
 Bachelor Degree Project

 Comparative Analysis of Programming Approaches in
 Software Development
 An Empirical Study of Solo, Pair, and Mob Programming

 Author: Yibo Wang, Andreas
 Manos
 Supervisor: Diego Perez
 Semester: VT/HT 23XY
 Subject: Computer Science

 1

 Abstract
 This research study makes a comparison of solo programming, pair programming, and
 mob programming on collaboration, knowledge sharing, stress levels, productivity, and
 efficiency. The study draws insights from the analysis of data from other research
 papers and articles, and an experiment, which was conducted simulating a real life
 developing environment for each programming approach. The findings reveal that pair
 and mob programming are more effective in promoting collaboration and knowledge
 sharing than solo programming, with the latter having an edge over the former. Mob
 programming stands out in terms of teamwork, problem-solving, and celebrating team
 achievements. In contrast, solo programming is characterized by low levels of active
 participation and collaborative problem-solving. While solo programmers may also
 exchange knowledge, pair and mob programming are better suited for fostering
 knowledge sharing. Regarding stress, the experiment shows that solo programmers feel
 more stressed by accumulating difficulties. Mob programmers experience stress in task
 management, while pair programmers report lower stress levels. Productivity and
 efficiency vary across programming practices, with mob programming displaying high
 quality and efficiency and solo programming achieving higher scores but with lower
 efficiency. These findings underscore the significance of taking into account task nature,
 desired outcomes, and team dynamics in selecting programming practices. Additional
 research is imperative to explore the lasting implications, effectiveness in diverse
 environments, and impact on productivity and wellbeing in the technology domain.

 Keywords: collaboration, knowledge sharing, stress levels, productivity, efficiency,
 solo programming, pair programming, mob programming, teamwork, active
 participation, software development industry.

 2

 Contents

 1 Introduction ... 4
 1.1 Background .. 5
 1.2 Related work ... 5
 1.3 Problem formulation ... 6
 1.4 Motivation .. 6
 1.5 Results .. 6
 1.6 Scope/Limitation .. 7
 1.7 Target group .. 7
 1.8 Outline .. 7

 2 Method .. 9
 2.1 Research Project ... 9
 2.2 Research methods ... 9

 2.2.1 Literature review ... 9
 2.2.2 Experimental Design and Quantitative Interview 9

 2.3 Reliability and Validity ... 10
 2.4 Ethical Considerations .. 11

 3 Theoretical Background .. 11
 3.1 Solo programming .. 12
 3.2 Pair programming ... 13
 3.3 Mob programming .. 13
 3.4 Research gap ... 14

 4 Research project – Implementation ... 15
 4.1 Data Collection ... 15
 4.2. Experimental Design ... 15

 4.2.1 Quantitative interview ... 16
 5 Results ... 18

 5.1 Results from Literature Review ... 19
 5.1.1 Distribution of Papers .. 19
 5.1.2 Common Themes .. 19
 5.1.3 Data Extraction from Literature .. 19

 5.2 Results from Experiment .. 20
 6 Analysis ... 25

 6.1 Collaboration .. 25
 6.2 Knowledge Sharing .. 26
 6.3 Stress .. 26
 6.4 Productivity and Efficiency .. 27

 7 Discussion ... 29
 8 Conclusions and Future Work ... 30
 References ... 32

 3

 1 Introduction
 As software development evolves, so does the programming approach. Programming is
 a complex discipline that requires accuracy, focus, and collaboration. While
 single-person programming has long been a popular choice for developers, methods
 such as pair programming and mob programming have begun to gain ground in the
 industry among developing teams.
 A few technical terms are explained here:

 ● Productivity: In the present thesis, the term productivity pertains to the quantum
 of work accomplished by a programmer or a group of programmers within a
 specific time period. This metric could be assessed in terms of various factors
 such as lines of code, completed tasks, and other relevant indicators.

 ● Effectiveness: Effectiveness pertains to the caliber of output generated by an
 individual programmer or a collective of programmers. This can be evaluated
 with regard to the quantity of software faults, the functionality of the software,
 or the contentment of the ultimate users.

 ● Team Cooperation: Team collaboration alludes to the aptitude of a group of
 programmers to engage in effective cooperation. This can be appraised in
 relation to the team's communication, allocation of responsibilities, or the
 resolution of disputes.

 ● Knowledge Distribution: Knowledge distribution refers to the extent to which
 knowledge about the software and the programming tasks is shared among the
 team members. This could be measured by assessing the understanding of each
 team member about the overall project and their specific tasks.

 ● Work Stress Levels: The concept of work stress levels pertains to the degree of
 stress encountered by a programmer or a group of programmers during their
 software development activities. The evaluation of such levels may be carried
 out by means of self-reporting methodologies, behavioral observations, or
 physiological markers.

 This report compares the three programming approaches while delving into five key
 areas: productivity, efficiency, teamwork, knowledge distribution, and stress levels, to
 provide a detailed analysis of each programming practice. The data for this study will be
 collected from a simulated experiment.

 This study aims to fill a gap in the current literature by comparing single, pair, and
 mob programming methods under a realistic working environment. As most of the
 existing literature either is focused on examining a single programming approach
 [1][2][3][4][5][13] or on comparing at most two of the approaches [6][7][11][12].
 Furthermore, a single research paper that dueled on comparing the three programming
 approaches by Roque Hernández et al. [8], was focused on the learning outcome of each
 approach and was conducted with a sample of students as participants.

 The objective of this study is to explicate the relative merits and demerits of various
 methodologies concerning productivity, efficacy, collaborative efforts, knowledge
 dissemination, and stress levels.

 4

 In carrying out our research for this thesis, we had a very clear and structured
 division of labor. Firstly, I was responsible for conducting literature research to collect
 and collate relevant information on solo programming, pair programming and mob
 programming, which included their respective strengths, as well as exploring the
 research successes that already exist. My partner Andreas, who is a regular employee of
 Fortnox, was responsible for designing the experiments and conducting them as well as
 analyzing the data. During this process, we regularly communicate and discuss, sharing
 our findings and understandings to help us better understand the research questions and
 reduce the conflicts that arise from working in pairs. Throughout the writing process,
 we both reviewed and edited all chapters together to ensure that our research objectives
 were met. In this way, we collaborated on this thesis research, each contributing their
 expertise.

 1.1 Background
 The software industry has undergone evolutionary changes that have brought about a
 transformation in programming practices. Although traditional solo programming
 remains prevalent, it has been augmented by collaborative approaches such as pair
 programming and mob programming [8]. These methods involve two people or a larger
 group working together on a development platform to complete a task. The rise of these
 collaborative programming techniques is a response to the industry's increasing demand
 for higher quality software and more efficient development processes. However, there is
 a lack of comprehensive studies comparing these different programming approaches,
 particularly in terms of their impact on productivity, efficiency, teamwork, knowledge
 distribution, and stress levels. This study was motivated by this gap in the existing
 research [6][7]. It aims to provide a detailed analysis of solo, pair, and mob
 programming methods, contributing to both academic research and industrial
 applications.

 1.2 Related work
 Numerous studies have explored the benefits and drawbacks of pair programming [1][2]
 and mob programming [3][4][5]. Most of these studies have focused on specific aspects
 of each approach, such as the effects on code quality and the extent of participant
 involvement. However, these studies often examine these programming methods in
 isolation, without comparing them directly with each other or with solo programming.
 Some research papers have compared pair programming and mob programming [6][7],
 but these comparisons often do not include solo programming, and they may not cover
 all the key areas of interest, such as productivity, efficiency, teamwork, knowledge
 distribution, and stress levels. Furthermore, some studies are limited to academic
 settings and may not reflect the realities of industrial software development [8]. This
 study aims to address these limitations by conducting a comprehensive comparison of
 solo, pair, and mob programming in a real-life corporate development environment.

 5

 1.3 Problem formulation
 Although concepts such as single, pair, or mob programming have been proposed for a
 long time, there remains a lack of clarity regarding the advantages and disadvantages
 associated with each method. The aim of this study is to untangle these intricate matters
 and offer an alternative means of selecting an appropriate programming approach.
 Some of the questions that will be answered by this thesis are:

 1 What are the primary differences in productivity and effectiveness
 between solo, pair, and mob programming practices?
 2 How do different programming practices affect individual developers'
 overall experience regarding team cooperation, knowledge distribution and
 working stress level?

