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Abstract | i

Abstract
Organizations in highly regulated industries have an increasing need to protect
their intellectual assets, because Advanced Persistent Threat (APT) entities are
capable of using supply chain attacks to bypass traditional defenses.

This work investigates the feasibility of preventing supply chain attacks
by isolating the build environment of the software using hardware isolation.
Specifically, this work analyzes the extent to which the Intel SGX can
guarantee the integrity and authenticity of software produced in Highly
Regulated Environments.

A theoretical evaluation using assurance cases shows that a hardware
isolation approach has the potential to guarantee the integrity and authenticity
of the produced software. Security weaknesses in Intel SGX significantly
limit the confidence in its ability to secure the build environment. Directions
for future work to secure a build environment with a hardware isolation
approach are suggested. Most importantly, the guarantees from hardware
isolation should be improved, suggestively by choosing a more secure
hardware isolation solution, and a proof-of-concept of the approach should
be implemented.
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Sammanfattning
Organisationer i mycket reglerade industrier har ett ökat behov av att skydda
sina intellektuella tillgångar, eftersom avancerade långvariga hot (APT) har
förmågan att använda sig av distributionskedjeattacker för att ta sig förbi
existerande skydd.

Det här arbetet undersöker möjligheten att skydda sig mot distri-
butionskedjeattacker genom att isolera mjukvarans byggmiljö med hjälp
av hårdvaruisolering. Specifikt analyseras till vilken grad Intel SGX kan
garantera integriteten och autenticiteten av mjukvara som produceras i mycket
reglerade miljöer.

En teoretisk evaluering genom assurans visar att hårdvaruisolering har
möjligheten att garantera integriteten och autenticiteten hos den producerade
mjukvaran. Säkerhetsbrister i Intel SGX begränsar i hög grad förtroendet
för dess förmåga att säkra byggmiljön. För vidare forskning föreslås att
garantierna från hårdvaruisolering förbättras, förslagsvis genom att välja
säkrare hårdvaruisoleringslösningar, samt att en prototyp av lösningen
implementeras.

Nyckelord
Hårdvaruisolering, Distributionskedjeattacker, HRE, Intel SGX, CI
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Chapter 1

Introduction

As the technological ecosystem has advanced, modern cyber threats have also
become more advanced, and with increased consequences [1]. Moreover,
organizations are becoming increasingly aware of the cyber risks and are
allocating more resources to cyber security. In a global survey, conducted
by various consultancy and insurance firms, cyber risk and data breaches have
been identified as the foremost enterprise risk [2]. Interestingly, cyber risk
commonly has the property of anonymity because it can remain undetectable
until it impacts businesses.

Supply chains, in the form of actors networking together through
information technology (IT), are an integral part of the evolving technological
ecosystems [2]. Inherently, supply chains are difficult to avoid and it becomes
necessary to trust other actors, such as infrastructure providers, monitoring
providers, etc., to produce large-scale applications. Every actor and the
connections between them pose a potential threat to the supply chain [3].
Efforts in cyber security responses fall behind in relation to the digitalization
of supply chains. By collaborating with many partners, supply chains have
increased their vulnerability to threats [4].

In 2019, Verizon reported that cyber-attacks through phishing, i.e., gaining
access to sensitive information by disguising the threat as a trustworthy entity,
are on the rise [2]. The European Union Agency for Cybersecurity (ENISA)
identified 24 supply chain attacks between January 2020 and July 2021. As
part of their report, they found that in 50% of the attacks, the attackers can be
attributed to Advanced Persistent Threats (APTs) [5].

In 2021, Kaseya became aware of a vulnerability in their SaaS platform
used by money services providers where attackers could distribute digitally
signed malicious software as if it was trusted [6]. In turn, the money services



2 | Introduction

providers’ customers, who received the malicious updates, were affected by the
attack. The attackers could encrypt their data and launch ransomware claims.
It has been estimated that up to 1500 downstream businesses were affected by
the attack on Kaseya’s platform. Among the affected customers was Coop, a
Swedish grocery store, which had to temporarily close around 800 stores.

Similarly, SolarWinds was breached in 2020, where attackers could insert
malicious code into the software before it was digitally signed and thus
falsely trusted by their customers. More details on the SolarWinds attack are
presented in section 2.4.

1.1 Background
Continuous Integration is a common part of the Software Development Life
Cycle (SDLC) and is considered software development best practice [7].
When producing software, the software is often tested and built as a part of
the CI process. Security is essential in the CI process, as the introduction of
malicious code can have large repercussions and enable attacks on consumers
of the software.

Highly Regulated Environments (HREs) are software development
environments where the software produced is consumed in highly regulated
industries, and where there is an increased requirement to protect intellectual
assets and prevent cyber threats [8]. Characteristically, there is air-gapped
separation between computer systems (offline networks), inability to discuss
project details off-premises, and inability to take software artifacts off-
premises. HREs, by design, mitigate many direct cyber threats, but indirect
attacks are still possible. Albeit, it requires more resources from an attacker.

In recent years, efforts have been made to secure the CI process further.
Muñoz et al. [9] used a form of hardware isolation to ensure project
integrity throughout the process of CI; however, no consideration was taken to
modifications in the build process itself, for example, if the result of building
the software contains malicious files. Reproducible builds are desirable, as
they enable external or internal parties to verify the software’s integrity [10].
Hardware isolation is a commonly used approach to protect the execution
of software by leveraging CPU hardware. This approach guarantees both
the confidentiality and integrity of the executing software [11]. Hardware
isolation solutions, such as Intel SGX, AMD SEV, and ARM TrustZone, could
make it possible to secure the CI process, especially if the software builds are
non-reproducible.

Compared to reproducible builds, trust is placed in a single system
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provided by the hardware manufacturer [12]. While hardware isolation offers
benefits, it is essential to consider the potential limitations of this approach.
For instance, hardware isolation may not be suitable for all types of software
development environments and applications. Therefore, it is necessary to
evaluate the limitations of hardware isolation as applied to the CI process.

1.2 Problem
A gap exists between existing efforts to secure CI processes, as well as
their applicability in HREs. Furthermore, the CI process requires more
consideration and additional guarantees to mitigate supply chain threats. In
the case of the Kaseya and SolarWinds attacks, digital signatures are used to
ensure that the origin of the software is valid. However, the trust in the digital
signature must be strengthened. Specifically, the integrity of the produced
software must be ensured in order to prevent threats from propagating in the
supply chain. However, when reproducible builds are not possible, there is
a greater need to place trust in the system that must build the software and
ensure that no build artifacts are modified.

To the author’s best knowledge, this work takes a different approach to
securing the CI process than what has been found in previous works. Unlike
the case of reproducible builds, in this work, trust is placed in a single system.
Additionally, this work takes the approach of isolating the entire CI process,
including the build process. The main research question in this work is:

• To what extent can hardware isolation be used to secure a Continuous
Integration process in the context of a Highly Regulated Environment?

To answer the research question, this work proposes and evaluates a
hardware isolation approach to the CI process that applies to HREs, where
the software artifacts produced are verifiable and trusted to a similar level as
the hardware isolation guarantees can be trusted. Furthermore, an analysis
of the proposed approach and directions for future work, to better answer
the research question and strengthen the verifiability of produced software
artifacts, is presented.

1.3 Purpose
Threat actors are becoming increasingly sophisticated, and the CI process
poses a large cyber risk because it can cause significant harm to an
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organization and its customers if it is compromised. Therefore, organizations
will benefit from reducing the cyber risk in the CI process. For organizations
that are involved in highly regulated industries, reduced cyber risk is important
and, by requirement, they may need to verify and present a convincing
argument that the software produced has not been modified.

Security researchers constantly find vulnerabilities and exploits in
operating systems and applications [12], which makes it difficult to rely
on only software as protection for the CI process. Hardware isolation,
specifically Trusted Execution Environments, has been applied to safety-
critical applications before [11].

1.4 Goals
The goal of this project is to explore and analyze a hardware isolation approach
to a secure and verifiable CI process that can be used to strengthen the trust
that can be placed on digital signatures of software in the supply chain. This
has been divided into the following two sub-goals:

1. Present an approach that would allow organizations to reduce cyber
risk in their CI process, especially applicable to organizations in highly
regulated industries. Furthermore, the approach should contribute to
mitigating supply chain attacks.

2. Guide future research on the application of hardware isolation on CI
processes.

1.5 Research methodology
This work aims to evaluate the feasibility of hardware isolation in Highly
Regulated Environments and provide a theoretical assessment of the proposed
approach’s weaknesses and potential strengths.

To evaluate the feasibility of a hardware isolation approach to the CI
process, several key elements were defined. First, a threat model on the
CI process was established using the STRIDE framework to assess potential
attacker goals and capabilities. Next, the security requirements for the
proposed approach were defined to ensure a secure CI process. Additionally,
the properties of the hardware isolation technology, in this work Intel SGX,
were presented, and assumptions related to the proposed approach were
established.
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To evaluate the hardware isolation approach, inductive argumentation
was used with a qualitative measurement of sufficiency. Safety cases,
expressed through Goal Structuring Notation (GSN), were used to structure
the argumentation. The goal is to establish assurance that the security
requirements of the proposed approach hold.

1.6 Delimitations
This work focuses on HREs, which have particular requirements. For example,
security solutions must fit air-gapped environments. Likewise, the threat
model is restricted to APTs, which are the type of threat actors that may target
HRE (more details about the security context are presented in chapter 4).
Furthermore, security is prioritized over usability in the proposed CI approach.
Because of time restraints, no prototype is produced as a proof-of-concept.
Instead, this work presents a theoretical CI approach.

