
Authors: Gabriele Marinosci - Ratmir

Shchadrynski

Supervisor: Aris Alissandrakis

Examiner: Johan Hagelbäck

Semester: VT 2023

Subject: Computer Science

Bachelor Degree Project

Improving the accessibility of API

documentation for non-technical

users

Abstract

Software documentation is one of the most important aspects of the software devel-

opment process, as it allows the transfer of knowledge between individuals, regard-

less of their background and their technical knowledge. In particular, Application

Programming Interfaces provide the basic structure for the communication and in-

tegration between different software systems. Therefore, providing solid API docu-

mentation is fundamental for the software development process as it represents one

of the main learning tools for developers trying to learn new technologies.

While researchers have studied the fundamentals of good API documentation

design for over twenty years, most studies only focused on the point of view of

developers. However, with the rising amount of companies offering Software-as-

a-Service products, it has also become important to produce documentation that is

accessible to people with limited technical knowledge, i.e. customer representatives.

In order to fill this research gap, a case study was conducted in collaboration

with a software company. By using a design science approach, this project focused

on creating an API playground environment where users could interact with various

APIs offered by the company. The results were evaluated through a questionnaire for

user feedback and with an interview conducted with developers from the company.

While the outcome of the evaluation was positive, the limited scope of the project

prevented some important aspects of API documentation such as navigation from be-

ing thoroughly examined, therefore more extensive research is needed in the future.

Keywords: REST API, API documentation, User Experience

Preface

First of all, we would like to thank our supervisor Aris, who never failed to answer our

questions with great detail and offered valuable guidance for the success of this project.

Secondly, we would also like to thank TietoEvry for the opportunity to work with them,

everyone at the company has been very helpful and always ready to assist us with any

issue. Finally, we would like to thank our families who always supported and motivated

us throughout the whole duration of our studies.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Related work . 2

1.3 Problem formulation . 3

1.4 Motivation . 3

1.5 Results . 4

1.6 Scope/Limitation . 4

1.7 Target group . 4

1.8 Outline . 4

2 Method 6

2.1 Research Project . 6

2.2 Small-scale literature study . 6

2.3 Design Science Case Study . 6

2.3.1 Evaluation . 7

2.4 Reliability and Validity . 7

2.4.1 Reliability . 7

2.4.2 Validity . 8

2.5 Ethical consideration . 8

3 Theoretical Background 9

3.1 Early research . 9

3.2 Approaches to programming . 9

3.3 The issues with traditional documentation 10

3.4 Crowd-sourced documentation . 10

3.5 Improving the usability API documentation 11

3.5.1 Content . 11

3.5.2 Structure . 12

4 Research project – Implementation 13

4.1 Back-end . 13

4.2 Front-end . 13

4.3 The First Iteration . 13

4.4 The Second Iteration . 16

4.5 The Third iteration . 19

5 Results 23

5.1 The First Iteration . 23

5.2 The Second Iteration . 27

5.3 The Third Iteration . 31

5.4 Final interview with developers . 36

6 Analysis 40

6.1 Comparing the outcome of first and second iteration 40

6.2 Comparing the outcome of all the iterations 41

6.3 Analysis of interviews with developers 43

7 Discussion 45

8 Conclusion 47

8.1 Future work . 47

References 48

A Appendix A A

1 Introduction

Nowadays, Application Programming Interfaces (APIs) play a huge role in providing

communication and integration between different software systems [1]. They provide

developers with a set of rules and tools to interact with a particular software or plat-

form. However, despite their potential, APIs often present a significant challenge for

non-technical users who lack programming expertise or extensive technical knowledge.

Non-technical users face several challenges when interacting with APIs, including un-

derstanding API concepts, interpreting technical documentation, and implementing APIs

in their applications. The first step in becoming acquainted with APIs involves exploring

their documentation. Effective API documentation is crucial for bridging this knowledge

gap and empowering non-technical users to leverage the full potential of APIs. It serves as

a guide, offering clear instructions, intuitive examples, and comprehensive explanations

to facilitate the understanding and utilization of APIs.

Despite extensive research highlighting the significance of documentation, including

the provision of examples, consumers frequently express dissatisfaction with its effec-

tiveness. Notably, existing literature primarily focuses on examining challenges related

to API documentation solely from the perspective of consumers [2, 3]. In addition to

that, the company that collaborates on this study, raised an issue related to potential cus-

tomers misunderstanding the functionalities of their services. They report that customer

representatives often lack technical expertise and high-level descriptions of their services

are not always enough to provide a clear image of the functionalities. For this purpose,

they suggested the implementation of an interactive API documentation platform, where

the functionalities of their APIs can be demonstrated with a higher level of abstraction in

order to be accessible to users with lower levels of technical expertise, with the aim of

reducing misunderstandings in later stages of production.

Therefore, this thesis focuses on the critical issue of improving the accessibility of

API documentation specifically designed for non-technical users. By addressing this chal-

lenge, we aim to enhance the usability and adoption of APIs among users from various

backgrounds, such as business analysts, project managers, and end-users. The objective

is to develop user-friendly API documentation that provides concise and descriptive in-

formation, allowing non-technical users to quickly understand APIs. We will explore

techniques for approaching documentation and consider factors that affect the level of

perception and understanding of documentation by users. Through this research, we seek

to bridge the knowledge gap between non-technical users and APIs.

In summary, the objective of this thesis is to enhance the accessibility of API docu-

mentation specifically for individuals who lack technical expertise or programming knowl-

1

edge. By developing user-friendly documentation, we intend to empower individuals from

diverse backgrounds to effectively utilize APIs.

1.1 Background

Effective API documentation requires careful consideration of issues such as the content

quality and the way of its presentation [4]. To be more precise, the main content-related

problem is its incompleteness [4]. It is essential to maintain up-to-date documentation that

accurately reflects the current state of the API, including any changes in functionality, new

features, or modifications. Overall, API documentation is an essential aspect of software

development, and its quality can have a significant impact on the usability, reliability, and

security of software systems that use APIs [5, 6]

Considering the non-technical target group, the challenge of inadequate API docu-

mentation has significant implications, including reduced adoption, increased errors, and

delays in the development process. To overcome these obstacles, there is a need to im-

prove the accessibility and usability of API documentation, making it more user-friendly

and fulfill to the needs of non-technical users.

1.2 Related work

There has been a significant amount of research and development in the field of API

documentation, with many different approaches and techniques proposed to improve the

quality and effectiveness of API documentation. While the issue of the complexity of

API documentation seems like a recent problem, already at the end of the 90s and in the

early 2000s numerous researchers tried to focus on identifying the biggest obstacles that

developers faced while trying to learn a new API, and in doing so, designing high-quality

documentation was proven to be the most deciding factor for the learning outcome [7].

Further studies later highlighted the importance of understanding the different ap-

proaches that developers show towards learning new technologies, and therefore focused

on observing how developers use API documentation, in order to gather the requirements

for comprehensive API documentation [5, 8].

Other researchers have focused their efforts on analyzing the currents state of API

reference documentation and their patterns of knowledge, defined by Maleej et al. as

"the different types of knowledge it contains and how this knowledge is distributed among

documents" [9, p. 2].