 1.4 Motivation
 The motivation for this research is threefold: scientific interest, industrial relevance, and
 personal curiosity. Current software engineering literature still exhibits a significant gap
 in comprehensive, comparative analyses of solo programming, pair programming, and
 mob programming. The studies by Hannay et al. [1], Williams et al. [2], and others
 [3][4][5][6][7][8] offer individual pieces of the puzzle but a holistic picture is yet to be
 developed. This study, therefore, attempts to bridge this gap by providing an in-depth
 understanding of the strengths and limitations of each programming approach and
 offering evidence-based recommendations for future research and industry practices.

 From an industry perspective, understanding programming methodologies is critical
 due to their influence on pivotal factors such as productivity, cost, and quality in
 software development. The choice of programming method is not just a technical
 decision; it can significantly impact productivity, staff motivation, and overall project
 costs [11][16]. Hence, understanding the trade-offs between different programming
 methods can help companies make informed decisions to optimize these factors.

 Finally, this research is also driven by personal interest. Through this research, we
 hope to support software development teams in obtaining insights to improve
 productivity and job satisfaction.

 1.5 Results
 Based on the literature review and the objectives of this study, we anticipate the
 following outcomes:

 ● Productivity: We expect that collaborative programming methods (pair and mob
 programming) may lead to higher productivity compared to solo programming.
 This is due to the potential for increased idea generation and problem-solving
 capabilities when multiple individuals work together.

 ● Effectiveness: We anticipate that pair and mob programming might result in
 more effective code, as multiple individuals can catch and correct errors more
 efficiently than a single individual.

 ● Team Cooperation: We predict that pair and mob programming will score higher
 in team cooperation. The collaborative nature of these methods inherently

 6

 requires and promotes better communication and cooperation among team
 members.

 ● Knowledge Distribution: We expect that knowledge distribution will be more
 evenly spread in pair and mob programming scenarios. These methods allow for
 continuous exchange of information and ideas, leading to a more balanced
 distribution of knowledge among team members.

 ● Work Stress Levels: The impact on work stress levels is less clear. While
 collaborative programming methods could potentially reduce stress by sharing
 the workload, they could also increase stress due to potential conflicts or
 pressure to keep up with the team.

 Our research will be guided by these expectations, which will assist us in interpreting
 our findings. Nonetheless, it is important to note that these expectations are hypotheses,
 and the actual results may vary depending on the specific circumstances of our study.

 1.6 Scope/Limitation
 This study's major objective was to offer insightful comparisons of single, pair, and
 mobbing programming techniques. Nevertheless, it is important to remember that this
 study's approach has some flaws. First off, the experiment only included four people,
 which could have boosted the findings. Second, each programming technique was
 examined on a specific day of the week, making the experiment's duration relatively
 brief. Due to the short amount of time available, each programming technique's
 long-term repercussions and advantages may not be completely realized. Finally, the
 results could have been impacted by the individuals' circumstances on the testing day.
 Future research should aim for larger sample sizes and longer experimental times to
 further validate these findings.

 1.7 Target group
 This investigation presents significant worth to a broad spectrum of interested parties.
 Researchers and academics can use our findings to further their understanding of
 different programming methods. For software engineers and project managers, our
 research provides practical insights that can help them optimize their programming
 practices to improve productivity and collaboration. The findings of this study could
 benefit software development organizations seeking to improve productivity, promote
 effective collaboration within teams, and reduce developer stress and anxiety [14].

 1.8 Outline
 The remainder of the document is structured as follows:

 ● Chapter 2: Method - This chapter outlines the research methodology,
 including the chosen research method and data collection procedures.
 ● Chapter 3: Theoretical Background - This chapter explores the
 theoretical foundations of solo programming, pair programming, and mob
 programming.

 7

 ● Chapter 4: Research project - Implementation - This chapter describes
 the implementation of the research project, including data collection and
 experimental design.
 ● Chapter 5: Result - This chapter presents the obtained results from the
 literature review and experiment.
 ● Chapter 6: Data Analysis - This chapter analyzes the collected data.
 ● Chapter 7: Discussion - This chapter discusses the findings and their
 implications.
 ● Chapter 8: The present chapter proffers an exposition of the conclusions
 gleaned from the study and posits avenues for prospective investigations.

 8

 2 Method
 This chapter is used to show the methods of this study and how to explore efficiency,
 which aims to solve the problem proposed in Section 1.3.

 2.1 Research Project
 This research adopts a mixed method, combining both quantitative and qualitative data
 collection and analysis methods to investigate this topic. Firstly, we conducted a
 literature review of existing results to understand the technique used in the previous
 study.

 After the literature review, we conducted a study that assigned participants to use
 three different programming methods to solve problems in a real programming context.
 This experimental design allows a direct comparison of different programming
 approaches.

 Upon completing each task, participants were interviewed to collect qualitative data
 on team cooperation, knowledge distribution, and work stress levels. The combination
 of a literature review, experimental design, and qualitative interviews facilitated a
 thorough exploration of the research questions raised in this study. It is important to
 emphasize that the literature review did not act as a post hoc comparison but rather
 guided the design and interpretation of the experimental component.

 2.2 Research methods
 A two-step research method was adopted to provide a comprehensive understanding of
 the phenomena under study.

 2.2.1 Literature review

 A literature review was conducted in this study to understand and summarize existing
 research on different programming methods. This review sought to investigate extant
 literature, comprising research papers, books, and other relevant sources, and to draw
 conclusive findings concerning the efficacy of diverse programming methodologies
 adopted in software development initiatives. The literature review process involved
 searching relevant databases (e.g., IEEE Xplore, ACM Digital Library, Google Scholar)
 using specific keywords (e.g., "pair programming," "mob programming," "programming
 practices," "software development"). Studies were chosen for inclusion in the reading if
 they were featured in peer-reviewed journals or conference proceedings, composed in
 the English language, and concentrated on contrasting diverse programming
 methodologies. Key information and data were extracted by reading and researching the
 literature of the selected articles. Common themes and research gaps were identified by
 comparing the extracted data.

 2.2.2 Experimental Design and Quantitative Interview

 The mixed-methods study was designed to investigate the real-world application of
 different programming approaches: regular (solo), pair, or mob programming. This
 mixed-methods approach, combining an experimental design with qualitative
 interviews, allowed for a comprehensive exploration of the research questions raised in

 9

 this study. Each of these three approaches was implemented by a team of four
 developers, each being conducted for a single working day. The mixed-methods study
 focused on the outcomes we observed in response to the different programming
 approaches, including productivity, efficiency, knowledge sharing, collaboration, and
 work stress levels. Productivity was measured by the number of programming tasks
 solved during the day under each approach. Tasks were of similar complexity to ensure
 a fair comparison. In the context of pair and solo programming, different tasks were
 assigned to each pair or individual developer, while in mob programming, the entire
 team worked collectively on the same task. Efficiency was gauged based on the code
 quality, which was evaluated considering factors like readability, adherence to coding
 standards, and the absence of bugs or errors [15]. The time required to correctly
 complete the task was another objective measure of productivity and efficiency. As for
 the subjective measures, knowledge sharing and collaboration were assessed through
 post-task surveys. The questionnaires consisted of inquiries fashioned to gather the
 participants' apprehensions pertaining to their team's collaboration and the
 apportionment of expertise amidst the members of their team whilst undertaking the
 task. Lastly, work stress levels were quantified using a validated, standardized
 questionnaire [10]. This questionnaire was administered after each programming
 approach was implemented, providing insight into the potential stress or anxiety
 experienced by the developers under the different programming conditions.

 2.3 Reliability and Validity
 To enhance the reliability and validity of our research, we thoroughly reviewed and

 analyzed documents about solo, pair, and mob programming. This helped our research
 avoid duplication of effort and ensured that our findings were grounded in existing
 knowledge.

 Furthermore, we subjected the same development team to three distinct programming
 tasks to mitigate the impact of individual testers' skill levels on the experiments. We
 adhered to identical metrics to evaluate productivity and performance, such as
 maintaining identical criteria for code quality, and allocating the same amount of time to
 the programmers taking part in each experiment.

 In order to attain more exact results, our project contributors carried out solitary
 consultations. To guarantee heightened precision, we ensured that the contributors were
 ignorant of the interrogatories and responses beforehand and proctored the survey solely
 after they had fulfilled the programming trials.

