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Abstract

A significant challenge with permanent magnet synchronous motors (PMSMs) is thermal
management. Thermal stress can lead to irreversible damage to components, and to enable
efficient cooling, a thermal model is needed. In this thesis paper, methods for estimating the
hot spot temperature of the windings in PMSMs used in heavy-duty EVs are investigated.
The methods include black-box models and lumped parameter thermal network-based
models. The results reveal that the implemented models are not sufficient for achieving
the desired accuracy, and indicate that more parts of the windings need to be considered.



Acknowledgments

Firstly, I would like to thank Vaheed Nezhadali for giving me the opportunity to conduct my
master’s thesis at Scania. Thank you, everyone at NECC, for welcoming me with open arms.

Special thanks to Iman Shafikhani and Max Johansson. Your input has been invaluable.
Without your help, this project would take ages.

Thank you, Erik Frisk, for your guidance throughout the project.

Finally, thank you, Matilda, for everything you do for me. You mean the world to me.

iv



Contents

Abstract iii

Acknowledgments iv

Contents v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory and related works 4
2.1 Dynamic system modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Black-box model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Model order selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Heat transfer theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Power losses in PMSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methodology 11
3.1 System discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Choice of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Black-box modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Lumped parameter thermal network . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 LPTN to hot spot temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 18
4.1 Validation experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Validation experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Validation experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Discussion 57
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 The work in a wider context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 62

v



Bibliography 63

vi



1 Introduction

A key factor in the struggle against climate change is the electrification of the automotive
industry [1]. The main component of electric vehicle (EV) propulsion is electric machines
(EMs), and a type of EM that is gaining in popularity is the permanent magnet synchronous
motor (PMSM) [2]. Figures 1.1 and 1.2 depict an EM and the cross-section of a PMSM, high-
lighting its different components. Part of the PMSM’s success is due to its power density and
torque density [3], leading to efficiency at low speeds and causing it to replace the typical
induction motor. However, as the production of PMSMs is draining our planet of rare-earth
permanent magnets [4] and as high temperatures can cause damage to its components [5],
the importance of operating PMSMs in a sustainable manner grows.

In heavy-duty EVs such as electric trucks, the same trend can be observed as for passen-
ger car EVs [6]. Though, as the trucks weigh more, they pose greater constraints on their
motors in terms of thermal management. In order to cool PMSMs appropriately, knowledge
of their temperature is extremely relevant.

In this master’s thesis, different thermal models for PMSM windings were investigated
for the purpose of simplifying thermal management. In the midst of global warming, this
might lengthen the life of heavy-duty EV motors and, consequently, contribute positively to
the environment.

1.1 Motivation

As a PMSM runs, power losses in different components lead to heat development. Thermal
stress can cause degradation in winding insulation, permanent magnets, and bearings [5],
while the maximum temperature of a PMSM is limited by the winding insulation or per-
manent magnets [8]. During heavy workloads, it is possible for the windings to reach over
180 ˝C, while the temperature limit of the windings is 155 ˝C or less for several insulation
classes [9]. To prevent temperatures from rising too high, liquid cooling and torque limit-
ing are common. However, in order to know when to cool the motor and limit the torque,
awareness of the PMSM’s maximum temperature (a.k.a. hot spot temperature) is necessary.
Measuring the temperature of the different parts of the EM is not always feasible, though. The
temperature gradient is not uniform in every component, meaning that multiple sensors are
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1.2. Aim

Figure 1.1: The rotor (left) and stator
(right) of an electric machine [7]. Licensed
under a Creative Commons Attribution-
ShareAlike 3.0 Unported License.

Figure 1.2: The cross-section of a PMSM.

required to cover the whole machine to measure the hot spot temperature accurately. These
sensors can be expensive as well as difficult to install and maintain and are therefore rarely
beneficial to use. Thus, an accurate model is necessary.

Figure 1.3: A sketch of a PMSM stator and its windings, without the rotor and permanent
magnets. The orange regions represent the end windings while the grey region represents
the stator surface.

1.2 Aim

This thesis aimed to investigate different methods for modelling the hot spot temperature of
PMSM windings. This included the connection side end windings, the back side end wind-
ing, and the winding running through the stator (in this thesis called the mid-stack winding).
These are pointed out in Figure 1.3. Accuracy goals were set for all temperatures, where over-
estimation was limited to 5 ˝C and underestimation to 2.5 ˝C. The reason for the goals being
more ambitious for underestimation than for overestimation was due to the importance of
not exceeding certain temperatures.

1.3 Research questions

The thesis attempted to answer the following questions:

2
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1.4. Delimitations

• How do common black-box models for estimating the hot spot temperature of PMSM
windings perform?

• How can physical knowledge of a PMSM be incorporated in the construction of a model
that fulfils the desired accuracy?

1.4 Delimitations

The thesis project was time-limited to 20 weeks including planning, implementation, and re-
port writing. A limited number of sensors for measuring the temperature of the windings
were used in producing the available experimental data. The sensors were positioned closely
together in three groups; at the connection side end windings, back side end windings, and
the mid-stack windings. Note that the winding temperature sensors were installed on test
rigs and not in the PMSMs used in trucks, hence the need for the model. Dimensions for the
PMSM and physical attributes of the coolant were not considered. The real-time computa-
tional speeds of the models were not evaluated as the models were assumed to be lightweight
enough to run on the hardware, even when considering hardware limitations and coexistence
with the concurrently running software. Furthermore, different methods for neither normal-
ising data nor initialising the produced models were investigated in this thesis.
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2 Theory and related works

This chapter presents relevant theory and related works for the modelling of PMSMs and
dynamic systems in general.

2.1 Dynamic system modelling

Approaches for modelling dynamic systems can be split into four different categories: data-
driven, analytical, numerical, and hybrid [10]. Data-driven models, or black-box models,
are derived solely from experimental data. A type of data-driven modelling is parametric
modelling, where a general model design is chosen, whereby its parameters are estimated. In
analytical approaches, equations based on physical formulas describe the system. Numerical
approaches are used when solutions to the physical expressions do not exist and have to be
approximated instead. A hybrid model implies that multiple approaches are combined.

2.2 Black-box model structures

While systems generally are non-linear in practice, linear methods can occasionally model
the dynamics of the system. This section describes widely used linear and non-linear models
for parametric system identification.

Linear models

A general model format for linear models is given in [11] as

A(q)y(t) =
B(q)
F(q)

u(t) +
C(q)
D(q)

e(t), (2.1)
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2.2. Black-box model structures

where,

A(q) = 1 + a1q´1 + ... + ana q´na , (2.2)

B(q) = q´nk (b0 + b1q´1 + ... + bnb q´nb), (2.3)

C(q) = 1 + c1q´1 + ... + cnc q´nc , (2.4)

D(q) = 1 + d1q´1 + ... + dnd q´nd , (2.5)

F(q) = 1 + f1q´1 + ... + fn f q´n f , (2.6)

and y(t), u(t) and e(t) are output, input and measurement noise, respectively. Furthermore,
q is the time shift operator while na, nb, nc, nd, n f and nk are integer design parameters speci-
fying the order of the polynomials A(q), B(q), C(q), D(q) and F(q). By letting some of them
be equal to 1, some common models can be obtained.

With A(q) = 1, the Box-Jenkins model is obtained. It allows for modelling the measure-
ment noise without any dependence on the dynamics of the system.

With C(q) = D(q) = F(q) = 1, we get the ARX (Auto-Regressive with eXogenous in-
puts) model. It is often used for system identification since predictors are automatically
stable while it easily can be estimated using simple techniques such as the linear least
squares method [12]. Measurement errors can, however, not always be characterised which
may lead to inconsistent models.