2

1.3 Problem formulation

Plenty of research has already been made in order to tackle the issues that a traditional

style of API documentation presents, and how it can be improved to be accessible to

different types of developers. However, with the rising number of companies offering

Software as a Service (SaaS) products, nowadays there is a newfound need to make the

documentation of software products, more particularly REST APIs, accessible not only

to developers but also to potential customers, which often presents varying levels of tech-

nical expertise. In order to address this gap in research, the following research questions

will be used to guide this project:

• RQ1 - What factors contribute to the quality and effectiveness of API documenta-

tion?

• RQ2 - How can the design of API documentation be optimized to meet the needs

of users with varying levels of technical expertise, including both developers and

non-technical users?

1.4 Motivation

This problem is important from different perspectives. Foremost, in the context of the

software industry, the accessibility of API documentation has practical impacts on devel-

opers, businesses, and customers. Inadequate documentation can lead to delays, errors,

and increased support costs, negatively impacting product development cycles. By focus-

ing on user-friendly documentation, organizations can enhance their API adoption rates,

improve customer satisfaction, and gain a competitive edge in the market. Moreover,

non-technical users, such as project managers or business analysts, play critical roles in

decision-making processes and require accessible documentation to effectively commu-

nicate their requirements and integrate APIs into their workflows.

As introduced in section 1, the collaborating company has reported problems with

customers misinterpreting the functionalities of their services, which results in problems

in the later stages of production and additional costs. Our aim is to use this case study to

find basic guidelines that can be potentially generalized and extended to other companies

facing similar issues.

By conducting research and developing user-friendly documentation, we can advance

the understanding of how to design effective communication channels between software

systems and non-technical users. This research contributes to the broader scientific knowl-

edge base and establishes best practices for creating accessible and inclusive software

interfaces.

3

1.5 Results

This project will start with a comprehensive study of the current state of research for

API documentation, that will be used to collect some guidelines for good documentation

design. These findings will provide a solid theoretical foundation for the success of the

project. The second part will focus on the implementation of a possible solution to the

identified research gap. Each artifact produced by the iterative development process will

be evaluated with a usability survey in order to gain valuable feedback.

1.6 Scope/Limitation

The work was conducted in collaboration with a company that provided access to exist-

ing framework infrastructure and servers within the scope of utilizing .NET and Vue.js

technologies. However, as a collaborative effort, unexpected technical challenges were

encountered, which impeded the workflow. For instance, server access was limited to

specific working hours (9 to 18) on weekdays only. Moreover, we faced technical obsta-

cles as the laptops provided by the company came with preinstalled VPN and certificates.

This caused initial challenges in accessing the original API since the token certificate was

inactive as soon as the laptops were delivered.

Given the limited time that was allocated for this project, it was not possible to add a

higher number of APIs to be tested in the playground. For this reason, important aspects

of API documentation such as the ease of navigation could not be investigated thoroughly.

Moreover, since this is a case study conducted in collaboration with a company that sells

Software-as-a-Service (SaaS) products, our project focused only on REST APIs and did

not explore other types of APIs.

1.7 Target group

The target group for this thesis on improving the accessibility of API documentation for

non-technical users includes individuals who may not have extensive programming exper-

tise or technical knowledge. This group comprises non-technical users who are interested

in leveraging APIs for various purposes, such as business analysts, project managers, end-

users, or individuals from diverse backgrounds who need to interact with APIs but lack

specialized technical skills.

1.8 Outline

• Introduction: This section provides an overview of the thesis, including the back-

ground, related work, problem formulation, motivation, and initial results. It also

4

outlines the scope and limitations of the study and identifies the target group for the

research.

• Method: In this section, the research methodology and approach are described. It

covers the research project itself, including its design and implementation, as well

as the reliability and validity considerations.

• Theoretical Background: This section explores the theoretical foundations rel-

evant to the research topic. It includes early research in the field, different ap-

proaches to programming, issues with traditional documentation, the concept of

crowd-sourced documentation, and strategies for improving the usability of API

documentation.

• Research Project Implementation: This section details the implementation of the

research project, focusing on the back-end and front-end aspects. It discusses the

tools, technologies, and frameworks used and provides an overview of the first and

second iterations of the project.

• Results: This section presents the findings and results of the research project. It

includes the outcomes of both the first and second iterations, highlighting any im-

provements or challenges encountered during the implementation.

• Analysis: Here, the obtained results are analyzed and interpreted. It may involve

comparing the findings with the initial objectives, identifying patterns or trends, and

drawing meaningful conclusions from the data.

• Discussion: This section provides a deeper analysis and discussion of the results,

relating them to the existing literature and research in the field. It may address any

limitations, implications, or potential future directions based on the findings.

• Conclusions and Future Work: The final section summarizes the key findings and

conclusions of the thesis. It also highlights areas for further research and suggests

potential future work or improvements in the field of API documentation accessi-

bility.

5

2 Method

The aim of this project is to provide a possible solution to the aforementioned problem

and offer guidelines for developers to improve the usability and accessibility of their API

documentation. After careful analysis of previous research on the usability of API docu-

mentation, given the iterative nature of the development process chosen for this project,

the design science approach will be applied in order to produce artifacts that can be eval-

uated and improved after each iteration [10].

2.1 Research Project

This project is the product of a collaboration with TietoEvry Care. They offer SaaS

products for healthcare providers and they have highlighted that their customers some-

times possess limited technical knowledge about computer science and software, there-

fore struggling to understand what the product offers when reading the company’s REST

APIs documentation. For this reason, they have asked us to design a new API play-

ground environment, where users with limited technical knowledge can make use of a

more user-friendly environment that provides many live examples, in order to get a better

understanding of what the company has to offer. The project will start with a small liter-

ature study, which will provide an overview of the current state of research and highlight

some guidelines for the design of good API documentation. After that, the iterative devel-

opment process will start and in order to build a comprehensive plan, the design science

guidelines offered by Hevner et al. in [10] are used as a reference.

2.2 Small-scale literature study

A small-scale comprehensive literature study represents the first step of this project.

Plenty of research analyzed the shortcomings of traditional API documentation and fo-

cused on eliciting the requirements for solid API documentation design. The knowledge

gained following this literature review will provide a solid foundation for the development

process of this project.

2.3 Design Science Case Study

In order to attempt to find a possible solution to the issue raised by TietoEvry, a case

study will be conducted following a design science approach. The iterative process will

start with the elicitation of the requirements and the clarification of the objectives of the

project. Once the objective is well defined, it will be time for the implementation of

6

said objectives. The results of the implementation will be tested and refined iteratively.

Finally, the resulting artifact will undergo an evaluation. This process will be repeated

until a desirable outcome is reached.

Figure 2.1: Iterative process

2.3.1 Evaluation

The evaluation of the artifacts produced by each iteration will be evaluated with a ques-

tionnaire about the usability of the provided solution. The target group for the ques-

tionnaire will be composed of 11 employees of the support team of TietoEvry, they are

considered non-technical users and it is reflected in the questionnaire results. Each par-

ticipant will try out the functionalities implemented in the platform and subsequently will

answer the questions to provide feedback for their user experience.