 The survey on work stress was conducted using stress level scales that have already
 been employed by professional psychologists [10]. This approach has enhanced the
 reliability of the results. Nonetheless, it is crucial to acknowledge that the scales used in
 the survey are reliant on self-reported data. This means that the outcomes could be
 swayed by various factors such as the current mood of the participant and the level of
 comprehension of the questions.

 The utilization of authentic programming tasks in the investigation and the real-life
 milieu in which it was executed have augmented the ecological authenticity of the
 discoveries. However, the small size of the sample and the particular characteristics of
 the participants, including their level of expertise, familiarity with each other, and other

 10

 similar factors, could potentially limit the applicability of the results. Thus, it is
 imperative to carry out prospective studies with more sizable and varied samples to
 substantiate and broaden the extant findings. In doing so, we will be better equipped to
 assess the validity and dependability of the outcomes. Furthermore, forthcoming studies
 could also contemplate the employment of diverse research techniques to complement
 and amplify the current findings.

 2.4 Ethical Considerations
 Various ethical considerations were made in this study to ensure that the research was
 conducted responsibly and respectfully. Confidentiality, bias in the sampling process,
 and obtaining the consent of the participants to experiment are some of these ethical
 considerations.

 The experiment prioritizes the privacy of its participants, ensuring that all data is
 stored and processed anonymously and securely and following General Data Protection
 Regulation (GDPR) guidelines [9]. Access to the data, related to the programming tasks,
 is restricted to the research team. Furthermore, to protect proprietary technology, the
 resulting code, associated tools, and processes are not publicly available. It is important
 to note that when publishing the results in this public document, only aggregated results
 are presented, thereby maintaining the confidentiality of individual participant data
 while providing insight into the experimental A comprehensive overview of the results.

 The design of the study aimed to present an equitable portrayal of the gender, age,
 and programming proficiency of the participants. It is imperative to note, however, that
 the sample size is relatively limited, and thus, the outcomes may not be applicable in all
 circumstances.

 Prior to the commencement of the study, all participants were duly notified that their
 participation was voluntary and that they had the liberty to withdraw from the study at
 any point without any negative impact. In order to guarantee that the subjects fully
 grasped the underlying objective of the investigation and provided their consent to
 partake, informed consent was procured from each individual prior to the initiation of
 the study.

 11

 3 Theoretical Background
 In the realm of software production and development, a proficient programming
 approach can engender a distinct encounter for the team, not solely in terms of
 mitigating the workload of developers, but also in augmenting the production efficiency
 of enterprises. Traditional independent programming occurs when developers complete
 programming tasks alone. This method of programming requires developers to have a
 clear understanding of what they are doing. It also gives developers more freedom,
 which helps with creativity [12]. When more than two developers engage in
 programming tasks, there is a risk that it may undermine a good idea rather than
 enhance it. In contrast, pair programming entails two developers collaborating in pairs
 on a project. This approach allows for mutual supervision, leading to improved code
 quality. Additionally, it facilitates knowledge sharing among developers, which further
 contributes to its benefits. Finally, mob programming is a team programming method.
 More than two people can complete a task to improve productivity, but the participants
 in this method often lack decision-making power and may also reduce efficiency [3].

 In this section, we will explain each of these programming approaches in more depth
 according to the related work done so far. The theoretical background of this study was
 developed based on a literature review. Key information and data were extracted by
 reading and researching the literature of the selected articles. By comparing the
 extracted data, common themes and research gaps were identified. The theoretical
 background provides a comprehensive understanding of the phenomenon under study,
 including the efficacy of the various programming methods employed in the software
 development programme. The existing literature was scrutinized in order to identify
 recurring motifs and areas of research that have yet to be explored. The results of this
 analysis informed the methodology and interpretation of the experimental component of
 this study.

 3.1 Solo programming
 Solo programming, as the name suggests, is when a developer completes a task alone.
 This programming method is widely used and is the most familiar. One of the
 advantages of programming alone is that it allows the user the freedom to change the
 project at their whim, and they have absolute control over the development. They can
 complete some tasks first at their own pace and according to their own preferences, and
 they can also solve difficult tasks first. They can even stop and take a break at any time
 without consulting other people. This approach may benefit programmers who like to
 work alone and have unique insights and special designs for projects [11].

 However, this method also has some disadvantages. First, developers complete the
 task alone, and the quality of the code cannot be guaranteed. After all, a code review by
 a person who completes the code himself may not find the problem. Therefore, many
 large technology companies have regular internal peer reviews to check the tasks
 completed by others yesterday or last week and give some feedback. So solo
 programming needs to spend more time on code checking and debugging to improve
 code quality and reduce potential problems.

 12

 Overall, solo programming can be useful in some situations, especially for
 experienced developers with smaller projects. However, one needs to weigh its
 advantages and disadvantages before deciding on one-person programming. In many
 cases, pair programming or teamwork may provide a more efficient way of developing
 software [11].

 3.2 Pair programming
 Pair programming is the term used to describe the practice of two programmers
 collaborating on the same programming task. One member of the pair is the driver, who
 actively types at the computer, or records a design or architecture. The other plays the
 role of navigator [16]. This tactic creates a space for constant learning and information
 sharing among programmers, enhancing software quality, and reducing time to market
 [2].

 Hannay and colleagues (2009) discovered that various factors, comprising the
 proficiency level of the programmer, the complexity of the assigned tasks, and the
 degree of reliance between the parties, could potentially elicit minor to moderate
 consequences on the results [1]. The performance of less experienced developers can
 approach that of an experienced duo, which is an intriguing conclusion. This is because
 the two beginners aid and support one another in terms of concepts, allowing them to
 comprehend the project more quickly and thoroughly [1].

 In addition to improving software quality and efficiency, pair programming can also
 serve as a way for programmers to share knowledge and learn from each other [2]. Pair
 programming can aid in bridging knowledge gaps and fostering teamwork abilities, per
 research by Williams et al. (2000) [2].

 Pair programming may or may not be effective, depending on several circumstances.
 Müller (2006) [16] claims that adding a preliminary design process can make
 programming more effective when done alone or in pairs [11].

 Overall, pair programming will produce positive outcomes in some situations, but
 there are several determining factors. Some factors mentioned above should be
 considered when choosing pair programming.

 3.3 Mob programming
 Mob programming is an approach that places more emphasis on teamwork than pair
 programming and involves the entire team working together on a task. In this method,
 one team member develops code while the others watch, chat, and offer suggestions.
 After some time, the roles switch [4].

 One of the key advantages of mob programming is that it promotes more positive
 cooperation, information sharing, and higher-quality code. Because mob programming
 enables developers to communicate more frequently throughout the development
 process, Mob programming will speed up problem identification and resolution for the
 team, according to Zuill and Meadows [3], increasing development effectiveness.

 In Ståhl, Daniel, and Torvald Mårtensson's study, they highlighted multiple
 advantages of mob programming (mob programming), such as improved
 decision-making and enhanced knowledge sharing, but they also pointed out that

 13

 applying it in practice may encounter some challenges [4]. According to their research,
 mob programming promotes workplace diversity by enhancing the participation and
 contribution of team members of various skill levels. With this strategy, teams can
 leverage their combined expertise to decide more effectively, improving the
 effectiveness of the entire decision-making process. However, Sthl and Mrtensson also
 mention that putting mob programming into practice might not be simple. Some
 challenges may come up, particularly when attempting to strike a balance between
 individual autonomy and the team's overarching objectives. This indicates that, despite
 mob programming's advantages, there may still be some difficulties to overcome to
 maintain each team member's autonomy while attaining the team's general objectives
 [4].

 Hence, mob programming is not without its drawbacks. One disadvantage is the
 potential reduction of autonomy and creativity among team members, as all decisions
 are made collectively [5]. Creative suggestions might require unanimous approval
 before they can be implemented. Another issue that can arise is when numerous
 developers with varying levels of experience work simultaneously on the same project.
 This situation may cause work to progress slower than anticipated, as the team is
 influenced by the less experienced members.