1.7 Structure of the thesis
Background and related work to support this work are introduced in chapter
2. The research method, including the evaluation framework, is described in
chapter 3. The framework design of the CI process using hardware isolation
is presented in chapter 4. The framework is evaluated in chapter 5 and the
result of the evaluation is discussed in chapter 6. Finally, the conclusions and
directions for future work are presented in chapter 7.
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Chapter 2

Background

This chapter presents areas relevant to the context and methodology of this
work, such as the Software Development Life Cycle (SDLC) in section 2.1,
qualities and methods for ensuring secure applications in section 2.2, Highly
Regulated Environments (HREs) in section 2.3, and supply chain attacks and
their characteristics in section 2.4. Additionally, the main properties of Intel
Software Guard Extension (Intel SGX) are presented in section 2.5, which
is the underlying technology this work is based on. Moreover, section 2.5.4
presents a security analysis of Intel SGX. Finally, related work is presented in
section 2.6, and a summary of the background is available in section 2.7.

2.1 Software Development Life Cycle
The Software Development Life Cycle (SDLC) is a framework that defines
the processes of software development from the conceptualization of the
product to deployment and maintenance [13]. An SDLC is either defined
as linear, iterative, or a combination thereof. Development requirements
are expected to change during development, and the different SDLC models
handle these changes in different ways. Also, SDLC models vary depending
on the environment in which they are used and the context for their application.
Commonly, an iterative approach is used. As an example, and to highlight the
different stages of a common SDLC, the following are phases of the Waterfall
model, which was defined in 1970: evaluation, requirements, analysis, design,
development, validation, and deployment [13].

The waterfall model includes feedback loops to ensure that phases can be
revisited. Although there are more modern models than the waterfall model,
it can be regarded as a baseline model containing characteristic phases of a
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general SDLC model.
The scope of the SDLC used in this work is limited by the area of

Continuous Software Engineering, which is further detailed in the following
section.

Continuous Software Engineering
To the SDLC, Continuous Software Engineering (CSE) improves mainly on
the steps characterized as development, validation, and deployment, as well as
enabling the need for rapid changes to requirements in these steps efficiently.
CSE is an area of both research and practice [7]. It includes three phases:
Business Strategy and Planning, Development, and Operations.

Figure 2.1: The CI, CDE, and CD practices of Continuous Software
Engineering. Adapted from [7].

Continuous Integration (CI), Continuous Delivery (CDE), and Continuous
Deployment (CD) are practices of CSE that are used to make the Development
and Operations process as efficient as possible [7]. In this study, special
consideration will be given to CI because that is often where the software is
built. See figure 2.1 for an illustration of the practices.

Continuous Integration (CI).
CI involves practices for automated processes for building, merging, and
testing development work (such as source code) that originates from a
source repository, such as Git. It enables organizations to have more
frequent code releases, improves the software quality, and productivity
[7].

Continuous Delivery (CDE).
CDE involves practices for ensuring an application is production-ready.
CI is an important component in CDE and precedes further acceptance
tests and deployment automation.
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Continuous Deployment (CD).
CD involves practices for Continuous Deployment and delivery of
applications. CD implies CDE, but the reverse is not true [7]. The main
difference is that in CDE, it is typical that a manual step, or a separate
process, is necessary to decide when the application is deployed to a
production environment (with active customers). In CD, applications
are commonly deployed continuously to the production environment as
new changes are merged and tested in the preceding CI process.

2.2 Secure applications
Producing secure applications requires a secure design and implementation.
Additionally, applications need to be deployed in a secure platform, and their
security needs to be motivated [14]. Below, these items are described further.

Secure platforms are essential to provide both the application and users
with trusted security mechanisms to fulfill their security requirements.

Secure design utilizes security patterns and models, commonly established
by experts, that fulfill particular requirements on security. Usually, many
security patterns and models need to be applied to fulfill all security
requirements.

Secure implementation is difficult to formally verify for complex appli-
cations. However, a secure design can compensate for the lack of formal
verification methods. Additionally, several development practices of the
SDLC can be used to reduce the risk of poor implementations that compromise
security.

Security assurance is used to motivate the security of an application
through structured informal arguments, also known as safety or assurance
cases. It is extensively used in the safety-critical system community [15].

In sections 2.2.1 and 2.2.2, desirable properties and the STRIDE threat
model are presented, which are fundamental to creating a secure design. Next,
in section 2.2.3, security assurance is described further. Safety cases and
notations for presenting them are also introduced.
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2.2.1 Desirable properties
The CIA-triad refers to fundamental security properties in information systems
and has been around since the 1970s [16]. In this work, the CIA-triad will be
used extensively to explain the guarantees of relevant technologies. The CIA-
triad is often used as a reference point when discussing secure design. It is an
acronym for three security properties [17].

• Confidentiality (C) - Prevention of unauthorized disclosure of data.

• Integrity (I) - Prevention of unauthorized modification of data.

• Availability (A) - Prevention of unauthorized withholding of data.

Academically, the CIA-triad has received criticism for being narrow in
its scope and not including social and non-technical challenges in security.
The CIA-triad has recognizably been extended with more properties during
the 1980s and 1990s, such as non-repudiation (nR) and authenticity (Au) of
information [16].

• Non-repudiation (nR) - The inability to defy a certain transaction or
communication between two parties. For example, if Eve sends a
malicious packet to Bob, then Eve is unable to later deny the action and
claim that she is not responsible for the malicious packet sent to Bob.

• Authenticity (Au) - The quality of being original and genuine.
Confidence that an identifier is associated with an item or person.

The definition of the CIA-triad and its extensions are continuously
evaluated and redefined in academia. This work will use the definition and
extended properties as presented above.

2.2.2 STRIDE threat model
Threat modeling can be used to detect flaws in software designs already in
the design phase, which allows iterations of necessary security requirements
[18]. It is also recognized as one of the most important activities in software
security.

STRIDE is an acronym for six categories of threats [18]:

• Spoofing (S) - An entity (person or program) can impersonate a
legitimate entity.
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• Tampering (T) - An attacker can illegitimately modify application
resources, such as data.

• Repudiation (R) - A user (legitimate or malicious) can deny actions
within the system.

• Information Disclosure (I) - An attacker can obtain private data.

• Denial of service (D) - An attacker can make the system unavailable to
other users.

• Elevation of privilege (E) - An attacker can obtain privileged access to
protected resources.

The STRIDE threat model is used in this work to analyze the approach to
CI using hardware isolation presented in chapter 4.

2.2.3 Safety cases
The defence standard 00-56 [19] (2007) defines safety cases as “a structured
argument, supported by a body of evidence, that provides a compelling,
comprehensible and valid case that a system is safe for a given application
in a given environment”. Safety cases are particularly used to provide an
assurance viewpoint to demonstrate that security properties have been satisfied
and that risks have been mitigated [15]. The purpose of a safety case is
further summarized in [20] as “a safety case should communicate a clear,
comprehensive and defensible argument that a system is acceptably safe to
operate in a particular context”.

In [15], Bloomfield et al. offer their perspective on safety and assurance
cases and present the following three approaches:

• Use of accepted safety standards and guidelines to demonstrate
compliance.

• Goal-based. Justification via a set of claims/goals about the system’s
safety behavior supported by evidence.

• Vulnerability-based. Investigation of known potential issues of the
system, which is more of a bottom-up instead of a top-down approach.

Strong arguments should be both valid and sound [20]. Valid arguments
imply that if the premises are true, the conclusion is true. Sound arguments
have true premises.



12 | Background

Goal Structuring Notation

GSN was introduced in [20] and is a graphical argumentation notation
representing elements of any safety argument (such as goals, evidence, and
arguments). Although there is a desire to have both provably sound and valid
arguments, it is unobtainable for a safety-critical system because of its complex
nature. Therefore, arguments in GSN allow uncertainty - if premises are true,
the conclusion may be true - which is a weaker form of argument.

Uncertainty in arguments for assurance in safety cases leads to a form
of inductive argumentation: if premises are true, the conclusion is true with
some probability associated [20]. The purpose of the argument becomes to
sufficiently demonstrate that certain security goals are met.

Figure 2.2: Principal elements of GSN

Figure 2.2 presents the different principal elements in GSN [20] as they
visually appear in this work. Goals represent what the assurance case wishes to
accomplish, and can be divided into interlinked sub-goals. Strategies provide
details about how goals or sub-goals should be fulfilled from their respective
sub-goals. Contexts limit the scope of a strategy or goal. Solutions present
a reason as to why certain goals are fulfilled. Undeveloped goals have no
solution or are otherwise excluded from the assurance case. Each principal
element type is indexed individually.

A high-level example of GSN can be seen in figure 2.3, which was inspired
by more detailed examples used in the original report. The GSN aims to fulfill
goal G1, that the application is not vulnerable to any threats. The strategy used,
St1, is to omit all threats, and for each threat, a goal is defined indicating that
the application is not vulnerable to the threat. The context, in this case, is C1,
which defines all known threats. Goals G2 and G3 can be fulfilled individually.
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The solution in this example, S1, is black box testing, which should fulfill both
G2 and G3. By fulfilling G2 and G3, G1 is also fulfilled in context C1.

Figure 2.3: A GSN safety case example

In this work, a goal-based approach to safety cases and assurance is
used. Safety cases are structured by their claims, evidence, and arguments.
The arguments presented are inductive with a qualitative measurement of
sufficiency.

2.3 Highly Regulated Environments
In [21, 8], Morales et al. presented characteristics of Highly Regulated
Environments (HRE) as air-gapped physical spaces and computer systems
with heightened security and access control, segregation of duties, the inability
of personnel to discuss certain topics outside specific areas, and the inability to
take certain artifacts, such as code, software dependencies, etc., off-premises.
HREs are also different on a case-to-case basis [8]. Usually, the policies
surrounding the project determine the extent of the HRE and exactly what is
enforced.
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If not using air-gapped environments, the approach used to protect
sensitive information is behind several layers of routers, firewalls, access
control, and more. Despite these efforts, it is difficult to assure that no breach
can occur and that information cannot be transmitted to the outside world if
the network is connected to the internet. Here, organizations can resort to
air-gapped environments, where the network on which the sensitive assets
are placed has no connection to the internet [22]. This eliminates the trust
organizations must put on configurations of routers and firewalls and makes
attacks more difficult. It is a common characteristic of an HRE.