The ARMAX (Auto-Regressive Moving-Average with eXogenous inputs) model is attained
with D(q) = F(q) = 1. For its predictors to be stable, only C(q) has to be stable, and unlike
the ARX model, the ARMAX model can model measurement errors.

The OE (Output-Error) model is obtained with A(q) = C(q) = D(q) = 1, meaning that
measurement noise can not be modelled. This is useful if the dynamics of the system alone
are to be modelled.

Non-linear models

In [13], a general polynomial form of the NARX (Non-linear ARX) model is given in discrete
time by

yi = F(np)(yi´1, ..., yi´ny ; xi´1, ...xi´nx ), (2.7)

where np is the maximum model order. Additionally, yi and xi are the input and output,
respectively, at time step i. According to [13], any system can be represented by (2.7) given a
model order of sufficient degree.

The NARX model does, however, assume that the measurement data does not contain
any noise which can complicate the modelling process. To address this, the NARMAX (Non-
linear Auto-Regressive Moving-Average with eXogenous inputs) model considers noisy
measurements and can be described as

yi = F(np)(yi´1, ..., yi´ny ; xi´1, ...xi´nx ; ei´1, ...ei´ne) + ei, (2.8)

where ei is white noise.

In [14], parameters of a MIMO (Multi-Input Multi-Output) system are identified using
a Hammerstein-Wiener (HW) model. While considering white measurement noise and
coloured process noise, the problem was solved using a Maximum Likelihood Expectation
Maximisation algorithm.
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2.3. Model order selection

2.3 Model order selection

Selecting the order of a model is about finding a balance between bias and variance [15]. The
more parameters used in a model, i.e., the larger the model order, the less biased the model
is. However, as the number of parameters increases, the variance grows. Additionally, with
an increased model order, computational demands for calculating and using the model grow.

One way to estimate the order of a system is by analysing the matrix

Rs(N) =
1
N

N
ÿ

t=1

φs(t)φT
s (t), (2.9)

where φs(t) = [´y(t ´ 1)... ´ y(t ´ s) u(t ´ 1)...u(t ´ s)]T and N is the number of samples. It
will be non-singular for s ď n and singular for s ě n + 1 where n is the true order. For MIMO
(Multi-Input Multi-Output) systems, this is done for every input-output pair.

2.4 Model validation

After estimating a model of a system, the next step is to evaluate the performance of the
model on new data the model has not seen before. Aside from the simulated output of the
model fitting nicely to the validation data, there are several indications that a model has
captured the dynamics of the system. Comparing Bode plots of parametric models to the
estimated frequency functions of the system is one way. Another validation method is to
reduce the order of the model. If this can be done without the behaviour of the model being
affected, the initial model was unnecessarily large. Moreover, the standard deviation of the
estimated parameters could give an indication that the model is too large. The parameter
should perhaps be removed if the confidence interval includes zero. [15]

The normalised root mean square error (NRMSE) can be used to quantify the similarity
of two signals. In system modelling, it can thus evaluate how well the output of a model
fits the measured data. A percentage between 100% and ´8%, where 100% means that the
signals are the same, can be calculated by:

100(1 ´ NRMSE) = 100

1 ´

b

řN
t=1(y(t) ´ ŷ(t))2

b

řN
t=1(y(t) ´ ˆ̄y(t))2

 [16]. (2.10)

Here, y is the measured data, ŷ is the model output, and ˆ̄y is the mean value of ŷ.

Residual analysis

The residuals of a model are the difference between the measured and estimated values and
can give hints on whether a model has captured the dynamics of the system [15]. For in-
stance, correlation between the residuals and previous inputs indicates that the model can be
enhanced. The same can be concluded if correlation is found among the residuals themselves.

2.5 Heat transfer theory

There exist three essential modes of heat transfer; conduction, convection, and radiation [17].
Conduction is when heat, by virtue of the temperature gradient in a body, flows through a
solid or through a fluid at rest [18]. Convection is when heat is transferred between a flowing
fluid and a body [19]. Radiation is when energy is emitted from a body by means of its
moving atoms [20], allowing heat transfer between bodies without the need for a medium
between them.
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2.5. Heat transfer theory

Fluid flow in a pipe

The Reynolds number, Re, describes if the flow of a fluid in a pipe is laminar (smooth) or
turbulent [21]. It is defined as:

Re =
dV̇ρ

µ
, (2.11)

where d is the internal diameter of the pipe, V̇ is the flow speed, while ρ and µ are the density
and dynamic viscosity of the fluid.

The Prandtl number, Pr, is the ratio between a fluid’s capability to transfer momentum
and its capability to transfer energy and is defined as:

Pr =
µc
k

[21]. (2.12)

Here, c is the specific heat capacity of the fluid, and k is its thermal conductivity.

The Nusselt number, Nu, describing the ratio between convective and conductive heat
transfer is defined in [22] as:

Nu =
h

k/d
=

hd
k

, (2.13)

where h is the heat transfer coefficient of the flow. In [23], a correlation for the Nusselt number,
specifically for laminar flow, is provided using the length of the pipe, L:

Nu = 3.66 +
0.065 Re Pr d

L

1 + 0.04(Re Pr d
L )

2
3

. (2.14)

With knowledge of pipe dimensions, flow speed, and fluid properties, (2.11) – (2.14) can be
combined to find h.

Specific heat capacity of copper and iron

The temperature dependence of the specific heat capacities of copper and iron can be seen in
Table 2.1.

Table 2.1: Specific heat capacities in J K´1 mol´1 of copper (Cu) and iron (Fe) at different
temperatures in K and a constant pressure of 0.1 MPa [24].

T 100 200 300 400 500 600 700 800
CCu 16.010 22.631 24.462 25.318 25.912 26.481 26.996 27.494
CFe 12.101 21.588 25.140 27.386 29.702 32.049 34.602 37.949

Dynamic system expression

To derive a dynamic heat transfer expression for a system of bodies, Newton’s law of ex-
ternal heat transfer can first be used to describe the heat flow, G, between a body and its
surroundings:

G = h(T ´ T0) [25]. (2.15)

Here, h is the heat transfer coefficient between body and surroundings, T is the temperature of
the body, and T0 is the temperatures of the surroundings. The heat flow can also be described
using the surface area of the heat transfer, A, and the change in thermal energy, Q, by:

G = ´
1
A

BQ
Bt

. (2.16)

7



2.6. Power losses in PMSMs

The basic formula of calorimetry, in turn, describes the change in Q in terms of change in
temperature:

dQ = c m dT = C dT, (2.17)

where c, m, and C are the specific heat capacity, mass, and heat capacity of the body. A
combination of (2.15) - (2.17) might be written as:

C
dT(t)

dt
= hA(T0(t) ´ T(t)), (2.18)

describing the change of temperature in a body as a first-order differential equation. By con-
sidering power losses, P, in the material of the body adding heat, (2.18) becomes:

C
dT(t)

dt
= hA(T0(t) ´ T(t)) + P(t). (2.19)

Finally, for a body, i, in contact with multiple neighbours, j, such as other bodies or fluids,
(2.19) can be extended into:

Ci
dTi(t)

dt
=

ÿ

j

hij Aij(Tj(t) ´ Ti(t)) + Pi(t). (2.20)

2.6 Power losses in PMSMs

Two different types of power losses are generally considered in a PMSM; electric and mag-
netic losses [26]. The electrical losses occur in the copper windings and are computed by:

P = 3I2R, (2.21)

where I and R are the current and resistance of the windings. With a known resistance, R0, at
winding temperature T0, the temperature dependency of the resistance can be described as:

R(T) = R0(1 + α(T ´ T0)), (2.22)

where α is the thermal coefficient of the material [26, 27]. If the power loss at temperature T0
is known, the power loss at temperature T can then be calculated by:

P(T) = 3I2R(T) = 3
P(T0)

3R0
R(T) = P(T0)

R(T)
R0

= P(T0)
R0(1 + α(T ´ T0))

R0
= P(T0)(1 + α(T ´ T0)). (2.23)

Magnetic power losses in the iron too, change with temperature [26]. These will, however, be
assumed to have no temperature-dependency in this thesis.

