For instance, in cases where there was a disparity in the publication date of a CVE between the
two data sources, the information from NVD was considered more reliable. This is because the NVD
database is continuously updated and fully synchronized with the official CVE list. Consequently, any
updates or changes to a CVE are promptly reflected in NVD, ensuring its timeliness and accuracy [12].
This enriched information allowed for a more detailed analysis of each CVE, thus providing a better
understanding of the potential risks and impacts of the vulnerabilities.

Figure 3.5: An example API call to collect information about a specific CVE from NVD

21

3.3. Building the Feature Space

3.2.2 Data Cleaning

To clean and preprocess the raw data, duplicates were identified using the unique identifier for each
vulnerability (CVE). Additionally, data points with missing values for GitHub features, such as reposi-
tory size and number of contributors, were dropped. After this step, missing values were still present in
other features, such as language, repository topics, organization name, CVE information, and CWE. To
address missing values for language and organization name, null values were treated as a new categor-
ical feature called "NA". Furthermore, rows lacking the CVSS score were excluded due to the absence
of reported severity details. Without such information, it is impossible to predict the severity of vul-
nerabilities with a ground truth value. Finally, the features that had a majority of missing values were
dropped from the data set, for example the vendor with 89% missing values.

As the CVE had been used to collect repository metadata, there were many duplicate rows based
on the GitHub repository, i.e., based on the column package_name. As seen in Table 3.1, the repository
tensorflow/tensorflow contained almost 400 reported CVEs. To avoid bias in the models’ training, a choice
was made to merge these into one row, although they represented different CVEs with different severity
levels. To handle these duplicates, the column values for numerical information such as repository size
and the number of contributors were added, while for the non-numerical values such as language,
name, vendor, and severity level, the most frequent value was used.

Package name Unique CVEs

tensorflow/tensorflow 399
k0xx11/bug_report 114
JacksonGL/NPM-Vuln-PoC 112
jenkinsci/jenkins 97
rails/rails 97

Table 3.1: Five packages with most reported CVEs

3.2.3 Creating a Balanced Dataset

Studies have highlighted that there is a significant imbalance between vulnerable and non-vulnerable
observations in datasets [8], and as a result, there is a need to balance the dataset to accurately represent
the population of interest. However, other studies have emphasized the importance of maintaining the
real-world context of the data [27]. Therefore, it is crucial to ensure that the created dataset accurately
represents the population of interest while also taking into account the need for real-world context.

As previously described, the dataset used in this study was collected from GitHub and NVD rep-
resenting repositories with reported CVEs. These repositories provide the ground truth and represent
the true positives in the prediction task, which are labeled as the positive class. However, it is also
necessary to have data for repositories that do not have reported vulnerabilities, which represent the
negative examples and negative classes in the prediction.

To create this balanced dataset, all unique organization names were collected from the original
dataset containing repositories with listed CVEs. Using the GitHub REST API again, all repositories
created by each unique organization were fetched, excluding repositories with reported CVEs. This
implementation ensures that, at least for the repositories with a listed organization name, the ratio be-
tween vulnerable and non-vulnerable repositories represents the real world. It should be noted that
this approach creates a dataset with more negative examples (repositories without reported CVEs) than
positive examples (repositories with reported CVEs). This is consistent with the real-world setting,
where there are typically more non-vulnerable software observations than vulnerable ones. As a result,
it is appropriate to have more true negatives than true positives in the dataset.

3.3 Building the Feature Space

To build the feature space, feature extraction was performed to obtain a high-dimensional feature vector
of binary and integer-valued features for each observation. However, not all of these features may be
relevant, so a feature selection step was conducted to identify and select the most important variables
for analysis. The dimensionality reduction technique PCA was also applied to improve efficiency and

22

3.3. Building the Feature Space

handle multicollinearity between features. The feature space that was constructed in this step was
utilized for both the data mining techniques and the predictive machine learning tasks in the next steps.

3.3.1 Feature Extraction

Feature extraction is a essential step in building the feature space. It involves transforming raw data
into more meaningful and informative features that can improve the performance of the analysis. To
create a high-dimensional feature vectors of binary and integer-valued features for each observation,
the following steps were performed on the dataset:

• Extraction of base severity and base score from the column metrics.

• Creation of the new column has_CVE, indicating if the repository has a reported CVE.

• Standardization of date formats for all columns containing dates, such as repository creation or
last update date. The time was removed to only keep the date in a standardized format.

• Creation of new columns containing the age of repositories (in days) and days since last updated.

Additionally, three bigger feature extraction steps were performed which are described in the sub-
sections below.

Transforming the CVSS Score

As described in subsection 2.1.3, the CVSS score has evolved through various iterations over time, with
each version having its own characteristics and methods for calculating the score. Moreover, the CVSS
v2 score is generally lower than the newer versions, CVSS v3.*. In this dataset, most vulnerabilities
included both metrics, CVSS v2, and v3. In these cases, the CVSS score for v3 was used as it is deemed
the more accurate representation of the vulnerability. However, as some vulnerabilities only included
the v2 score, they had to be transformed.

If the old scores were used in the same context as the updated score, it could lead to an inaccurate
representation of the data. Therefore, the old CVSS score had to be updated to a v3 score. To accom-
plish this, the v2 vector was converted to v3 vector. This allowed for a more accurate comparison of
severity across different vulnerabilities. Vector 3.1 and Vector 3.2 below shows how the same severity
is represented by the two different vectors.

CVSS : 2.0/AV : N/AC : M/Au : N/C : N/I : P/A : N (3.1)

CVSS : 3. ˚ /AV : N/AC : L/PR : N/UI : R/S : C/C : L/I : L/A : N (3.2)

To understand this pattern, various vectors were analyzed and the conversions were tested on ob-
servations that contained both scoring versions. This process resulted in a conversion that was accurate
in predicting the severity level. Given that the thesis primarily concerns the severity category of a score,
it was not necessary for the prediction score to be precise, as long as it yielded the same severity level.
Once the new vector was generated, the cvsslib package could be utilized to convert the vector to a
score, which could then be used to place the CVE in a severity category.

Encoding the Features

To ensure that the models can make predictions on the categorical features, the features need to be
encoded [14]. The one-hot-encoding method was used which converts the categorical features into a
set of binary features. For instance, if the categorical feature language had three values, Python, Java,
and JavaScript, it was converted into three binary features, one for each category. If a sample belonged
to the category Python, the binary feature for this category would be 1, and the binary features for
categories Java and JavaScript would be 0. However, the encoding process was limited to features
with a low number of unique categorical values. This was done to prevent an excessive increase in the
dimensionality of the feature space, which could have negatively impacted the model’s performance
and interpretability.

23

3.4. Finding Patterns in the Dataset

Scaling the Data

Normalization or scaling of data is an essential step when dealing with features that vary in scales or
units. As the dataset consists of features in different scales, such as the repository size in byte which
have a high variance, compared to the number of open issues with a lower value. Standardization,
a widely recognized normalization technique, was chosen for its effectiveness in numerous machine
learning applications. For this process the StandardScaler, which utilizes Z-score normalization, from
sklearn was used to scale the continuous features repo_size, stars, forks_no, open_issues, contributors_count,
pull_request, repo_days_since_update, and repo_age.

Dimensionality Reduction

Dimensionality reduction is an important step in data analysis as it helps to reduce the number of
variables while preserving important patterns and relationships. One common technique used for this
purpose is PCA which is a statistical data mining technique that transforms high-dimensional data
into a new set of uncorrelated variables called principal components (PCs). To determine whether to
use PCA or not, a correlation matrix was created to identify variables with significant correlations.
For variables with a high correlation, the Python library decomposition was used to perform a PCA to
decompose the variables using principal components.

3.3.2 Feature Selection

Feature selection is a critical step in the data analysis process as it helps identify the most important
variables for the analysis. By selecting a subset of variables, it can potentially improve the performance
of the model and reduce overfitting.

As part of the feature selection methodology, relevant features were considered from both the
GitHub repository metadata and the NVD. However, during the evaluation, it became apparent that
the features extracted from the NVD were not suitable for online prediction due to the unavailability
of offline sources or real-time additional information. Therefore, these features were removed from the
feature selection to ensure the practical applicability of the machine learning model. Examples of fea-
tures extracted from the NVD data include the CWE, when the CVE was published and modified, and
the CPE. Despite their relevance in data analysis for vulnerable repositories, these features cannot be
used in vulnerability prediction due to the unavailability of offline sources or additional information in
real-time. Therefore, during feature selection, most features from the NVD were removed to ensure the
practical applicability of the machine learning model for predicting the severity of open source reposi-
tories. The kept features from NVD represents the two target variables - severity level and an indicator
to show if a data point contains a reported severity. No other features could be used to train the model,
since all the features in the NVD, directly implies that a repository has a CVE.

3.4 Finding Patterns in the Dataset

Data mining techniques such as association rule mining, isolation forest, and clustering are useful in
identifying patterns and relationships within the data [17]. Although they don’t directly help in the
predictive task, they are used to provide insights into the data and assist in identifying important fea-
tures that can be used in predicting vulnerabilities.

3.4.1 Detecting Outliers with Isolation Forest

Isolation Forest is an unsupervised decision-tree-based algorithm used for outlier detection. This algo-
rithm was implemented using the Scikit-learn library and trained on the independent variables from
the feature matrix built in the previous step. All the default algorithm parameters were used, except for
the random state, which was set to ensure reproducibility. The trained Isolation Forest model was used
to predict whether an observation in the dataset was considered an outlier or not. The indicator was
added to the dataset as the new column outlier which stored the predicted labels of potential outliers
based on the given feature set.

To further investigate the identified outliers, the most significant features were extracted using the
outlier detection algorithm object, which was an instance of the trained Isolation Forest model. Each

24

3.4. Finding Patterns in the Dataset

feature was independently shuffled and the outlier score was calculated using the shuffled feature val-
ues. The difference between the original outlier score and the shuffled outlier score was then computed
and normalized with the standard deviation. This difference represented the feature importance score,
which was stored in an array and sorted from top to bottom.

Furthermore, to visualize the result and study the outliers, a figure with the boxplots for the respec-
tive feature was created. These outliers could then be analyzed further to look into if a higher outlier
score was correlated with severity or the severity level. Additionally, the data points classified as out-
liers with a high outlier score were investigated in order to identify their correctness and reliability.
The new column outlier, was also included in the other data mining techniques, to further try and find
correlations and patterns, based on the data points being classified as an outlier or not.