HREs are primarily used in organizations that operate in or are involved in
highly regulated industries. Such industries include the military or defense and
could also involve chemical and banking industries and more. For instance,
the Swedish Försvarsmakten (eng: The Swedish Armed Forces) has issued
documents regarding requirements and security functions (KSF) [23] for IT
systems that are developed for Försvarsmakten. A significant portion of the
requirements and security functions specified in KSF can be fulfilled, partly
or in full, by operating in an HRE.

2.3.1 SDLC obstacles in HREs
The characteristics of HREs imply several limitations on the SDLC and how
it can be implemented in an organization. Moreles et al. [21] identified some
properties of HREs that make it difficult to guarantee the security requirements
of the SDLC. Two of these obstacles are presented here:

1. Air-gapped environment

2. Partial or no production environment access

Air-gapped environments typically isolate the development personnel
from the technology, which limits aspects of the SDLC, such as cooperation
and feedback from stakeholders. The development team may lack access to
the production environment partly or in full. Parity between environments is
important as it could introduce further security vulnerabilities if applications
do not function as intended in their environment.

In this work, development in an HRE is defined to include the following
constraints: air-gapped environments per project, the inability of personnel
to discuss projects off-premises, the inability to take development artifacts
outside the environment, and strict policies to bring artifacts into the
environment. Additionally, the SDLC in the HRE excludes automated
deployment of software; instead, it produces a deliverable in the form of



Background | 15

software and there is no production environment access for the development
personnel.

2.4 Supply chain attacks
A supply chain refers to the network of suppliers involved in the creation of a
product. In this context, products are in the form of software or applications
that are delivered, or exposed, to customers. There can naturally be a long
chain of multiple suppliers of software, involved in a specific application that
reaches the customer. A supply chain attack occurs when an attacker targets
single or multiple customers by attacking a single supplier [5]. This type of
attack is commonly exploited by Advanced Persistent Threat (APT) entities.

Ahmad et al. [24] provide a formal definition of APTs: “An entity that
engages in a malicious, organized, and highly sophisticated long-term or
reiterated network intrusion and exploitation operation to obtain information
from a target organization, sabotage its operations, or both.” Furthermore, the
authors present two forms of APTs: those who are strategically motivated, and
those who are operationally motivated. Strategically motivated APTs tend to
be part of a larger organized crime network and consist of professional hackers
for the benefit of a third-party. Operationally motivated APTs, however, tend
to be hackers who engage in criminal activities for personal financial gain.

SolarWinds attack
SolarWinds was breached in early 2020 [25]. The attack, attributed
to the Russian state-actor group with nicknames Cozy Bear or APT29,
inserted malicious code into Orion, SolarWinds’ monitoring and management
platform, which in turn was installed by multiple customers [26]. The
customers received the malicious update, which appeared valid and signed
by SolarWinds. Consequentially, the attackers could perform reconnaissance
and monitor their surroundings to perform a more careful attack directly on
multiple customers. The attack itself has been deemed highly sophisticated,
partly because it was designed to avoid detection throughout its lifetime. If
it determined that the risk of detection was too high it would delete itself;
otherwise, it would continue to install more malicious code. Another aspect
of its sophistication was the customers it targeted and whom it chose to
compromise.

Among the affected customers are Microsoft, the U.S. government,
VMWare, DUO, and FireEye [27]. The attackers have been reported to have
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obtained source code from Microsoft (but Microsoft denies breaches due to
the attack). The U.S. government reported having had certain emails stolen.
FireEye, a cybersecurity company who also were first to discover the attack,
had its cybersecurity tool suite stolen. Several targets from the SolarWinds
attack seem to have been organizations such as Microsoft and DUO that deliver
services to many businesses to best increase the effectiveness of the attack.

The attack originating from SolarWinds exploited the trust that firms such
as Microsoft and the U.S. government put in their suppliers. Tools already in
place to detect sophisticated attacks were insufficient to detect it. The same
vulnerability characterizes supply chain attacks in general [5].

2.5 Trusted Execution Environments and
the Intel Software Guard Extension

Most applications today are executed on a large untrusted computing base,
for instance, the operating system, hypervisor, and firmware. The untrusted
computing base is often unverifiable [11]. Trusted Execution Environments
(TEEs) provide a trusted computing base, which is a secure area that
can be used to run security-critical applications separately from untrusted
applications. TEEs rely on hardware and software features to ensure the
security of the applications [11].

Intel Software Guard Extension (Intel SGX) is a trusted computing design
aimed at solving the problem of secure remote computation [12]. Secure
remote computation is generally unsolved. Existing solutions, such as fully
homomorphic encryption, have significant impractical aspects.

Intel Software Guard Extensions (Intel SGX) was chosen over other
Trusted Execution Environments for this work because of its third-party
attestation scheme, which is detailed later in this section and allows it to be
used offline. Alternatives include, but are not limited to, ARM TrustZone,
AMD SEV, and Sanctum [28, 12, 29]. How Intel SGX compares to
alternatives is detailed more in section 2.5.5.

Only the main properties of Intel SGX relevant to the work are included in
this section. In the following subsections, the architectural overview of Intel
SGX along with the considered attestation scheme, the main concepts of how
a secure container can verify itself to other users, and a security analysis and
threat model of Intel SGX.
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2.5.1 Intel SGX attestation
More precisely, the attestation scheme used in this work is based on the Elliptic
Curve Digital Signature Algorithm (ECDSA). The main goal of attestation
is to prove to a user that they are communicating with a pre-determined
application, running in a secure SGX container [12].

Figure 2.4: Simplified Intel SGX setup. Adapted from [30]

In figure 2.4, the overall architecture and the relationship between
components are visualized. This section will clarify each component’s
purpose for a trusted computing design, as well as how they are related to
the attestation process.

The attestation scheme was introduced by Intel to allow third parties to
build their own attestation services [31]. Additionally, it supports attestation
to be carried out in an offline network if configured accordingly.

Components

Secure containers in Intel SGX are called enclaves. Enclaves run inside an
SGX Platform [30]. The developers of the enclaves are called Independent
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Software Vendors (ISVs).
An SGX Platform, a machine with an Intel SGX-enabled CPU configured

to act as an SGX Platform, is at manufacture time provisioned with keys only
known to Intel [12]. In this work, the keys are referred to as provisioned keys.
The provisioned keys are used to identify the SGX Platform.

In each SGX Platform, two Intel-issued enclaves are necessary for
attestation, namely the Provisioning Certification Enclave (PCE) and Quoting
Enclave (QE). The PCE uses the provisioned keys, known to Intel, and the QE
instead uses a generated attestation key, which is unknown to Intel and other
participants [30].

When an enclave is loaded into the SGX Platform, the enclave initiates
the creation of an SGX Report. The SGX Report contains information
about the application itself and its environment, also called a measurement
or measurement hash. The QE is responsible for signing the SGX Report,
which produces an SGX Quote. The SGX Quote is shared with other parties
and is used to verify the application [12].

The Intel Provisioning Certification Service (PCS) is an Intel-provided
service that can identify genuine SGX Platforms. Additionally, it holds
necessary information to verify SGX Quotes, such as allowed measurements
and the identity of genuine SGX Platforms and Intel-issued enclaves [12].

Intel Provisioning Certification Cache Service (PCCS) can cache results
from the PCS. The PCCS is what allows the attestation to be performed in a
closed network as verification libraries used by users in the system can query
the PCCS for the necessary information, rather than using the PCS [30]. It
is up to an administrator to keep the PCCS updated if it is configured to be
offline.

By using the components above, a user in the system (see the “relaying
party” in figure 2.4) can establish a secure channel to communicate with the
application in the SGX Platform.

2.5.2 Chain of trust
Trust in the identity of SGX Platforms and the genuineness of SGX Quotes is
rooted in the general certification infrastructure set up by Intel. This section
will briefly present the fundamentals of Public Key Infrastructure (PKI), which
is the basis for the general certification infrastructure, and how the trust is
propagated through components in the overall architecture of SGX.

PKIs allow entities to prove their identity to each other [32]. X.509 is a
standard for PKI. certificate authorities (CAs) issue certificates that bind an
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identity to a public key, achieved using digital signatures. The certificates
themselves contain information about the identity and the associated public
key. Additionally, CAs can issue intermediary certificates, that allow the
recipients of such certificates to issue certificates to other entities. CAs are
responsible for ensuring the identity of the entity that is issued a certificate.
The tree of certificates, rooted in the certificate held by the CA, is commonly
referred to as a trust chain. Furthermore, certificates can be self-signed, which
is the case for root certificates. Identities of self-signed certificates do not have
to be verified by a CA.

The PCCS stores certificates for the provisioned keys used in the PCE,
which are signed by Intel’s root CA. The PCE will sign the QE’s attestation
key, which in turn will sign the SGX Report and produce an SGX Quote.
This certificate structure is verified during attestation. The trust in the SGX
Platform is rooted in Intel’s root CA [30, 12].

Importantly, trust that the application is the pre-determined application
is also dependent on Intel SGX’s guarantees of enclave security. These
guarantees are a part of the Intel SGX threat model, which is presented in
section 2.5.4.

2.5.3 Application of Intel SGX
The implementation of hardware isolation through Intel SGX is mainly to
provide a semi-sandbox mechanism, in which the sensitive and private parts
of the application are placed within the enclave, such as nontransparent code.
In this manner, SGX provides a secure environment for executing sensitive
applications [11].

Several practical applications of Intel SGX have been explored, including
network defense mechanisms for web browsers, data security in databases,
improvement of data encryption technology, protection of sensitive data in
computer games, and data security in Bluetooth I/O processes. Intel SGX has
also been applied to cloud computing, for instance, where it has been used to
provide more secure memory for big data applications [11].