2.7 Related works

In this section, some known methods for thermal modelling of PMSMs are described. Most
papers in the area concern regular-sized EVs, while a few touch on other applications such as
agricultural vehicles and railways.

8



2.7. Related works

Finite element method

By dividing a system into small subdomains, the finite element method (FEM) numerically
solves partial differential equations describing the heat transfer between the domains [28].
Although it is known for producing accurate results, it is a computationally demanding
method and is therefore not always feasible to use.

An example of PMSM thermal modelling using FEM can be seen in [29]. An agricul-
tural EV with an air-cooled IPMSM (Interior PMSM) is studied, where the temperature of
the winding is estimated. Electromagnetic field analysis was used for estimating the losses,
while conduction, convection, and radiation were considered for the temperature modelling.
The estimated winding temperature deviated from the experimentally acquired data by a
maximum of 5˝ C, where the maximum temperature reached by the machine was just above
100˝ C.

Lumped parameter thermal network

A popular method for modelling the temperature in PMSMs is by using lumped parameter
thermal networks (LPTNs) [28]. Like in FEM, LPTNs divide the system into smaller parts and
estimate the temperature based on heat transfer relations. However, in LPTNs, subdomains
(or lumps/nodes) are generally many times larger and can consist of whole components.
Furthermore, an LPTN assumes that no temperature gradient exists in the nodes. Because of
this, the method outputs the average temperatures of each node [30], making it quicker but
less accurate than FEM.

Using a two-node LPTN, [8] models the temperature of the stator windings and perma-
nent magnets of a water-cooled IPMSM. The results are promising as they only differ from
experimentally obtained data by a maximum of 6˝C. However, the model requires the stator
core temperature to be measured and estimates the average temperatures instead of the hot
spot temperatures. Without access to the stator core temperature measurement, a three-node
LPTN can be derived as long as the properties of the coolant are known. Though, according
to the paper, this approach would be less robust than the proposed two-node model. The
paper claims that the presented model can be used in EVs as well as in heavier applications
such as trains.

In [31], the temperature of an air-cooled IPMSM designed for EVs is first modelled with
a three-node LPTN and then controlled using an MPC (Model Predictive Control) based
strategy. The model estimates temperatures of the winding, end winding and rotor of the
machine and is expressed in state-space form. Ambient and coolant temperatures, as well as
losses in the components to be estimated, are assumed to be known or calculable. Although
the results are accurate, the validation data is neither displayed in detail nor does it seem to
be particularly varying.

An analytical model based on motor dimensions, thermal conductivity and other parameters
is described in [30]. By complementing an average temperature estimating LPTN, it produces
similar results to the computationally heavy FEM, all in a much shorter time. This is done
by modelling the system in cartesian coordinates instead of the typically used cylindrical
coordinates, avoiding complex computations.

Artificial neural network

A type of artificial neural network is the feed-forward neural network (FNN) where data is
only sent forward in the information chain [32]. An FNN-based NARX black-box model for
temperature estimation in PMSMs is proposed in [33]. Measurements from sensors on the

9



2.7. Related works

windings and permanent magnet are used in the training of the model, where temperatures
range between 20˝ C and 130˝ C. The current, voltage, speed, and temperature of the coolant
were used as inputs, producing an error of no more than 4.5˝ C on data with high fluctuations.

Using an LPTN-FNN hybrid model, the temperature of a water-cooled PMSM for car
application is presented in [34]. The LPTN models the permanent magnet, stator tooth, stator
winding and stator yoke, and its structure is used as a base model. Meanwhile, the FNN
tunes the parameters of the LPTN which are related to losses and thermal conductances. The
maximum temperature reached in the experiments was around 110˝ C and the maximum
error was 5.5˝ C.

10



3 Methodology

This chapter covers the implementation and validation of the thermal models. Different
black-box models were produced using Matlab R2020b with the help of functions from Sys-
tem Identification Toolbox. A lumped parameter thermal network (LPTN) was derived and
implemented in both Matlab and Simulink. Parameters of the LPTN were calibrated using the
Parameter Estimator app from the Simulink Design Optimization add-on. Lastly, model valida-
tion was performed in Matlab.

3.1 System discretisation

The windings of the PMSM were discretised into three nodes according to the temperature
sensor placements; C (connection side end winding), M (mid-stack winding), and B (back
side end winding). Figures 3.1-3.3 highlight the different parts of the PMSM that the nodes
represent. The temperatures of the nodes were denoted TC, TM, and TB.

Figure 3.1: The con-
nection side end wind-
ings, denoted C.

Figure 3.2: The wind-
ings running through
the stator were de-
noted M.

Figure 3.3: The back
side end windings, de-
noted B.

3.2 Choice of data

Data from over 60 experiments were available, occupying approximately 9 GB of memory.
These mainly included three types of driving modes; “step” experiments, where the torque
resembled a step function and the temperatures rose steadily; “drive cycle” experiments,
where the torque and temperature varied heavily; and “idle” experiments, where the torque
was zero and the temperatures dropped steadily. Variations in the initial temperatures oc-
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3.3. Data pre-processing

curred, making some step experiments differ largely in temperature rise. Examples of how
the different types of experiments could look are depicted in Figure 3.4a, 3.4b, and 3.4c. Out of
the available data, five step experiments and three drive cycle experiments containing high
temperatures were chosen for this thesis. All experiments included 9 different signals that
could be used as inputs to the models, as well as temperature measurements for nodes C, M,
and B that could be used as outputs. Five experiments were used for the calibration of the
models, where three were step experiments and two were drive cycles. For the validation
of the models, three different experiments were used, where two were step experiments and
one was a drive cycle experiment.
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(a) Step experiment. (b) Drive cycle experiment. (c) Idle experiment.

Figure 3.4: Example data from the different experiment types. The input shown is the torque
while the output is the hot spot temperature of node B.

3.3 Data pre-processing

Maximum and average temperatures of the nodes were extracted from the measurements.
Since the temperature sensors for the mid-stack winding were positioned closely together
at the stator midpoint, the average temperature calculations for M included the average
temperatures of C and B as single sensor values.

To get rid of measurement noise and unrealistically quick-varying measurements in the
calibration data, the signals were low-pass filtered. This was done using a Butterworth filter
of order 5 at an appropriate cut-off frequency determined through trial and error.

3.4 Black-box modelling

The hot spot temperatures of C, M, and B were estimated using various black-box models
mentioned in 2.2.
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3.5. Lumped parameter thermal network

Normalisation

The calibration data for the black-box modelling were normalised to contain values between
-0.5 and 0.5 by:

yn =
y ´ ymin

ymax ´ ymin
´ 0.5, (3.1)

where y was the signal to be normalised, ymin and ymax were the minimum and maximum
values of the signal out of all calibration data, and yn was the normalised signal. As the
simulated model outputs were normalised, this was reversed by extracting y from (3.1):

y = (yn + 0.5)(ymax ´ ymin) + ymin. (3.2)

Model order selection

To give a rough estimate of suitable model orders, (2.9) was analysed for the calibration data.
This method suggested orders between 3 and 6, as seen in Table 3.1. During model cali-
bration, different model orders for the different input-output pairs were, however, not used.
Instead, one model order was chosen at a time and used for all input-output pairs. The time
delay, nk, was not estimated and was instead set to zero.