3.4.2 Grouping Data with Clustering

Clustering is a method used to group similar data points together to identify subpopulations in the
data. For instance, if vulnerabilities tend to be concentrated in certain repository sizes or packages,
clustering can identify these groups and highlight their significance to predict vulnerabilities. In this
case, unsupervised clustering is used to explore the characteristics of repositories and identify clusters
based on their similarity without the guidance of a target variable or label.

All features from the built feature space, including the outlier indicator was used in the analysis. This
allows examination of the clusters to find the characteristics that are strongly associated with vulnera-
bilities, without using the indicator for an vulnerability. This method can complement the later stage
prediction task and provide additional insights into the data that may not be captured by a supervised
approach.

The first step was to select a clustering algorithm, and after reviewing the literature in 2.2.3, the
K-means method was chosen as it is a widely used and reliable clustering algorithm. The next step was
to determine the best number of clusters.

After considering the background research, the elbow method was selected. The elbow point indi-
cated that six clusters were optimal. Once the optimal number of clusters was identified, the clustering
algorithm was run to assign each item in the dataset to a cluster based on its similarity to other items in
the cluster.

Additionally, a correlation matrix was created during the clustering process to find the variables that
had the most impact on the clusters. These variables were visualized in a 3-dimensional scatter plot to
further investigate if specific clusters correspond to the target variables. To measure the similarity of
each data points to its own cluster compared to other clusters, the silhouette score was calculated using
silhouette_score from sklearn. This information was useful as it allowed to understand the relationship
between GitHub features and their impact on clustering, aiding in the interpretation and analysis of the
resulting clusters.

3.4.3 Discovering Relationships with Association Rule Mining

Association rule mining can identify frequent itemsets and the relationships between them, which can
be useful in identifying patterns in the data. For example, if a particular GitHub repository feature is
frequently associated with vulnerabilities, association rule mining can identify this pattern and high-
light the importance of this feature for predicting vulnerabilities. Furthermore, this technique can help
identify interesting associations or co-occurrences between different features in the GitHub repository
metadata.

As association rule mining only works on discrete values, the continuous values in the dataset had
to be categorized. This was done by dividing the features with continuous values in five different bins
using the K-means clustering algorithm, which has been highlighted as a suitable approach in related
work [7]. These bins resembled the significance of each value, where bin_0 indicates a value in the
lowest quantile and vice versa for bin_4. After all features had been converted to discrete values, the
library mlxtend was used to implement the Apriori algorithm.

The Apriori algorithm was used to identify association rules between the target variables, has_CVE
and severity_encoded, and the independent features. The initial values for the min_support and threshold
parameters were set to 0.1 and 0.7, respectively, to capture frequently occurring rules that represent at
least 10% of the dataset and ensure the representability of the distribution of the target variable [7]. The

25

3.5. Predicting Vulnerabilities and Severity Level in Repositories

resulting rules were ranked by confidence, indicating the proportion of transactions that contain the
first item in a rule that also contains the second item, and used to explore the underlying relationships
among the variables. Subsequently, the min_support parameter was reduced to uncover less common
but significant rules, and the process was repeated to gain further insights from the obtained results.

3.5 Predicting Vulnerabilities and Severity Level in Repositories

This chapter explains the methodology used to implement three different machine learning models
to predict vulnerabilities in third-party open source software: SVM, Random Forest, and ANFIS. The
selection of these models was based on the findings from 2.5.3, since these models had shown the best
predictive performance in similar tasks. In the comparison study by Jabeen et al. [26], the ANFIS
model displayed the highest predictive result when predicting the number of vulnerabilities reported
for a specific software. In another study by Edkrantz et al. [16], the SVM model was used to predict
the exploit likelihood and time frame for unseen vulnerabilities and yielded the highest prediction
accuracy of the evaluated algorithms. Although the prediction target in these studies differs from the
one investigated in this thesis, the success of the SVM and ANFIS model in similar tasks indicates
its potential for evaluation in this study. Furthermore, prior research studies conducted by Han et al.
[19] and Kamal and Raheja [30] have also reported promising predictive results for the target variable
using neural network algorithms and random forest models, respectively, along with other independent
features. These findings further support the suitability of these models for the current scenario, as they
have previously demonstrated promising outcomes in predicting the same target variable. It is worth
noting that Han et al. [19] focused solely on utilizing vulnerability descriptions to predict severity, while
Kamal and Raheja [30] utilized data from the NVD specifically for un-scored vulnerabilities.

To begin with, the dataset was divided into training and testing sets using the stratified K-fold
cross-validation method to ensure a balanced representation of the dependent variables in each fold
[4]. In many similar prediction tasks, temporal intermixing needs to be considered by using training
data from earlier time periods than the validation and testing sets so that information about the future
don’t "leak" into the model. However, as the independent variables only consists of GitHub repository
features, temporal intermixing is not a concern as the repository features are not likely to change over
time. Therefore, a common practice in developing machine learning models was planned to be applied
by dividing the dataset into training, validation, and testing sets. However, due to the relatively small
size of the dataset, a choice was made to only use training, and testing sets, but keep this in mind during
the hyperparameter tuning process.

For all three models, the dataset was first divided into independent features (X), and the target
variable (y). To ensure unbiased evaluation of the model, a stratified K-fold cross-validation was used
with k=5. This means that for each fold, 80% of the dataset is used to train the model, while the rest
20% was used to evaluate the model. This was repeated using both has_CVE and severity_encoded as
the target variable (y). After dividing the dataset according to the cross-validation, each model was
implemented using different Python libraries or by developing the model from scratch.

3.5.1 Adaptive Neuro Fuzzy Inference System (ANFIS)

Initially, the plan was to use the anfis library 6 in Python to implement the ANFIS model. However,
this library had some issues with the membership functions, thus making it unusable for this task.
Consequently, a decision was made to implement the model using the Python library as guideline
together with the scikit-fuzzy library and an OSS library on GitHub 7, that had shown promising results.
To ensure the correct implementation of the ANFIS model, a validation process was performed using
a public dataset. This involved comparing the obtained results with the published outcomes from the
OSS library. By successfully replicating the published results, it was concluded that the model had been
implemented accurately.

To start with, the data needed to be prepared which involved converting the dataset to an array
of values. After this, input and output variables were defined and the fuzzy inference system was
implemented using the scikit-fuzzy library. The input variables represented the independent features in

6https://github.com/twmeggs/anfis
7https://github.com/gabrielegilardi/ANFIS

26

https://github.com/twmeggs/anfis
https://github.com/gabrielegilardi/ANFIS

3.6. Model Evaluation

the dataset, while the output was the target variable has_CVE or severity_encoded. The ANFIS model was
trained by optimizing both the premise and consequent parameters using forward propagation and
minimizing a cost function. The premise parameters capture the fuzzification of the input variables,
determining their membership values. The consequent parameters, on the other hand, represent the
transformation functions that map the fuzzified inputs to the output variable. Additionally, Particle
Swarm Optimization (PSO) was used to optimize the hyperparameters nPop, and epochs

Additionally, as the model usually predicts continuous variables, the model had to be modified
to handle discrete values. This step was done by developing a sigmoid function that converts the
prediction to values between 0 and 1. Moreover, as the output represents a likelihood, a threshold of 0.5
was used to facilitate the interpretation of the results. Finally, the implemented ANFIS model was used
together with the optimal hyperparameters and stratified K-fold cross-validation to predict the target
variables.

3.5.2 Random Forest Classifier (RFC)

The RFC was implemented using the scikit-learn library in Python. Hyperparameter tuning was per-
formed using a grid search approach with the following hyperparameters: n_estimators (number of trees
in the forest), max_depth (maximum depth of the tree), min_samples_split (minimum number of samples
required to split an internal node), and min_samples_leaf (minimum number of samples required to be
at a leaf node). To avoid overfitting, regularization was achieved by choosing low grid search values
for max_depth and high values for min_samples_split, and min_samples_leaf. The grid search was per-
formed using the stratified K-fold cross-validation with 5 folds, and the optimal hyperparameters were
chosen based on the highest cross-validation score. To evaluate the performance of the RFC, the model
was trained on each fold in the cross-validation using the optimal hyperparameters obtained from grid
search.

3.5.3 Support Vector Classifier (SVC)

Support Vector Classifier (SVC) was implemented using Scikit-learn library in Python. To evaluate the
performance of the SVC model, hyperparameter tuning was performed using a grid search with cross-
validation. The dataset was split into 5 folds using StratifiedKFold from Scikit-learn. The SVC model was
trained and tested on each fold of the data, with the hyperparameters C of the error term, the kernel
function to be used, and the kernel coefficient for the ’rbf’ kernel function. The regularization parameter
C controlled the tradeoff between maximizing the margin and minimizing the classification error on
the training data. By choosing small grid search values for C, the risk of overfitting was reduced. To
evaluate the performance of the best SVC, the model was trained on each fold in the stratified K-fold
cross-validation using the optimal hyperparameters obtained from grid search.

3.6 Model Evaluation

This section highlights the methods used to evaluate the models and investigate the feature importance
for each model. During the training process, the models were trained using an 80% portion of the data
from the cross-validation set. Subsequently, the models’ performance was assessed on the remaining
20% of the data for each class, which served as the testing set for each fold in the cross-validation.

3.6.1 Finding Important Features

Feature importance analysis is a technique used to determine which features are most important for a
predictive model [52] [62]. Therefore, to address Research Question 3 and measure the relative impact
of each independent variable on the target variable, feature importance analysis was performed on
each trained model. The approach was only applied to the models used to predict the target variable
has_CVE since this is the only aspect related to the research question. Furthermore, different methods
were used depending on the machine learning model implemented [59].

For the RFC model, the feature importances were recorded for each fold in the cross-validation us-
ing the attribute feature_importances_ for the built RFC model. The average feature importances across
all folds was calculated and printed in descending order. A similar approach was applied for the SVC,

27

3.6. Model Evaluation

however, if the kernel function was linear, it used the coef_ attribute for the built SVC model, otherwise
it used permutation_importance() from the sklearn inspection package. For the ANFIS model, the weights
of the different membership functions were extracted and sorted in descending order. These weights
represent the degree to which the membership functions affect the output. As each membership func-
tion corresponds to an independent variable, the weights could be used to analyze which feature is of
the highest importance for the model.

3.6.2 Performance Metrics

Research has demonstrated that using imbalanced datasets can lead to biased predictions towards the
majority category, resulting in high accuracy but low recall [8]. To overcome this problem, previous
studies have recommended incorporating additional performance metrics beyond accuracy alone [16]
[8]. Therefore, to obtain a more comprehensive performance evaluation, the accuracy score was com-
bined with precision, recall, and F1-score.

