
Authors: William Mattsson, Alva W.
Palmfeldt
External Supervisors: Amer Hodzic,
Jawdat Kour
Supervisor: Arslan Musaddiq
Semester: VT 2023
Subject: Computer Science

Bachelor Degree Project

Testing IoT Security
- A comparison of existing penetration testing frameworks and
proposing a generic framework

Abstract

The Internet of Things (IoT) refers to the billions of physical devices linked to the In-
ternet worldwide, integrating into various systems like healthcare, finance, and trans-
portation. However, the rapid market expansion has led to software and hardware se-
curity shortcomings, leaving IoT devices vulnerable to cybercriminals. The security
can be maintained and evaluated in different ways, nonetheless, this thesis focuses
on investigating the process of a penetration test to identify vulnerabilities present
in IoT devices. This paper investigates and compares existing penetration testing
frameworks and proposes a generic testing framework for IoT. The results show that
there is no standardized penetration testing framework to target IoT devices, as there
are for networks and the web. By defining IoT-specific testing methodologies, our
research shows that common IoT vulnerabilities could be identified and exploited.

Keywords: Internet of Things, penetration testing, standardization, framework, vul-
nerability exploitation

Preface

We would like to thank TietoEvry in Kalmar, Sweden for giving us access to some IoT
devices to penetration test and for their enthusiastic communication. We especially thank
Amer Hodzic and Jawdat Kour for welcoming and helping us with the project. We would
also like to thank our supervisor from Linnaeus university, Arslan Musaddiq for helping
and contributing to the project. At last, we would like to thank all the other teachers
that we have met during our study period at Linnaeus University, especially our program
coordinator Ola Flygt.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Problem formulation . 2
1.4 Motivation . 3
1.5 Results . 3
1.6 Scope/Limitation . 4
1.7 Target group . 4
1.8 Outline . 4

2 Method 5
2.1 Research Project . 5
2.2 Literature review . 5
2.3 Define the objectives for a solution . 5
2.4 Design and development . 6
2.5 Demonstration and evaluation . 6
2.6 Reliability and Validity . 6
2.7 Ethical considerations . 6

3 Theoretical Background 7
3.1 Internet of Things . 7

3.1.1 IoT architecture . 7
3.1.2 Security Challenges . 8

3.2 Penetration Testing . 10
3.2.1 Framework definition . 11
3.2.2 Open Source Security Testing Methodology Manual (OSSTMM) 11
3.2.3 Penetration Testing Execution Standard (PTES) 12
3.2.4 OWASP for IoT . 12
3.2.5 NIST 800-115 . 13

4 Framework comparison 15
4.1 Addressing the common vulnerabilities 16

5 The generic penetration testing framework for IoT 22
5.1 Introduction . 22

5.1.1 Scope . 22
5.2 Reconnaissance & Intelligence gathering 22

5.2.1 Software . 23
5.2.2 Hardware . 26

5.3 Exploitation . 27
5.3.1 Network . 27
5.3.2 Firmware . 31
5.3.3 Hardware . 32

5.4 Post-Exploitation . 33
5.5 Reporting . 34

5.5.1 Vulnerability disclosure to vendors 34
5.6 Application suite . 35

6 Cases 36
6.1 IoT beehive revision 1 . 36
6.2 IoT beehive revision 2 . 38
6.3 IoT camera . 39
6.4 IoT Wi-Fi Smart Lamp . 41

7 Results and Analysis 45
7.1 How does the existing standards/framework apply to IoT penetration test-

ing? (RQ1) . 45
7.2 Cases - Mapping vulnerabilities that were found when using the artifact

(RQ2) . 46
7.3 The challenges when testing IoT devices (RQ3) 48

8 Discussion 49

9 Conclusions and Future Work 51

References 52

A Application reverse engineering A

B List of abbreviations A

1 Introduction

The phrase "Internet of Things" (IoT) denotes the billions of physical devices that are now
linked to the Internet from all over the world. These devices are becoming ubiquitous and
are being integrated into critical systems such as healthcare, finance, and transportation.
However, they are not limited to enterprise settings as they can be found in an everyday
home with applications like smart lamps, energy-meters and other forms of home automa-
tion. These interconnected devices are forecast to grow to a number of about 30 billion in
the next few years [1].