 3.4 Research gap
 Current studies have examined the advantages and disadvantages of solo programming,
 pair programming, and mob programming, frequently contrasting two of these strategies
 [6, 7, 1]. Comparing all three programming approaches in the context of the software
 industry, however, is a gap in the literature. Furthermore, it should be noted that a
 considerable number of investigations conducted thus far have taken place within
 academic environments, which may not necessarily provide an accurate representation
 of the intricacies and challenges encountered by software development teams in
 real-world settings [8, 10, 11]. To address this issue, this study aims to conduct an
 experiment that compares the effectiveness of solo programming, pair programming,
 and mob programming under varying conditions in the software industry. This will
 serve to bridge the gap and further augment the conclusions drawn by Hernández et al.
 [8], who made a comparison of the three methodologies in an academic context.

 Overall, more research is necessary to fully comprehend the specific scenarios in
 which each programming approach performs optimally, as well as the interplay between
 them.

 14

 4 Research project – Implementation
 This particular chapter elucidates the intricate and multifaceted process of data
 collection, as well as the comprehensive design methodology employed in the
 experiment.

 4.1 Data Collection
 This study employs two distinct methodologies in data collection, namely a literature
 review and an experiment. The literature review serves to establish a foundational
 comprehension of extant literature within this domain. The principal data for this
 particular study was obtained via a review of academic articles germane to the research
 questions. The selection process underwent multiple stages to ensure the inclusion of
 the most pertinent studies and to promote reproducibility.

 Initially, a thorough exploration was carried out across a multitude of scholarly
 databases, notably but not limited to IEEE Xplore, ACM Digital Library, Springer,
 JSTOR, and Google Scholar, by means of entering relevant keywords to retrieve
 pertinent articles. Our objective was to identify articles encompassing single, pair, and
 mob programming practices and their effects on productivity, efficiency, teamwork,
 knowledge distribution, and work stress levels.

 Upon carrying out a thorough investigation, a straightforward filtration technique
 predicated on the titles and abstracts of scholarly publications was employed to exclude
 articles that lay beyond the purview of our research, despite potentially being focused
 on the three programming methodologies. Such articles, however, lacked direct
 relevance to the subject matter investigated in this study.

 The residual articles were subsequently subjected to a comprehensive textual
 scrutiny. During this phase, the articles were evaluated on the basis of their direct
 applicability to our research inquiries. An article was deemed relevant if it encompassed
 empirical evidence or theoretical perspectives that were directly linked to fundamental
 facets of programming practices involving one, two, or more than two participants.
 These facets included but were not limited to productivity, effectiveness, collaborative
 efforts, knowledge dissemination, and work-related stress levels.

 Due to the subjective nature of the selection of relevant articles, it is acceptable that
 there will be slight variations in the final selection of articles.

 4.2. Experimental Design
 The experiment was designed to implement mob programming, pair programming,

 and individual programming in a real-world setting. The participants were four
 employees of Fortnox, holding software developer roles. The team comprised two
 experienced developers with five to ten years of experience, and two junior developers
 with less than a year of working experience. This mix of experience levels aimed to
 mimic the realistic conditions of development teams in the industry.

 The experiment was divided into three sessions, each lasting for a single working day
 and dedicated to one of the programming practices. The same team participated in all
 three sessions.

 15

 During the mob programming session, the entire team worked on the same task,
 following the rules of mob programming. Each developer had a distinct role: a driver, a
 navigator, and the rest functioned as the mob. Each role was rotated every forty-five
 minutes.

 In the pair programming session, the team was divided into two subgroups, each
 working together on a single device. The rules for pair programming were more
 flexible, with the pairs deciding the typing time and iteration time frames.

 During the solo programming session, the team was divided into individuals, each
 working independently following their normal routine.

 The tasks for each session were designed to be of similar difficulty, determined by
 the number of different repositories involved and the task description. All sessions used
 Java as the programming language and the same computing devices.

 At the end of each day, questionnaires were distributed among the participants to
 record measures of teamwork, knowledge sharing, and work stress levels. This data
 collection method allowed us to gather subjective measures from the participants'
 experiences under different programming conditions.

 We then manipulated several dependent variables, including productivity, efficiency,
 knowledge sharing, level of collaboration, and stress level.

 We monitored the number of tasks completed by each individual programmer, pair,
 or group in a predetermined amount of time, allowing us to compare the productivity of
 the different programming methods. In pair programming and mob programming
 groups, we treat the combined output as a unit for comparison purposes.

 For the productivity measures, we asked each participant (whether in a single, pair,
 or mob programming setup) to complete a set of programming tasks. We defined a task
 as completed when that task would have passed all the phases of software development,
 which we defined as brainstorming, implementation, testing and entered the pull request
 phase. These programming tasks were set to be as similar in difficulty as possible.

 To assess the quality of the code (a key indicator of efficiency), we performed a
 post-task analysis of the code generated by each group. The code was compared by the
 number of bugs in the code, and the review of code bugs was peer-reviewed by
 participants. Subjective measures, including knowledge sharing, collaboration, and
 work stress levels, were assessed through post-task surveys and a validated,
 standardized questionnaire. The survey and questionnaire were executed after
 participants experienced each approach, capturing participants' perceptions and
 experiences under different programming conditions.

 4.2.1 Quantitative interview

 As part of our data collection methods, we administered several questionnaires and
 surveys to the participants to gauge their subjective experiences with each programming
 approach. In order to maintain the integrity and accuracy of the results, the
 questions pertaining to work-related stress were meticulously crafted by strictly
 adhering to the guidelines provided by the SPP-10 (Perceived Stress Scale) [10].
 No alterations were made to these questions, as any modifications could potentially
 compromise the validity of the findings. Furthermore, when designing the
 questionnaires for measuring collaboration and knowledge distribution, careful

 16

 consideration was given to the existing body of literature on these specific subjects
 [3][4][6]. By drawing insights and inspiration from reputable sources, we aimed to
 ensure that the questionnaires captured the essential aspects of collaboration and
 knowledge sharing. The detailed questions are shown below:
 Stress-related Questions:

 1. Today, how often have you been upset because of something that
 happened unexpectedly?
 2. Today, how often have you felt that you were unable to control the
 important things in your life?
 3. Today, how often have you felt nervous and stressed?
 4. Today, how often have you felt confident about your ability to handle
 your personal problems?
 5. Today, how often have you felt that things were going your way?
 6. Today, how often have you found that you could not cope with all the
 things that you had to do?
 7. Today, how often have you been able to control irritations in your life?
 8. Today, how often have you felt that you were on top of things?
 9. Today, how often have you been angry because of things that happened
 that were outside of your control?
 10. Today, how often have you felt that difficulties were piling up so high that
 you could not overcome them?

 Collaboration-related Questions:
 1. Did you collaborate effectively with your colleagues today to accomplish
 your shared goals?
 2. Did you actively participate in discussions and brainstorming sessions
 with your team members today?
 3. Did you offer constructive feedback and suggestions to your team
 members today?
 4. Did you communicate openly and clearly with your team members today?
 5. Did you work together with your team members to solve any problems
 that arose today?
 6. Did you show respect for the opinions and contributions of your team
 members today?
 7. Did you take responsibility for your actions and fulfill your commitments
 to the team today?
 8. Did you recognize and celebrate the accomplishments of your team
 members today?
 9. Did you feel that your team had a collaborative culture that supported
 effective teamwork and communication today?
 10. Were you able to contribute effectively to the overall success of your
 team's projects today?

 Knowledge Sharing-related Questions:
 1. Did you share your technical knowledge or expertise with colleagues
 today?

 17

 2. Did you receive useful feedback or learn new technical skills from your
 colleagues today?
 3. Did you encounter any roadblocks or challenges while working on a task
 today?
 4. Did you seek advice or assistance from colleagues to overcome any
 roadblocks or challenges today?
 5. Did you feel comfortable sharing your code or ideas with colleagues
 today?
 6. Did you learn any new programming concepts or techniques from your
 colleagues today?
 7. Did you feel that your colleagues were open and receptive to your
 suggestions or ideas today?
 8. Did you take the time to explain any technical concepts or solutions to
 your colleagues today?
 9. Did you feel that your team had a culture that supported knowledge
 sharing and learning today?
 10. Did you find that knowledge sharing with colleagues helped you
 complete tasks more efficiently or effectively today?

 These questions were designed to capture the participants' perceptions and
 experiences under different programming conditions and played a crucial role in
 evaluating the subjective measures of our study.