Finally, an interview with two developers from the company will also be conducted,

in order the gather their opinion on whether the offered solution could present a good tool

for solving the issue or if the approach taken overly simplifies the information and does

not represent the APIs appropriately.

2.4 Reliability and Validity

As a result of the scope and time constraints for this project, there are some issues that

could potentially threaten the reliability and validity of the results.

2.4.1 Reliability

As previously discussed, the aim of this project is to improve accessibility to API doc-

umentation for non-technical users and more particularly, in the case brought to us by

TietoEvry, for potential customers exploring the different products offered by the com-

pany. For this reason, it was initially selected TietoEvry customers as the target for the

evaluation process. However, this was not ultimately possible and the evaluation group

7

will include employees of the support team of the company. While both groups are consid-

ered non-technical users, customers of the company are directly affected by the potential

findings of this research and therefore would have offered better motivation to answer the

questionnaire. This issue could thus affect the reliability of the results.

2.4.2 Validity

The main threat to the validity of the outcomes of this project by the questionnaire, as

the findings are dependent on the quality and comprehensiveness of the questions asked.

Moreover, the participant’s attitude towards the evaluation process could also negatively

impact the validity.

2.5 Ethical consideration

The usage of a questionnaire as an evaluation method warrants a few ethical considera-

tions to be made. No personal information or sensitive data will be collected within the

questionnaire. The only requirement for accessing the question form is to access using

a Google account but under the suggestion of the company it was decided not to collect

the email address, as it is not needed for the purpose of this evaluation. Thus, in order

to avoid the production of duplicated responses, the questionnaire was set up to only be

answered once per iteration.

Moreover, selecting employees within the company as participants for the question-

naire, might in some cases introduce some bias, therefore the participants were purpose-

fully selected from the support team, which has limited contact with the development

team.

8

3 Theoretical Background

The importance of APIs in software development is rather undeniable. They represent

the fundamental building blocks of a software product. They provide standard implemen-

tations that are well-tested and by doing so, they allow better communication between

developers, while also reducing the complexity of software artifacts by favoring interop-

erability and integration, resulting in improved reusability and efficiency [11].

For this reason, several researchers throughout the last 20 years have focused their

efforts on identifying the knowledge that is needed for developers to learn new APIs and

how this information should be presented in order to design good API documentation

[12].

3.1 Early research

Researchers were already discussing the importance of API documentation towards the

end of the 90s when the first documentation generation tools like Javadoc comments for

Java were released. While discussing the relevance and importance of such a tool, re-

searchers highlighted the need for a unified document for the description of software

interfaces [13]. Moreover, multiple studies underlined the necessity for a middle ground

between prose-style documentation and more formal types of documentation and there-

fore started experimenting with the usage of executable examples based on test cases, that

could offer a better learning process for developers [14].

With the rapidly increasing use of component-based software development, the use

of APIs incremented even more in early 2000, and as a consequence the importance of

good API documentation grew with it [14], because as Bloch mentioned in [15, p.1] "No

matter how good an API, it won’t get used without good documentation. Document every

exported API element: every class, method, field, and parameter."

3.2 Approaches to programming

When discussing the factors contributing to good API documentation design, it is also im-

portant to take into account the different attitudes that different developers show toward

the programming process. In a study from 2007 [8], Clarke identified three main types

of developers’ work styles: the systematic developer, who gain a thorough comprehen-

sion of a technology prior to its utilization, the pragmatic developer, who methodically

approaches code writing while gaining a sufficient comprehension of the technology to

facilitate its practical application, and finally, the opportunistic developer, who adopts an

exploratory approach when writing code, aiming to uncover possibilities and potential

9

solutions to effectively address business challenges [8].

These difference in programming work style directly impacts not only the way each

developer makes use of the documentation but also what kind of information they require

from it. Systematic developers deeply analyze the documentation before trying to imple-

ment a new feature, while opportunistic developers are purposely more error-prone and

use API documentation in a more selective manner [5]. When it comes to content, sys-

tematic developers prefer high levels of detail in the API specification, while other types

of developers often value the presence of reusable code examples more. Thus, good API

documentation should be structured in a way that can support all the different work styles

[5].

3.3 The issues with traditional documentation

Traditional API documentation presents high levels of detail about the API specifications,

usually offered through a hierarchical structure, which is, more often than not, hard to

navigate. Efficiently organized information plays a crucial role for developers to easily

find the relevant material in an API, and developers often report difficulties in locating

relevant information inside API documentation, which often results in developers aban-

doning documentation and turning to Q&A website for seeking information [16].

In addition to the issues with navigation, the main criticism of traditional documen-

tation is the lack of quality in its content, which is often reported to be incomplete, am-

biguous, and obsolete. Moreover, while many API specification documents offer usage

examples, they are often lacking a proper explanation [4], and more importantly, they

present a lack of intent behind the implementation, causing many developers to struggle

with understanding the purpose of certain functionalities and the motivations that drove

certain design decisions [7].

APIs face frequent changes and updates during their lifetime, therefore keeping up-

to-date specifications is a challenging task that requires a lot of resources, which causes

numerous documentation sources to become stagnant and obsolete [17]. For this reason, it

is also worth discussing whether software architects should be forced to strictly update and

maintain their documentation, considering that the complexity of many APIs frequently

results in the maintenance cost outweighing the benefits [18].

3.4 Crowd-sourced documentation

As previously discussed, the frequent issues with the accessibility and information quality

of official documentation, causes many developers to prefer crowd-sourced information

on forums and Q&A website such as Stack Overflow, with some studies reporting that

10

approximately 10% of the interview developers never even checking the official docu-

mentation, on the grounds that the question-oriented approach offered by Q&A websites

fits better with their works style and offers a more efficient process for seeking informa-

tion [16].

Developers value the opinions of other experienced developers as valuable sources of

real-world expertise, believing that such insights can guide them in the right direction.

They recognize that certain aspects of API usage can only be learned through the shared

experiences of other developers and therefore, when faced with the task of selecting an

API or addressing specific development requirements, developers utilize the knowledge

and insights expressed in the opinions and evaluations of competing APIs to inform their

decision-making process. By leveraging this collective wisdom, developers aim to make

informed choices and effectively meet their development needs [19].

Despite the more dynamic and interactive nature of user-based documentation, which

provides many benefits for developers such as ease of access and better knowledge trans-

fer, the responses posted by developers on Q&A websites exhibit variations in quality,

lacking consistent editing or proofreading and as a result, ensuring the accuracy of the

information sourced from crowds is challenging [16]. Because of this, numerous re-

searchers have discussed measures for extracting useful scenarios for crowd documenta-

tion in order to integrate it in API documentation, as an effort to improve usability and

quality of standard specifications documents, while also reducing the costs for maintain-

ing up-to-date information [20].

3.5 Improving the usability API documentation

After careful analysis of the flaws highlighted in the traditional approaches to the design

of API documentation, the current state of research offers many guidelines that can be

followed to produce good documentation. An effective API documentation design should

clearly describe the entry points to the API and establish connections between specific

elements of the API and particular tasks or usage scenarios. Successful API learning

hinges upon addressing these key issues. Furthermore, API documentation must satisfy

the requirements of developers who follow an opportunistic and exploratory approach to

their work [6].