Table 3.1: Estimated model orders for each input-output pair, averaged over the 5 calibration
experiments.

u1 u2 u3 u4 u5 u6 u7 u8 u9
y1 4 3.2 4 5.6 5.4 3.4 3 3.2 5
y2 4.8 4 5 5.6 5.6 4 4 4 5
y3 4.6 4 4.6 5.8 5.8 4 4 4 6

Model structures

ARX, ARMAX, OE, BJ, NARX, and HW models were calibrated with the suggested model
orders, as well as other orders. In an attempt to improve the estimation of TM, the calibration
was slightly modified so that the estimated values of TC and TB were used as additional
inputs to the estimation of TM.

3.5 Lumped parameter thermal network

An LPTN was developed for estimating the average temperatures in C, M, and B (see 3.6
for average to maximum temperature estimation). To facilitate the derivation of the equa-
tions, the stator and the coolant oil were discretised to form the nodes S (stator surface),
OC (connection-side oil), OS (stator surface oil), and OB (back-side oil). Combined with the
previously defined nodes, this resulted in a total of seven nodes as seen in Figure 3.5. The
temperatures TOS and TOB were measured, while TOC was assumed to be the average be-
tween TOS and TOB.

LPTN with 4 output nodes

Equation (2.20) was used to describe the temperature change in each of the output nodes; C,
M, B, and S. The heat transfer coefficients and heat transfer surface areas were combined into
a single parameter, λij = hij Aij. This, together with dTi(t)

dt = Ṫi(t) yielded:
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3.5. Lumped parameter thermal network

C M B

S

OC OS OB

Connection-side
end winding

Mid-stack 
winding

Back-side
end winding

Stator
surface

Connection-side oil Back-side oilSurface oil

Input

Output

Figure 3.5: Overview of the thermal nodes of the LPTN. The lines represent heat transfer
between nodes.

ṪC =
λMC(TM(t) ´ TC(t)) + λCO(TOC(t) ´ TC(t)) + PC(t)

CC
, (3.3)

ṪM =
λMC(TC(t) ´ TM(t)) + λMB(TB(t) ´ TM(t)) + λMS(TS(t) ´ TM(t)) + PM(t)

CM
, (3.4)

ṪB =
λMB(TM(t) ´ TB(t)) + λBO(TOB(t) ´ TB(t)) + PB(t)

CB
, (3.5)

ṪS =
λMS(TM(t) ´ TS(t)) + λSO(TOS(t) ´ TS(t)) + PS(t)

CS
, (3.6)

where λMk and λkO were conductive and convective heat transfer coefficients, respectively
for k = tC, B, Su.

LPTN with 3 output nodes

Since measurement data for the stator surface was not available, the stator surface equations
were incorporated into the equation for the mid-stack winding. Differentiation of (3.4), as-
suming Ċi = λ̇ij = 0 @i, j, gave:

T̈M(t) =
λMC(ṪC(t) ´ ṪM(t)) + λMB(ṪB(t) ´ ṪM(t)) + λMS(ṪS(t) ´ ṪM(t)) + ṖM(t)

CM
, (3.7)
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3.5. Lumped parameter thermal network

where T̈(t) = d2T(t)
dt2 . By rearranging (3.4), TS could then be expressed as:

TS(t) =
CMṪM(t) ´ λMC(TC(t) ´ TM(t)) ´ λMB(TB(t) ´ TM(t)) ´ PM(t)

λMS
+ TM(t). (3.8)

Inserting (3.8) in (3.6) and (3.6) in (3.7) allowed for expressing the mid-stack winding temper-
ature without the need for the stator surface node:

CMT̈M(t) = ṪM(´CM
λMS + λSO

CS
´ λMC ´ λMB) + ṖM

+ TC(
λMS + λSO

CS
´

λMC + λCO
CC

)λMC

+ TM(
λ2

MC
CC

+
λ2

MB
CB

´
λMCλMS + λMBλMS + λMCλSO + λMBλSO + λMSλSO

CS
)

+ TB(
λMS + λSO

CS
´

λMB + λBO
CB

)λMB

+ TOC
λMCλCO

CC
+ TOB

λMBλBO
CB

+ TOS
λMSλSO

CS

+ PC
λMC
CC

+ PM
λMS + λSO

CS
+ PB

λMB
CB

+ PS
λMS
CS

. (3.9)

Power losses

Experimentally obtained values for the copper power losses at temperature T0 were used in
determining the temperature-dependent losses. They were calculated according to (2.23) as:

PC = PCu,EW (1 + αCu(TC ´ T0)), (3.10)

PM = PCu,MW (1 + αCu(TM ´ T0)), (3.11)

PB = PCu,EW (1 + αCu(TB ´ T0)). (3.12)

Here, PCu,EW and PCu,MW were the electrical power losses in the end windings and the mid-
stack winding. The power losses in S were simply:

PS = PFe, (3.13)

where PFe were experimentally obtained magnetic power losses in the iron at temperature T0.
These were, as mentioned in 2.6, assumed not dependent on temperature.

Heat capacities

The specific heat capacities for the copper windings and the iron stator were determined
using Table 2.1 and linear interpolation. The values of the masses were optimised during the
parameter calibration mentioned below. As TS was not estimated, it was set to the average
value of TC, TM, and TB.

Temperature change to temperature

After calculating the temperature change of a node i, its temperature was then retrieved using
the sample time, ts, by:

Ti(t) = Ti(t ´ 1) + tsṪi(t ´ 1),
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3.6. LPTN to hot spot temperature

for the derivatives in (3.3) and (3.5), and

Ti(t) = Ti(t ´ 1) + tsṪi(t ´ 1) +
1
2

t2
s T̈i(t ´ 1),

for the double derivative in (3.9).

Parameter calibration

The conductive parameters λMC, λMB, and λMS, as well as the masses, mC, mM, mB and mS,
were calibrated as constant values. The convective parameters, λCO, λBO, and λSO, were, on
the other hand, calibrated as third-order polynomials functions of the oil flow speed, V̇:

λiO = k0,i + k1,iV̇ + k2,iV̇2 + k3,iV̇3, i = tC, B, Su. (3.14)

3.6 LPTN to hot spot temperature

Two different methods for estimating the hot spot temperatures using the estimated average
temperatures were implemented. In the first method, a simple relationship was expressed
using the oil temperature of the PMSM, while the second involved black-box models.

Using an oil temperature-based model

In the measurement data, it was observed that a relationship existed between the temperature
of the nodes and the temperature of the oil. As the oil temperature rose, the difference be-
tween the maximum and average winding temperatures, i.e. the temperature gradient, grew.
An inactive PMSM, on the other hand, meant that the temperature gradient of the windings
decreased, and their temperatures converged towards the oil temperature. The maximum
temperatures were thus estimated by:

Tmax
C = Tavg

C + aC(T
avg
C ´ Tavg

oil ),

Tmax
M = Tavg

M + aM(Tavg
M ´ Tavg

oil ),

Tmax
B = Tavg

B + aB(T
avg
B ´ Tavg

oil ), (3.15)

where aC, aM, and aB were constant calibration parameters.

Using black-box models

The difference between the windings’ maximum and average temperatures was modelled us-
ing black-box methods. The calibration was done in the same way as in 3.4, using all available
inputs including the ones already used in the LPTN. This produced a model henceforth called
the MMA (Maximum Minus Average) model. An illustration of how the model calibration
was implemented is shown in Figure 3.6.
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3.7. Model validation

Model
calibration

MMA
model

Figure 3.6: Calibration of the MMA (Maximum Minus Average) model, where u are the inputs
and Tmax ´ Tavg are the outputs.