2.5.4 Threat model
In Intel SGX’s threat model, all non-enclave resources; such as the operating
system, the hypervisor, applications, and peripherals are considered untrusted
[12]. Within enclaves, the following guarantees are part of the threat model:

• Confidentiality - To prevent reading code and data within enclaves.
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• Integrity - To prevent modification of code and data within enclaves.

Furthermore, to prevent replay attacks (i.e. unauthorized re-use of data),
the computation within enclaves also has freshness guarantees [12].

In [12], Costan et al. analyze and evaluate Intel SGX with respect to
different types of attacks, it is also compared to other hardware isolation
technologies. The comparison to other hardware isolation technologies is
summarized in section 2.5.5. Next follows a categorization of attacks and Intel
SGX’s resilience to these types of attacks.

2.5.4.1 Attack categorization

The attack types considered for Intel SGX are shown and described in table 2.1.
The attack types are also divided into three categories as in [28]: attacks from
privileged software, attacks from hardware events, and attacks from hardware
probing (physical access to the hardware). Intel SGX’s resilience to each
attack type is presented in section 2.5.4.2.



Background | 21

Category
Attack type Description

Privileged
Software

Direct memory
access (DMA)

Transferring unauthorized data from
memory to peripherals without involving
the CPU [12]

Address
translation

Passive: A malicious system can infer
information from memory access patterns.
Active: A malicious system can modify
page tables such that it breaks the virtual
memory abstraction [12].

Firmware Firmware can be overwritten by system
hardware. Untrusted system hardware can
inject malicious code into the firmware.

Denial of service Preventing an enclave from executing.

Hardware
events

Cache-timing Exploits the dependency between the
location of memory access and the time it
takes to perform the operation. Can be
mounted by unprivileged software.

Row-hammer
attack

A class of attacks where some DRAM
(memory) hardware implementations are
vulnerable to bit-flipping attacks from
unprivileged software.

Hardware
probing

Port attacks Physically accessing the ports on the
processor chip, for instance, the debug
port.

Bus tapping
attacks

Physically accessing the memory bus,
reading and analyzing data.

Chip attacks Physically accessing the processor chip
and interacting with its electrical circuits.

Power-analysis
attacks

Measuring the power consumption of a
computer system or its components.

Table 2.1: Description of different attack types related to Intel SGX
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2.5.4.2 Resilience

Table 2.2 describes the resilience of Intel SGX to the attack types in table 2.1
[28, 12].

Attack type Resilience

Direct Memory
Access (DMA)

Secure, because DMA access is rejected
by reserved enclave memory.

Address
translation

Not secure against the passive type.
Secure against active types of address
translation.

Firmware Secure, because firmware can not
circumvent access checks.

Denial of service Not secure, because enclaves execute on
top of untrusted system software.

Cache-timing Not secure, it is possible to evict the
desired cache line.

Row-hammer
attack

Secure, integrity checks can detect
unexpected modifications of data.

Port attacks Secure, unless debug ports are enabled.

Bus tapping
attacks

Secure, because the CPU encrypts data in
transit.

Chip attacks Not secure.

Power-analysis
attacks

Not secure

Table 2.2: Intel SGX resilience to different types of attacks

The authors of [12] conclude that Intel SGX is resistant to straightforward
attacks, but the resistance is almost non-existent for sophisticated attacks
such as cache-based side-channel attacks, and most hardware probing attacks.
Furthermore, the authors found that several security-critical aspects of Intel
SGX lack rigorous documentation, making it guesswork to argue for some of
its security claims.
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2.5.5 Alternatives to Intel SGX
This section presents the main differences in ARM TrustZone and Sanctum to
Intel SGX, both concerning their approach and scope the of threat model.

ARM TrustZone. ARM TrustZone conceptually partitions a system into a
secure world and a normal world. Intel SGX instead encapsulates software
in an enclave [11]. ARM uses semiconductor intellectual property cores (IP
blocks) to separate the system’s resources (CPU, memory, peripherals). Each
world has its own operating system and software resources. ARM TrustZone
can protect against passive address translation attacks, unlike Intel SGX.
However, similar to Intel SGX, it fails to protect against cache-based side-
channel attacks, such as the cache-timing attack [28].

Sanctum. Sanctum’s security argument relies on two pillars: enclave
isolation enforced by a security monitor, and guarantees of the software
attestation signatures [29]. Sanctum increases the scope of Intel SGX’s
threat model by including attacks that analyze an enclave’s memory access
patterns, especially cache-timing attacks, because they can be launched from
unprivileged software. The prototype targets a Rocket RISC-V core and is
open-source.

2.6 Related work
In this section, relevant attacks and contributions to HREs and CI are
presented. Additionally, this section presents open-source contributions to
Intel SGX.

2.6.1 HRE attacks
Air-gapped environments significantly limit the possible attacks on HRE
environments. Research into attacks on HREs has assumed that malicious
code already exists on the compromised computers [22, 33].

In [33], the authors demonstrated how information can be leaked from an
air-gapped computer by transmitting information through flashing LEDs on the
keyboard. The same vulnerability can be used for any visible and controllable
light source on the computer. An attack could for instance use drones to record
and receive the transmission.
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In [22], data was exfiltrated by controlling the CPU utilization. The
attacker is assumed to have access to the electrical socket that powers the
computer and can listen to fluctuations.

2.6.2 Secure CI
In [14], Rimba. et al. propose using verifiable design fragments as a security
pattern for capability-based platforms, such as those provided by AWS IAM
where permissions are explicitly stated by relations of actions on resources for
a particular user, and a pattern-based composition approach to build and verify
an application design on a capability-based platform. Their verifiable design
fragments and pattern-based composition approach allow to create security
assurance for the application in the design phase. In their case study, they
apply the approach to build a secure CI/CDE/CD pipeline on AWS and divide
the pipeline into trusted and untrusted resources that make up the design
fragments.

In [9], Muñoz et al. proposed and demonstrated a framework for
ensuring project integrity throughout the phases of fetching source code
and dependencies and through the build and testing process using Trusted
execution environments (TEE) and Secure elements (a chip designed to
prevent unauthorized access and store confidential and cryptographic data).
However, integrity checks throughout phases cannot assure that the build
output is valid in those cases where the build output contains new files or
binaries.

Gruhn et al. [34] targeted an environment where a Jenkins server
executes builds in a multi-tenant environment. They only target attacks where
one tenant may compromise the CI pipeline of another tenant. Through
virtualization, and restoration of each tenant’s config through snapshots, this
attack was considered infeasible.

2.6.3 Intel SGX open-source contributions
The Gramine project [35] is an open-source lightweight library operating
system that runs on Intel SGX. It supports both forms of Intel SGX attestation
methods. It allows a developer to simulate a virtualized environment on Intel
SGX and run arbitrary applications.

Intel does not define a standard protocol to use for communication between
the ISV and the enclave after attestation. Knauth et al. [36] introduced RA-
TLS, which extends the Transport Layer Security (TLS) protocol with Intel
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SGX attestation information. This allows the remote party to be sure they are
communicating with an enclave. RA-TLS supports both forms of attestation
methods. Furthermore, Gramine has incorporated this TLS protocol for use
with Intel SGX [35]. For the attester to trust the TLS certificate, RA-TLS binds
the credentials used for TLS to the SGX Quote produced in the SGX Platform
by including a hash corresponding to the credentials in the SGX Quote.

2.7 Summary
CI and CDE are commonly used processes for building and testing
applications. Supply chain attacks cause severe damage to organizations
and their customers. Characteristically of supply chain attacks, attackers can
exploit the trust that customers put in their suppliers. As can be seen from
previous attacks, attackers can often tamper with the building and testing of
applications undetectable to the supplier.

Highly Regulated Environments and Intel SGX have been introduced,
which both are state-of-the-art practices and methods to help mitigate attacks.
HREs enforce producing applications with a smaller attack surface and
introduce limitations in how applications can be produced. Intel SGX
provides an execution environment that claims to guarantee confidentiality and
integrity. The trust that the guarantees hold is rooted in Intel. The guarantees
are criticized in the literature as they do not hold against sophisticated attacks.
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Chapter 3

Method

3.1 Research process
The main purpose of this thesis is to harden the security of the CI process
in an HRE environment. The research method is based on the goals of this
thesis, which include guiding future research on the application of hardware
isolation on CI processes and providing a more comprehensive understanding
of the theoretical foundations and the risks of using hardware isolation for the
CI process. The goal of this thesis is not to provide a security analysis of any
hardware isolation technology.

The technological background was obtained from a literature review on
related areas and especially Intel SGX. Intel SGX was chosen over other
Trusted Execution Environments because of its third-party attestation scheme,
which can be used offline and fulfills this essential requirement for Highly
Regulated Environments. Furthermore, open-source contributions such as
Gramine and RA-TLS simplify any attempts to implement the proposed
framework in this work for practical use.

A baseline CI process and threat model using STRIDE is described for
a system without hardware isolation in section 3.3. The framework design
described in chapter 4 applies Intel SGX to a similar CI process, and the threat
model is adjusted for the new system.

The framework is primarily designed to ensure the integrity of execution
and data in the CI process to mitigate supply chain attacks. As a second
priority is the confidentiality of the CI process, which may process secrets and
is important in an HRE. The framework design’s requirements were selected
based on the integrity and confidentiality requirements of the CI process.

The framework design was evaluated in chapter 5 based on the security
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requirements and the adjusted threats. The evaluation framework is described
in the following section.

3.2 Evaluation framework
Goal Structuring Notation is used to demonstrate goals and sub-goals and how
they relate to strategies, contexts, and solutions as part of a safety case. The
evidence, which here is used as the solutions, will be in the form of arguments
based on the assumptions mentioned in section 4.8 and on choices made in the
framework design.