3.5.1 Content

As often expressed by developers [4], one of the most important, if not the most impor-

tant aspect of good API documentation is the quality of its content. To assist developers

11

in mapping concepts to code, it is essential to highlight text-to-code relations in API doc-

umentation, as this approach minimizes the effort required for reading and enhances the

identification of pertinent information. Moreover, enabling fast and productive utilization

of the API necessitates the inclusion of code examples and seamless integration of try-out

functionalities. These features allow developers to test API elements promptly and effort-

lessly, promoting a more efficient and streamlined development process [6]. However, it

is important to note that when an API offers multiple approaches to solving a task, pro-

grammers gain flexibility but also face challenges in comprehending the API design. The

presence of choice can be advantageous only if the options truly complement each other,

rather than adding unnecessary complexities to the overall design [21].

According to the majority of studies, code snippets are considered an essential com-

ponent of API documentation. Although code snippets typically represent small segments

of API functionality, their significance is complemented by step-by-step tutorials, which

incorporate several examples of the API’s functionalities, often accompanied by screen-

shots, to guide developers through the process of developing a non-trivial application

using the API. This combination of code snippets and step-by-step tutorials proves valu-

able in facilitating a comprehensive understanding and practical implementation of the

API’s capabilities [22].

3.5.2 Structure

Upon first access, to enable quick orientation, API documentation should provide a brief

overview of the API’s main features and overall purpose. Furthermore, in the initial learn-

ing process, API documentation must include practical scenarios that demonstrate how to

identify entry points into the API. This is crucial since identifying these entry points

presents a significant challenge for developers [5]. In order to allow for better naviga-

tion and reduce confusion, API documentation should avoid excessive fragmentation and

more importantly diminish the amount of structural information as it often hampers the

relevant content needed by the reader [4].

12

4 Research project – Implementation

In order to answer the research question, it was made a decision to create a simple REST

API playground platform, where the company’s customers would be able to test core

functionalities and services. The main reason for using this approach was the company’s

request and details that were provided during the interviews. As the first step of the re-

search, a detailed analysis of the current market was carried out. The exact same platform

was not found in the English-speaking Internet segment. However. Klarna provides the

platform for their customers, where it is testable to build an actual template of the web

store, which is relevant in terms of the general purposes and goals of our project, but dif-

ferent in terms of the target group, since Klarna platform is mainly focused on technical

users.

4.1 Back-end

The programming language for the back-end was C# and namely its framework .NET.

Hence, the default IDE was Microsoft Visual Studio, as it delivered powerful support for

the needed features.

Since the company provided us with access to their APIs, the back-end solution was

based on creating endpoints to these APIs, using supplied API keys and domains, in order

to directly request them in the front-end part.

4.2 Front-end

As the project was a web application, we opted to build the front-end solution using

JavaScript and the Vue.js framework. Specifically for our project, the issue of developing

different versions of the user interface is the most important factor. The interaction of the

user, as well as the assessment of its quality, is the key to solving the problem with the

perception of information (in this case, documentation).

4.3 The First Iteration

For the first iteration, the basic layout included a header with a placeholder for the navi-

gation bar and a short description of the provided API.

As the first attempt at the implementation, the user interface was inspired by the Swag-

ger UI, by dividing each API request into three different drop-down menus that the user

could interact with separately.

13

Figure 4.2: Header and Description

Figure 4.3: Main layout

In the Add Personnel menu, the user can create new personnel with provided personal

information in the input fields for the system and submit it using a submit button to make

a POST request to the back-end.

Figure 4.4: Add personnel menu

In the Get Personnel menu, the user can get the list of all personnel that have been

14

registered in the system with the offset value the user can specify how many results to

skip and limit how many results to present.

Figure 4.5: Get personnel menu

Figure 4.6: Response form

In the Update Personnel menu, the user can update the specific personality with pro-

vided id and submit it using a submit button to make a PUT request to the backend. Since

it is a put request, it overwrites the previous personality but does not update, then the user

has to fulfill all input fields to not lose information.

15

Figure 4.7: Update Personnel menu

4.4 The Second Iteration

For the second iteration, was decided to first update the navigation bar to interact with dif-

ferent APIs, since in the future the project plans to develop playgrounds for other provided

endpoints.

Figure 4.8: Response form

In the second iteration, a key decision was made to develop a functional playground.

This involved creating a single form that would store and display recent values to the user.

By implementing this approach, users could directly observe the results and make mod-

ifications accordingly without switching between different forms which led to excessive

segmentation and resulted in confusion for the user.

16

(a) Before user interaction (b) Result of user interaction

Figure 4.9: Main caption for the figures

More comprehensive descriptions were added to each HTTP request, to provide better

instructions to the user about the functionality of some of the needed fields and specify

the correct formats for inputs.

Figure 4.10: Description part

17

The add personnel method underwent an update to provide a clear representation of

the newly added personnel to the user immediately after submitting the form. As a re-

sult, the rendered result is now consistently displayed on the page, allowing for further

manipulation with other methods.

Figure 4.11: Add Personnel method

The get personnel method was improved by adding a description field and consistently

displaying the retrieved data on the page. This allows for easier utilization of the data with

other methods.

Figure 4.12: Get Personnels method

The update method was recently enhanced to include a descriptive section, allowing

users to provide additional information about the changes being made. Along with the

description, a results form was also introduced, enabling users to interactively modify the

data and observe the outcomes in real time.

18

Figure 4.13: Update Personnel method

4.5 The Third iteration

Figure 4.14: Update Personnel method

The first decision that was made at the start of the third iteration was to integrate the

Vuetify framework into our project. This is because the Vuetify framework provides many

different pre-made components that are well-tested and offer a large variety of features

19

that can improve the overall look of the user interface. In particular, the expansion panel

component was used to hide the testing area of each API request in order to reduce the

cluttering on the page and provide a better experience for the user, who can read the

description of each functionality and arbitrarily decide if they want to test it by clicking

on the expansion panel.

This issue with cluttering was mainly noticed after adding a new API called Provider-

Administrator, which provided more endpoints compared to the previous API, and there-

fore the approach taken in the previous iteration proved to not be efficient and caused

some unwanted confusion in the overall look of the UI.

The layout for the GET requests was also changed as it cause cluttering for databases

that contained many items. The new layout includes a scrollable section where all the data

retrieved from the GET request is shown, in order to limit the space taken by the output

of the request.

Figure 4.15: Update Personnel method

While using input forms instead of having users manually manipulate the JSON data

for each request (as it is done in environments like Swagger) provided an improved user

experience, it was also creating a level of abstraction that was too distant from the actual

API documentation. For this reason, this iteration also included a live example box, where

a reactive variable was used to show the user how filling the input fields of the forms would

affect the JSON data in real-time. This feature was considered important as it provided

technical depth to the documentation while also providing a simplified testing approach.

20

Figure 4.16: Live example for the POST request

After getting the feedback from the second iteration, it was quickly noticed that users

were still not satisfied with error validation. Therefore, in order to provide better feed-

back to the user after completing each task, this iteration also focused on improving error

validation and providing confirmation of success if a task was correctly performed.