For all three models, the accuracy scores, and classification reports for each fold were computed, and
averaged across all folds. The classification report provides precision, recall, and F1-score for each class
(vulnerable and non-vulnerable observations) along with the average across both classes. The F1-score
represents the weighted average of precision and recall, where a score of 1 indicates perfect precision
and recall, and a score of 0 indicates poor performance.

28

4 | Results

This chapter presents a detailed description of the result based on the methodology applied. First, the
results from the data collection and preparation step is described, followed by a description of the build
feature space. The results obtained from the application of data mining techniques to the feature space
are described subsequently. Finally, the results of predicting the severity level and severity indicator of
a repository using the three different machine learning models - Random Forest, SVM, and ANFIS, are
presented.

4.1 Collected Data

Data was collected from the data sources GitHub and NVD through their respective APIs. To gather
data from GitHub, the two different steps described in the methodology section were followed. The
column CVE from the dataset was used to gather information about the reported severities using the
NVD API. This information was needed to address Research Question 1 and 2 as it provides the ground
truth for the predictive task. The NVD metadata was added to the dataset with the collected information
from GitHub, resulting in a dataset that contained 12890 rows of repositories with reported CVEs. Table
4.1 lists the extracted column values in this dataset.

Column Type Description Source
id String CVE-id Key
withdrawn Boolean Indicator if the CVE has been withdrawn GitHub
vendor String The software ecosystem the package belongs to GitHub
name String Name of the package GitHub
package_name String Full name of the package owner/package GitHub
repo_size Integer Size of the package in bytes GitHub
stars Integer Number of stars GitHub
a has_issues Integer Indicator if the repository has an Issues tab GitHub
forks_no Integer Number of forks GitHub
open_issues Integer Number of reported open issues GitHub
watchers Integer Number of users watching the package GitHub
language String The primary programming language GitHub
repo_createdAt Date Date and time the package was created GitHub
repo_updatedAt Date Date and time the package was last updated GitHub
repo_topics List Topics associated with the package GitHub
org_name String Organization responsible for the package GitHub
contributors_count Integer Number of contributors GitHub
pull_request Integer Number of pull requests GitHub
CWE_Git List CWEs associated with the package GitHub
CWE_NVD String CWE associated with the package NVD
metrics List Quantitative measures of the CVE severity NVD
vulnStatus String Current status of the vulnerability NVD
cpeMatch String CPE identifier for the affected software NVD

Table 4.1: Dataset columns with GitHub repository and NVD metadata

Duplicate rows were handled during the data cleaning step, specifically those based on the GitHub
repository column package_name, as explained in the methodology section. Furthermore, features with

29

4.2. Built Feature Space

many missing values were removed from the initial dataset. After addressing the data cleaning steps,
the cleaned dataframe consisted of 5091 rows representing unique GitHub repositories with reported
CVEs. To create a balanced dataset with both positive and negative classes, additional repositories were
collected using the method described in 3.2.3. Table 4.2 illustrates the distribution of vulnerabilities
according to the provided labels. It is important to note that this analysis reflects the real-world context
of organizations that had at least one repository with a reported vulnerability. Thus, the presented
results offer insights into the vulnerability landscape within these organizations.

Data Label Count

Repositories with CVEs Positive 5091
Repositories without CVEs Negative 27747

Table 4.2: Balanced dataset between repositories with and without reported CVEs

4.2 Built Feature Space

The feature space was built using a combination of feature extraction and feature selection techniques.
In accordance with the methodology described, the CVSS scores were transformed to accommodate
different versions. This involved converting approximately 500 scores, with many receiving higher
categorical values. A detailed breakdown of the conversions can be found in Table 4.3. Additionally,
the resulting severity levels were encoded and are displayed in Table 4.4. This information was needed
as it provides the ground truth for predicting the severity level, thus addressing Research Question 4.

CVSS v2 CVSS v3 Count

LOW MEDIUM 36
MEDIUM HIGH 278
MEDIUM CRITICAL 80
HIGH MEDIUM 4
HIGH CRITICAL 109

Table 4.3: Mapping of severity level from CVSS v2 to v3

Severity Level Encoded Severity Count

NONE 0 27747
LOW 1 49
MEDIUM 2 1646
HIGH 3 1983
CRITICAL 4 1413

Table 4.4: The encoded severity level and their distribution

To identify variables with significant correlations, a correlation matrix was created which is shown
in Figure 4.1. The variables stars and forks_no were found to have a correlation coefficient of 0.82. To
reduce the dimensionality of these variables, they were decomposed into one principal component and
added as a new column stars/forks to the dataset using PCA. Moreover, the correlation matrix shows that
there are no significant correlations to the target variables. The feature with the highest correlation is
stars which has a value of 0.24 for severity_encoded and 0.26 for has_CVE. However, the matrix shows
that the feature open_issues has a relatively high correlation to stars and forks, of 0.47 and 0.43. Even
though this is an interesting finding the correlation value is not significant enough for the variables to
be combined, which is why they are kept separately.

30

4.2. Built Feature Space

Figure 4.1: The correlation matrix for the feature space

In the feature selection phase, most of the features extracted from NVD were removed since all
of these features could solely be added to repositories with reported CVE:s thus making the features
unnecessary as they do not provide any additional information to predict the target variable. These
features include CWE_NVD, vulnStatus, and cpeMatch. The features representing the number of forks
and stars for the corresponding GitHub repository were also removed as they had been combined into
a new feature using PCA in the previous step. The resulting feature space with encoded features is
presented in Table 4.5. In this table, the two first rows represents the target variables, followed by the
feature variables generated from Github. Additionally, the stars/forks variable resembles the conjoined
variable of stars and forks, followed by the one hot encoded programming language.

31

4.3. Found Patterns in the Dataset

Column Type Description Range
has_CVE Integer Indicator if the repository has a reported CVE [0, 1]
severity_encoded Integer Severity Level [0, 4]
repo_size Integer Scaled size of the package in bytes [0, 107]
repo_age Integer Scaled age of the repository [-2, 3]
repo_days_since_update Integer Scaled days since updated [-1, 5]
has_issues Integer Indicator if the repository has an Issues tab [0, 1]
open_issues Integer Number of reported open issues [0, 60]
contributors_count Integer Scaled number of contributors [0, 78]
pull_request Integer Scaled number of pull requests [0, 181]
stars/forks Integer Scaled principal component of stars and forks [0, 74]
JavaScript Integer One-hot encoded programming language [0, 1]
Python Integer One-hot encoded programming language [0, 1]
Java Integer One-hot encoded programming language [0, 1]
PHP Integer One-hot encoded programming language [0, 1]
Go Integer One-hot encoded programming language [0, 1]
TypeScript Integer One-hot encoded programming language [0, 1]
Ruby Integer One-hot encoded programming language [0, 1]
HTML Integer One-hot encoded programming language [0, 1]
Rust Integer One-hot encoded programming language [0, 1]
Shell Integer One-hot encoded programming language [0, 1]
C# Integer One-hot encoded programming language [0, 1]
Other Integer One-hot encoded programming language [0, 1]

Table 4.5: Columns and their description of the built feature space

4.3 Found Patterns in the Dataset

The following section describes the outcomes of applying data mining techniques to the dataset pre-
sented in Table 4.5, with the purpose of identifying patterns and connections within the constructed
feature space. The results from this section addresses the data mining aspect in Research Question 1 as
it investigates patterns in vulnerable and non-vulnerable observations.

4.3.1 Detected Outliers

After implementing the isolation forest algorithm, the most significant features were extracted and
sorted based on their outlier score. The extracted features, arranged in descending order, were as fol-
lows:

1. stars/forks

2. open_issues

3. pull_request

4. contributors_count

5. repo_size

6. repo_days_since_update

7. repo_age

Furthermore, the top features were visualized together as boxplots in a diagram. This process was
carried out in order to further investigate the independent features. The resulting boxplots are dis-
played in 4.2.

32

4.3. Found Patterns in the Dataset

Figure 4.2: outlier boxplot of the top features

With the outliers visualized, it was possible to examine which of the top features included significant
outliers. From the boxplot diagram and the outlier scores, it was concluded that the top five features
seen in 4.2 contained significant outliers.

These features were further investigated and visualized in a scatterplot, where the color represented
the outlier indicator. The color of the data points ranges from red to blue where red indicates an outlier,
and blue indicates a non outlier. The scatterplots are displayed in Figure 4.3. Upon further investigation
of the data points classified as outliers, it was found that out of the 1300 data points classified as outliers,
866 of them (67%), were repositories with reported CVEs.

Figure 4.3: Scatterplots features with the highest outlier score

4.3.2 Grouped Data

The unsupervised K-means clustering method was applied on the features repo_size, stars/forks,
open_issues, contributors_count, pull_request, repo_days_since_update, has_issues, repo_age, outlier, and the
one-hot encoded language feature from the feature space. The results from the K-means clustering
methods revealed that the optimal number of clusters for the features was 6, and the resulting distribu-
tion for each cluster is presented in Table 4.6. The majority of the repositories were assigned to cluster 0
and 1. The two clusters that contained a small number of data points was further investigated to assess
the correlation with the outlier score. In Cluster 4, all data points, except for one, had an outlier score
of -1, indicating an outlier. Cluster 5 had one outlier and one non-outlier. The average silhouette score
for the clusters was 0.258.

33

4.3. Found Patterns in the Dataset

Cluster Count

0 12255
1 16361
2 3970
3 245
4 5
5 2

Table 4.6: K-means cluster distribution

Feature Correlation

repo_days_since_update 0.611
repo_age 0.371
stars/forks 0.140

Table 4.7: Top cluster-correlated features

As described in the methodology section, the features that showed the highest correlation with the
variable cluster, as indicated in Table 4.7, were used to create a 3-dimensional scatter plot. The corre-
sponding plot is presented in Figure 4.4, where the color of each data point represents its cluster, and
the symbol indicates the severity indicator has_CVE. However, due to the limited number of data points
in certain clusters, such as cluster 5 with only 2 data points, it becomes challenging to visually identify
these clusters in the figure. Analyzing the figure does not reveal any apparent patterns or relationships
between specific clusters and the presence or absence of a reported CVE. Additionally, a 2-dimensional
scatter plot illustrating the relationship between the features repo_age and repo_days_since_update is pre-
sented in Figure 4.5.