The revolution of IoT comes with numerous benefits for all different sectors as well
as for personal use. However, due to the rapid expansion of the market it has led to
IoT development shortcomings, more specifically in the software and hardware security
features. Developers may focus more on implementing as many end-user features as
possible for a better selling point incentive, rather than focusing on securing existing
features. IoT devices collect, process, and transmit vast amounts of sensitive data which
make them prime targets for cybercriminals. As they are such a big part of our existing
IT infrastructure, there is a great need to secure them. Not doing so causes a looming
financial and privacy risk for both home users along with the industries that are dependent
on IoT [2].

By simulating an attack on an IoT device, penetration testing helps identify vulnera-
bilities and weaknesses in the device’s security before malicious actors can exploit them.
This initiative-taking approach to security helps to prevent data breaches, protect end-
users, and secure critical infrastructure. Maintaining and conducting regular penetration
testing on IoT devices is a crucial step in ensuring the security of these systems.

This thesis investigates and compare existing penetration testing frameworks to see if
they can be applied to IoT devices.

To continue, the proposed research advocates for the development of a comprehen-
sive penetration testing framework tailored to IoT , grounded in the comparative analysis
results of pre-existing frameworks. Upon its completion, the efficacy of this novel frame-
work will be assessed by applying it to a diverse array of IoT devices to ascertain their
susceptibility to prevalent IoT vulnerabilities.

While it is important to clarify that this framework does not seek to provide an exhaus-
tive solution for penetration testing, it aims to fill notable gaps observed in the currently
available frameworks. The key areas of improvement have been identified and will be
incorporated into the new framework to enhance its effectiveness and efficiency in con-
ducting rigorous penetration testing on IoT devices.

1.1 Background

The growth of IoT devices has led to an exponential increase in the number of intercon-
nected devices. While these devices have changed the way we live and work by being
used in a wide range of public facilities, a challenge is to maintain security and privacy.
To establish communication between trusted parties, it is necessary to maintain authoriza-
tion and authentication over a secure network, which IoT devices do not always conform
to [3].

As mentioned in the introduction, one way to evaluate the security of these devices is
to perform penetration testing. The purpose of a penetration test is to identify potential
risks that an attacker may exploit when gaining access to an organization’s computing
system and networks. By conducting a penetration test, organizations can close security
gaps before a real attack occurs. This proactive approach helps organizations minimize

1

the risk of financial and information loss, which in turn protects their customers as well
as the organization itself [4].

To ensure that the penetration testing is conducted in a standardized and effective
manner, a penetration testing framework specific for IoT devices is needed. Shanley and
Johnstone [5] define a "framework" in their study as: “encapsulates methodology and
methodology encapsulates tools, techniques, and resources”.

We will undertake a comparative analysis of existing methodologies and standards
as they pertain to the conceptualization of the term ’framework’. Further, we aim to
determine whether these standards incorporate a dedicated methodology and the requisite
security instruments explicitly designed for conducting penetration testing on IoT devices.

1.2 Related work

There are quite a few reports that focus on creating frameworks for penetration testing
devices in general. However, most papers are for network connected devices that are
using IEEE 802.3 & IEEE 802.11 (I.e., the Ethernet and Wi-Fi standard) and do not focus
on IoT devices or networking specifically. IoT uses a broad set of different interfaces and
networking standards, hence the need for a specific research papers on the matter.

There are three reports that focus specifically on the subject of creating penetration
testing frameworks for IoT devices. "Penetration Testing Framework for IOT" [6], "IoT-
PEN: A Penetration Testing Framework for IoT" [7] and "IoT-PEN: An E2E Penetration
Testing Framework for IoT" [8]. Do note that, most of the authors are the same across all
the published papers.

The first paper proposes an "end to end" penetration testing framework for IoT de-
vices. This framework is supposed to run both manually with a user following the frame-
work and automatically with program algorithm. The report explains that the framework
can be applied to all parts of the device including physical hardware, firmware, user soft-
ware along with the networking for cloud connectivity.

The second and the third paper proposes a "plug and play" framework that can be ap-
plied to any IoT device. Said framework is hosted on a server and the IoT devices function
as "clients". While not specified in the reports themselves, this framework only seems to
work over IEEE 802.3 and 802.11. This means it leaves out networking interfaces such
as LoRa, Bluetooth Low Energy (BLE). All three research papers does not contain that
much technical information and only scratch the surface of IoT security [8].