Figure 4.17: Error validation for the POST request

An alert system was implemented to notify the user when something is wrong and

stronger rules for the validation of the input fields were implemented using regular ex-

pressions. For example, in the case of the Person ID field, for the purpose of testing

21

no real personal numbers could be used, therefore the input has to follow the format

YYYYMMDD-TFXX, and the following set of rules was used for the validation:

const personIDrules = {

required: value => !!value || ’Field is required,

personId: value => /^(19|20)\d{2}(0[1-9]|1[0-2])

(0[1-9]|[12][0-9]|3[01])TF\d{2}$/.test(value) || ’Invalid

Person ID’

}

Listing 1: Validation rules for Person ID

Another issue that was found in the previous iterations is that after completing a POST

request there was no confirmation that showed if the request was successfully completed

and which ID was assigned to the new object. This caused confusion among the user and

disrupted their workflow. In order to address this issue, a new alert that shows the ID of

the newly created object was added to the POST request.

Figure 4.18: Success alert for the POST request

22

5 Results

The questionnaire for the evaluation has the same question for all three iterations and

makes use of a Likert scale with values ranging from 1 to 5, with 1 being the lowest score

and 5 being the highest. The full questionnaire can be found appendix A.

5.1 The First Iteration

Here is the result of the evaluation of the first iteration:

• What is your level of expertise with APIs?

Figure 5.19: Result of the first question

• How would you rate your overall usage impression?

Figure 5.20: Result of the second question

• Was it easy to navigate through the playground?

23

Figure 5.21: Result of the third question

• How would you rate your efficiency?

Figure 5.22: Result of the fourth question

• How would you rate the platform’s performance level?

Figure 5.23: Result of the fifth question

• How would you rate the information presented on the playground platform

(tasks descriptions, overall information)?

24

Figure 5.24: Result of the sixth question

• How would you rate error handling?

Figure 5.25: Result of the seventh question

• Did you experience any accessibility issues?

Figure 5.26: Result of the eighth question

• How satisfied were you with the platform?

25

Figure 5.27: Result of the ninth question

• Did you experience any difficulty using any particular features?

Figure 5.28: Result of the tenth question

• If you encountered any difficulties with a particular feature, can you closely

describe them, please? What feature it was and what was the problem?

Since this question was not mandatory, during this first iteration we only received

four answers to this question. The answer reported that users experienced difficul-

ties with the usage of Add Personnel and Update Personnel, and in particular one

user specified that while trying Update Personnel he had trouble figuring out what

"id" field of the request was referring to.

• What additional suggestions or improvements do you have for the platform

developers to make it better for users like you?

26

One user reported that the functionalities offered by the APIs could use more de-

scriptions.

5.2 The Second Iteration

This section provides questionnaire results for the second iteration:

• What is your level of expertise with APIs?

Figure 5.29: Result of the first question

• How would you rate your overall usage impression?

Figure 5.30: Result of the second question

• Was it easy to navigate through the playground?

27

Figure 5.31: Result of the third question

• How would you rate your efficiency?

Figure 5.32: Result of the fourth question

• How would you rate the platform’s performance level?

Figure 5.33: Result of the fifth question

• How would you rate the information presented on the playground platform

(tasks descriptions, overall information)?

28

Figure 5.34: Result of the sixth question

• How would you rate error handling?

Figure 5.35: Result of the seventh question

• Did you experience any accessibility issues?

Figure 5.36: Result of the eighth question

• How satisfied were you with the platform?

29

Figure 5.37: Result of the ninth question

30

• Did you experience any difficulty using any particular features?

Figure 5.38: Result of the tenth question

5.3 The Third Iteration

Here is the result of the evaluation of the third iteration:

• What is your level of expertise with APIs?

Figure 5.39: Result of the first question

• How would you rate your overall usage impression?

31

Figure 5.40: Result of the second question

• Was it easy to navigate through the playground?

Figure 5.41: Result of the third question

• How would you rate your efficiency?

32

Figure 5.42: Result of the fourth question

• How would you rate the platform’s performance level?

Figure 5.43: Result of the fifth question

• How would you rate the information presented on the playground platform

(tasks descriptions, overall information)?

33

Figure 5.44: Result of the sixth question

• How would you rate error handling?

Figure 5.45: Result of the seventh question

• Did you experience any accessibility issues?

34

Figure 5.46: Result of the eighth question

• How satisfied were you with the platform?

Figure 5.47: Result of the ninth question

• Did you experience any difficulty using any particular features?

35

Figure 5.48: Result of the tenth question

5.4 Final interview with developers

This section will provide a transcript of the interviews conducted with two senior develop-

ers at the company. While the user questionnaire was focused on the usability of the API,

these interviews were focused on getting the developer’s view on whether this approach

could be beneficial or if the costs would outweigh the benefits.

What are your initial impressions about the API Playground?

• Developer 1: It looks really simple. I think it feels a bit simpler than something

like Swagger since you’re able to fill in all the data through a form rather than

directly editing the JSON like you would in Swagger. So I think it would probably

be easier for non-technical users to try it out and understand what you need, like a

bit about how the API works. And that’s my initial impression. And I also think

this approach makes the documentation clearer overall for people that do not have

much experience with REST APIs. Really simple for the user feels like.

• Developer 2: I think it looks good. I like how you provide a live example of how

the JSON data of the request will look next to the forms. Everything in general

felt very reactive and smooth. It was also useful that the POST request shows a

confirmation when an object is correctly added and shows the ID so that users can

easily use it to try and play around with the other functionalities.

36

Did you find the interface intuitive and user-friendly?

• Developer 1: Yeah, I find that it’s intuitive and user-friendly.

• Developer 2: Yeah, I think so.

Were there any specific features that you found useful or lacking?

• Developer 1: I think, like, the simplicity is the key feature of the key sort of thing

that that is good with it. So I don’t think it’s so much about having a lot of features.

What is important it just that you can try out all the functionalities that the API

offers and that everything is really simple and intuitive. I think error handling is

important. And maybe that’s something that can be improved. It should be very

clear to the user what they have done wrong and how they should fix it. I guess

that’s something that can be implemented better later on.

• Developer 2: Probably the live example of the JSON data is the functionality that

stood out the most to me so far. Does a good job of showing more technical details

while still keeping the approach simple enough for non-technical users to under-

stand.

How well did the API playground integrate with the API documentation?

• Developer 1: Yeah, that’s a good question. Yeah, I guess I mean, for very technical

persons that are very used to working with APIs, maybe the swagger is what they

want to use because it’s what is kind of a standard solution. And this might be more

specific, for the non-technical, more domain persons that want to understand what

they can use. And ideally, sort of the same information could be reused in both so

that some of the descriptions could be taken from the swagger. But I think I think it

can work well together. Because this is another level, of user-friendliness than the

swagger thinking. I think that that’s, that’s useful. So yeah, I think so.

• Developer 2: I think it integrates well. Maybe it should proved some links that

forward to the more detailed documentation, that should provide more coverage for

all use cases.

Do you think that the Playground correctly displays the APIs functionalities?