 To measure the effects of different programming practices on stress, knowledge
 sharing, and collaboration, we employed three distinct questionnaires, each with a
 Likert scale of 1-5 [18]. These scales, used as additional dependent variables, allowed
 us to assess the subjective experiences of the participants involved in each programming
 method.

 ● Stress Questionnaire: We administered a stress questionnaire to all
 participants, wherein we gauged their subjective perception of stress levels
 through a graduated scale. Said scale spanned from the lowest score of 'Never'
 (1), to the highest score of 'Very often' (5). This allowed us to measure the
 frequency of stress-related feelings or experiences directly associated with the
 different programming methods.
 ● Knowledge Sharing Questionnaire: We evaluated the perception of
 knowledge sharing within the teams using a scale from 'No' (score of 1) to 'Yes,
 a lot' (score of 5). This helped us understand the extent to which participants felt
 they were sharing and gaining knowledge during the programming tasks.
 ● Collaboration Questionnaire: We determined the perceived level of
 collaboration amongst the team members using a scale from 'No' (score of 1) to
 'Completely' (score of 5). This scale helped us measure the degree of
 collaborative interaction and engagement among the participants in the pair and
 mob programming groups.

 18

 5 Results

 5.1 Results from Literature Review
 The literature review included a review of fourteen scholarly articles. These articles
 provide insights into mob programming, pair programming, and one-person
 programming practices. The findings derived from the comprehensive review of
 existing literature are hereby enumerated in the subsequent sections.

 5.1.1 Distribution of Papers

 Among the fourteen scrutinized articles, a considerable number of them, namely five,
 provided extensive insights into the subject of pair programming [1, 2, 11, 16, 17]. Four
 articles, on the other hand, were intently focused on the subject of mob programming [3,
 4, 5, 13], while another four articles offered a comparative analysis of both pair
 programming and mob programming [6, 7, 12, 14]. Furthermore, a solitary article
 delved into a comprehensive discussion of all three programming practices, including
 solo, pair, and mob programming [8].

 5.1.2 Common Themes

 Several themes emerged from the literature review, providing valuable insights into
 each programming practice.

 ● Effectiveness: All fourteen articles discussed the effectiveness of the
 programming practices to varying degrees. For example, Hannay et al. [1] found
 that pair programming can improve code quality and task completion rates.
 Similarly, Ståhl and Mårtensson [4] reported that mob programming can lead to
 high-quality code and efficient task completion.

 ● Collaboration: Fourteen articles highlighted the role of collaboration in
 programming practices. Williams et al. [2] noted that pair programming fosters
 effective teamwork, while Zuill and Meadows [3] observed that mob
 programming encourages a high level of collaboration among team members.

 ● Learning and Knowledge Sharing: Six articles explored the learning and
 knowledge sharing aspects of the programming practices. For instance, Aune et
 al. [5] found that mob programming promotes knowledge sharing among team
 members, while Müller [11] reported that pair programming can facilitate
 learning and knowledge transfer.

 ● Stress and Workload: Four articles delved into the stress levels and workload
 associated with different programming practices. For example, Dragos [6] found
 that mob programming can lead to lower stress levels compared to pair
 programming, while Roque Hernández et al. [8] reported that solo programming
 can result in a higher workload.

 5.1.3 Data Extraction from Literature

 The findings from the literature have:
 ● Pair Programming: The reviewed articles on pair programming [1, 2, 11] mainly

 highlighted its effectiveness in improving code quality and fostering
 collaboration. For example, Williams et al. [2] found that pair programming can

 19

 lead to higher code quality compared to solo programming, while Hannay et al.
 [1] reported that pair programming can improve task completion rates.

 ● Mob Programming: The articles on mob programming [3, 4] discussed how this
 practice encourages a high level of knowledge sharing and collaboration. For
 instance, Zuill and Meadows [3] observed that mob programming promotes a
 high level of collaboration among team members, while Ståhl and Mårtensson
 [4] reported that mob programming can lead to high-quality code.

 ● Pair vs. Mob Programming: The comparison between mob and pair
 programming in articles [6, 7] suggested that the choice largely depends on the
 team's specific context and needs. For example, Dragos [6] found that mob
 programming can lead to lower stress levels compared to pair programming,
 while Kattan et al. [7] observed that pair programming can be more suitable for
 tasks that require a high level of collaboration.

 ● Solo, Pair, and Mob Programming: The article [8] discussing all three practices
 provided insights into when each practice might be the most suitable based on
 different factors. For instance, Roque Hernández et al. [8] suggested that solo
 programming might be more suitable for tasks that require a high level of focus,
 while pair and mob programming might be more suitable for tasks that require a
 high level of collaboration and knowledge sharing.

 5.2 Results from Experiment
 In the experiment, a total of four participants were involved. The results presented are
 calculated as averages based on the responses of these four participants. It's important to
 note that due to the small sample size, the results should be interpreted with caution.
 While they provide valuable insights into the impact of different programming
 approaches on productivity, efficiency, team cooperation, knowledge distribution, and
 work stress levels, they may not be representative of all programming teams.

 20

 All experiment results are shown below:

 Figure 5.1 Collaboration in Different Programming Practices

 Figure 5.1 presents a heatmap illustrating the collaboration levels among different
 programming practices. The rows represent specific questions from Q1 to Q10 related
 to collaboration, while the columns represent the programming methods: Pair
 Programming, Mob Programming, and Solo Programming. The heatmap employs color
 variations to indicate the level of collaboration, with darker colors indicating higher
 collaboration levels and lighter colors indicating lower levels. The numerical values
 from 1 to 5 within each cell represent the collaboration ratings for the corresponding
 programming practice and question. Higher numerical values indicate a better or higher
 level of collaboration in addressing specific questions.

 21

 Figure 5.2 Knowledge Sharing in Different Programming Practices

 Figure 5.2 displays a heatmap illustrating the level of knowledge sharing in various
 programming practices. The rows correspond to specific questions from Q1 to Q10
 about knowledge sharing, while the columns represent the programming methods: Pair
 Programming, Mob Programming, and Solo Programming. The colors in the heatmap
 depict the extent of knowledge sharing, with darker colors indicating a higher level and
 lighter colors indicating a lower level. The numeric values within each cell represent the
 knowledge sharing ratings for the respective programming practice and question.
 Higher numerical values indicate a greater degree of knowledge sharing in response to
 specific questions.

 22

 Figure 5.3 Stress Levels in Different Programming Practices

 Figure 5.3 is a heatmap that visualizes the stress levels in different programming
 practices. The heatmap uses color variations to represent the frequency of experiencing
 stress, with darker colors indicating higher levels of stress and lighter colors indicating
 lower levels. The horizontal axis represents different programming methods, and the
 vertical axis represents the questions Q1 to Q10 from top to bottom. The numeric values
 in the cells represent the frequency of experiencing stress, ranging from 1 to 5. For
 example, a rating of 1 indicates that stress is "never" or "almost never" experienced,
 while a rating of 5 suggests that stress is "very often" experienced. By examining the
 colors and numerical values, we can compare and analyze the stress levels associated
 with different programming practices and specific stress-related questions.

 23

 Table 5.1 Productivity

 Development Stage Mob programming Pair programming Solo programming

 Brainstorming 1 S1-1 | S2-1 S1-1 | S2-1 | S3-1 |
 S4-1

 implementation 1 S1-1 | S2-1 S1-1 | S2-1 | S3-1 |
 S4-0

 testing 1/2 S1-1 | S2-2 S1-0 | S2-1 | S3-0 |
 S4-0

 total 2.5 S1 * 0.5 + S2 * 0.6
 = 2.7

 (S1 + S2 + S3 +S4)
 * 0.4 = 3.2

 In Table 5.1, the productivity metrics have been ascertained via the rigorous
 processes of brainstorming, implementation, and testing. It is noteworthy that each task
 has been subjected to a meticulous evaluation process, and has been assigned a
 difficulty factor of either 0.6 or 0.5. With respect to each activity, i.e. brainstorming,
 implementation, and testing, a score of 1 has been affixed in the event of successful
 completion, whereas a score of 0 has been attributed in case of failure to accomplish the
 task at hand.

 Table 5.2 Efficiency

 Efficiency Metrics Mob programming Pair programming Solo programming

 Number of
 comments

 5 1 | no PR for the
 2nd pair

 17

 Number of bugs 0 1 2

 In Table 5.2, the efficiency is assessed by evaluating the number comments and
 number of bugs found in the pull requests. Fewer comments and fewer bugs indicate
 higher efficiency.