Subgoals are identified from the choice of strategies and contexts that are
included in the Goal Structuring Notation. How strategies and contexts are
chosen is further motivated in section 5.1.1.

The security requirements in section 4.9 are transformed into goals (G1,
G4, G9, G12) and their respective sub-goals. The evidence is omitted from the
graphical part of the Goal Structuring Notation. The evidence is in the form
of arguments based on the assumptions and choices made in the framework
design.

The Goal Structuring Notation was chosen over a simpler approach, such
as simply describing the sufficiency of fulfilling the security requirements.
With this method, the arguments and goals are visibly structured and partly
explained by the principal elements in GSN. Furthermore, goal-structured
safety cases facilitate breaking down the complexity of the approach into
smaller, manageable components.

The validity of claims - if premises are true, the conclusion is true - and
their soundness - if a valid argument has true premises - are both evaluated. To
evaluate the soundness, a qualitative confidence level is associated with each
assumption based on findings in previous work. Furthermore, the sufficiency
of argumentation in the safety case is discussed. The goal is that this evaluation
method can demonstrate the theoretical feasibility, weaknesses, and potential
strengths of the proposed approach.

3.3 Baseline CI model
For reference, a general CI model is included here. It will be adjusted further
in section 4.7 to the introduced framework design. The general CI model used
in this work excludes any form of process for deployment, neither manual
nor automatic, for the given application. This is because of two reasons:
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HREs rarely contain automatic procedures for deployment, and the manual
approach could be complicated. The primary scope of this system is building
and validating the software. Therefore, this system is constrained to the CI
process.

CI setup
The attack vector is defined on a trivial CI setup in an air-gapped environment
(i.e. offline network). The following entities are considered part of the CI
setup:

• A worker. Responsible for building, testing, and packaging the software.

• A user. Responsible for instructing the worker on what to execute and
providing necessary artifacts such as code or secrets.

The worker and the user can co-exist on the same machine but for the
purpose of resembling the framework proposed in chapter 4, and with no
difference to the attack threats, the worker and user exist on separate machines
within the same closed network.

As a part of the CI pipeline, the user issues jobs describing what to build to
the worker, possibly through some third-party and open-source software. The
jobs executed inside the worker fulfill the function of different stages of the CI
pipeline. The worker may run the job in a virtualized environment, or directly
on the host.

The user provides all necessary data, such as code, secrets, and other
dependencies to the worker as part of the job description. The worker executes
the job and returns the result.

Attacker assumptions and capabilities
The attackers are highly sophisticated and can dedicate a large amount of
resources to conduct an attack. Sophisticated APT groups or state-sponsored
attacker groups may find that certain HREs are a prioritized target.

By the characteristics of an HRE, attacks are more difficult and often rely
on human participation, accidental or deliberate, to inject the exploit into the
closed system. It is assumed that every device/machine in the network can be
compromised with elevated privileges, but every machine is not necessarily
compromised.
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Attack threats
The attack scenarios are centered around STRIDE threats. In this scenario, an
attacker is assumed to have achieved elevation of privilege on either machine
(user or worker machine). The attackers are assumed to have root access on
machines they have compromised.

The following STRIDE threats are considered for the compromised worker
machine:

• Tampering. An attacker with full privileges to the worker machine can
read and modify the memory of applications that are running. They can
also tamper with the file system. This may allow the attacker to inject or
remove data as part of the job result that is unknown to any other party.

• Information disclosure. The attacker can inspect and extract data passed
to and produced from the worker machine.

• Repudiation. The user has no guarantees that the worker will execute the
job as detailed and while preserving integrity. Non-repudiation cannot
be guaranteed.

• Spoofing. The attacker could imitate the worker and hijack communi-
cation with the user. The attacker would then be free to define any job
result.

STRIDE threats for the compromised user machine:

• Information disclosure. The attacker can access and inspect all sensitive
assets, such as code, secrets, and dependencies.

• Tampering. The attacker can modify information sent to the worker
machine, or modify files directly on the machine possibly for malicious
purposes.



Framework Design | 31

Chapter 4

Framework Design

A general model to CI in HREs was shown in section 3.3. In this section, a
different approach to CI is presented. The proposed framework is designed
for the same scope as the general CI model shown earlier. An adjusted threat
model will be presented in section 4.7 along with the security requirements of
the framework in section 4.9.

The resulting framework design is shown below. It is a system that attempts
to protect the CI process by use of hardware isolation with Intel SGX and is
designed to be compatible with an HRE.

4.1 Entities and participants
In the framework, there are the following entities and participants which can
also be seen in figure 4.1.

• SGX Platform. In the context of the framework, a worker executes a
pre-defined software in the Intel SGX environment. A worker instance
is a short-lived instance of execution of the Intel SGX protected worker,
which uses identical software.

• Orchestrator. The developer or user.

• Intel PCCS, which is configured to be used offline. Intel-provided
software for maintaining Intel signed certificates capable of verifying
SGX Platforms and SGX Quotes.

Furthermore, the framework requires participation in the form of manual
administration of the PCCS.
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Figure 4.1: Participants in the CI framework

4.2 Overview
The framework design is intended to allow the orchestrator to define arbitrary
work to be done and let a worker instance produce results verifiably. This
trust is rooted in the guarantees provided by the Intel SGX hardware. This
is achieved using protocols, services, and software provided by Intel and
contributions from previous research. The framework design relies on
attestation of the worker instance and secure communication between entities
(see section 4.3), the configuration of the worker instance (see section 4.4),
and verification of the produced result (see section 4.5).

4.3 Attestation and communication
Attestation and communication are provided by existing Intel protocols and
through other contributions such as RA-TLS and Gramine. The measurement
(which includes a hash of the memory used to run the application, flags used,
etc.) for a legitimate worker instance must be known beforehand. RA-TLS is
used to set up a secure communication channel between the orchestrator and
SGX Platform application. RA-TLS incorporates the attestation protocol of
ECDSA-attestation into the creation of the TLS certificate stored in the SGX
Platform application.

The following is a high-level description of the protocol used for the
initial setup that is required when an application is first launched in the SGX
Platform, as can be seen in figure 4.2. Initial setup procedure:

0. The PCCS is manually configured and updated with certificates
provided by PCS.
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Figure 4.2: Protocol to generate a self-signed X.509 certificate in the SGX
Platform application containing the SGX Quote

1. The application generates a key-pair that will be used as part of the RA-
TLS protocol. The application then creates an SGX Report through the
hardware instruction EREPORT. The SGX Report will include a hash
of the public key of the generated key-pair.

2. The application sends the SGX Report to the Quoting Enclave.

3. The Quoting Enclave sends a public key of its attestation key to the PCE.

4. The PCE receives an attestation collateral with certificates and
revocation lists from the PCCS and signs the public key of the Quoting
Enclave.

5. The Quoting Enclave produces an SGX Quote signed by its attestation
key.

6. The application receives the SGX Quote and produces a self-signed
X.509 TLS certificate as used in RA-TLS containing the SGX Quote.
The SGX Quote contains a hash of the public key used for the self-signed
TLS certificate, which binds it to the enclave.

In the above procedure, step 4 is only necessary for the first generation of
an SGX Quote in the SGX Platform.
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Figure 4.3: Protocol to establish a secure communication channel between the
SGX Platform application and the orchestrator and verify the SGX Quote

The following is a high-level description of the establishment of a secure
communication channel between the orchestrator and the SGX Platform and
the verification of the SGX Quote, as can be seen in figure 4.3. Establishment
procedure:

1. A TLS handshake procedure is initiated by the orchestrator to the SGX
Platform application. The SGX Platform application sends the self-
signed X.509 certificate containing the SGX Quote.

2. The orchestrator requests the attestation collateral for the provisioned
keys of the SGX Platform that issued the Quote.

3. The orchestrator verifies that the SGX Quote is authentic and correct.

4. The TLS handshake is completed. A secure communication channel
can be used.

To verify the SGX Quote (step 3), the orchestrator must compare the
measurements of the application to the expected values and validate that the
provisioned keys that issued the attestation key is recognized by Intel. It must
also ensure that the hash of the public key associated with the TLS certificate
matches that in the SGX Quote.
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4.4 Configuration
When attestation has been performed and a secure communication channel has
been set up. The orchestrator sends a configuration detailing the work that the
worker instance should do. The config data object contains the following data:

• Inputs. A list of inputs, such as files and zipped folders.

• Scripts. A list of scripts that the worker should execute.

• Expected outputs. A list of expected output names. It is up to the
provided scripts to store the outputs in a designated folder.

The worker instance executes the scripts in the configuration.

4.5 Verification
The worker instance generates a self-signed certificate, namely a signing
certificate, containing the SGX Quote and hardware information similar to
the TLS certificate in RA-TLS. Specifically, the signing certificate and the
corresponding asymmetric key-pair must be bound to the SGX Quote to allow
users to trust that the signer is the intended worker instance. Step 1 of the setup
procedure (in section 4.3) is modified to also include the public key of the key-
pair associated with the signing certificate in the SGX Report. Then, the public
key will be included in the SGX Quote, and the SGX Quote is included in the
signing certificate. The public key is included in the SGX Quote in full, unlike
the public key associated with the TLS certificate.

The private key associated with the signing certificate will be used for
signing results in the worker instance. The public key, associated with this
certificate, along with the certificate itself, will be transmitted over the secure
communication channel to the orchestrator.

The data returned to the orchestrator from the worker instance is a signed
result data object. The result data object consists of a hash of the configuration
that was used and a list of outputs. The result is signed by the worker instance
with the private key associated with the signing certificate producing a signed
result.

The orchestrator may verify the signature with the public key and the
associated signing certificate. The orchestrator may need to verify the
SGX Quote included in the signing certificate to trust the signature. If the
orchestrator has attested the worker instance previously, when establishing the
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secure communication channel, then the SGX Quote in the signing certificate
is identical and should not need further validation.