• Developer 1: What I’ve seen so far it feels like it’s correctly displayed. I mean, you

have both representations both This input field but you can also see exactly the data

that will be in the JSON format there. So that fields. Correct. And as you said,

37

if you, when you have posted something, you probably want to get the ID that’s

generated. And so I mean, when you have that, and it’s you also get told, like all

the data’s? No, I feel that, that it’s correct.

• Developer 2: Yeah, I think the description overall is pretty useful. Of course, they

are simplified, but they still provide a good enough representation of the API.

What future improvements would you like to see?

• Developer 1: One thing that I’m just thinking about this is what the database for

a platform like this one could look like, what what what will this be run against?

One thing could be that there was maybe some Azure environment when you have

this kind of playground environment, where maybe the data is reset every night or

something like that. The back-end solution for this should be designed in a way so

that people can play around without ever destroying anything. Like, you want to

be able to try to create stuff and remove stuff. Maybe there could be a reset button,

or I don’t know, there are probably a lot of possibilities to use, like containers and

other tools to able to have a safe kind of sandbox for the playground. But to me,

I think this is a nice beginning to have this really user-friendly interface and to get

validations. Then I guess also one thing is it would be nice if the documentation is

tied together with the swagger and the code so that when you change the code, this

should ideally change and that you don’t have to remember to do some other stuff

here. It is very important for the documentation to actively follow each iteration

• Developer 2: It’s hard to say, but it feels like it could be somewhat easier. But

nothing specific really comes up to my mind at the moment.

API documentation is often hard to maintain. Would you consider implementing a

solution similar to the one presented in this study, or do you think the costs would

outweigh the benefits?

• Developer 1: Yeah, it really depends on the implementation. And because today, we

have some other resources that are hard to maintain. We have some PDF documents

that sort of list all endpoints that we have and what API packages are like they are

sold in different packages. So customers will buy a package with some endpoints.

And that kind of document has proven to be not a good way because it doesn’t get

updated with the code. So I think that an approach like this could be beneficial. But

I think it has to be done In a way that is tied together with the code with the other

documentation. And that it’s not a lot extra, I think that maybe you need to have

38

some more detailed explanation text that explains an API a little bit clearer here for

a non-technical person. But I still think that that information should be very close

to the code. Maybe that should be somewhere in the controller class or something

so that when you do code changes, you see that text, it’s not in a totally different

place in the code, so you need to remember to go to some completely different place

and do some updates. That’s kind of hard to remember. So I think it can be done

in a way that it’s not too hard to maintain. But it is definitely a process that has to

go strictly alongside the development process, so that it is not disconnected from

the rest, because if it’s something completely on the side of everything else, then it

will be too much maintenance, and after a while it might end up not showing the

complete truth about what the API does, because we will have some changes that

we have forgot to make in the documentation.

• Developer 2: I think as long as this is easy to like, update and like, keep what will

say like it keeps up with the code then it needs to be some fast connection to the

code. So this can be maintained. Because it’s often easy to like what we often

do like we implement something, then it’s some documentation. And then there

are code changes and the documentation doesn’t change. That can always forget

the documentation like the boring porch. So some like this, it should be easily

connected to the code somehow. So it can be kept up to date.

39

6 Analysis

In this section, the result of each iteration will be cross-examined, in order to closely

analyze the effects of the change that were made after each iteration.

6.1 Comparing the outcome of first and second iteration

Figure 6.49: Result of the first two iterations

The result for the overall usage impression was rather low, given the very basic initial

implementation. Nevertheless, the changes that were made as a result of the evaluation of

the first iteration resulted in an improvement in this category.

The navigation was already considered efficient from the first iterations and while

there is a slight improvement that can be observed in the second iteration, given the re-

duced scope of this project these results do not provide much value to the issue under

40

analysis.

The users reported low-efficiency scores, which suggests that they had trouble figuring

out how to correctly use the functionalities. While the result of the changes made to the

second iteration does show a small improvement, the outcome is still not desirable.

Similarly to the question about the ease of navigation within the page, this question

provide a high score immediately from the start, since the lightweight nature of the appli-

cation at this point of the development process was not a threat to the performance of the

platform. For this reason, the results obtained from the responses do not provide reliable

results.

The amount of information and description given in the first iteration was limited,

which explains the low score obtained after the evaluation. The additional information

provided in the second iteration showed an observable improvement in the perceived qual-

ity of the content.

The simple overall structure led to users across both iterations did not experience any

accessibility issues.

The overall satisfaction, similarly to the quality of content and the overall usage im-

pression reported poor scores in the first iteration, which then observably improved as a

result of the changes made to the second iteration.

As a consequence of the improvement made in the second iteration, the number of

difficult occurrences for particular features was considerably reduced. In the first iteration,

users gave more details about which feature was causing the biggest issue, with most of

the participants reporting issues with the Add Personnel and Update Personnel due to

confusion about the needed fields and formats. These issues were addressed and solved

in the second iteration with the improvement of the descriptions.

In conclusion, the introduction of a navigation bar for switching between APIs, the

addition of more detailed descriptions, and the optimization of the task completion flow

effectively addressed some of the issues that users presented after testing the implementa-

tion of the first iteration. But while these results are promising, they have yet to represent

the desired outcome of the project.

6.2 Comparing the outcome of all the iterations

For the final analysis of all three iterations, a box plot was chosen. As it provides tidy and

focused information in one place.

41

Figure 6.50: Result of the three iterations

For the entire development period, a consistent increase in outcomes was observed

across all the specific aspects that were thoroughly examined.

First of all, the overall impression increased from a median value of two during the

first iteration to a steady value of five by the third iteration. By the 3rd iteration, it was

possible to achieve the optimal look of the visual aspect as well as the overall perfor-

mance, which contributed to a noticeable increase in the values precisely between the

second and third iterations

The overall median values related to the quality of navigation did not noticeably

change, since in the first iteration the overall results were quite high. By the final iter-

ation, it was possible to achieve a confident almost maximum possible result. However,

following hardly noticeable differences, the responses do not provide reliable results.

The amount of information and description in the first iteration was limited or was

not provided at all which led to the lowest possible median value. Detailed attention was

paid to this aspect, leading to improvements in both the quality and overall content, which

resulted in a noticeable enhancement. However, despite these efforts, the same dramatic

growth could not be achieved by the third iteration since the overall result by the second

iteration was already high. Although some users did observe a general improvement, the

median result remained unchanged.

During the first and second iterations, the overall efficiency remained relatively low,

indicating that users encountered significant issues when utilizing the general functional-

ity. However, by the conclusion of the third iteration, significant and positive improve-

ments were attained. As a result, the overall median score reached 4 points, and a sub-

stantial number of users rated its effectiveness as 5, which is a perfect outcome within this

42

category.

Similarly to what was observed in the case of the navigation aspect of the platform,

the feedback obtained in regard to the performance of the application was very positive

right from the start, due to the low overall complexity of the application which proved

not to be a burden for the system. Therefore, while the results were positive, they do not

provide relevant qualitative data and the performance aspect of this type of application

should be investigated further in a higher complexity environment.

The results for the error handling aspect were the same in the first and second itera-

tions. Initially, error handling was implemented in a basic manner as it was not deemed

crucial. However, in the third iteration, specific focus was given to this aspect, resulting

in significant improvements. The median rating for error handling reached an excellent

score of 4, moreover, a smaller number of users rated it at the highest level.