Shanley and Johnstone, in their work "Selection of penetration testing methodologies:
A comparison and evaluation" [5], present a comparison of security frameworks, suggest-
ing future research should validate these frameworks using real-life scenarios. Our thesis,
to the contrast aims to assess and adapt these frameworks, originally designed for non-IoT
systems, networks, and web applications, for IoT devices.

1.3 Problem formulation

A lot of IoT devices found on the market come with security and privacy issues. While
this puts confidentiality at risk for anyone who might use such devices, it also means that
these devices can be an entry point for cybercriminals into a more confidential system.
The rapid development and production of these devices means that they may not have the
same security standards implemented as found on traditional electronic devices. While
there are some IoT security guidelines today, they were nonexistent before 2017 [9].

Computer systems, the Internet, and networks have been around for years, and se-
curity experts have developed many different standards and frameworks to both secure

2

and test these technologies. The penetration testing frameworks, on the other hand, have
never been reviewed in terms of how effective they are at conducting successful testing
operations on IoT devices. To continue, the research on how these frameworks work in
real-life scenarios has gained little or no interest. By comparing the existing frameworks,
it would be possible to identify both what methodologies and tools are effective as well
as if there is any missing information when penetration testing the IoT domain. Given the
well-documented common vulnerabilities of IoT devices, our investigation also examines
the exploitability of these weaknesses across a selection of devices.

• RQ1: How does the existing standards/framework apply to IoT penetration testing?

• RQ2: How does a generic penetration testing framework aid in identifying common
vulnerabilities?

• RQ3: What are the specific challenges when testing IoT devices?

1.4 Motivation

The motivation of this work is to compare existing penetration testing frameworks in
terms of how well-suited they are when applied to IoT devices. Doing so would aid the
creation of a generic penetration testing framework for IoT, which is a field with little
current research. Additionally, we were motivated to create this framework as there is
no recent research paper or organization that applies this approach to IoT with examples.
With a proper framework it would be possible to identify vulnerabilities and mitigate the
security misconfigurations before the malicious actor takes advantage of it.

There are many implementation standards intended to strengthen the security for IoT
devices across many different application areas [10]. This includes but is not limited
to: Industrial, medical monitoring as well as more personal sectors such as smart home
appliances and home automation. The current state of the IoT industry threatens the
security of modern society by not prioritizing the security measures needed to be a secure
system [10]. As such testing these devices is important as it safeguards the organizations
and individuals against both financial loss and loss of integrity [4].

1.5 Results

The expected results of this study are aimed at providing confirmation of the suitability of
security testing frameworks for targeting IoT systems. Additionally, it is presumed to pro-
vide useful information regarding IoT security, security testing, and the unique challenges
when testing these types of devices. The expected results are outlined below:

1. Confirmation of the suitability of security testing frameworks for IoT devices.

2. Creation of a new generic penetration testing framework specifically for IoT de-
vices, taking into account their unique testing challenges.

3. An illustration of identifying IoT vulnerabilities by using the created framework as
guidance. This with a comparison between the vulnerabilities detected and if they
can be classified as common vulnerabilities for IoT.

3

1.6 Scope/Limitation

The methodologies/standards to be compared in this study has been carefully selected by
reviewing online sources on what is used within the penetration testing industry [11, 12,
13, 5].

The comparison section of this research is limited to these four different standards
that can be used in a penetration test: Open Source Security Testing Methodology Manual
(OSSTMM) [14], Penetration Testing Execution Standard (PTES) [15], OWASP for IoT
[16] and NIST Special Publication 800-115 [17].

1.7 Target group

This report targets individuals with intermediate IT security knowledge, aiming to guide
them in applying their skills to real-world IoT device penetration testing. It also serves
IoT researchers and developers by identifying potential exploits and addressing issues in
current testing standards and or frameworks.