After the model calibration, the hot spot temperatures could be estimated by adding the
estimated average temperature and the model output together, as seen in Figure 3.7.

LPTN

MMA
model

Figure 3.7: The hot spot estimation using the combined LPTN and black-box models.

3.7 Model validation

The model outputs were simulated with the validation experiment inputs, using the mea-
sured temperatures as initial values. The outputs were then validated through some of the
methods mentioned in 2.4. Visual validation included comparing validation data and simu-
lated outputs. Also, residuals were analysed by comparing them with the accuracy aims and
observing their auto-correlation. To quantify the model performance, the model fits were
calculated according to equation (2.10).
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4 Results

This chapter is divided into three sections, each presenting the results from a separate vali-
dation experiment. For every method, figures that compare the simulated model outputs to
the validation data, and that demonstrate how the models fare with the accuracy aims are
shown. Figures indicating to which degree the models have captured the dynamics of the
system are also displayed, along with tables of the model fit percentages.

The black-box models that were chosen to be presented were an ARX model of order 2,
and NARX models of orders 1 and 2. These were in the figures denoted as arx2, narx1,
and narx2. Modified black-box models, where TC and TB estimations were used as inputs
for estimating TM consisted of an ARX model of order 2 and a NARX model of order 1.
These were denoted arx2-mod and narx2-mod. The LPTN was simply denoted lptn, while the
oil temperature-based model was denoted lptn-oil. Finally, the LPTN-hybrid models were
denoted lptn-arx2 and lptn-narx1.

4.1 Validation experiment 1

The first validation experiment was a step experiment that began right after the temperatures
had dropped from initially high values. Comparisons of measured and estimated tempera-
tures and residual graphs are displayed below.

Output comparison

Figure 4.1 and 4.2 show temperature comparisons for the black-box models, Figure 4.3 and
4.4 for the modified black-box models, Figure 4.5 and 4.6 for the LPTN, Figure 4.7 and 4.8
for the LPTN and oil temperature combination, and lastly, Figure 4.9 and 4.10 for the LPTN-
black-box models.
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4.1. Validation experiment 1

Measurements vs. estimation,

validation experiment 1
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Figure 4.1: Comparison between validation experiment 1 and the simulated outputs of the
black-box models.

Residual over time,

validation experiment 1
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Figure 4.2: The residuals of the black-box models for validation experiment 1.
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4.1. Validation experiment 1

Measurements vs. estimation,

validation experiment 1
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Figure 4.3: Comparison between validation experiment 1 and the simulated outputs of the
modified black-box models.

Residual over time,

validation experiment 1
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Figure 4.4: The residuals of the modified black-box models for validation experiment 1.
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4.1. Validation experiment 1

Measurements vs. estimation,

validation experiment 1
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Figure 4.5: Comparison between validation experiment 1 and the simulated outputs of the
LPTN.

Residual over time,

validation experiment 1
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Figure 4.6: The residuals of the LPTN for validation experiment 1.
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4.1. Validation experiment 1

Measurements vs. estimation,

validation experiment 1

Time [s]

T
e
m

p
e
ra

tu
re

0 500 1000 1500 2000 2500 3000 3500 4000

T
C

max

0 500 1000 1500 2000 2500 3000 3500 4000

T
M

max

0 500 1000 1500 2000 2500 3000 3500 4000

T
B

max

measured signal lptn-oil

Figure 4.7: Comparison between validation experiment 1 and the simulated outputs of the
LPTN-oil models.

Residual over time,

validation experiment 1
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Figure 4.8: The residuals of the LPTN-oil models for validation experiment 1.
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4.1. Validation experiment 1

Measurements vs. estimation,

validation experiment 1
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Figure 4.9: Comparison between validation experiment 1 and the simulated outputs of the
LPTN-black-box models.

Residual over time,

validation experiment 1
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Figure 4.10: The residuals of the LPTN-black-box models for validation experiment 1.

Residual autocorrelation

The autocorrelation of residuals and the autocorrelation of residuals whose constant trend
has been removed are shown here. Figure 4.11 and 4.12 concern the black-box models, Figure
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4.1. Validation experiment 1

4.13 and 4.14 the modified black-box models, Figure 4.15 and 4.16 the LPTN, Figure 4.17 and
4.18 the LPTN-oil models, and Figure 4.19 and 4.20 the LPTN-black-box models.

Autocorrelation of residuals,
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Figure 4.11: The residual autocorrelation of the black-box models for validation experiment
1.

Autocorrelation of detrended residuals,

validation experiment 1
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Figure 4.12: The detrended residual autocorrelation of the black-box models for validation
experiment 1.
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4.1. Validation experiment 1

Autocorrelation of residuals,

validation experiment 1
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Figure 4.13: The residual autocorrelation of the modified black-box models for validation
experiment 1.

Autocorrelation of detrended residuals,

validation experiment 1
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Figure 4.14: The detrended residual autocorrelation of the modified black-box models for
validation experiment 1.
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4.1. Validation experiment 1

Autocorrelation of residuals,

validation experiment 1
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Figure 4.15: The residual autocorrelation of the LPTN for validation experiment 1.

Autocorrelation of detrended residuals,

validation experiment 1
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Figure 4.16: The detrended residual autocorrelation of the LPTN for validation experiment 1.
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4.1. Validation experiment 1

Autocorrelation of residuals,

validation experiment 1
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Figure 4.17: The residual autocorrelation of the LPTN-oil models for validation experiment 1.
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Figure 4.18: The detrended residual autocorrelation of the LPTN-oil models for validation
experiment 1.
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Autocorrelation of residuals,

validation experiment 1
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Figure 4.19: The residual autocorrelation of the LPTN-black-box models for validation exper-
iment 1.

Autocorrelation of detrended residuals,

validation experiment 1

Lag

A
m

p
lit

u
d
e

-5 -4 -3 -2 -1 0 1 2 3 4 5

104

0

0.5

1

T
C

max

-5 -4 -3 -2 -1 0 1 2 3 4 5

104

0
0.5

1

T
M

max

-5 -4 -3 -2 -1 0 1 2 3 4 5

104

0

0.5

1

T
B

max

lptn-arx2 lptn-narx1

Figure 4.20: The detrended residual autocorrelation of the LPTN-black-box models for vali-
dation experiment 1.

28



4.2. Validation experiment 2

Model fit percentages

Table 4.1 compares the fit percentages between the model outputs and the validation exper-
iment. Note that the LPTN is evaluated against the average winding temperatures, and not
the maximum as the other models are.

Table 4.1: Model fit percentages of the simulated model outputs for validation experiment 1.
Values range between 100 and -8 where 100 is the best possible fit.

TC TM TB
ARX2 48.24 53.10 31.86

NARX1 76.89 76.09 -3.68
NARX2 62.14 41.88 53.66

ARX2-Mod - 60.66 -
NARX1-Mod - 58.44 -

LPTN -23.19 -72.86 30.72
LPTN-ARX2 6.13 -39.92 33.12

LPTN-NARX1 -17.27 -41.92 7.32
LPTN-Oil -32.61 -80.49 -1.86

4.2 Validation experiment 2

The second validation experiment was also a step experiment. However, unlike validation
experiment 1, this experiment started while the PMSM was at rest and the temperatures were
close to ambient temperature. The temperature rise was therefore larger. Comparisons of
measured and estimated temperatures and residual graphs are depicted below.