The overall satisfaction with the project increased markedly with each successive iter-

ation. The median values gradually increased from 2 in the first iteration to 3 in the second

and 4 in the third, accordingly. This step-wise growth directly reflects the effectiveness of

the changes that led to a noticeable improvement by the final iteration.

Another positive result was shown in the number of reported difficulties with specific

tasks. In the first and second iteration users encountered issues while performing certain

operations on the platform, with the POST and PUT requests being regarded as the most

complicated tasks. During the third iteration, more focus was directed at solving these

issues and this was reflected by the feedback received after the third iteration, where no

specific difficulties were reported by the participants to the evaluation questionnaire.

In summary, the final iteration witnessed significant improvements primarily attributed

to the introduction and implementation of a new layout and structure. Notably, the inte-

gration of a comprehensive error handling system, encompassing more detailed rules and

representation, had a positive impact on the project.

6.3 Analysis of interviews with developers

The developers’ initial impressions were noteworthy, they both found the interface intu-

itive and user-friendly and underlined the simplicity as the key feature. One developer

expressed that the application presented a simplified approach compared to conventional

Swagger implementations, as users interacted with intuitive input forms rather than di-

rectly manipulating JSON files. Another developer took note of the application’s overall

form reactivity and its smooth user experience. He also highlighted the convenient pre-

sentation of request confirmations, including the user ID, which greatly facilitated further

interactions.

43

In terms of future enhancements, the first developer offered valuable recommenda-

tions on updating the back-end solution, as the current one used endpoints to an existing

API. According to their suggestion, the back-end solution could leverage the Azure envi-

ronment, enabling users to interact with real-time data as a sandbox model. At the same

time, both developers underlined that future development should be mainly focused on

maintains aspect. Since API code and its documentation usually update separately.

44

7 Discussion

This project focuses on trying to improve the accessibility of API documentation for non-

technical users. The company that contributed to this study, highlighted the difficulty of

communicating their services to potential customers, who often lack the technical exper-

tise needed to accurately interpret traditional documentation. Thus, a case study was run

on some of the RESTful APIs offered by the company, with the objective of implement-

ing an API playground environment that could offer simplified live examples of the API’s

usage, in pursuance of a possible solution to the identified problem.

In order to answer the first research question (RQ1), an initial small-scale literature

was conducted with the purpose of analyzing what previous research has identified as the

most important factors contributing to good API documentation design, with aspect such

as quality of the descriptions, ease of navigation and live examples being regarded as the

most deciding factors for the success of API documentation.

These findings were then used as guidance for eliciting the requirements and objective

of the API playground platform, and by following the guidelines proposed by Hevner et

al. in [10], a design science approach was used to structure the iterative development

process of the application. With the purpose of answering the second research question

(RQ2), after each iteration a questionnaire was used to guide the evaluation process, as the

selected group of participants tested the application and gave their feedback by answering

the questions. Finally, at the end of the development process, an interview with senior

developers from the company was conducted, in order to reason about the possibility of

integrating a similar solution into their system.

When analyzed, the final outcome of this study shows overall positive results and pro-

vides valuable insights for improving the accessibility of API documentation for users

with varying levels of technical expertise. The results demonstrate a visible growth in the

appreciation of the platform across each iteration. The data gathered after each iteration

is overall in line with the findings from the small-scale literature study, as it highlights

that the introduction of higher quality descriptions and the usage of interactive live exam-

ples improves the overall impression and usability of the platform, similar to what was

observed by Uddin et al. in [4].

While adding an extra layer of abstraction by having users interact with forms that

they are more familiar with, provides a more intuitive experience, it is also important to

still show some degree of technical details in order to prevent the platform from misrep-

resenting the APIs. This reasoning led to the implementation of a live example of the

JSON data that is updated in real-time while the user interacts with the form; a feature

that, as demonstrated by the evaluation of the third iteration and the interview with the

45

senior developers, represents a promising solution to the problem.

The implementation of more detailed validation and error handling is also deemed to

be important by the users, as it provides valuable feedback while performing the tasks

offered by the platform, which may prevent the users from misunderstanding some of the

offered functionalities.

Another important aspect observed by previous research is the need to guarantee ease

of navigation across the documentation, by allowing direct access to the resources sought

after by the user [16]. Although the results of the evaluation show positive feedback about

the navigation across the application, the scope of this project was very limited in terms

of size and therefore did not provide the optimal environment to successfully evaluate the

ease of navigation. For this reason, the project does not provide definitive guidelines for

improving the navigation of API documentation.

In addition to that, this project was limited to the implementation of documentation

for REST APIs, which implies that some of the results and findings may not be directly

applicable to other types of APIs. For example, while the suggestion of using interactive

live examples to add some level of abstraction may be generalized, the specific use of

input forms is in most cases not extendable to other APIs.

46

8 Conclusion

This research aimed to identify key factors that could possibly affect the quality and ef-

fectiveness of API documentation and to optimize it specifically for non-technical users.

As a result of the conducted studies and implementations, the users’ feedback underlines

the main aspects that contribute to the overall user experience. To be more detailed, the

feedback demonstrates that factors such as description quality and error handling directly

affect it.

Since the project was a collaboration with the company and they are interested in the

results. It is relevant to their purposes and the industry overall. Since, this data could be

used as a short clue for further development processes, i.e. what details should be paid

more attention to.

One of the limitations of this study was the relatively small sample size, as only a

limited number of participants were available for testing. Due to time and resource con-

straints, we were only able to involve a small number of testers in the evaluation process.

This limited sample size may have impacted the diversity of perspectives and experiences

represented in the feedback received. With a larger group of testers, we could have ob-

tained a broader range of insights and identified potential issues that might have gone

unnoticed with the limited pool of participants. Different backgrounds, skill sets, and

usage scenarios could have provided a more comprehensive understanding of the API

documentation’s strengths and weaknesses.

8.1 Future work

As expressed in the previous sections, this study offered some good insight that could

provide a good starting point for future studies toward improving the accessibility of API

documentation for non-technical users. But the limitations expressed by the narrow scope

of the application and the small-sized group of participants prevented the project from

offering a comprehensive list of guidelines geared towards the solution of the problem.

Therefore, a more extensive study is needed in the future in order to solidify and extend

the findings of this project.

47

References

[1] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto, and

D. Poshyvanyk, “Api change and fault proneness: A threat to the success of android

apps,” 08 2013. [Online]. Available: https://doi.org/10.1145/2491411.2491428

[2] M. Meng, S. Steinhardt, and A. Schubert, “Application programming interface

documentation: What do software developers want?” Journal of Technical Writing

and Communication, vol. 48, no. 3, pp. 295–330, 2018. [Online]. Available:

https://doi.org/10.1177/0047281617721853

[3] G. Bondel, A. Cerit, and F. Matthes, “Challenges of api documentation from a

provider perspective and best practices for examples in public web api documen-

tation,” in International Conference on Enterprise Information Systems, 2022.