Figure 4.4: 3D scatter plot for top 3 correlated features to cluster variable

34

4.3. Found Patterns in the Dataset

Figure 4.5: Scatter plot for repository age and last update with cluster variable

4.3.3 Discovered Relationships

In the methodology chapter, it is mentioned that the association rule mining technique was applied to
the built feature space. Additionally, short labels were applied to the names of the different bins to
improve the readability of the visualizations, displayed in Table 4.8.

Full name Short label

has_issues HI
open_issues_bin_0 OI0
repo_days_since_update_bin_0 RU0
repo_days_since_update_bin_2 RU2
repo_age_bin_3 RA3
contributors_count_bin_0 CC0
pull_request_bin_0 PR0
stars/forks_bin_0 SF0
stars/forks_bin_4 SF4
cluster_bin_0 CL0
cluster_bin_1 CL1
outlier_bin_0 A0
outlier_bin_1 A1

Table 4.8: Short labels generated for association rules visualization

Initially, the min_support parameter was set to 0.1 to identify rules which can be applied to at least
10% of the dataset. The top five most confident association rules with severity set to 0 as a consequent
were extracted and are displayed in Figure 4.6. The figure represents each categorical value with a tag
(bin), where the lowest quantile is denoted as bin_0, and the highest quantile is represented as bin_4.

The confidence values for the rules in the figure have been rounded and the rules themselves have
been sorted in ascending order. The rule with the highest confidence corresponds to the antecedents
OI0, RU0, CL1, PR0. This rule indicates that repositories with a low number of open issues, recently up-
dated, assigned to cluster 1, and having few pull requests, are unlikely to have reported CVEs in 94% of
the cases. The support value for this rule is 0.11, suggesting that it applies to 11% of the dataset. Overall,
the generated rules exhibit variations in their parameters. However, certain parameters, namely OI0,
RU0, CL1 and PR0, appear in all the rules. This indicates that repositories having these features are less
likely to contain a CVE.

35

4.3. Found Patterns in the Dataset

Figure 4.6: Top five rules with the highest confidence, support level 0.1 and severity set to 0

The next step in the procedure involved extracting the consequents that included a severity set to
1. However, none of these instances resulted in any association rules, indicating their infrequency. As
a result, the value of the min_support parameter was reduced to 0.01 to identify rules that may have a
lesser impact but could still be considered important. Figure 4.7 illustrates the top five association rules
with the highest confidence.

In the figure, the rule with the highest confidence is the third rule, characterized by the antecedents
RA3, RU2, A1. This rule suggests that among repositories that are older, have not been recently updated,
and are classified as outliers, 83% of them contain a reported CVE. Notably, all the generated rules
include the parameter A1, which indicates that if a repository is classified as an outlier by the isolation
forest algorithm, it increases the likelihood of it containing a CVE.

Figure 4.7: Top five rules with the highest confidence, support level 0.01 and severity set to 1

36

4.4. Predicted Vulnerability of a Repository

The above-described process was repeated, but this time with a focus on the target variable sever-
ity_encoded as consequents. As expected, the same association rules that were generated for sever-
ity_encoded_bin_0, was generated for severity_bin_0 since they represent the same data points in the
dataset. This result is illustrated in Figure 4.6. However, no rules were generated for the other severity
levels, even when the support threshold was lowered to 0.05.

In summary, the findings for the generated association rules can be narrowed down to:

• Repositories with few open issues, recent updates, assigned to cluster 1, and few pull requests are
less likely to contain reported CVEs. The antecedents OI0, RU0, CL1, PR0 consistently appear in
all generated rules, highlighting their relevance in predicting the absence of CVEs (has_CVE = 0).

• Repositories that are older, not recently updated, and identified as outliers have a higher proba-
bility of containing reported CVEs. The parameter A1 consistently appears in all generated rules,
indicating its significance in predicting the presence of CVEs (has_CVE = 1).

• No association rules were generated for different severity levels when applying association rule
mining to the target variable severity_encoded.

4.4 Predicted Vulnerability of a Repository

This section presents the results for predicting if a GitHub repository’s data point contains a vulnera-
bility or not, based on the target variable has_CVE in the built feature space. These results are used to
answer Research Question 1 and investigate how machine learning can be used to predict vulnerabili-
ties in third-party open source software.

Firstly, the result for the overall algorithm benchmark is presented for the RFC, SVC, and ANFIS.
This includes tuning the hyperparameters using grid search. Subsequently, the algorithms’ predictive
performance for identifying whether a repository has a reported severity or not is presented.

4.4.1 Algorithm Benchmark

The algorithm benchmark section presents the results of the hyperparameter tuning for three different
machine learning algorithms: RFC, SVC, and ANFIS, the first two implemented using the scikit-learn
library in Python and the third by scratch. Hyperparameters were optimized for all three algorithms
using grid search, and the final choices for each respective model can be found in Table 4.9, highlighted
in bold text.

Algorithm Parameter Values

RFC Number of trees in the forest n_estimators = [50, 100, 200]
Max levels in each decision tree max_depth = [None, 5, 10]
Min data points placed in a node before the node is split min_samples_split = [5, 10]
Min data points allowed in a leaf node min_samples_leaf = [2, 4]

SVC Penalty parameter C of the error term C = [0.1, 1]
Kernel function to be used kernel = [’linear’, ’rbf’]
Kernel coefficient for ’rbf’ gamma = [’scale’, ’auto’]

ANFIS Number of agents (population) nPop = [20, 40, 60]
Number of iterations epochs = [100, 200, 300]

Table 4.9: Optimal hyperparameters for target variable has_CVE

4.4.2 Algorithm Performance

The results of the machine learning algorithms for predicting the presence of vulnerabilities in GitHub
repositories are presented in this section. The performance of the models in predicting the severity
indicator (0 for no severity and 1 for severity) was evaluated using Stratified 5-fold cross-validation.

37

4.4. Predicted Vulnerability of a Repository

This implies that for each fold, 80% of the dataset is used to train the model, while the remaining
unseen data points (20%) were used to evaluate the model.

To measure their predictive capability, the averaged accuracy and the values of the classification
report were computed, thus addressing Research Question 2. Table 4.10 shows the averaged accuracy
scores for the RFC, SVC, and ANFIS models. The RFC had the highest average accuracy of 0.917,
followed by the SVC model with an accuracy of 0.871, and the ANFIS with an accuracy of 0.860.

Algorithm Accuracy

RFC 0.917
SVC 0.871
ANFIS 0.860

Table 4.10: Averaged accuracy for target variable has_CVE

The results of the evaluation are summarized in Table 4.11, which displays the average classification
report for the target variable has_CVE. The precision score represents the proportion of true positive
predictions over the total number of positive predictions, while the recall score is the proportion of true
positive predictions over the total number of actual positive instances. The F1-score is the harmonic
mean of precision and recall, providing an overall performance score that considers both metrics.

Algorithm Class Precision Recall F1-score

RFC 0 0.92 0.99 0.95
1 0.90 0.53 0.67

SVC 0 0.88 0.99 0.93
1 0.75 0.25 0.38

ANFIS 0 0.86 0.99 0.92
1 0.75 0.16 0.27

Table 4.11: Averaged classification report for the severity indicator based on 5-fold cross-validation

4.4.3 Identified Important Features

The feature importance analysis method 3.6.1 was conducted to determine the relative importance of
each feature in predicting the severity of an issue for each model. The results from this analysis serves
as the foundation for answering Research Question 3. Table 4.12 presents the three five averaged fea-
ture importances for the models. The most important feature for all three models is stars/forks, but the
importance of other features varied depending on the model. The value of the feature importance score
is measured relatively to the other features in order to identify which feature that is most important for
each model.

Furthermore, different methods were used to calculate the feature importances for the RFC, SVC,
and ANFIS models. For the RFC model, the feature importances were recorded for each fold in cross-
validation, and the average feature importance’s across all folds were calculated and printed in de-
scending order. This approach provides an accurate and robust estimation of feature importance as
it takes into account the variation across different folds of the data. For the SVC model, feature im-
portances were computed by averaging the coefficients of each feature across all folds using permu-
tation_importance(), which estimates the importance of a feature by measuring the decrease in perfor-
mance when the values of that feature are randomly permuted. However, it is acknowledged that this
approach may not provide an accurate estimate of feature importance as it assumes that the features are
independent, which may not be the case in reality. Lastly, the ANFIS models feature importance score
was calculated by investigating the value of each membership function, since each function represents
a feature in the model. The value resembles the degree to which the feature was used. When referring
to Table 4.12, it is crucial to acknowledge that the values exhibit varying ranges and therefore cannot
be directly compared between models. Nevertheless, the objective of these results was to determine
the most significant feature for each model. Consequently, the focus lies on the relative order of the
importance scores rather than the precise numerical values.

38

4.5. Predicted Severity Level of a Repository

Algorithm Feature Value

RFC stars/forks 0.202
repo_days_since_update 0.186
contributors_count 0.148

SVC stars/forks 0.026
repo_age 0.007
has_issues 0.003

ANFIS stars/forks 70.43
contributors_count 66.42
repo_age 42.03

Table 4.12: Top 3 feature importances from 5-fold cross-validation

4.5 Predicted Severity Level of a Repository

This section presents the results of predicting the severity level of a GitHub repository’s data point,
based on the target variable severity_encoded in the feature space. By investigating how the models
perform on the target variable, it addresses Research Question 4.

Firstly, the result for the overall algorithm benchmark is presented for RFC, SVC, and ANFIS, which
includes tuning the hyperparameters using grid search. After this, the algorithms’ classification perfor-
mance for identifying whether a repository has a reported severity or not is presented.

4.5.1 Algorithm Benchmark

This section presents the results of the hyperparameter tuning for three different machine learning
algorithms: RFC, SVC, and ANFIS. Grid search was performed for all three algorithms, and the final
hyperparameter choices can be seen in Table 4.13.

Algorithm Parameter Values

RFC Number of trees in the forest n_estimators = [50, 100, 200]
Max levels in each decision tree max_depth = [None, 5, 10]
Min data points placed in a node before the node is split min_samples_split = [5, 10]
Min data points allowed in a leaf node min_samples_leaf = [2, 4]

SVC Penalty parameter C of the error term C = [0.1, 1]
Kernel function to be used kernel = [’linear’, ’rbf’]
Kernel coefficient for ’rbf’ gamma = [’scale’, ’auto’]

ANFIS Number of agents (population) nPop = [20, 40, 60]
Number of iterations epochs = [100, 200, 300]

Table 4.13: Hyperparameter tuning for severity_encoded with chosen values in bold

4.5.2 Algorithm Performance

This section presents the machine learning algorithms performance for classifying the severity level
for a datapoint representing a GitHub repository. The performance of the models in predicting the
target variable severity_encoded was evaluated using Stratified 5-fold cross-validation. This implies that
for each of the five folds, 80% of the dataset is used to train the model, while the remaining unseen
data points (20%) were used to evaluate the model. The averaged accuracy scores of the five folds are
presented in Table 4.14, indicating that the RFC model achieved the highest accuracy.