Output comparison

Figure 4.21 and 4.22 show temperature comparisons for the black-box models, Figure 4.23
and 4.24 for the modified black-box models, Figure 4.25 and 4.26 for the LPTN, Figure 4.27
and 4.28 for the LPTN and oil temperature combination, and lastly, Figure 4.29 and 4.30 for
the LPTN-black-box models.
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4.2. Validation experiment 2

Measurements vs. estimation,

validation experiment 2
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Figure 4.21: Comparison between validation experiment 2 and the simulated outputs of the
black-box models.

Residual over time,

validation experiment 2
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Figure 4.22: The residuals of the black-box models for validation experiment 2.
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4.2. Validation experiment 2

Measurements vs. estimation,

validation experiment 2
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Figure 4.23: Comparison between validation experiment 2 and the simulated outputs of the
modified black-box models.
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validation experiment 2
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Figure 4.24: The residuals of the modified black-box models for validation experiment 2.
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Measurements vs. estimation,

validation experiment 2
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Figure 4.25: Comparison between validation experiment 2 and the simulated outputs of the
LPTN.
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validation experiment 2
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Figure 4.26: The residuals of the LPTN for validation experiment 2.
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Measurements vs. estimation,

validation experiment 2
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Figure 4.27: Comparison between validation experiment 2 and the simulated outputs of the
LPTN-oil models.
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validation experiment 2
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Figure 4.28: The residuals of the LPTN-oil models for validation experiment 2.
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Measurements vs. estimation,

validation experiment 2
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Figure 4.29: Comparison between validation experiment 2 and the simulated outputs of the
LPTN-black-box models.

Residual over time,

validation experiment 2
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Figure 4.30: The residuals of the LPTN-black-box models for validation experiment 2.

Residual autocorrelation

The autocorrelation of residuals and the autocorrelation of residuals whose constant trend
has been removed are shown here. Figure 4.31 and 4.32 concern the black-box models, Figure
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4.2. Validation experiment 2

4.33 and 4.34 the modified black-box models, Figure 4.35 and 4.36 the LPTN, Figure 4.37 and
4.38 the LPTN-oil models, and Figure 4.39 and 4.40 the LPTN-black-box models.
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Figure 4.31: The residual autocorrelation of the black-box models for validation experiment
2.

Autocorrelation of detrended residuals,

validation experiment 2
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Figure 4.32: The detrended residual autocorrelation of the black-box models for validation
experiment 2.
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Autocorrelation of residuals,

validation experiment 2
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Figure 4.33: The residual autocorrelation of the modified black-box models for validation
experiment 2.
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validation experiment 2
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Figure 4.34: The detrended residual autocorrelation of the modified black-box models for
validation experiment 2.
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Autocorrelation of residuals,

validation experiment 2
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Figure 4.35: The residual autocorrelation of the LPTN for validation experiment 2.

Autocorrelation of detrended residuals,

validation experiment 2
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Figure 4.36: The detrended residual autocorrelation of the LPTN for validation experiment 2.
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Autocorrelation of residuals,

validation experiment 2
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Figure 4.37: The residual autocorrelation of the LPTN-oil models for validation experiment 2.

Autocorrelation of detrended residuals,

validation experiment 2
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Figure 4.38: The detrended residual autocorrelation of the LPTN-oil models for validation
experiment 2.
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Autocorrelation of residuals,

validation experiment 2
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Figure 4.39: The residual autocorrelation of the LPTN-black-box models for validation exper-
iment 2.

Autocorrelation of detrended residuals,

validation experiment 2
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Figure 4.40: The detrended residual autocorrelation of the LPTN-black-box models for vali-
dation experiment 2.
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4.3. Validation experiment 3

Model fit percentages

Table 4.2 compares the fit percentages between the model outputs and the validation exper-
iment. Note that the LPTN is evaluated against the average winding temperatures, and not
the maximum as the other models are.

Table 4.2: Model fit percentages of the simulated model outputs for validation experiment 2.
Values range between 100 and -8 where 100 is the best possible fit.

TC TM TB
ARX2 84.73 85.17 88.33

NARX1 85.44 88.27 81.87
NARX2 88.57 85.99 93.96

ARX2-Mod - 85.12 -
NARX1-Mod - 89.13 -

LPTN 78.32 60.67 89.25
LPTN-ARX2 70.59 66.18 92.97

LPTN-NARX1 68.49 64.61 90.75
LPTN-Oil 70.15 56.10 82.33

4.3 Validation experiment 3

The third and last validation experiment was a drive cycle experiment with highly varying
data. Comparisons of measured and estimated temperatures and residual graphs are illus-
trated below.

Output comparison

Figure 4.41 and 4.42 show temperature comparisons for the black-box models, Figure 4.43
and 4.44 for the modified black-box models, Figure 4.45 and 4.46 for the LPTN, Figure 4.47
and 4.48 for the LPTN and oil temperature combination, and lastly, Figure 4.49 and 4.50 for
the LPTN-black-box models.
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Measurements vs. estimation,

validation experiment 3
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Figure 4.41: Comparison between validation experiment 3 and the simulated outputs of the
black-box models.

Residual over time,

validation experiment 3
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Figure 4.42: The residuals of the black-box models for validation experiment 3.
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Measurements vs. estimation,

validation experiment 3

Time [s]

T
e
m

p
e
ra

tu
re

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
M

max

measured signal arx2-mod narx1-mod

Figure 4.43: Comparison between validation experiment 3 and the simulated outputs of the
modified black-box models.

Residual over time,

validation experiment 3
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Figure 4.44: The residuals of the modified black-box models for validation experiment 3.

42



4.3. Validation experiment 3

Measurements vs. estimation,

validation experiment 3
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Figure 4.45: Comparison between validation experiment 3 and the simulated outputs of the
LPTN.

Residual over time,

validation experiment 3
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Figure 4.46: The residuals of the LPTN for validation experiment 3.
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Measurements vs. estimation,

validation experiment 3
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Figure 4.47: Comparison between validation experiment 3 and the simulated outputs of the
LPTN-oil models.

Residual over time,

validation experiment 3
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Figure 4.48: The residuals of the LPTN-oil models for validation experiment 3.
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Measurements vs. estimation,

validation experiment 3
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Figure 4.49: Comparison between validation experiment 3 and the simulated outputs of the
LPTN-black-box models.

Residual over time,

validation experiment 3
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Figure 4.50: The residuals of the LPTN-black-box models for validation experiment 3.

Residual autocorrelation

The autocorrelation of residuals and the autocorrelation of residuals whose constant trend
has been removed are shown here. Figure 4.51 and 4.52 concern the black-box models, Figure
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4.3. Validation experiment 3

4.53 and 4.54 the modified black-box models, Figure 4.55 and 4.56 the LPTN, Figure 4.57 and
4.58 the LPTN-oil models, and Figure 4.59 and 4.60 the LPTN-black-box models.

Autocorrelation of residuals,

validation experiment 3

Lag

A
m

p
lit

u
d
e

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
C

avg

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
M

avg

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
B

avg

arx2 narx1 narx2
Figure 4.51: The residual autocorrelation of the black-box models for validation experiment
3.

Autocorrelation of detrended residuals,

validation experiment 3
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Figure 4.52: The detrended residual autocorrelation of the black-box models for validation
experiment 3.
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Autocorrelation of residuals,

validation experiment 3
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Figure 4.53: The residual autocorrelation of the modified black-box models for validation
experiment 3.

Autocorrelation of detrended residuals,

validation experiment 3
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Figure 4.54: The detrended residual autocorrelation of the modified black-box models for
validation experiment 3.
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Autocorrelation of residuals,

validation experiment 3
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Figure 4.55: The residual autocorrelation of the LPTN for validation experiment 3.