 24

 6 Analysis
 Using the collected data from different articles and responses to the questions related to
 collaboration, knowledge sharing, and stress levels, we carried out an analysis for each
 programming practice.

 6.1 Collaboration
 Figure 5.1 heatmap analysis easily reveals a clear difference in the level of collaboration
 between the three programming practices: pair programming, congregate programming,
 and solo programming. Given the questions asked in the survey, solo programming
 obviously scores the minimum in this category. Therefore we discuss in depth only the
 differences obtained between pair and mob.

 Taking a deeper dive into some distinct data points, the practice of actively
 participating in discussions and brainstorming sessions stands out. Pair programming
 shows a high level of active participation with an average score of 3.75, which indicates
 that this practice 'mostly' encourages active participation. This is illustrated in the cell
 corresponding to question 2 (Q2) and 'Pair' on the heatmap. In comparison, mob
 programming also performs well, with an average score of 3.75. This score is found in
 the cell under 'Mob' and Q2 on the heatmap. However, solo programming falls short
 with the lowest possible score of 1.75, suggesting no active participation. This score can
 be seen in the cell under 'Solo' and Q2 on the heatmap.

 Another interesting aspect to discuss is offering constructive feedback and
 suggestions. This is addressed in the third question of our survey. Here, pair
 programming again scores the highest with an average score of 3. On the other hand,
 mob programming shows a moderate score of 2.75, reflecting a somewhat lesser extent
 of constructive feedback and suggestions within mob programming environments. Both
 scores can be seen in two cells corresponding to question 3 (Q3).

 In the context of working together to solve any problems that arose, mob
 programming scores an impressive average of 3.75, implying that problem-solving is
 'mostly' carried out collaboratively. This is visible in the cell corresponding to Q5 under
 'Mob'. Pair programming also fares well, with an average score of 3, indicating
 moderate collaborative problem-solving. This score can be seen in the cell
 corresponding to Q5 under 'Pair'. Once again, solo programming lags with a score of 1,
 which can be seen at the intersection of Q5 and 'Solo'.

 On the question of recognizing and celebrating the accomplishments of team
 members, we see an interesting flip in the trends. While pair programming had been
 leading in most of the other parameters, it scores lower in this criterion with an average
 of 2.75, suggesting that recognition of accomplishments happens only 'somewhat' to
 'moderately'. This score can be seen in the cell corresponding to Q8 under 'Pair'. On the
 other hand, mob programming scores 'mostly' with an average of 3.5, implying a more
 celebratory culture within mob programming environments. This score can be found at
 the intersection of Q8 and 'Mob'.

 Our investigation reveals significant consistency with the existing literature [1, 2, 3,
 4, 7, 8] when comparing our findings. Our data demonstrate that pair programming and
 mob programming foster active participation and effective collaboration among team

 25

 members [1, 2, 3, 7], which aligns with prior studies. Nevertheless, we discovered that
 the recognition of accomplishments in pair programming occurred less frequently,
 which is a deviation from some reports in the literature [7, 8].

 6.2 Knowledge Sharing
 Figure 5.2 presents some findings, one of which pertains to the degree of comfort
 colleagues feel in sharing code or ideas, as indicated by Q5 on the heatmap. Notably,
 both pair and mob programming fosters an environment where individuals feel at ease
 sharing, as evidenced by average scores of 4.5 ("yes, quite a lot") and 4.5 ("yes, a lot"),
 respectively, as can be observed in the 'Pair' and 'Mob' columns of Q5. Conversely, solo
 programming, reflected in the 'Solo' column of Q5, displays a slight uptick with an
 average score of 1.75 ("yes, but not much"). This suggests that even when working
 independently, coders may engage in sharing practices, such as code reviews or
 constructive feedback.

 In Q3 of the heatmap, a noteworthy shift is observed regarding overcoming obstacles
 or challenges. While the practice of pair programming remains prominent with an
 average score of 3.5 ("yes, somewhat"), as evidenced in the 'Pair' column of Q3, solo
 programming, depicted in the 'Solo' column of Q3, exhibits a discernible increase to
 1.75 ("yes, but not much"). This may indicate individual problem-solving capabilities
 and self-reliance in surmounting impediments during solitary work.

 The question concerning the acquisition of new programming concepts or techniques
 from colleagues, denoted as Q6 in the heatmap, presents a captivating contrast. While
 mob programming, seen in the 'Mob' column of Q6, leads with an average score of 3.25
 ("yes, somewhat"), pair programming, as reflected in the 'Pair' column of Q6,
 demonstrates a slightly lower score of 2.25 ("yes, but not much"). Solo programming, in
 the 'Solo' column of Q6, evidences a modest improvement, averaging a score of 2 ("Yes,
 but not much"). This suggests that solo programmers may be resorting to external
 resources such as online forums, blogs, or documentation, to acquire new techniques
 and concepts.

 Regarding conveying technical concepts or solutions to colleagues, indicated as Q8
 on the heatmap, the scores for mob programming (4.25, 'Yes, a lot') and pair
 programming (3.5, 'Yes, somewhat') imply that these practices inherently foster peer
 instruction. Solo programming, with a slightly enhanced score of 1.5 ("yes, but not
 much"), located in the 'Solo' column of Q8, could suggest occasional instances of
 knowledge-sharing within a broader team context.

 Our research not only reinforces the viewpoints proposed by Beck [2] and Hannay et
 al. [1] concerning knowledge sharing within programming teams, with specific
 emphasis on pair and mob programming developing techniques, but also sheds light on
 the potential for knowledge sharing in solo programming. This aspect, which has been
 largely overlooked in the current literature [8, 11], presents a compelling opportunity for
 further exploration and understanding.

 26

 6.3 Stress
 In Figure 5.3, a depiction of stress can be observed. Notably, Q2 on the heatmap
 highlights the feeling of being unable to control crucial aspects of life. The score for
 pair programming remains at 2, indicating that pair programmers experience this feeling
 'almost never,' as evidenced in the 'Pair' column of Q2. Similarly, mob programming is
 reflected in the 'Mob' column of Q2 scores 1, suggesting that individuals in these
 environments 'never' feel out of control. However, solo programmers now score an
 average of 1, implying that they too 'almost never' feel unable to control important
 aspects of their lives. This significant change from the previous data suggests a decrease
 in perceived stress in the solo programming environment for this particular aspect, as
 evident in the 'Solo' column of Q2.

 Upon investigating Q1, which pertains to being upset due to unexpected events, the
 scores for all programming practices have undergone changes. Solo programmers now
 score an average of 2 ('almost never') as seen in the 'Solo' column of Q1, which is
 significantly lower than before. This suggests a decrease in unpredictability or an
 improvement in handling such situations. Pair programmers maintain a score of 2
 ('almost never'), as demonstrated in the 'Pair' column of Q1. The mob programmers
 continue to score 1 ('never'), located in the 'Mob' column of Q1, indicating very low
 stress levels related to unexpected events in these environments.

 The responses to question six, which concerns coping with tasks at hand, have
 exhibited significant changes. Specifically, solo programmers now report a score of 3
 ('sometimes') in the 'Solo' column of Q6, indicating that they experience a certain degree
 of overwhelm in relation to their workload. This score represents a decrease in
 perceived stress levels as compared to previous data. Conversely, mob programmers, as
 reflected in the 'Mob' column of Q6, have reported a score of 2.8, which suggests that
 they 'fairly often' feel unable to cope with the tasks at hand. This finding suggests an
 increase in stress levels as compared to the previous data. Pair programmers maintain
 their previous score of 2 ('almost never'), as indicated in the 'Pair' column of Q6.

 Regarding Q10 on the heatmap, which explores the notion of difficulties piling up to
 such an extent that they cannot be overcome, solo programmers now report a score of 5
 ('very often'), which is consistent with the previous data. This finding suggests that solo
 programmers, as evidenced in the 'Solo' column of Q10, often feel overwhelmed by the
 accumulation of difficulties. On the other hand, pair and mob programmers' scores
 remain low, averaging 2 ('almost never') and 1 ('never'), respectively, as shown in the
 'Pair' and 'Mob' columns of Q10. This indicates that these environments continue to
 offer superior stress management in this respect.