39

4.5. Predicted Severity Level of a Repository

Algorithm Accuracy

RFC 0.871
SVC 0.849
ANFIS 0.850

Table 4.14: Averaged accuracy for target variable severity_encoded

Table 4.15 shows the averaged precision, recall, and F1-score of RFC, SVC, and ANFIS for the sever-
ity levels None, Low, Medium, High, and Critical. The severity levels are represented by classes 0, 1, 2, 3,
and 4. For RFC, the severity level None, i.e., no severity, has the highest precision score of 0.90, indicat-
ing that when the model predicts class 0, it is correct 90% of the time. For SVC and ANFIS, class 0 has
the highest precision score of 0.86. It’s important to note that all three algorithms have a precision and
recall score of 0 for the severity level Low, indicating that they did not correctly predict any instances
for this class.

The RFC model achieved the highest accuracy and classification performance when predicting
severity levels in GitHub repositories. However, its performance was lower compared to predicting
the presence of CVEs. None of the models achieved a precision higher than 0.5 for predicting a severity
level except for the severity level None, representing repositories without reported CVEs. The RFC
model demonstrated an averaged precision of 0.43 for severity levels 2-4, indicating a correct predic-
tion rate of 43%. In summary, the RFC model performed best overall but improvements are needed for
predicting severity levels, particularly for the severity level Low.

Algorithm Class Precision Recall F1-score

RFC 0 0.90 1.00 0.95
1 0.00 0.00 0.00
2 0.45 0.22 0.29
3 0.43 0.28 0.34
4 0.41 0.04 0.08

SVC 0 0.86 1.00 0.92
1 0.00 0.00 0.00
2 0.38 0.06 0.10
3 0.36 0.06 0.11
4 0.00 0.00 0.00

ANFIS 0 0.86 0.99 0.92
1 0.00 0.00 0.00
2 0.26 0.05 0.08
3 0.29 0.07 0.11
4 0.16 0.01 0.01

Table 4.15: Averaged classification report for each severity level based on 5-fold cross-validation

40

5 | Discussion

This chapter discusses the yielded results and the methodology used to gain these. Additionally, the
work is discussed in a broader context, taking into account ethical and societal aspects related to the
work.

5.1 Results

This section focuses on notable results that require commentary, and compares them to the related
work. The discussion starts with the results obtained from constructing the feature space, including
the correlation between features in the feature space. Subsequently, the results achieved through the
application of data mining and machine learning techniques are examined and compared to earlier
research.

5.1.1 Built Feature Space

The results of the feature space reveals some interesting insights into the data. The conversion of the
CVSS score to v3 resulted in an increase in severity levels, indicating that the new scoring system may
be more strict in evaluating vulnerabilities. This is in line with the work of Anwar et al. [1], which
highlights the need for taking the version of the CVSS score into consideration.

Furthermore, when examining the correlation matrix for the target variable severity_encoded and
has_CVE, it was found that stars (watchers) and open_issues have the highest positive correlation with
vulnerability severity, followed by forks_no and repo_age. This suggests that popular repositories with a
large number of open issues may be more prone to have vulnerabilities. These findings are consistent
with the study by Horawalavithana et al. [24], who found that activities such as forking and watching
correlated with the number of CVEs.

On the other hand, the negative correlation between vulnerability severity and
repo_days_since_update suggests that repositories that have been updated more recently may have
fewer vulnerabilities. This is contradicting with the findings of Ibrahim et al. [25], who found that
committing, pulling, and branching had a moderate positive correlation with the number of vulnera-
bilities. The result in this thesis suggests that repositories that are frequently updated may have fewer
reported CVEs. One of the reasons for this could be because updates can fix existing vulnerabilities and
prevent new ones. However, this finding differs from those of Naveed [41], who found no significant
correlation between frequency of vulnerabilities and repository metadata such as stars, lines of code,
and other attributes.

The discrepancy in findings between this study and others can be attributed to the contextual varia-
tions in the research. Ibrahim et al. [25]’s study focused on a specific domain, analyzing the top 100 open
source PHP projects on GitHub, while Naveed [41] analyzed a narrower dataset representing a single
programming language. As a result, their conclusions regarding the influence of popularity factors on
vulnerability presence may not be applicable to the broader scope of this research. It is important to
recognize these contextual differences and acknowledge that the contradictions within the results offer
an opportunity to contribute unique insights that complement existing knowledge.

5.1.2 Found Patterns in the Dataset

An analysis of the data during the outlier detection process revealed that most features contained signif-
icant outliers. Upon further investigation, it was determined that these outliers were actual repositories

41

5.1. Results

with extreme values and were thus deemed relevant to the analysis. When examining the representa-
tion of vulnerable and non-vulnerable repositories in the dataset, it became apparent that repositories
with reported CVEs were over-represented in the data points classified as outliers. Specifically, reposi-
tories with reported CVEs comprised nearly 16% of the total dataset, while in the dataset with outliers,
they accounted for almost 67%. The successful identification of vulnerable repositories using the outlier
detection algorithm isolation forest implies that this method can be a valuable tool for initial screening
and prioritization of repositories with potential vulnerabilities. However, it does not negate the need
for other methods, including machine learning techniques, in assessing and validating vulnerabilities.
outlier detection can serve as an effective first step in identifying potential outliers, but further analysis
and investigation using additional methods are still necessary to confirm the presence of vulnerabilities
and assess their severity.

The majority of the repositories were assigned to the same clusters, indicating that the majority of
the repositories in the dataset exhibit similar characteristics. Furthermore, there was no apparent cor-
relation between the clusters and the severity level or severity indicator, suggesting that when using
the unsupervised clustering technique, it did not group the repositories based on their severity level or
severity indicator. This may be attributed to the severity of the issues not being strongly influenced by
the features used for clustering or other unexamined features that better capture the severity level. Ad-
ditionally, the average silhouette score for the clusters was relatively low, suggesting that the clusters
were not well-defined. This results indicates that clustering alone is not a great method for identify-
ing vulnerabilities in repositories based on the provided dataset. However, using different clustering
algorithms and feature sets could yield different results and potentially reveal stronger correlations.

The strong linear relationship between repo_age and repo_days_since_update indicates a consistent
pattern in their changes. This finding is not entirely unexpected since the age of a repository is directly
related to the amount of time that has elapsed since its last update. In addition, the linear relationship
could be partly due to the fact that they are calculated in a similar way, as both are based on the current
date (date the dataset was created) and either the date the repository was created or the date it was last
updated. This means that the two features are not entirely independent of each other and may contain
some redundant information. However, the low correlation coefficient (0.19) suggests that other factors
may be influencing their association. This could be due to outliers in the data or the presence of nonlin-
ear or complex interactions between the variables. Therefore, while there may be a general linear trend
between repo_age and repo_days_since_update, there could be instances where the relationship deviates
from linearity. For example, repositories that are relatively new may have frequent updates initially but
later stabilize, leading to a nonlinear pattern. These nonlinearities can reduce the overall correlation
even if a linear trend is present. However, despite the low correlation, it is still valuable to include both
features in the prediction model as they offer unique information and have the potential to enhance its
performance.

Association rule mining revealed some patterns in the data worth discussing. Looking at the rules
generated for has_CVE set to 0, indicating a repository without reported CVEs, one rule occurred with
probability 94%. This rule indicates that when a repository belongs to cluster 1, which was the biggest
cluster, have few or no open issues, pull requests, and have recently been updated, it doesn’t contain
reported CVEs with 94% probability. However, this rule occurs with a relatively low support value of
0.11, which indicates that it is applicable to 11% of the dataset. Nevertheless, the rule could still be
useful in identifying patterns in the data and repositories which are unlikely to contain reported CVEs.

Considering that the data points with reported CVEs represented only 16% of the entire dataset, it
is reasonable to expect a lower support value for the generated rules targeting repositories with CVEs.
The lower occurrence of repositories with CVEs in the dataset naturally leads to a lower support value
for these rules. However, it is important to exercise caution when interpreting the high confidence of
these rules. While they indicate a strong association between older repositories, classified as outliers,
and those that have neither recently nor formerly been updated with the presence of CVEs, the limited
occurrence of these rules in just 1% of the transactions raises concerns about their reliability and gener-
alizability. Therefore, relying solely on these rules for identifying repositories with reported CVEs may
not be advisable.

Another interesting rule generated for the target variable has_CVE with a value of 1 as the conse-
quent is related to repositories classified as outliers, belonging to cluster 0, and falling into the highest
quantile for the stars/forks feature. According to this rule, a repository with these attributes has a 78%
probability of containing reported CVEs. This finding aligns with the positive correlation observed

42

5.1. Results

between the forks_no feature and the target variable has_CVE in the correlation matrix. The increased
attention and scrutiny that popular repositories receive from the developer community may contribute
to the higher likelihood of CVE discovery. However, it is important to note that popularity alone does
not guarantee the presence of vulnerabilities, and other factors should be considered in assessing the
security of a repository.

However, it is worth noting that no association rules could be generated for the target variable
severity_encoded, which represents the severity level. This can be attributed to the infrequency and
imbalance of the dataset, where the occurrence of severe vulnerabilities is relatively rare compared to
non-severe ones. As time progresses and more vulnerabilities are reported, and more data points are
collected, it is expected that more frequently occurring rules and patterns will emerge, providing greater
insights into the relationship between the features and the severity level of vulnerabilities.

The three data mining approaches were applied to the same dataset, providing complementary in-
sights into the vulnerability landscape of GitHub repositories. Despite their distinct methodologies,
these approaches collectively contribute to a deeper understanding of the dataset. Each method ex-
plores different aspects of the data, revealing unique patterns, relationships, and potential vulnera-
bilities. The Isolation forest algorithm was effective in identifying repositories with reported CVEs,
prioritizing their examination as potential outliers. Association Rule Mining uncovered interesting pat-
terns and dependencies among various attributes, shedding light on factors associated with reported
CVEs. Although the unsupervised clustering technique did not directly reveal a correlation with the
severity indicator, it played a role in generating association rules related to CVEs.