Autocorrelation of detrended residuals,

validation experiment 3

Lag

A
m

p
lit

u
d
e

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
C

avg

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
M

avg

-6 -4 -2 0 2 4 6

104

0

0.5

1

T
B

avg

lptn

Figure 4.56: The detrended residual autocorrelation of the LPTN for validation experiment 3.
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Autocorrelation of residuals,

validation experiment 3
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Figure 4.57: The residual autocorrelation of the LPTN-oil models for validation experiment 3.

Autocorrelation of detrended residuals,
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Figure 4.58: The detrended residual autocorrelation of the LPTN-oil models for validation
experiment 3.
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Autocorrelation of residuals,

validation experiment 3
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Figure 4.59: The residual autocorrelation of the LPTN-black-box models for validation exper-
iment 3.
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Figure 4.60: The detrended residual autocorrelation of the LPTN-black-box models for vali-
dation experiment 3.
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4.4. Special case

Model fit percentages

Table 4.3 compares the fit percentages between the model outputs and the validation exper-
iment. Note that the LPTN is evaluated against the average winding temperatures, and not
the maximum as the other models are.

Table 4.3: Model fit percentages of the simulated model outputs for validation experiment 3.
Values range between 100 and -8 where 100 is the best possible fit.

TC TM TB
ARX2 76.72 -1.55 75.05

NARX1 78.36 -3.40 63.77
NARX2 78.29 11.49 74.14

ARX2-Mod - 8.31 -
NARX1-Mod - 7.74 -

LPTN -1.84 -189.18 67.45
LPTN-ARX2 59.11 -152.40 74.63

LPTN-NARX1 62.65 -163.90 76.53
LPTN-Oil 19.41 -223.76 71.79

4.4 Special case

In validation experiment 3, the PMSM suddenly went idle after approximately 5000 seconds.
As a consequence, the measured temperatures converged toward the same decreasing values
as seen in Figure 4.61 and 4.62. The models’ responses to this are depicted in Figure 4.63 -
4.70.
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Figure 4.61: The measured average values for the special case.
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Figure 4.62: The measured maximum values for the special case.
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validation experiment 3
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Figure 4.63: Comparison between the temperatures in the special case and the simulated
outputs of the black-box models.
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Node temperature comparison,

active to idle vehicle
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Figure 4.64: Comparison of the node temperatures estimated by the black-box models in the
special case.

Measurements vs. estimation,

validation experiment 3

Time [s]

T
e
m

p
e
ra

tu
re

4000 6000 8000 10000 12000 14000

T
C

avg

4000 6000 8000 10000 12000 14000

T
M

avg

4000 6000 8000 10000 12000 14000

T
B

avg

measured signal lptn

Figure 4.65: Comparison between the temperatures in the special case and the simulated
outputs of the LPTN.
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Node temperature comparison,

active to idle vehicle
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Figure 4.66: Comparison of the node temperatures estimated by the LPTN in the special case.

Measurements vs. estimation,

validation experiment 3

Time [s]

T
e
m

p
e
ra

tu
re

4000 6000 8000 10000 12000 14000

T
C

max

4000 6000 8000 10000 12000 14000

T
M

max

4000 6000 8000 10000 12000 14000

T
B

max

measured signal lptn-oil

Figure 4.67: Comparison between the temperatures in the special case and the simulated
outputs of the LPTN-oil model.
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Node temperature comparison,

active to idle vehicle

T
e
m

p
e
ra

tu
re

4000 6000 8000 10000 12000 14000

Time [s]

lptn-oil

TC TM TB PMSM goes idle

Figure 4.68: Comparison of the node temperatures estimated by the LPTN-oil model in the
special case.

Measurements vs. estimation,

validation experiment 3
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Figure 4.69: Comparison between the temperatures in the special case and the simulated
outputs of the LPTN-black-box models.
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Figure 4.70: Comparison of the node temperatures estimated by the LPTN-black-box models
in the special case.
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5 Discussion

In this chapter, the results and the methods used for producing them are discussed. Notable
results are commented on and attempted to be explained. The methodology is then reviewed
before the societal aspects of the thesis are discussed.

5.1 Results

To begin with, the results of the black-box models are discussed. This is followed by discus-
sions of the LPTN-based models, general results, and the special case.

Black-box models

The purely data-driven models are, given that they possess no physical knowledge about the
system, surprisingly accurate. Aside from in TM in Figure 4.41, the residuals stay within the
accuracy aim most of the time. In validation experiments 1 and 3, simply removing the con-
stant trends of the residuals results in a white noise-like residual (see Figure 4.12 and 4.52).
This means that even if the models are biased, the shapes of some model outputs greatly
resemble the shape of the validation data. Thus, adding a constant term could improve the
performance.

Using TC and TB as inputs for estimating TM (arx2-mod and narx1-mod) did not improve
the results in any remarkable way. Besides an increase in fit percentage in Table 4.3, the
results stayed essentially the same. A reason for this might be that the dynamics of TC and TB
are too similar to the oil temperature, meaning that very little new information is provided
with this method. Even though TM affects TC and TB and vice versa, there is no way for a
black-box model to know that. Also, as seen in the LPTN, knowledge of the temperatures of
its neighbouring nodes does not equal accurate estimations in M.

No model structures other than ARX and NARX appear in the results. This is due to
difficulties producing stable ARMAX models, while OE and BJ models never converged. As
mentioned in 2.2, predictors are always stable in ARX models as opposed to in the other
linear model structures. It is likely that the system simply is too complex for linear models
other than ARX to estimate.

57



5.1. Results

LPTN-based models

While the LPTN-based models perform well in estimating TB in some cases, and the residual
autocorrelations in Figure 4.56 indicate that the model outputs very much resemble the
shape of the validation data, they generally perform quite poorly. Even when initialised to
the correct temperatures, the LPTN-based models are much slower than the real system in
the step experiments. In online applications, initialisation is much more difficult as the real
temperatures are unknown. As seen in e.g. Figure 4.5, many minutes can pass before the
LPTN reaches the lower bound of the accuracy aim. During this time, the PMSM can reach
detrimental temperatures that could be avoided would the cooling system be informed of the
high temperatures in time. If the model is initiated when the winding temperature is already
high, a good initialisation method is even more important. While not included in the scope
of this thesis, initialisation is an interesting and essential subject for not only thermal PMSM
models but for the modelling of dynamic systems in general.

As seen in validation experiment 3, the shapes of the measured TC and TB are very sim-
ilar to each other. TM, on the other hand, looks slightly different. However, the shape of the
LPTN model output for TM looks very much like its estimations of TC and TB. This indicates
that the node M is too large for the LPTN to thermally model, as the system dynamics change
somewhere between the end windings and M.

On a positive note, the residuals of the average temperature estimating LPTN are rather
similar to the residuals of the maximum temperature estimating LPTN-oil and LPTN-
black-box models. This suggests that the relationship between the average and maximum
temperatures has been identified. If the LPTN is improved, the LPTN-based maximum
temperature estimating models would, presumably, also improve.

General results

While the produced models estimated TC and TB relatively well, they had difficulties finding
accurate estimates of TM. This is a problem since M is the node that reaches the highest
temperatures. The reasons behind TM being both larger and more difficult to model than TC
and TB are likely the same; C and B are in direct contact with coolant oil, whose temperature
is also measured. Naturally, this suggests that they are both cooler, and easier to model. Ad-
ditionally, the models consider neither the permanent magnets nor the rotor of the PMSM.
These are components that contribute to heat in M, but not directly in C or B.

Compared to the results in the literature mentioned in 2.7, the results of this thesis are
decent. However, in most papers, validation data did not appear to include drive cycles,
nor did the PMSMs reach particularly high temperatures. Furthermore, most papers apply
to passenger car EVs, while this thesis concerns heavy-duty EVs. Nonetheless, the LPTN
developed in this project was without a doubt expected to perform better.