The worker instance is not involved in verifying the results produced. For
clarification, to verify the signing certificate, the user needs access to the
CRLs, which are accessible through PCCS in the offline network. The CRLs
are associated with the provisioned keys that are used in the SGX Platform.

With access to the specific CRLs, that are trusted to be issued by Intel,
and the produced signed result, a user can gain confidence that the intended
worker instance has produced the results.

It was decided to use a separate signing certificate to sign the results of
the worker instance, rather than use the same certificate and key-pair used
for communication by RA-TLS because the key-pairs are used for different
purposes.

4.6 Authenticity and trust terminology
This section defines the meaning of authenticity and trust in the context of the
framework design. Specifically, an entity, such as an SGX Quote or a signing
certificate, is often referred to as either authentic or trusted for the rest of the
report.

Authenticity
An authentic entity is unmodified, not tampered with, and produced in
an authentic environment.

Trust
A trusted entity appears authentic to participants in the framework, but
it does not have to be authentic.

For example, an SGX Quote may be trusted in the framework by the
orchestrator after local validation, but it does not have to be authentic. An
authentic SGX Quote or signing certificate could not be trusted by any
participants in the framework if, for instance, local verification is tampered
with by an attacker.

4.7 Adjusted threat model
In section 3.3, a general approach to CI in HREs is presented. The framework
design introduces new definitions of entities and more participants and
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protocols that should be considered. This section will expand on the previous
model. For each participant in the framework, STRIDE threats have been
identified. Additionally, threats T1-T9 to the framework are defined from the
identified STRIDE threats.

4.7.1 Attacker capabilities
Mainly, two forms of attacker capabilities are considered for the SGX Platform
and the worker instance. The ability to imitate a worker instance, and the
ability to launch an illegitimate worker instance that appears authentic or
trusted. For example, to imitate a worker instance, the attacker may learn
internal SGX keys of the PCE, or secrets in the worker instance. To launch
an illegitimate worker instance, the SGX Platform itself can be malicious,
the execution of the worker instance can be tempered with, or expected
measurements can be modified.

Furthermore, the attacker is assumed to be capable of observing and
modifying actions taken by users in the framework, such as the orchestrator.

4.7.2 PCCS
The following STRIDE threats are considered for attackers with elevated
privileges on the machine running PCCS:

• Tampering - Data used as part of the application, such as Intel-issued
certificates, and responses from the applications may be modified.

• Information Disclosure - Information about the use of the applications
and data associated with them, such as Intel-issued certificates, can be
disclosed to the attacker.

Because the system is offline, the PCCS can not verify the integrity of
Intel-issued certificates by itself. Modification of such files, which is assumed
to be feasible on a compromised machine, could be non-trivial to detect.

Additionally, if Intel delivers malicious signed certificates. It would allow
malicious SGX Platforms to appear authentic.

Accordingly, the following threats are defined for the PCCS:

T1 Illegitimate worker instance by tampering - Modifying certificates or
measurement data held by the PCCS will allow an illegitimate worker
to produce a seemingly authentic SGX Quote, hence users would
successfully attest an illegitimate worker instance
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T2 Illegitimate worker instance by compromised third-party - The attacker
can compromise Intel, which acts as a trusted CA, and the signed
certificate that is received by PCCS can authenticate malicious SGX
Platforms in the framework.

T3 Illegitimate worker instance by internal sabotage - A trusted IT
administrator uploads false measurement data and/or certificates that
allow illegitimate worker instances.

4.7.3 Orchestrator
The following STRIDE threats are considered for a compromised orchestrator
machine:

• Tampering - An attacker can modify the configuration sent to the worker
instance.

• Tampering - An attacker could interfere in the verification process of
the SGX Quote and make a forged SGX Quote appear authentic.

• Information Disclosure - An attacker can observe data sent to and from
the worker instance.

The following threats are defined for the orchestrator:

T4 Misconfiguration by tampering - An attacker can modify the configura-
tion sent to the worker instance.

T5 Mistrust by tampering - An attacker can interfere in the verification and
induce trust in a forged SGX Quote.

T6 Observability - An attacker can observe the data sent, such as code and
artifacts, to and from the worker instance.

4.7.4 Worker
A compromised worker machine can either run a legitimate worker instance
(i.e. not modified), an illegitimate worker instance (i.e. modified), or attempt
to imitate the behavior of a worker instance.

If a compromised worker machine runs a legitimate worker machine it may
be possible for an attacker to:
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• Information Disclosure - Leak the private key, that is associated with the
signing certificate, that can be used to sign arbitrary results that appear
authentic.

• Tampering - Modify execution of the enclave.

Running an illegitimate worker may allow the attacker to produce arbitrary
results. The attacker would be required to forge measurement data that is
included in the SGX Quote, for the illegitimate worker to appear as legitimate.

To imitate a legitimate worker, one possible attack threat is to gain access
to the provisioned keys used as part of the PCE, which would be used to imitate
a QE to sign a forged SGX Quote which would be trusted by the orchestrator.

T7 Imitate worker instance by breaking confidentiality of PCE - An attacker
may break the confidentiality of the PCE, which could allow the attacker
to gain possession of the provisioned keys. With the provisioned keys,
the attacker is assumed to be able to imitate the execution of an SGX
Platform and produce trusted SGX Quotes.

T8 Imitate worker instance by breaking confidentiality of worker instance
- An attacker may break the confidentiality guarantees of the worker
instance. If the attacker gains possession of the signing certificate and
associated key-pair, the attacker may sign arbitrary results as if they were
produced authentically.

T9 Illegitimate worker instance by breaking integrity of the SGX Platform
- An attacker may break the integrity of the SGX Platform, hence
tampering with the execution within the enclaves of the worker instance,
PCE, or Quoting Enclave to make the worker instance produce modified
results.

4.8 Assumptions
The following are assumptions of what an attacker is unable to do and assumes
trust in certain guarantees provided by the provider of certain applications that
are used.

A1 An attacker is unable to break confidentiality and integrity guarantees
of Intel SGX environments. The attacker is incapable of extracting
information used internally in the SGX Platform and in the various
enclaves running within. It is therefore not possible for an attacker to
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gain access to sensitive cryptographic keys within the SGX Platform,
for instance.

A2 An authentic SGX Quote includes correct and honest measurements
for the application. If an illegitimate worker instance is deployed,
its measurements must be different from that of a legitimate instance.
Furthermore, an attacker cannot forge measurements of a legitimate
instance and, hence, produce authentic SGX Quotes.

A3 Intel’s general certificate authority, which is used to validate the
provisioned keys in each SGX Platform, is assumed to be trusted. An
attacker is assumed not to be able to generate false certificates as issued
by Intel.

A4 A legitimate worker instance is assumed not to leak sensitive
information by accident through communications with other entities
or by other means. Furthermore, the worker software, in a legitimate
worker instance, is assumed to act honestly and produce a result as
expected from the configuration.

4.9 Security requirements
The security requirements below aim to mitigate the threats to the Worker. The
requirements aim to ensure that a signed result data object is authentic only if
it is produced in a legitimate worker instance. The integrity and authenticity
properties of the produced objects are prioritized.

S1 The signing certificate is authentic if and only if the SGX Quote is
authentic.

S2 An authentic SGX Quote can only be produced for a legitimate worker
instance in a known platform.

S3 A legitimate worker instance will produce an authentic result data object
from the config data object.

S4 A signing certificate in a legitimate worker instance cannot be leaked.

Not all threats in section 4.7 are mitigated. The framework is not designed
to mitigate threats to the orchestrator and PCCS. Specifically, it will not
preserve the confidentiality of the configuration (i.e., code, files, scripts, and
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secrets) in the framework, it will not prevent an attacker to submit a malicious
configuration to the worker instance, nor will it prevent an unauthentic SGX
Quote to appear authentic to the Orchestrator either through tampering with
the PCCS or the orchestrator itself.

4.10 Functional requirements
• Offline - The framework should be operable in an offline environment.

• Customization - The framework should allow arbitrary applications to
be built and executed.

• Longevity of verification – The verification process of the result must
be independent of the worker instance (i.e. the worker instance can be
terminated), and the signed result can be verified long after its creation
and by third parties.

• Limited Overhead - The framework should not introduce significant
overhead.
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Chapter 5

Results and analysis

This section presents the assurance case developed for the framework in
chapter 4. The goal is to show that the security requirements are fulfilled given
the assumptions and threats defined for the proposed framework.

5.1 Goals and evidence
In the safety case, each security requirement in section 4.8, namely S1-S4,
is mapped to goals G1, G4, G9, and G12 respectively. The Goal Structuring
Notation is presented in section 5.1.1. Each principal element in the GSN
is further described below. Furthermore, evidence is provided for each goal
individually in section 5.1.2.

5.1.1 Goals
The Goal Structuring Notation for each security requirement is presented in
this section. All goals and sub-goals make up G1-G12. There are three
strategies, St1-St3, and there are three contexts, C1-C3.

5.1.1.1 GSN of S1

Figure 5.1 presents the notation of the goal G1 - “The signing certificate
is authentic if and only if the SGX Quote is authentic”. The strategy, St1,
ensures that the authenticity of the signing certificate is at least identical to the
authenticity of the SGX Quote. For clarification, the authenticity property of
the signing certificate and the SGX Quote is deterministic, either it is authentic
or it is not. In the end, goals G2 and G3 aim to fulfill the equivalence nature
of goal G1.
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Figure 5.1: GSN of security requirement S1

5.1.1.2 GSN of S2

Figure 5.2 presents the notation of the goal G4 - “An authentic SGX Quote can
only be produced by a legitimate worker in a recognized SGX Platform”. The
first strategy, St2, ensures that an authentic SGX Quote can be produced as
described, establishing the base case in this context. The second strategy, St3,
ensures that no other entity can produce an authentic SGX Quote under other
conditions and takes a vulnerability-based approach. An exhaustive approach
to St3 is not feasible, therefore, context C1 limits the argument’s scope to only
known attack threats on the Worker as mentioned in section 4.7.