While there may be some variations in the insights generated by these methods, their combined find-
ings provide valuable information for organizations utilizing GitHub repositories. These insights as-
sist in identifying repositories with potential vulnerabilities, and making informed decisions regarding
repository selection and risk mitigation. Therefore, incorporating these findings into security strategies
can prioritize vulnerabilities and improve vulnerability assessment and mitigation practices.

5.1.3 Predicted Vulnerabilities and Severity Level in Repositories

The results of this study suggest that the RFC model outperforms both the SVC and ANFIS models in
predicting the severity and severity level of a repository. This is in line with the findings of Kamal and
Raheja [30], who also used a Random Forest regressor to predict the CVSS v.3.* score of un-scored soft-
ware vulnerabilities. However, that study used data from NVD to predict the score. Similarly, Chowd-
hury and Zulkernine [8] found that decision-tree based techniques such as random forest showed the
best results in predicting vulnerabilities in software, also obtaining an accuracy over 90%, compared to
the accuracy from RFC in this study of 91.7%. However, the study used different independent variables
namely, complexity, coupling, and cohesion (CCC) metrics [8].

Comparing these results to other studies reveals some contradictions. For instance, Jabeen et al.
[26] found that the ANFIS model performed better than SVM when predicting the vulnerability rate,
whereas Edkrantz [16] showed that the SVM algorithm outperformed random forests when predicting
exploit likelihood and time frame for unseen vulnerabilities. It’s worth noting, however, that both
of these studies used continuous variables, whereas the predictive target variable in this study was
discrete, which may have impacted the results. Furthermore, both studies relied on the NVD as the
primary data source for independent variables, while this study used GitHub data instead.

The results also show that the models have difficulty predicting the severity of a repository, espe-
cially for the severity level Low, which may be due to the imbalanced nature of the dataset, as discussed
by Chowdhury and Zulkernine [8]. This may indicate that there are not enough samples in the dataset
to build a reliable model for predicting the severity level Low, which is also seen in the encoded severity
distribution where the severity level is represented with only 49 data points in total. Additionally, it is
noteworthy that all three models have a higher precision than recall for the severity level Medium, High,
and Critical, suggesting that they are better at identifying true positives than true negatives. This may
be due to the fact that the models are trained on a dataset that is imbalanced towards the non-vulnerable
cases, inflecting bias towards predicting lack of vulnerability.

The analysis of feature importance reveals that stars/forks is the most critical feature in predicting the
severity of a repository. This finding is in line with the correlation matrix, which indicated that stars
(watchers) had the strongest positive correlations with the dependent variable has_CVE. Furthermore,
the study by Horawalavithana et al. [24] supports this result, as they found that activities such as

43

5.2. Method

watching were associated with the number of CVEs. The feature importances for the other variables
differ between the models, which may be due to the models’ distinct characteristics.

5.2 Method

This section discuss the methodology applied to yield the results. The discussion begins by outlining
the approach used to collect and prepare the data, including the process for creating a balanced dataset
and ensuring real-world representation of the data. Next, the approach for constructing the feature
space is discussed. The data mining techniques used are then discussed, with a particular focus on
the use of observations identified as outliers. Finally, the methodology for making predictions about
severity levels is discussed.

5.2.1 Data Collection and Preparation

The process of data collection and preparation is a crucial step in any machine learning study, and this
research is no exception. One important aspect to consider when dealing with vulnerability data in
GitHub repositories is the possibility of multiple reported severities for a single package. For instance,
the tensorflow/tensorflow package has almost 400 connected CVEs. Therefore, it is necessary to carefully
curate the dataset to avoid introducing any biases that may affect the results.

However, creating a balanced dataset is not an easy task, as highlighted by other studies [10] [17].
One of the challenges is representing the real-world context [27] without limiting the dataset to specific
organizations. Additionally, removing duplicate rows based solely on the package name may not be the
best approach, especially when dealing with repositories that have multiple reported vulnerabilities.

Another challenge when creating a balanced dataset is the lack of data for certain severity levels. For
example, there may be a low number of vulnerabilities with the severity level Low. Although this accu-
rately reflects the real-world context, it becomes difficult to train models on such a dataset, as shown in
the results. One possible solution is to use oversampling techniques, but this introduces a trade-off be-
tween the risk of overfitting and increasing the sample size [10]. Additionally, this technique removes
the real-world representation of the dataset by over-representing the vulnerable class. Excluding the
severity level Low from the dataset could have been another approach. However, doing so would also
remove important real-world context and potentially introduce bias and imbalance into the dataset.
This would compromise the models’ ability to accurately predict across all severity levels.

5.2.2 Building the Feature Space

The methods used for building the feature space is relevant to discuss in this study. Although the set
of relevant features have carefully been selected to represent the GitHub repositories and their vulner-
abilities, there are several additional features that could have been included.

For example, vendor and organization are two categorical values that could have been encoded and
included in the feature space. This additional information could provide insight into the organizational
structure of the repositories and their associated vulnerabilities. However, vendor was excluded due to
the high percentage of missing values and their inclusion could have introduced bias and affected the
accuracy and reliability of the analysis. Regarding the feature organization, it contained a large number
of unique values, making it challenging to apply one-hot encoding without significantly increasing
the dimensionality of the feature space. One-hot encoding all the unique values could have led to a
sparse representation and potential overfitting. Therefore, the decision not to use one-hot encoding for
organization aimed to maintain a more manageable feature space and mitigate the risk of overfitting.

Text mining techniques, such as a bag-of-words approach, could also have been applied to the fea-
ture repo_topics to gain more insight into the repositories’ purposes. Several studies have used the
vulnerability description to predict severity [19] and exploit likelihood [16] of vulnerabilities. This
additional information could provide more context about the repositories and help the model better
understand the potential vulnerabilities.

Another potential feature that could have been investigated is the versions of the GitHub reposito-
ries related to the reported vulnerabilities. Similar predictive works have been done to predict the time
to the next vulnerability [61], and including version information in the feature space could possibly
improve the model’s performance.

44

5.3. The Work in a Wider Context

Finally, it could be useful to consider the dependencies between packages as an independent feature
in the feature space. This additional information would provide a more comprehensive view of poten-
tial vulnerabilities, particularly in understanding how a specific repository’s use of another repository
with reported CVEs may impact its own vulnerability profile.

5.2.3 Finding Patterns in the Dataset

In data mining, converting numerical values to categorical values is often necessary to apply certain
algorithms such as the Apriori algorithm. However, this process can be challenging, particularly when
dealing with outliers and skewed distributions, as highlighted by Chatziasimidis et al. [7]. The solution
applied in this study was to bin the numerical values based on their distribution and by applying K-
means clustering. This solution have been used in other studies [7], but other approaches could have
been considered.

Another point of consideration was the potential strong linear relationship between repository age
and days since the last update. While this relationship could have been handled differently, it is impor-
tant to note that identifying and addressing such relationships is critical in data mining to avoid false
findings. Additionally, there were no apparent relationships between the clusters and the vulnerability
of a repository, indicating that it may be necessary to explore additional independent features to better
capture the relationship between repository characteristics and the likelihood of reported CVEs.

In the context of outlier detection, including actual repositories with extreme values in the analysis
raised questions about their treatment as outliers. While these repositories are clearly distinguishable
in the charts, there is a trade-off between excluding them or retaining them, considering their rarity and
potential value in understanding vulnerabilities. The decision lies in balancing the trade-off between
preserving important information and introducing potential bias. Researchers should explore the sig-
nificance of including these rare repositories, even if they exhibit weak support in association rules,
to gain a comprehensive understanding of vulnerability patterns. By reframing the discussion in this
manner, the focus shifts towards evaluating the merits of retaining these repositories for meaningful
insights. Another important aspect to consider regarding the outliers, is the fact that the outlier indi-
cator feature, outlier, occurred frequently in the rules generated by the association rule mining model.
This finding could signify the importance of keeping the outliers as they may serve as indicators for
vulnerabilities.

5.2.4 Predicting Vulnerabilities and Severity Level in Repositories

The ANFIS model was implemented with a relatively simple architecture due to the large number of
features in the dataset, which could have required significant memory usage (up to one terabyte) if a
more complex architecture was used. However, it is acknowledged that increasing the complexity of the
model architecture could have potentially improved its accuracy. Furthermore, it is important to note
that the ANFIS model had to be implemented from scratch, as no existing library could be used. To
ensure the model’s accuracy, it was tested on a dataset with known results, and the model’s predictions
was compared to those of another ANFIS model to ensure its correctness. However, it is acknowledged
that undiscovered faults in the model’s development could lead to erroneous results, and additional
measures may be required to handle discrete independent variables.

The feature importance analysis revealed that certain features had a higher impact on vulnerability
prediction than others. However, it is important to consider the limitations associated with the feature
importance analysis. The assumption of feature independence in the SVC model may not always hold
true in real-world scenarios. This assumption can impact the accuracy of the estimated feature im-
portances. Additionally, while the calculated feature importances provide valuable information about
the relative importance of features, they do not capture the full complexity and interactions within the
dataset.

5.3 The Work in a Wider Context

In the context of this work, it is important to discuss the ethical and societal implications related to the
use of data mining and machine learning techniques for predicting vulnerabilities in software reposi-

45

5.3. The Work in a Wider Context

tories. The use of these techniques can have both positive and negative consequences that needs to be
considered.

One of the positive consequences is that the use of these techniques can lead to more efficient and
somewhat accurate detection of known vulnerabilities in third-party open source software. From a
societal perspective, this can improve the security of software systems, which is essential in today’s
world where cyber threats are becoming increasingly frequent and more difficult to detect. Thus, by
identifying known vulnerable software, data mining and machine learning techniques can help prevent
cyber attacks and protect user data, therefore contributing to the overall security of digital systems.

On the negative side, there are several concerns of using machine learning techniques. For example,
there are concerns about the potential biases that may be present in the data used to train the machine
learning models, which could lead to discriminatory outcomes. As the data used in this thesis rep-
resents repositories with reported CVEs found in the GitHub Security Advisory Database, other data
is not considered although those repositories may have reported CVEs. Another important ethical as-
pect that needs to be considered is the privacy of the data used to train and evaluate machine learning
models. However, as the data used in this work was gathered from public sources.

46

6 | Conclusion

The purpose of this thesis was to explore the predictability of vulnerabilities in third-party open source
software using data mining and machine learning techniques. A dataset was created using data from
GitHub repositories, with reported CVEs used to build the positive class, and repositories without
reported CVEs to build the negative class. Feature extraction and selection were applied to the dataset
to create a high-dimensional feature space suitable for applying data mining and machine learning
techniques.