[4] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE

Software, vol. 32, no. 4, pp. 68–75, 2015. [Online]. Available: https:

//doi.org/10.1109/MS.2014.80

[5] M. Meng, S. Steinhardt, and A. Schubert, “How developers use api documentation:

An observation study,” Commun. Des. Q. Rev, vol. 7, no. 2, p. 40–49, aug 2019.

[Online]. Available: https://doi.org/10.1145/3358931.3358937

[6] M. Meng, S. M. Steinhardt, and A. Schubert, “Optimizing api documentation:

Some guidelines and effects,” in Proceedings of the 38th ACM International

Conference on Design of Communication. Association for Computing Machinery,

2020. [Online]. Available: https://doi.org/10.1145/3380851.3416759

[7] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,”

Empirical Software Engineering, vol. 16, pp. 703–732, 2011. [Online]. Available:

https://doi.org/10.1007/s10664-010-9150-8

[8] S. Clarke, “What is an End User Software Engineer?” in End-User Software

Engineering, ser. Dagstuhl Seminar Proceedings (DagSemProc), M. H. Burnett,

G. Engels, B. A. Myers, and G. Rothermel, Eds., vol. 7081. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2007, pp. 1–1. [Online]. Available:

https://drops.dagstuhl.de/opus/volltexte/2007/1080

[9] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference

documentation,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp.

1264–1282, 2013. [Online]. Available: https://doi.org/10.1109/TSE.2013.12

48

https://doi.org/10.1145/2491411.2491428
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3380851.3416759
https://doi.org/10.1007/s10664-010-9150-8
https://drops.dagstuhl.de/opus/volltexte/2007/1080
https://doi.org/10.1109/TSE.2013.12

[10] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information

systems research,” MIS Q., vol. 28, pp. 75–105, 2004. [Online]. Available:

https://doi.org/10.2307/25148625

[11] C. R. B. d. Souza and D. F. Redmiles, “On the roles of apis in the

coordination of collaborative software development,” Computer Supported

Cooperative Work (CSCW), Sep 2009. [Online]. Available: https://doi.org/10.1007/

s10606-009-9101-3

[12] K. Thayer, S. E. Chasins, and A. J. Ko, “A theory of robust api knowledge,”

ACM Trans. Comput. Educ., vol. 21, no. 1, jan 2021. [Online]. Available:

https://doi.org/10.1145/3444945

[13] D. Kramer, “Api documentation from source code comments: A case study of

javadoc,” in Proceedings of the 17th Annual International Conference on Computer

Documentation. Association for Computing Machinery, 1999, p. 147–153.

[Online]. Available: https://doi.org/10.1145/318372.318577

[14] D. Hoffman and P. Strooper, “Api documentation with executable examples,”

Journal of Systems and Software, vol. 66, no. 2, pp. 143–156, 2003. [Online].

Available: https://doi.org/10.1016/S0164-1212(02)00055-9

[15] J. Bloch, “How to design a good api and why it matters,” in Companion to the 21st

ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages,

and Applications. Association for Computing Machinery, 2006, p. 506–507.

[Online]. Available: https://doi.org/10.1145/1176617.1176622

[16] Q. Fan, Y. Yu, T. Wang, and H. Wang, “Why api documentation is insufficient

for developers: an empirical study,” Sci China Inf Sci, October 2020. [Online].

Available: https://doi.org/10.1007/s11432-019-9880-8

[17] C. Parnin and C. Treude, “Measuring api documentation on the web,” in

Proceedings of the 2nd International Workshop on Web 2.0 for Software

Engineering. Association for Computing Machinery, 2011, p. 25–30. [Online].

Available: https://doi.org/10.1145/1984701.1984706

[18] T. Lethbridge, J. Singer, and A. Forward, “How software engineers use

documentation: the state of the practice,” IEEE Software, vol. 20, no. 6, pp. 35–39,

2003. [Online]. Available: https://doi.org/10.1109/MS.2003.1241364

[19] G. Uddin, O. Baysal, L. Guerrouj, and F. Khomh, “Understanding how and

why developers seek and analyze api-related opinions,” IEEE Transactions on

49

https://doi.org/10.2307/25148625
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1145/3444945
https://doi.org/10.1145/318372.318577
https://doi.org/10.1016/S0164-1212(02)00055-9
https://doi.org/10.1145/1176617.1176622
https://doi.org/10.1007/s11432-019-9880-8
https://doi.org/10.1145/1984701.1984706
https://doi.org/10.1109/MS.2003.1241364

Software Engineering, vol. 47, no. 4, pp. 694–735, 2021. [Online]. Available:

https://doi.org/10.1109/TSE.2019.2903039

[20] G. Uddin, F. Khomh, and C. K. Roy, “Mining api usage scenarios from stack over-

flow,” Information and Software Technology, vol. 122, p. 106277, 2020. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0950584920300276

[21] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api

usability,” in 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, 2013, pp. 5–14. [Online]. Available:

https://doi.org/10.1109/ESEM.2013.14

[22] A. Cummaudo, R. Vasa, and J. Grundy, “What should i document? a preliminary

systematic mapping study into api documentation knowledge,” in 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM), 2019, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ESEM.2019.

8870148

50

https://doi.org/10.1109/TSE.2019.2903039
https://www.sciencedirect.com/science/article/pii/S0950584920300276
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1109/ESEM.2019.8870148

A Appendix A

Here you find the full questionnaire used for the evaluation process

1. What is your level of expertise with APIs? (1-5)

2. Can you describe your background in more detail, please? (Not required)

3. How would you rate your overall usage impression? (1-5)

4. Was it easy to navigate through the playground? (1-5)

5. If you had any problems with the navigation process, can you please briefly clarify

where and what you have experienced?

6. How would you rate your efficiency? (1-5)

7. How would you rate the platform’s performance level? (1-5)

8. If you encounter any performance difficulties, can you describe them, please? (Not

required)

9. How would you rate the information presented on the playground platform (tasks

descriptions, overall information)?

10. How would you rate error handling? (1-5)

11. Did you experience any accessibility issues? (Yes/no)

12. If you encounter any accessibility issues, can you closely describe them, please?

13. How satisfied were you with the platform? (1-5)

14. Did you experience any difficulty using any particular features? (Yes/No)

15. If you encountered any difficulties with a particular feature, can you closely de-

scribe them please? What feature it was and what was the problem?

16. What additional suggestions or improvements do you have for the platform devel-

opers to make it better for users like you?

A

	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Results
	Scope/Limitation
	Target group
	Outline

	Method
	Research Project
	Small-scale literature study
	Design Science Case Study
	Evaluation

	Reliability and Validity
	Reliability
	Validity

	Ethical consideration

	Theoretical Background
	Early research
	Approaches to programming
	The issues with traditional documentation
	Crowd-sourced documentation
	Improving the usability API documentation
	Content
	Structure

	Research project – Implementation
	Back-end
	Front-end
	The First Iteration
	The Second Iteration
	The Third iteration

	Results
	The First Iteration
	The Second Iteration
	The Third Iteration
	Final interview with developers

	Analysis
	Comparing the outcome of first and second iteration
	Comparing the outcome of all the iterations
	Analysis of interviews with developers

	Discussion
	Conclusion
	Future work

	References
	Appendix A