Specifically, all known attack threats relating to goal G4 are T3, T7, and
T9. The context does not consider threats T1-T2 because they are directed at
the PCCS service. Threats T1-T2 will be revisited later. G7 concerns threats
T3 and T9, which could allow an attacker to influence how the SGX Quote is
produced. G8 concerns threat T7, which could allow an attacker to imitate a
worker instance by being able to produce an SGX Quote that is trusted in the
network.
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Figure 5.2: GSN of security requirement S2

5.1.1.3 GSN of S3

Figure 5.3 presents the notation of the goal G9 - “A legitimate worker instance
will produce an honest result data object from the config data object”. Two
sub-goals are identified. The first goal, G10, ensures that the SGX Platform
can ensure the integrity of the executing software. Goal G10 is in response to
threat T9, which is the only identified threat to G9 that is a part of the threat
model. Goal G11 is an undeveloped goal but ensures that the worker software
executes without unintended errors and that worker software will produce a
result. The worker software itself is undeveloped, therefore this goal was also
decided to be undeveloped.

Context C2 is associated with goal G9, which specifies that threat T9 from
the threat model, and additionally, threats concerning the implementation of
the worker software, are the only known threats to fulfill G9. Threats in context
C3 are mitigated in goals G10 and G11.

Figure 5.3: GSN of security requirement S3
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5.1.1.4 GSN of S4

Figure 5.4 presents the notation of goal G12 - “The private key associated with
the signing certificate in a legitimate worker instance cannot be leaked”, which
is identical to security requirement S4. Context C3, all known attack threats
to the worker instance, is attached to G12.

Specifically, only threat T8 is included in context C3, as it is the only known
threat to the worker instance.

Figure 5.4: GSN of security requirement S4

5.1.2 Evidence
This section will first present each goal that does not have additional sub-goals
attached and the evidence that aims to sufficiently fulfill them. G11 is an
undeveloped goal, and will not be included. Evidence will be in the form
of an argument, which is based on assumptions or other premises relating to
the framework.

Goal G2 - “If the SGX Quote is authentic, the signing certificate must be
authentic”
The SGX Platform has confidentiality and integrity guarantees by
assumption A1. An authentic SGX Quote cannot have forged
measurements, by assumption A2, so the application must be the
intended one. A hash of the public key associated with the signing
certificate included in the SGX Quote ensures that the creator of the
signing certificate must also generate the SGX Quote. The sensitive
keys cannot be extracted from the application. The application that
created the signing certificate must therefore be the same application
that requested the SGX Quote. An authentic SGX Quote, therefore,
indicates that the application is the intended application and that the
signing certificate, therefore, is authentic.

Goal G3 - “If the SGX Quote is not authentic, the signing certificate is not
authentic”
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If the SGX Quote is not authentic, by the procedure of the verification of
a signing certificate, the signing certificate must also not be authentic.

Goal G5 - “An authentic SGX Quote can be produced by a legitimate
worker instance in a recognized SGX Platform”
By design in the Intel SGX framework, a legitimate worker instance can
produce an SGX Quote, which is verifiable to be authentic.

Goal G7 - “An illegitimate worker instance cannot produce an authentic
SGX Quote in any SGX Platform”
Threats T3 and T9 are considered under context C1 and allow an
illegitimate worker instance to appear authentic. For threat T9, by
assumption A2, an attacker is incapable of forging measurements for a
worker instance. By assumption A1, attackers cannot modify execution
or data in the SGX Platform, which guarantees the integrity and
authenticity of the SGX Quote.

Furthermore, relating to threat T3, by assumption A3, an illegitimate
instance cannot appear authentic and hence produce an authentic SGX
Quote by compromising Intel and forging certificates for malicious SGX
Platforms.

Goal G8 - “It is not possible to imitate a legitimate worker instance and
produce an authentic SGX Quote”
By assumption A1, confidentiality and integrity of the SGX Platform
are guaranteed. In the context of threat T7, an attacker requires access
to the keys used internally in the SGX Platform by either the Quoting
Enclave or the PCE to be able to imitate a legitimate worker instance
and produce an authentic SGX Quote.

Goal G10 - “The software in the legitimate worker instance is the intended
software and executes without modification.”
A legitimate worker instance has the intended measurements, by
definition. By assumption A2, it must be the intended software. By
assumption A1, the integrity of the application is preserved and the
execution order is guaranteed.

Goal G12 - “The private key associated with the signing certificate in a
legitimate worker instance cannot be leaked”
By assumption A1, the confidentiality of the worker instance holds
in a legitimate worker instance. Furthermore, by assumption A4, the
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private key cannot leak through unintended human errors in the form of
software bugs.

Next, evidence is presented for the remaining goals, which depend on the
goals above.

Goal G1 - “The signing certificate is authentic if and only if the SGX Quote
is authentic”
By strategy St1, the authenticity equivalence of the signing certificate
and the SGX Quote (G1) is logically decomposed into G2 and G3, which
both must be true for the equivalence to hold. From the above, G2 and
G3 hold.

Goal G4 - “An authentic SGX Quote can only be produced by a legitimate
worker instance in a recognized SGX Platform”
By induction, St2 and St3 satisfy the base case and the inductive step,
respectively. The base case is satisfied by goal G5. The sufficiency
of satisfaction of the inductive step in goal G6 is limited by context
C1, which only considers known attack threats as mentioned in section
5.1.1.2.

Goal G6 - “It is not possible to produce an authentic SGX Quote in other
conditions”
The goal is limited by context C1, which restricts the goal to all known
attack threats on the authenticity of the SGX Quote. Each known attack
threat is satisfied in G7 and G8.

Goal G9 - “A legitimate worker instance will produce an authentic result
data object from the config data object.”
The goal is decomposed into G10 and G11. G10 is fulfilled, as
mentioned above. G11 is outside the scope of this work. G9 is
further fulfilled by assumption A4, namely that the worker instance acts
honestly if the enclave has not been tampered with.

5.2 Analysis
The validity and soundness of the claims associated with each goal above are
evaluated in this section. The validity is often based trivially on the premises.
In section 5.2.3, the validity and soundness are further evaluated to establish
a motivation for the level of sufficiency of fulfilling the goals G1-G12 and
security requirements S1-S4.
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5.2.1 Validity

Goal Premises Context
G2 A1, A2 -
G3 - -
G5 - -
G7 A1, A2, A3 -
G8 A1 -
G10 A1, A2 -
G12 A1, A4 C3
G1 G2, G3 -
G4 G5, G6 -
G6 G7, G8 C1
G9 G10, G11 C2

Table 5.1: Goals’ premises and contexts of the assurance case

The relationship between the goals, premises, and contexts is further
clarified in table 5.1. The relationship between the elements is used to analyze
the validity. Goal G2 is trivially fulfilled based on premises A1 and A2. Goal
G3 follows the definition of authenticity and the signing certificate. Goals G5,
G7, G8, and G10 are trivially fulfilled based on their premises.

Goals G1, G4, G9, and G12 are the top-level goals that are also the security
requirements S1-S4. To analyze the validity of argumentation for these goals,
respect must be taken to the chosen strategies associated with them, and how
the sub-goals are combined to fulfill the top-level goals.

To fulfill G1, strategy St1 is used, which creates sub-goals that fulfill the
equivalence nature of goal G1. No context is associated with the strategy or
the goals. Because the sub-goals G2 and G3 are themselves valid, the validity
of G1 is ensured.

To fulfill G4, an inductive approach is used with strategies St2, for the
base case, and St3, for the inductive step. Goal G5, associated with the base
case of the inductive approach, is trivially valid. Context C1 is associated
with the inductive step, which significantly limits the scope of the argument.
However, under context C1, goal G6 is valid because each threat in context C1
is mitigated in the framework. This propagates to goal G4, which is also valid
under context C1.

To fulfill G9, no explicit strategy is used. By definition, goal G9 concerns
how a legitimate worker instance can produce an honest result. Threats in
context C2, which are mitigated by goals G10 and G11, are sufficient to ensure
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the validity of G9. There may be potential threats that are overlooked in this
work. However, under context C2, G9 is valid.

To fulfill G12, the context C3 is considered. The validity of G12 is ensured
under context C2.

5.2.2 Soundness

Assumption Confidence
A1 Low
A2 Low
A3 Low*
A4 -

Table 5.2: The confidence level associated with each assumption.

The soundness of the arguments depends on if the premises, which are
the assumptions A1-A4, are true. This section will therefore dissect the
assumptions based on findings in the literature and especially the threat model
presented in section 2.5.4.

The assumptions made for the framework are not all mutually independent,
which means there may be an overlap in specific weaknesses. As seen in table
5.2, the confidence level, indicating how true an assumption is likely to be,
is associated with each assumption. The confidence is one of Low, Mid, and
High. However, no assumption is assigned a Mid or High confidence level in
this work. The confidence levels are motivated below.

Assumption A1 is about the confidentiality and integrity guarantees in
the SGX Platform. The threat model by Costan et al. [12] presented
in section 2.5.4 highlights that the protection in Intel SGX does not hold
up to sophisticated attacks. In this framework, the attacker is assumed
to be highly sophisticated. The attacker could make use of cache-timing
attacks that would not require privileged access to the computer running the
worker instance. Consequentially, the attacker could break confidentiality and
possibly extract keys used for signing the outputs of the worker instance, which
would completely break the framework security requirements. Intel SGX also
receives criticism because it is unclear to security researchers how some of the
protection mechanisms work as they are undocumented.

Furthermore, Intel SGX is not secure against most hardware probing
attacks such as chip attacks and power analysis attacks, which would also
break assumption A1. The framework is intended for a Highly Regulated
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Environment, where any access to the entities is more difficult; however, this
work assumes that attackers have access to the entities in the framework, as
mentioned in section 4.7.1. The confidence level for assumption A1 is Low.