Regarding residual autocorrelations, note that an improvement by removing the trend of
the residual does not necessarily mean that the model is any good. In Figure 4.45, adding
a constant term to the model output of TM would, without a doubt, improve the model fit
overall. It would, however, not change the regular over- and undershoots of the model. That
would require a more comprehensive change to the model. Furthermore, one has to consider
all three validation experiments before adding a term to the output of a model. Improving
the model output for one experiment does, of course, not necessarily mean that the model
performs better on other data. With that said, the autocorrelation of detrended residuals can
highlight the potential of a model, that it has understood the general pattern of the signal
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it is trying to estimate. For TB in Figure 4.31 for instance, narx2 is clearly the better model.
However, Figure 4.32 suggests that arx2 might model the shape of TB in a better way.

The special case

As seen in Figure 4.61 and 4.62, the measured temperatures of all nodes converge with each
other when the PMSM goes idle. This is expected since no power losses are present, and
thus no heat is added to the system. This means that every node will converge with the tem-
perature of its surroundings. In Figure 4.63 - 4.70, it is clear that the node temperatures of
the LPTN are dependent on each other while that is not the case for the black-box models.
The models have all been calibrated on data from an active PMSM where the power losses,
and thus temperatures, are different in each node. For all black-box models, including the
LPTN-black-box models, this means that even when the PMSM is idle, the models are going
to estimate the temperatures differently. It is not vital that the models can estimate the tem-
peratures accurately when the vehicle is idle since the PMSM is going to cool down anyway.
However, this indicates a general understanding of the system which might be valuable for
input values outside the scope of the calibration data. In this special case, the input values are
much lower than the ones in the calibration experiments. If values are instead much higher,
the outputs of the black-box models would likely have to be saturated, while the LPTN might
still output reasonable values. This is a large drawback with the black-box models and an ad-
vantage of the LPTN.

5.2 Methodology

Many modifications could have been made in the methods used in this thesis. These are
discussed more in detail below.

LPTN

The majority of the project’s time was spent developing the LPTN as it was believed that
physical knowledge of the system would produce the best results. In this thesis, this was not
the case, as the purely data-driven models performed better. Regardless, the LPTN definitely
showed signs of potential, resembling the general shape of the validation data. The most
significant challenge for producing the LPTN was the calibration of the convective parame-
ters λCO, λBO, and λSO. As they were estimated as third-order polynomial functions of the
coolant flow, a considerable amount of freedom was given to the model. However, since
the coolant flow is not the only non-constant dependency of the convective heat transfer
coefficients, calculating them using equations (2.11)-(2.14) could have improved the model
as viscosity and thermal conductivity are dependent on temperature. At the very least, the
addition of physical properties of the flow and dimensions of the motor would likely not hurt.

As mentioned in 5.1, M was most likely too large. Therefore, adding more nodes at the
windings could be another possibility for improving the LPTN. Also, considering the per-
manent magnets and the rotor of the PMSM could give the model a better understanding
of TM. For these efforts to be possible, though, additional sensors would be needed. They
would also increase the computational demands which could impact the feasibility of online
estimation.

Black-box models

Considering the relatively little time spent on the black-box models, they were surprisingly
accurate. In hindsight, more time could have been spent on them, as many of their aspects
were not explored in this thesis. For instance, the time delays, nk, were set to 0 for each
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input-output pair in the black-box models. This was mostly due to time constraints, as esti-
mating them would take valuable time from other elements of the thesis. It would, however,
be interesting to investigate how more suitable values of nk would affect the performance
as TM is not immediately affected by the oil temperature for instance. Exploring different
regressors of the NARX model and different non-linearities in Hammerstein-Wiener models
would also be interesting.

As (2.9) suggested model orders from 3 to 6, and the best-performing black-box models
were of orders 1 and 2, it was clearly not a suitable method for model order selection in this
case. This can be explained by the fact that the method applies to linear systems, while the
system in question was non-linear. Furthermore, the method assumes that measurement
noise is not present in the data. If the filtering of the data was perfect, this would be true.
However, there is of course a possibility that the data could have been filtered in a better
way. Luckily, the model order selection method was solely used to get a hint of which orders
to start with and did not affect the results since more orders than what was suggested were
tried.

Model calibration

Due to the importance of accuracy at high temperatures, it would be reasonable for the mod-
els to be calibrated using cost functions based on the temperature. In this thesis, the models
were calibrated in a way that does not punish inaccuracy at high temperatures particularly.
Instead, accuracy was just as valuable at low temperatures as it was at high temperatures.
This could improve the performance of all models in cases where accuracy really matters.

Since all models need data for calibration, new hardware versions mean that the models
need to be re-calibrated. A model purely based on physical relationships would eliminate
this need, as only dimensions and physical properties would have to be updated. However,
these types of models are rarely accurate unless they are very complex and demand heavy
computations.

Model validation

Additional and different model validation methods could have been used. Many are men-
tioned in [15]; modelling the residuals, analysing cross-correlations between residuals and
previous inputs, and comparing the frequency functions of the model to the ones of the sys-
tem to name a few. Would the models be calibrated to prioritise accuracy at high tempera-
tures, (2.10) could be modified accordingly.

5.3 The work in a wider context

The main motivation for this thesis was to extend the life of PMSMs and, consequently also
EVs. As the electrification of the automotive industry is an essential part of fighting climate
change, this is a highly important subject. However, the methods used in this thesis require
plenty of data, which in turn requires a lot of energy to collect. If a good model can be
produced from this, it can save energy in the long run. However, there is no way of instantly
knowing if the model is accurate during real driving. A model might be underestimating the
temperature and the PMSM will be damaged anyway. Also, performance degradation from
exposing a PMSM to harmful temperatures might not be apparent immediately. Thus, it can
take years before the usefulness and accuracy of a thermal model is known. Furthermore,
cooling and torque limiting strategies based on other aspects than temperature could be more
effective. It might be enough to develop a strategy based on the torque alone. Nevertheless,
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a good thermal model can contribute to extending the life of PMSMs and thus also have a
positive effect on the environment.
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6 Conclusion

In this master’s thesis, the hot spot temperatures of PMSM windings were modelled using
different methods. Several black-box models were calibrated, and a lumped parameter
thermal network was designed and combined with black-box models and a simple oil
temperature-based model. The results show that none of the models was sufficient for
achieving the desired accuracy goals, even if the black-box models were quite close. This was
despite lacking physical knowledge of the system, which also meant that the least amount of
time was needed to implement them since no physical relations needed to be derived.

Looking back at the research questions, the results show that they can be answered in
the following way:

• How do common black-box models for estimating the hot spot temperature of PMSM
windings perform?
Out of the black-box models investigated in this master’s thesis, ARX and NARX were
the best performing, estimating the temperatures of the end windings well. The mid-
stack winding temperature, however, was more challenging to model. The system was
assumed too complex for ARMAX, OE, and BJ models to be produced.

• How can physical knowledge of a PMSM be incorporated in the construction of a
model that fulfils the desired accuracy?
While the desired accuracy was not fulfilled, physical knowledge was incorporated into
an LPTN which showed clear signs of system understanding. To improve the model
further, more information regarding the coolant flow could be added, as well as more
nodes.

In conclusion, black-box models are to be preferred out of the models investigated in this the-
sis, considering both implementation complexity and performance. A more detailed LPTN
might have the potential to be more accurate but takes more time to implement. More parts
of the PMSM might need to be considered to fulfil the desired accuracy. This includes both
more parts of the windings and more components, such as the permanent magnets and the
rotor.
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