 Our observations concur with Rostaher and Hericko's [10] assertion that
 collaborative programming environments such as pair and mob programming may lead
 to reduced stress levels. Our study, however, also reveals a substantial reduction in
 perceived stress in solo programming environments, which is not frequently highlighted
 in the literature [8, 10].

 27

 6.4 Productivity and Efficiency
 Tables 5.1 and 5.2 are a description of productivity and efficiency. For mobbing,
 brainstorming, implementation, and testing tasks are accomplished successfully, leading
 to a total score of 2.5 (considering task difficulties). The efficiency is measured as five
 comments and no bugs. It means the quality of work done in the mob programming
 setting is quite good, as no bugs were introduced, and the comments were related to
 improvements rather than issues.

 In terms of pair programming, there are two groups (Group 1 and Group 2). In the
 first group, all tasks are accomplished, with a difficulty-adjusted score of 1.5. The
 efficiency is lower than mob programming, with one bug found and one comment. In
 the second group, the testing task was not accomplished, yielding a difficulty-adjusted
 score of 1.2. However, there were no comments or bugs, which indicates a better
 performance than the first group in terms of the quality of work.

 The last one is solo programming. There are four groups. All groups accomplished
 the brainstorming task. The implementation task was not accomplished in the fourth
 group, and testing was only successful in the second group. The difficulty-adjusted total
 score is 3.2, which is higher than both mob and pair programming. However, the
 efficiency is considerably lower, with 17 comments and 2 bugs.

 Our findings align with Nosek's [2] and Müller's [11] studies, which suggest that
 collaborative programming methods, such as pair and mob programming, often result in
 higher productivity and fewer bugs. Interestingly, our investigation also reveals that solo
 programming can yield higher task completion rates, contradicting common perceptions
 in the literature, although it compromises efficiency with a higher rate of comments and
 bugs [11].

 28

 7 Discussion
 The research objectives of this study were to comprehensively understand the key
 disparities between solo, pair, and mob programming practices, with respect to
 productivity, effectiveness, teamwork, knowledge distribution, and work stress levels. In
 this case, our experiments provide practical help in solving these problems.

 In terms of collaborative efforts, both pair and mob programming act as catalysts for
 an enhanced degree of teamwork as compared to individual programming, as per the
 established understanding and previous research. The results of our investigation stand
 as a testament to previous research [1] [2] [4], with our current observations mirroring
 the established understanding that these programming methodologies are inherently
 intended to promote cooperative work. It is worth noting that our research has also
 illuminated the subtleties in the recognition of achievements within these practices.
 Notably, mob programming distinguishes itself with its more appreciative culture as
 opposed to pair programming. As such, our study contributes to the wider academic
 discourse by reaffirming that each programming approach can cultivate a unique team
 dynamic and working environment.

 Knowledge sharing is another crucial aspect that our study explored. Our data
 demonstrated that pair and mob programming significantly encourage sharing ideas and
 code, consistent with studies by Hannay et al. [1] and Williams et al. [2]. Unexpectedly,
 we also found that solo programmers also showed instances of knowledge sharing,
 possibly driven by mechanisms like code reviews or asynchronous feedback or by using
 external resources for learning.

 The intricacies of work-related stress across programming practices were analyzed,
 unveiling unique insights. Solo programmers demonstrated less stress when managing
 significant aspects of their work, implying that solo programming can offer greater
 autonomy and less imposed pressure. On the flip side, mob programmers displayed a
 heightened stress level tied to task processing, even with shared responsibilities. While
 solo programmers showcased an enhanced ability to handle unexpected events and
 task-related stress, they continued to grapple with stress when confronted with increased
 task difficulty. Pair and mob programming environments, however, consistently
 excelled in overall stress management, which was substantiated by the consistently
 lower stress scores.

 The productivity and efficiency of teams differed across the practices. Mob
 programming demonstrated excellent efficiency and quality; pair programming results
 varied based on group dynamics; and solo programming, despite a higher total score,
 exhibited lower efficiency. This underscores the complex interplay between task nature,
 team dynamics, and programming practices in influencing productivity and efficiency
 outcomes.

 Based on these findings, the choice of programming practice solo, pair, or mob
 depends on the task's nature, the desired outcomes (like collaboration, knowledge
 sharing, stress management, and productivity), and the dynamics of the team. There isn't
 a universally optimal programming practice; it's crucial to understand the strengths and
 limitations of each and select the one that best aligns with the team's needs and project
 requirements.

 29

 8 Conclusions and Future Work
 Our study shows that collaboration is more evident in pair and mob programming,
 whereas solo programming lacks in this aspect. Interestingly, mob programming showed
 a more appreciative culture, particularly in recognizing and celebrating
 accomplishments. In terms of knowledge sharing, both pair and mob programming
 environments are encouraged with sharing of ideas and code, yet, surprisingly,
 knowledge sharing also occurs in solo programming, underscoring the value of
 consulting coworkers and interacting with them in the workplace. When managing work
 stress, a trade-off between solo and mob programming became apparent. Solo
 programmers experienced less stress in being in control of important aspects of their
 lives, suggesting the benefits of independence afforded them greater control over their
 ideas. However, mob programmers, despite the shared responsibilities inherent in the
 approach, reported an increase in stress related to task management. In terms of
 productivity, mob programming exhibited a superior quality of work even though only
 one person was operating, while pair programming exhibited variability based on group
 dynamics. Single-person programming was inefficient despite scoring high on adjusted
 productivity, indicating poor code quality.

 The objective of this study was to address the following research questions:
 ● What are the primary differences in productivity and effectiveness between solo,

 pair, and mob programming practices?
 According to the productivity scores, solo programming achieved the highest score,

 followed by pair programming and mob programming. This finding contradicts the
 conclusions drawn from the literature review, which suggests that mob programming is
 the most productive approach. It is possible that the varying levels of experience among
 the developers involved contributed to this discrepancy. In terms of efficiency, mob
 programming obtained the highest score, as expected, due to the increased number of
 participants observing the implementation process. On the other hand, solo
 programming obtained the lowest score in terms of efficiency.

 ● How do different programming practices affect individual developers' overall
 experience regarding team cooperation, knowledge distribution and working
 stress level?

 The most satisfying developer's experience can be attributed to mob programming,
 particularly in terms of knowledge sharing and low stress levels. However, it is worth
 noting that pair programming achieved satisfying results as well, even surpassing mob
 programming by a small margin in terms of collaboration. This can be attributed to the
 fact that participants had more opportunities to actively engage with the code in pair
 programming compared to group programming. Conversely, solo programming
 performed poorly in these metrics.

 The limitations of this study necessitate further research, despite the fact that it
 provides some initial answers and paves the way for future exploration. One such
 limitation is that our literature review, while comprehensive and detailed, does not
 qualify as a systematic literature review due to the absence of predefined inclusion and
 exclusion criteria and the lack of systematic coding and analysis. In light of these
 limitations, a more in-depth investigation into the long-term consequences of various

 30

 programming techniques on developers could be beneficial. Additionally, broadening
 the scope to encompass more diverse teams, larger projects, and a variety of
 organizational cultures may help provide a more comprehensive understanding of how
 certain approaches function in different settings. Future studies could also explore the
 role of various programming techniques in relation to their efficacy and applicability to
 participants of different programming skill levels. It's important to consider that this
 study relied on self-reported data, such as job stress levels and perceptions of teamwork
 and knowledge distribution, which are inherently subjective and may be affected by
 factors such as participant bias and interpretation. Moreover, despite efforts to ensure
 that tasks were of similar complexity, there may still be variability in the tasks assigned
 under each programming method, potentially influencing the results. Finally, according
 to Thomas et al. [17] from the University of Wales, students who had the least
 confidence in themselves preferred pair programming the most, and the majority of
 students with higher ability levels opted not to pair up with peers who had lower
 competence levels, a finding that could have implications for the selection of
 programming methods in educational and professional settings.

 Finally, the study revealed several interesting outcomes that demand more research.
 For instance, despite the possibility of unpredictability and their significant effort, why
 do solitary programmers appear to be less stressed while managing essential elements of
 their lives? Why do mob programmers experience higher levels of stress due to juggling
 tasks while having shared responsibilities? Future studies might explore these paradoxes
 in more depth to better understand how work habits affect productivity and well-being
 in the technology industry. 