Assumption A2 relates to assumption A1, because an immediate effect
of breaking integrity can be to break A2. The assumption states that the
measurements in an SGX Quote of an illegitimate worker instance must differ
from the measurement in a legitimate worker instance. The confidence level
for assumptions A2 is therefore also Low.

Assumption A3 assumes trust in Intel as a certificate authority to identify
authentic SGX platforms. Such an attack is difficult but potentially feasible for
a persistent and capable attacker. There may also be other risks not considered
in this work regarding this assumption. The confidence level associated with
the assumption is Low, as it is not within the scope of this work to evaluate
this risk.

Assumption A4 assumes that there are no unintended leaks in the form of
bugs or misconfiguration of the Intel SGX Platform or the Worker software,
which is outside the scope of this work. Such errors could compromise the
secrets used in the worker instances. No confidence level is associated with
this assumption, as there is no implementation of the worker software, and its
related goal G12 is also undeveloped in the safety case.

5.2.3 Security analysis
In this section, the security requirements are analyzed in relation to the validity
and soundness of arguments that aim to fulfill them. The sufficiency of
argumentation is analyzed in section 5.2.3.1. In section 5.2.3.2, it is explained
to what extent threats are mitigated in the proposed framework.

5.2.3.1 Sufficiency of argument

A low confidence level is associated with assumptions A1 and A2. Goals G2,
G7, G8, G10, and G12 directly depend on these assumptions. Concerning
soundness, the weaker confidence level thus propagates to each security
requirement S1-S4.

Validity is primarily constrained by contexts C1-C3, which limits the
threats that are considered to what is known in this work. Validity is however
justifiable with respect to the given contexts.

The attacker is assumed to be persistent and highly capable; therefore, the
sufficiency of argument can be argued not to be sufficient in relation to the
considered threat model, where the goal is to ensure that security requirements
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S1-S4 always hold. Increased soundness would significantly increase the
sufficiency of argumentation.

5.2.3.2 Mitigated threats

Threats T3 and T7-T9 are mitigated by goals G6, G9, and G12 through
contexts C1-C3. The remaining threats will be discussed in this section.

Threats T1 and T2 make changes to which SGX Platforms are identified as
legitimate in the framework. An illegitimate worker instance may thus appear
legitimate. However, by security requirement S1, the signing certificate is
equally authentic as the SGX Quote. Furthermore, an illegitimate worker
instance cannot produce an SGX Quote for a different SGX Platform. A
result data object must include a signature from the signing certificate,
consequentially, it would be possible to distinguish the results that were
produced by the false legitimate SGX Platform by a user that knew that the
certificate was false.

Threats T4, T5, and T6 involve making changes to how the orchestrator,
or user, communicates the configuration or verifies the result of the worker
instance. With security requirements S1-S4 and how the result is produced, the
result data object must reflect changes in the configuration or fail verification
if it has been tampered with. However, participants in the framework may not
be able to verify this property.

Threats T1, T2, and T4-T6 have in common that participants in the
framework are vulnerable to the threats, but if verification of the result is
performed in an honest environment, possibly outside the framework, it can
be known to be authentic.
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Chapter 6

Discussion

6.1 Guarantees and trade-offs
The security requirements were chosen to guarantee certain properties in the
CI process. Specifically, the integrity of resources if they originate from a
worker instance and that the authenticity of the resources can be verified. The
confidentiality of resources is not protected in the framework. This means that
an attacker may still learn details about the resources as they are transferred
between participants in the network, despite that such resources could be
sensitive. More importantly in this work, an attacker is unable to modify
resources, as it would break the authenticity and integrity properties.

Integrity and authenticity were prioritized over confidentiality, because
of the characteristics of a supply chain attack. Which is the problem this
framework addresses.

The usability of the framework is a concern, as it does not solve any
problems surrounding the SDLC in HREs; instead, it introduces additional
complications. Parity between environments was previously a problem, and
building and testing the software in hardware isolation has the risk of creating
more parity, which could introduce security risks.

The framework’s role is to, in the end, mitigate supply chain attacks.
The verification of the resources created by a worker instance, such as the
software product, is not limited to being performed within the framework.
This means that there could be multiple lines of defense to ensure that the
produced software is correct.

In the case of the SolarWinds attack, the insertion of malicious code or the
modification of binaries should be visible if either the result data object fails
verification, or if the result data object does not reflect the intended config data
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object. The config data object can be verified to have contained the intended
files, and the software produced can be known to be authentic from the valid
result data object.

6.2 Threats to validity
From this work alone, it cannot be determined if the framework is
implementable as it is defined. Furthermore, the extent to which arbitrary
execution of software can be employed in Intel SGX Platforms is unclear.
Tools such as Gramine have exemplified that similar use cases are possible.
However, it cannot be determined for this framework’s use cases, such as
building and testing arbitrary applications, and exactly what limitations that
implies. A proof of concept is missing from this work, which is important for
the practicality and thus the validity of the theoretical framework.

The research method used in this work is qualitative. A safety case is used
to argue for the level of security and its argumentation’s sufficiency. A more
conclusive result could have been the product of a more extensive research
method. A more extensive research method should have more rigorous
arguments and possibly proofs, by formal methods, for the requirements of
the framework to hold.

Furthermore, a relaxed set of assumptions is important to complement this
work. The safety case is highly sensitive to changes in assumptions, if an
assumption would be false, the validity of the argumentation is compromised.

6.3 Shift of trust
A characteristic of HREs is that they use air-gapped environments, primarily to
eliminate the trust that needs to be put in routers, firewalls, and configurations
to protect the resources in the network. This framework takes it one step
further and attempts to eliminate the trust one needs to put in the participants
themselves, such that no computer or user is assumed to be trusted. Instead,
the trust is placed in Intel and the solutions they provide.

When attempting to secure the CI process in the context of the supply
chain, it is difficult to predict an attacker’s capabilities and potential threats.
Building software in an HRE decreases this cyber risk and many potential
threats are immediately mitigated; however, there is still considerable cyber
risk. For example, the internal threat of an employee introducing malicious
software into the network, whether it is accidental or deliberate, is difficult to
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mitigate.
Placing trust in Intel to guarantee the security properties of the CI process

may be misplaced. However, it could be argued that the attack surface and
potential threats are more predictable because the threats apply to Intel’s
hardware isolation technology rather than a physical air-gapped network with
many actors.

6.4 Improved hardware isolation
The confidence that Intel SGX can fulfill the security requirements for the
framework in this work is low, mainly because of the previously found
weaknesses in Intel SGX. Selecting other hardware isolation technologies may
allow increased confidence in the framework’s security requirements. Unless
changes are made to Intel SGX, other hardware isolation technologies such as
Sanctum or ARM TrustZone could be preferable for the proposed framework.

Sanctum is designed to withstand more sophisticated attacks, and the
potential to use Sanctum for the proposed framework should be evaluated
further in future work. However, implementing the framework with Sanctum
could be difficult in its current state. Because to the best of the author’s
knowledge, it does not offer the same degree of developer tools, such as SDKs,
libraries, and other open-source contributions compared to Intel SGX to make
it easier or perhaps feasible.

The proposed framework isolates all data and operations. A semi-
sandboxed variant, where only the essential data and operations are protected,
may be better suited if another hardware isolation technology is used in
the framework. Identifying which data and operations can be separated
without sacrificing security is suggested for future work. A semi-sandboxed
variant could also address usability concerns regarding the performance of the
proposed framework.
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Chapter 7

Conclusions and future work

7.1 Conclusions
With the used security context (assumptions, requirements, and threat model),
a hardware isolation approach using Intel SGX has the potential to guarantee
the integrity and authenticity of the CI process in HREs. However, the security
weaknesses in Intel SGX do not allow confidence in the assumptions of the
framework. In its current state, the security properties of the framework are
not sufficiently fulfilled.

Placing trust in Intel SGX to secure the CI process rather than in existing
practices in HREs could reduce the attack surface and potential threats,
which could allow practitioners to make better assertions about the security
of the produced resources. However, more research and progress on the
guarantees of the Intel SGX technology, as well as alternative hardware
isolation solutions, is necessary for this trust to be sufficiently motivated.

7.2 Limitations
The largest limiting factors are the choice of assumptions, and the scope of
the threats analyzed for the framework. Furthermore, it was decided to not
implement a proof-of-concept, which is necessary to evaluate the framework
further and to ensure that it is possible to use the proposed technologies in the
manner that is intended.
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7.3 Future work
Due to the breadth of the problem, the goals have only been met to a certain
extent. Below, some of the remaining issues that should be addressed in future
work are presented.

• A prototype of the framework needs to be implemented as a proof-of-
concept of the proposed framework.

• A more exhaustive threat model on the participants in the framework is
important to strengthen the argument’s sufficiency.

• The argument’s validity can be strengthened by a more rigorous research
method, such as by using formal methods.

• How confidentiality of data within the framework can be secured should
be explored further. Currently, confidentiality is not protected.

• Choosing a different hardware isolation technology such as Sanctum
could lead to significantly strengthened security properties of the
proposed framework.

• A semi-sandboxed hardware isolation approach, which does not
sacrifice security, should be explored further. It could address usability
concerns.

7.4 Reflections
This work introduces a new approach adapted for the CI process using
hardware isolation. The adoption of a new approach to CI could be costly
for practitioners in HREs and could mean that organizations must make
investments in establishing new regulations and requirements for software
development.

The theoretical framework could have a significant impact on the security
of supply chains by mitigating more threats than in an HRE alone. In this
way, the approach could have significant economic and social effects if it can
prevent attacks on large and vulnerable organizations. However, the advantage
of the framework needs further evaluation, refinement, and implementation,
which is an investment that needs to be put in comparison to potential gains in
security.
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