Based on the findings, it was concluded that machine learning models can predict vulnerabilities in
third-party OSS with an accuracy of 90%. Out of the three machine learning models, the RFC was found
to be most suitable for predicting vulnerabilities in third-party OSS. The feature importance analysis
revealed that the stars/forks feature had the highest significance in predicting security vulnerabilities.
Further investigation is needed to understand the relationship between user count and vulnerability de-
tection in OSS. Popular repositories attract more attention, increasing the likelihood of reported CVEs.
This highlights the importance of community engagement in detecting vulnerabilities. Additionally,
the study revealed that the imbalanced nature of the dataset made it difficult for the models to predict
the severity level of a repository, especially the severity level Low. Moreover, the models had a higher
precision than recall for the severity indicator, and severity level Medium, High, and Critical, indicating
a bias towards predicting non-severity cases.

The results also indicate that data mining techniques can be used to predict vulnerabilities in third-
party OSS. The outlier detection algorithm isolation forest was successful in identifying vulnerable
repositories. Out of all the data points with listed CVEs, 17% were classified as outliers. In addition,
67% of all the outliers represented a vulnerable repository. This indicates its usefulness in identifying
potential vulnerabilities in third-party OSS.

The clustering technique showed that most repositories had similar characteristics, with no apparent
correlation between the clusters and severity level or severity indicator. This suggests that clustering
may not be the most effective technique for predicting vulnerabilities, and alternative methods such as
supervised learning may be more suitable.

The association rules revealed that repositories belonging to cluster 1, those having few or no open
issues, pull requests, and which have recently been updated, are less likely to contain reported CVEs.
However, it is important to note that the absence of reported CVEs does not guarantee the absence
of unreported vulnerabilities. Repositories with limited community engagement may still be vulnera-
ble, potentially containing undiscovered CVEs. Therefore, users should exercise caution and conduct
thorough assessments of the security implications before using such OSS.

Furthermore, the study’s findings indicate a high probability of older repositories, classified as out-
liers, containing reported CVEs. Additionally, repositories classified as outliers with a higher value of
stars/forks also show a high likelihood of containing reported CVEs. However, it is worth noting that
the higher community engagement associated with repositories having a higher value of stars/forks in-
creases the likelihood of vulnerabilities being discovered. This suggests that the heightened attention
and usage of the code contribute to the identification of vulnerabilities. Lastly, the imbalanced nature
of the dataset and the infrequency of observations for the severity levels made it difficult to generate
rules with target variable severity_encoded, indicating the need for more data.

To conclude, this study’s findings contributes to the literature on predicting vulnerabilities in third-
party OSS and shed light on the relative impact of various software characteristics on the likelihood of a
security vulnerability. The potential of machine learning models for predicting the existence of known
vulnerabilities and severity level of a vulnerability has been demonstrated, and these findings can be
useful for improving software security practices. In addition, data mining techniques have been shown

47

6.1. Future Work

to be effective for predicting vulnerabilities in third-party OSS, but the choice of technique should be
carefully considered based on the specific dataset characteristics. A combination of unsupervised and
supervised learning techniques may be the most effective approach for predicting vulnerabilities in
third-party OSS.

6.1 Future Work

This study opens up several approaches for future work. One possible direction for this is to explore
additional variables that impact the likelihood of a security vulnerability. These variables could be, code
complexity, testing coverage, dependencies in the repositories, or number of commits. Additionally,
future research could consider more extensive datasets and add databases from other sources than
GitHub. One example could be to look into the Pypi database1 and extract severities of the packages
listed.

Additionally, it would be valuable for future research to explore the effectiveness of other machine
learning algorithms, including deep learning models, in predicting vulnerabilities in third-party OSS.
While deep learning models have demonstrated impressive performance in numerous fields, the ANFIS
model employed in this study produced the poorest accuracy when compared to the other two mod-
els used. Thus, a hybrid model incorporating fuzzy logic and neural networks may not have been the
optimal choice, and deep learning models may be more appropriate. Moreover, future work could in-
vestigate the use of ensemble methods, which combines multiple machine learning models, to improve
the prediction accuracy and robustness of the models.

In future research, it would be interesting to investigate the transferability of machine learning mod-
els trained on OSS to commercial software, considering that commercial software has different charac-
teristics such as proprietary code, different development practices, and varying levels of testing which
could impact model performance. Additionally, it would be valuable to explore the practical implica-
tions of using machine learning models for predicting vulnerabilities in third-party OSS. For example,
researchers could examine how software developers can leverage these models’ predictions to enhance
their software security practices and lower the likelihood of vulnerabilities.

1Pypi: https://pypi.org/

48

https://pypi.org/

Bibliography

[1] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen. “Cleaning the
NVD: Comprehensive quality assessment, improvements, and analyses”. In: IEEE Transactions on
Dependable and Secure Computing 19.6 (2021), pp. 4255–4269.

[2] G. D. Apriliana, T Siswantining, D Sarwinda, and A Bustamam. “Analysis of data mining for
classification of Obstructive Sleep Apnea in chronic obstructive pulmonary disease patients”. In:
AIP Conference Proceedings. Vol. 2242. 1. AIP Publishing LLC. 2020, p. 030023.

[3] association_rules: Association rules generation from frequent itemsets. 2023. URL: https://rasbt.
github.io/mlxtend/user_guide/frequent_patterns/association_rules/.

[4] Daniel Berrar. “Cross-Validation”. In: Encyclopedia of Bioinformatics and Computational Biology. Ed.
by Shoba Ranganathan, Michael Gribskov, Kenta Nakai, and Christian Schönbach. Oxford: Aca-
demic Press, 2019, pp. 542–545. ISBN: 978-0-12-811432-2. DOI: https://doi.org/10.1016/
B978-0-12-809633-8.20349-X.

[5] Witte G Booth H Rike D. “The National Vulnerability Database (NVD)”. In: National Institute of
Standards and Technology, Gaithersburg, MD, [online] (2013), pp. 1–22.

[6] Leo Breiman. “Random forests”. In: vol. 45. Springer, 2001, pp. 5–32. DOI: 10 . 1023 / A :
1010950718922.

[7] Fragkiskos Chatziasimidis and Ioannis Stamelos. “Data collection and analysis of GitHub repos-
itories and users”. In: 2015 6th International Conference on Information, Intelligence, Systems and Ap-
plications (IISA). IEEE. 2015, pp. 1–6.

[8] Istehad Chowdhury and Mohammad Zulkernine. “Using complexity, coupling, and cohesion
metrics as early indicators of vulnerabilities”. In: Journal of Systems Architecture. Vol. 57. 3. Elsevier.
2011, pp. 294–313. DOI: https://doi.org/10.1016/j.sysarc.2010.06.003.

[9] Valerio Cosentino, Javier Luis, and Jordi Cabot. “Findings from GitHub: methods, datasets and
limitations”. In: Proceedings of the 13th International Conference on Mining Software Repositories. 2016,
pp. 137–141.

[10] Roland Croft, Yongzheng Xie, and Muhammad Ali Babar. “Data preparation for software vulner-
ability prediction: A systematic literature review”. In: IEEE Transactions on Software Engineering
(2022).

[11] Mengyao Cui. “Introduction to the k-means clustering algorithm based on the elbow method”.
In: Accounting, Auditing and Finance 1.1 (2020), pp. 5–8.

[12] CVE and NVD relationship. 2023. URL: https://cve.mitre.org/about/cve_and_nvd_
relationship.html.

[13] CWE VIEW: Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses. Accessed on:
January 26, 2023. URL: https://cwe.mitre.org/data/definitions/1387.html.

[14] Mwamba Kasongo Dahouda and Inwhee Joe. “A deep-learned embedding technique for categor-
ical features encoding”. In: IEEE Access 9 (2021), pp. 114381–114391.

[15] Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment: Identifying
and preventing software vulnerabilities. Pearson Education, 2006. ISBN: 9780321444424.

[16] Michel Edkrantz and A Said. “Predicting exploit likelihood for cyber vulnerabilities with machine
learning”. In: Unpublished Master’s Thesis, Chalmers Unıversıty of Technology Department of Computer
Science and Engineering, Gothenburg, Sweden (2015), pp. 1–6.

49

https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
https://doi.org/https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1023/A:1010950718922
https://doi.org/https://doi.org/10.1016/j.sysarc.2010.06.003
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cwe.mitre.org/data/definitions/1387.html

Bibliography

[17] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. “Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey”. In: ACM Computing
Surveys (CSUR) 50.4 (2017), pp. 1–36.

[18] Baptiste Gregorutti, Bertrand Michel, and Philippe Saint-Pierre. “Correlation and variable impor-
tance in random forests”. In: Statistics and Computing 27 (2017), pp. 659–678.

[19] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. “Learning to
predict severity of software vulnerability using only vulnerability description”. In: 2017 IEEE
International conference on software maintenance and evolution (ICSME). IEEE. 2017, pp. 125–136. DOI:
10.1109/ICSME.2017.52.

[20] Sahand Hariri, Matias Carrasco Kind, and Robert J. Brunner. “Extended Isolation Forest”. In: IEEE
Transactions on Knowledge and Data Engineering 33.4 (2021), pp. 1479–1489. DOI: 10.1109/TKDE.
2019.2947676.

[21] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction. Vol. 2. Springer, 2009.

[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. “Support
vector machines”. In: IEEE Intelligent Systems and their applications 13.4 (1998), pp. 18–28.

[23] Katsuhiro Honda, Satoshi Hyakutake, Seiki Ubukata, and Akira Notsu. “A hybrid robust ANFIS
based on noise fuzzy clustering”. In: 2021 Joint 10th International Conference on Informatics, Electron-
ics & Vision (ICIEV) and 2021 5th International Conference on Imaging, Vision & Pattern Recognition
(icIVPR). IEEE. 2021, pp. 1–7.

[24] Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choudhury, Lawrence
O. Hall, and Adriana Iamnitchi. “Mentions of security vulnerabilities on reddit, twitter and
github”. In: IEEE/WIC/ACM International Conference on Web Intelligence. 2019, pp. 200–207.

[25] Ahmed Ibrahim, Mohammad El-Ramly, and Amr Badr. “Beware of the Vulnerability! How Vul-
nerable are GitHub’s Most Popular PHP Applications?” In: 2019 IEEE/ACS 16th International Con-
ference on Computer Systems and Applications (AICCSA). IEEE. 2019, pp. 1–7.