 31

 References
 [1] Hannay, Jo E., et al. "The effectiveness of pair programming: A meta-analysis."
 Information and software technology 51.7 (2009): 1110-1122.
 https://doi-org.proxy.lnu.se/10.1016/j.infsof.2009.02.001

 [2] Williams, Laurie, et al. "Strengthening the case for pair programming." IEEE
 software 17.4 (2000): 19-25.
 https://ieeexplore-ieee-org.proxy.lnu.se/abstract/document/854064

 [3] Zuill, Woody, and Kevin Meadows. "Mob programming: A whole team approach."
 Agile 2014 Conference, Orlando, Florida. Vol. 3. 2016.
 https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill
 _.pdf

 [4] Ståhl, Daniel, and Torvald Mårtensson. "Mob programming: From avant-garde
 experimentation to established practice." Journal of Systems and Software 180 (2021):
 111017.
 https://doi-org.proxy.lnu.se/10.1016/j.jss.2021.111017

 [5] Aune, Ole Kristian, Christian Echtermeyer, and Elias Sørensen. "Mob programming:
 A qualitative study from the perspective of a development team." Research Gate (2018).
 https://www.researchgate.net/publication/328150167_Mob_Programming_A_Qualitativ
 e_Study_from_the_Perspective_of_a_Development_Team

 [6] Dragos, Lucian. "Mob vs Pair: Comparing the two programming practices-a case
 study." (2021).
 https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1578097&dswid=1991

 [7] Kattan, Herez Moise, et al. "Swarm or pair? strengths and weaknesses of pair
 programming and mob programming." Proceedings of the 19th International
 Conference on Agile Software Development: Companion. 2018.
 https://dl-acm-org.proxy.lnu.se/doi/abs/10.1145/3234152.3234169

 [8] Roque Hernández, Ramón Ventura, Sergio Armando Guerra Moya, and Adán López
 Mendoza. "Solo, pair or Mob programming: Which should be used in university?."
 Apertura (Guadalajara, Jal.) 12.1 (2020): 39-55.
 https://doi.org/10.32870/ap.v12n1.1791

 [9] European Union. "Regulation (EU) 2016/679 of the European Parliament and of the
 Council of 27 April 2016 on the protection of natural persons with regard to the
 processing of personal data and on the free movement of such data, and repealing
 Directive 95/46/EC (General Data Protection Regulation)." Official Journal of the
 European Union, L119 (2016): 4-88.

 [10] Lee, Eun-Hyun. "Review of the psychometric evidence of the perceived stress
 scale." Asian nursing research 6.4 (2012): 121-127.
 https://doi-org.proxy.lnu.se/10.1016/j.anr.2012.08.004
 https://fbanken.se/files/220/PSS-10-Pre-final_Admin_Form-Swedish.pdf

 32

https://doi-org.proxy.lnu.se/10.1016/j.infsof.2009.02.001
https://ieeexplore-ieee-org.proxy.lnu.se/abstract/document/854064
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf
https://doi-org.proxy.lnu.se/10.1016/j.jss.2021.111017
https://www.researchgate.net/publication/328150167_Mob_Programming_A_Qualitative_Study_from_the_Perspective_of_a_Development_Team
https://www.researchgate.net/publication/328150167_Mob_Programming_A_Qualitative_Study_from_the_Perspective_of_a_Development_Team
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1578097&dswid=1991
https://dl-acm-org.proxy.lnu.se/doi/abs/10.1145/3234152.3234169
https://doi.org/10.32870/ap.v12n1.1791
https://doi-org.proxy.lnu.se/10.1016/j.anr.2012.08.004
https://fbanken.se/files/220/PSS-10-Pre-final_Admin_Form-Swedish.pdf

 [11] Müller, Matthias M. "A preliminary study on the impact of a pair design phase on
 pair programming and solo programming." Information and software Technology 48.5
 (2006): 335-344.
 https://doi-org.proxy.lnu.se/10.1016/j.infsof.2005.09.008

 [12] C. Lilienthal, "From Pair Programming to Mob Programming to Mob
 Architecting," in D. Winkler, S. Biffl, and J. Bergsmann (eds.), Software Quality:
 Complexity and Challenges of Software Engineering in Emerging Technologies, SWQD
 2017, Lecture Notes in Business Information Processing, vol. 269, Springer, Cham,
 2017, pp. 1-10. [Online]. Available:
 https://doi-org.proxy.lnu.se/10.1007/978-3-319-49421-0_1

 [13] M. Shiraishi, H. Washizaki, Y. Fukazawa, and J. Yoder, "Mob Programming: A
 Systematic Literature Review," in 2019 IEEE 43rd Annual Computer Software and
 Applications Conference (COMPSAC), Milwaukee, WI, USA, 2019, pp. 616-621.
 https://ieeexplore-ieee-org.proxy.lnu.se/abstract/document/8753993

 [14] H. Kattan. "Software Development Practices Patterns: from Pair to Mob
 Programming", in Proceedings of the 3rd Regional School of Software Engineering, Rio
 do Sul, 2019, pp. 147-156.
 https://sol.sbc.org.br/index.php/eres/article/view/8507

 [15] G. Saake, S. Apel, and I. Schaefer, “Measuring and Improving Code Quality in
 Highly Configurable Software Systems D I S S E R T A T I O N zur Erlangung des
 akademischen Grades,” Uni-halle.de. [Online]. Available:
 https://opendata.uni-halle.de/bitstream/1981185920/34942/1/Fenske_Wolfram_Dissertat
 ion_2020.pdf .
 [Accessed: 19-May-2023]

 [16] A. Begel and N. Nagappan, “Pair programming: What’s in it for me?,” in
 Proceedings of the Second ACM-IEEE international symposium on Empirical software
 engineering and measurement, 2008.
 https://dl.acm.org/doi/abs/10.1145/1414004.1414026?casa_token=K7pjqWqmKLAAA
 AAA:tD51LDIS7JpTzczqrm75YvHlj7yWzQRtgF-Dq9uFY5epUQm40Iy3OxrGf3Gw9J
 QfaJIsd-RfaqY

 [17] N. Nagappan, L. Williams, E. Wiebe, C. Miller, S. Balik, M. Ferzli, and J. Petlick,
 "Pair Learning: With an Eye Toward Future Success," in Proceedings of the 2003
 International Conference on Software Engineering (ICSE '03), Portland, OR, USA,
 2003, pp. 185-198. doi: 10.1109/ICSE.2003.1201248.
 https://www.researchgate.net/publication/221592681_Pair_Learning_With_an_Eye_To
 ward_Future_Success

 [18] K. L. Wuensch, What is a Likert Scale? and How Do You Pronounce “Likert?”
 East Carolina University, 2005.

 33

https://doi-org.proxy.lnu.se/10.1016/j.infsof.2005.09.008
https://doi-org.proxy.lnu.se/10.1007/978-3-319-49421-0_1
https://ieeexplore-ieee-org.proxy.lnu.se/abstract/document/8753993
https://sol.sbc.org.br/index.php/eres/article/view/8507
https://opendata.uni-halle.de/bitstream/1981185920/34942/1/Fenske_Wolfram_Dissertation_2020.pdf
https://opendata.uni-halle.de/bitstream/1981185920/34942/1/Fenske_Wolfram_Dissertation_2020.pdf
https://dl.acm.org/doi/abs/10.1145/1414004.1414026?casa_token=K7pjqWqmKLAAAAAA:tD51LDIS7JpTzczqrm75YvHlj7yWzQRtgF-Dq9uFY5epUQm40Iy3OxrGf3Gw9JQfaJIsd-RfaqY
https://dl.acm.org/doi/abs/10.1145/1414004.1414026?casa_token=K7pjqWqmKLAAAAAA:tD51LDIS7JpTzczqrm75YvHlj7yWzQRtgF-Dq9uFY5epUQm40Iy3OxrGf3Gw9JQfaJIsd-RfaqY
https://dl.acm.org/doi/abs/10.1145/1414004.1414026?casa_token=K7pjqWqmKLAAAAAA:tD51LDIS7JpTzczqrm75YvHlj7yWzQRtgF-Dq9uFY5epUQm40Iy3OxrGf3Gw9JQfaJIsd-RfaqY
https://www.researchgate.net/publication/221592681_Pair_Learning_With_an_Eye_Toward_Future_Success
https://www.researchgate.net/publication/221592681_Pair_Learning_With_an_Eye_Toward_Future_Success