[26] Gul Jabeen, Sabit Rahim, Wasif Afzal, Dawar Khan, Aftab Ahmed Khan, Zahid Hussain, and
Tehmina Bibi. “Machine learning techniques for software vulnerability prediction: a comparative
study”. In: Applied Intelligence. Springer. 2022, pp. 1–22. DOI: 10.1007/s10489-022-03350-5.

[27] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves Le Traon, and Mark
Harman. “The importance of accounting for real-world labelling when predicting software vul-
nerabilities”. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Association for Computing
Machinery, 2019, pp. 695–705. DOI: 10.1145/3338906.3338941.

[28] Ian T Jolliffe and Jorge Cadima. “Principal component analysis: a review and recent develop-
ments”. In: Philosophical transactions of the royal society A: Mathematical, Physical and Engineering
Sciences 374.2065 (2016), p. 20150202.

[29] Ledisi Kabari and Believe Nwamae. “Principal Component Analysis (PCA) -An Effective Tool in
Machine Learning”. In: (May 2019).

[30] Navirah Kamal and Supriya Raheja. “Prediction of Software Vulnerabilities Using Random Forest
Regressor”. In: Computational Intelligence: Select Proceedings of InCITe 2022. Springer, 2023, pp. 411–
424.

[31] Dervis Karaboga and Ebubekir Kaya. “Adaptive network based fuzzy inference system (ANFIS)
training approaches: a comprehensive survey”. In: Artificial Intelligence Review. Vol. 52. Springer,
2019, pp. 2263–2293. DOI: 10.1007/s10462-017-9610-2.

[32] Trupti A Kumbhare and Santosh V Chobe. “An overview of association rule mining algorithms”.
In: International Journal of Computer Science and Information Technologies 5.1 (2014), pp. 927–930.

[33] Yaguo Lei. “3 - Individual intelligent method-based fault diagnosis”. In: Intelligent Fault Diag-
nosis and Remaining Useful Life Prediction of Rotating Machinery. Ed. by Yaguo Lei. Butterworth-
Heinemann, 2017, pp. 67–174. ISBN: 978-0-12-811534-3. DOI: https://doi.org/10.1016/
B978-0-12-811534-3.00003-2.

50

https://doi.org/10.1109/ICSME.2017.52
https://doi.org/10.1109/TKDE.2019.2947676
https://doi.org/10.1109/TKDE.2019.2947676
https://doi.org/10.1007/s10489-022-03350-5
https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1007/s10462-017-9610-2
https://doi.org/https://doi.org/10.1016/B978-0-12-811534-3.00003-2
https://doi.org/https://doi.org/10.1016/B978-0-12-811534-3.00003-2

Bibliography

[34] Jake Lever, Martin Krzywinski, and Naomi Altman. “Points of significance: Principal component
analysis”. In: Nature methods 14.7 (2017), pp. 641–643.

[35] Robert A Martin, Sean Barnum, and Steve Christey. “Being explicit about security weaknesses”.
In: Black Hat Briefings (2007).

[36] Fabio Massacci and Viet Hung Nguyen. “Which is the right source for vulnerability studies? an
empirical analysis on mozilla firefox”. In: Proceedings of the 6th international workshop on security
measurements and metrics. Association for Computing Machinery, 2010, pp. 1–8. DOI: 10.1145/
1853919.1853925.

[37] Microsoft Security Advisory (899588): Worm:Win32/Zotob.A and Worm:Win32/Zotob.B. 2005. URL:
https://learn.microsoft.com/en-us/security-updates/securityadvisories/
2005/899588 (visited on 02/01/2023).

[38] Tyler Moore. “On the harms arising from the Equifax data breach of 2017”. In: International Journal
of Critical Infrastructure Protection. Vol. 19. Elsevier, 2017, pp. 47–48. DOI: 10.1016/j.ijcip.
2017.10.004.

[39] Anthony J Myles, Robert N Feudale, Yang Liu, Nathaniel A Woody, and Steven D Brown. “An in-
troduction to decision tree modeling”. In: Journal of Chemometrics. Vol. 18. 6. Wiley, 2004, pp. 275–
285. DOI: 10.1002/cem.873.

[40] Sarang Na, Taeeun Kim, and Hwankuk Kim. “A study on the classification of common vulner-
abilities and exposures using naıve bayes”. In: Advances on Broad-Band Wireless Computing, Com-
munication and Applications: Proceedings of the 11th International Conference On Broad-Band Wireless
Computing, Communication and Applications (BWCCA–2016) November 5–7, 2016, Korea. Springer.
2017, pp. 657–662.

[41] Muhammad Shumail Naveed. “Correlation Between GitHub Stars and Code Vulnerabilities”. In:
Journal of Computing & Biomedical Informatics 4.01 (2022), pp. 141–151.

[42] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. “Predicting vul-
nerable software components”. In: Proceedings of the 14th ACM conference on Computer and com-
munications security. Association for Computing Machinery, 2007, pp. 529–540. DOI: 10.1145/
1315245.1315311.

[43] Pegah Nikbakht Bideh, Martin Höst, and Martin Hell. “HAVOSS: A maturity model for handling
vulnerabilities in third party oss components”. In: Product-Focused Software Process Improvement:
19th International Conference, PROFES 2018, Wolfsburg, Germany, November 28–30, 2018, Proceedings
19. Springer. 2018, pp. 81–97.

[44] William S Noble. “What is a support vector machine?” In: Nature biotechnology. Vol. 24. 12. Nature
Publishing Group UK London, 2006, pp. 1565–1567. DOI: 10.1038/nbt1206-1565.

[45] Open Source Software Policy. 2022. URL: https : / / www . saab . com / contentassets /
7937e98676a147f49fe8664aa899ea9f/open20source20software20policy.pdf.

[46] OWASP Top 10. 2021. URL: https://owasp.org/Top10/.

[47] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck,
Sascha Fahl, and Yasemin Acar. “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. Association for Computing Machinery, 2015, pp. 426–437. DOI: 10.
1145/2810103.2813604.

[48] Jamshid Piri, Hoda Ansari, and R Iran. “Daily Pan Evaporation Modelling With ANFIS and
NNARX”. In: International Journal of Agricultural Research 31 (Feb. 2013).

[49] Derek A Pisner and David M Schnyer. “Support vector machine”. In: Machine learning. Elsevier,
2020, pp. 101–121.

[50] Kristin Potter, Hans Hagen, Andreas Kerren, and Peter Dannenmann. “Methods for presenting
statistical information: The box plot.” In: VLUDS. 2006, pp. 97–106.

[51] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis, and Michalis
Faloutsos. “SourceFinder: Finding Malware Source-Code from Publicly Available Repositories
in GitHub.” In: RAID. 2020, pp. 149–163.

51

https://doi.org/10.1145/1853919.1853925
https://doi.org/10.1145/1853919.1853925
https://learn.microsoft.com/en-us/security-updates/securityadvisories/2005/899588
https://learn.microsoft.com/en-us/security-updates/securityadvisories/2005/899588
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1002/cem.873
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1038/nbt1206-1565
https://www.saab.com/contentassets/7937e98676a147f49fe8664aa899ea9f/open20source20software20policy.pdf
https://www.saab.com/contentassets/7937e98676a147f49fe8664aa899ea9f/open20source20software20policy.pdf
https://owasp.org/Top10/
https://doi.org/10.1145/2810103.2813604
https://doi.org/10.1145/2810103.2813604

Bibliography

[52] Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebas-
tian Nilsson, and Rik Sarkar. “The shapley value in machine learning”. In: arXiv preprint
arXiv:2202.05594 (2022).

[53] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash Patel, Aruna Tiwari,
Meng Joo Er, Weiping Ding, and Chin-Teng Lin. “A review of clustering techniques and develop-
ments”. In: Neurocomputing 267 (2017), pp. 664–681.

[54] Karen Scarfone and Peter Mell. “An analysis of CVSS version 2 vulnerability scoring”. In: 2009 3rd
International Symposium on Empirical Software Engineering and Measurement. IEEE. 2009, pp. 516–
525. DOI: 10.1109/ESEM.2009.5314220.

[55] Security. 2022. URL: https://www.saab.com/products/security.

[56] Ketan Rajshekhar Shahapure and Charles Nicholas. “Cluster quality analysis using silhouette
score”. In: 2020 IEEE 7th international conference on data science and advanced analytics (DSAA). IEEE.
2020, pp. 747–748.

[57] Software Bill Of Materials. 2023. URL: https://www.cisa.gov/sbom.

[58] Siniša Sremac, Ilija Tanackov, Miloš Kopić, and Dunja Radović. “ANFIS model for determining
the economic order quantity”. In: Decision Making: Applications in Management and Engineering 1.2
(2018), pp. 81–92.

[59] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and individual predictions
with feature contributions”. In: Knowledge and information systems 41 (2014), pp. 647–665.

[60] Gustav Svensson. Improving Vulnerability Assessment through Multiple Vulnerability Sources. Printed
in Sweden, Tryckeriet i E-huset, Lund. Sweden, Oct. 2020.

[61] Su Zhang, Doina Caragea, and Xinming Ou. “An empirical study on using the national vulnera-
bility database to predict software vulnerabilities”. In: International conference on database and expert
systems applications. Springer. 2011, pp. 217–231. DOI: 10.1007/978-3-642-23088-2_15.

[62] Alexander Zien, Nicole Krämer, Sören Sonnenburg, and Gunnar Rätsch. “The feature importance
ranking measure”. In: arXiv preprint arXiv:0906.4258 (2009).

52

https://doi.org/10.1109/ESEM.2009.5314220
https://www.saab.com/products/security
https://www.cisa.gov/sbom
https://doi.org/10.1007/978-3-642-23088-2_15

	Abstract
	Acknowledgments
	Contents
	List of Tables
	Introduction
	Motivation
	Aim
	Research Questions
	Delimitation
	Contributions

	Theory
	Software Vulnerabilities
	Data Mining
	Machine Learning
	Model Evaluation
	Related Work

	Methodology
	Programming Tools
	Data Collection and Preparation
	Building the Feature Space
	Finding Patterns in the Dataset
	Predicting Vulnerabilities and Severity Level in Repositories
	Model Evaluation

	Results
	Collected Data
	Built Feature Space
	Found Patterns in the Dataset
	Predicted Vulnerability of a Repository
	Predicted Severity Level of a Repository

	Discussion
	Results
	Method
	The Work in a Wider Context

	Conclusion
	Future Work

	Bibliography