1.8 Outline

The structure of this report is as follows: Chapter 2 addresses the research methodology,
research questions, and ethical considerations. Chapter 3 imparts the theoretical founda-
tion and explicates technical terms pertinent to the research. Chapter 4 offers a succinct
comparison of various security testing frameworks, theoretically evaluating their applica-
bility to IoT targets. Chapter 5 introduces the developed generic framework, accompanied
by IoT-specific testing methodologies and tools. Chapter 6 presents test cases guided by
the aforementioned generic framework. Chapter 7 incorporates the results and analyzes
the outcomes of the framework comparison, test cases, and challenges inherent in IoT de-
vice penetration testing. Discussions of the findings are housed in Chapter 8, with Chapter
9 concluding the report and outlining future work.

4

2 Method

This section of the paper offers a detailed description of the scientific methods used in
the study. It outlines how the results were used to ensure the accuracy and reliability of
the findings. The section also discusses the ethical considerations that were considered
during the research and highlights the ethical implications of the study’s results.

2.1 Research Project

This research uses a multi-method scientific process. The process consists of three phases
that are conducted to support the design science research methodology [18]. It is used as
a baseline to create the new artifact, a proposed generic framework for IoT penetration
testing.

The three main phases start with a literature review to introduce the concepts of the
research area, such as IoT technologies and their challenges, along with a definition of
penetration testing methodologies. The second phase is a comparative study between the
existing penetration testing standards and how they apply to IoT penetration testing. At
last, the evaluation part is done by an experiment where the methodologies of the created
artifact are used as guidance for a real-life penetration test.

The following subsections (2.2–2.5) show the different activities of the design science
research methodology including the literature review.

Figure 2.1: Research project process

2.2 Literature review

To locate scholarly articles pertinent to the domain of IoT security and testing, an exten-
sive search was conducted utilizing academic databases, such as Google Scholar, IEEE
Xplore, and OneSearch. This research were not restricted solely to academic publications
but also encompassed grey literature, which includes digital blogs and institutional re-
ports related to the subject matter, thereby enriching the research with a diverse range of
perspectives. The chosen keywords for finding relevant scientific papers were "IoT", "Se-
curity", "Architecture", "Vulnerability", "Penetration testing", "Framework" and "Hack-
ing". The aim of the literature review were to introduce the concepts of the research area
and to form the theoretical background. Additionally, the literature review aid in finding
IoT vulnerabilities and testing methodologies that were included in the created proposed
framework.

2.3 Define the objectives for a solution

The objective of this work was to improve the effectiveness of IoT penetration testing by
creating the grounds for a penetration testing framework. The methodologies and tools

5

included in the framework are specifically intended for testing the security of IoT devices.
Such a framework would be useful when evaluating these devices, as the existing frame-
works and standards were originally intended for non IoT computer systems, networks,
and web applications.

2.4 Design and development

To move from the objectives to design, information was gathered by doing a comparative
study on the existing security standards and frameworks. To continue, two out of the four
selected frameworks were theoretically evaluated on how they could be applied to test the
most common IoT vulnerabilities. We argue that this approach help to identify limitations
of the included frameworks. Identifying both the limitations and features of the existing
frameworks contribute to creating the new artifact. Furthermore, reviewing other’s work
combined with active investigation of the current attacks vectors and vulnerabilities help
to create methodologies along with the appropriate application suite.

2.5 Demonstration and evaluation

The research demonstrates and evaluates the effectiveness of the created artifact by us-
ing its methodologies as guidance in an experiment that involves performing penetration
testing on a set of devices.

2.6 Reliability and Validity

The cases that were evaluated when using the framework were limited to a small set of
devices. This means that all the different protocols and technologies that various IoT
devices use could not be covered. By conducting an experiment with a larger set of
devices that differs in the protocols and techniques used, it may have shown if there were
any lacking areas in the implementation of the artifact.

To create the artifact, only peer-reviewed articles and industry standards have been
examined. Moreover, the included methodologies and tools are not newly created, rather
they are already existing in the industry but now customized for IoT testing specifically.

To achieve reasonable and reliant results we tried to select devices that differ as much
as possible in architecture and protocols used. However, due to the lack of resources and
available devices, these were limited to certain network standards.

2.7 Ethical considerations

There are ethical considerations when working with this research. As this work is within
IT security, it is important to discuss the ethics of vulnerability disclosure, decompila-
tion, and reverse engineering. If vulnerabilities are found using this proposed generic
framework with the given test cases, then they need to be disclosed privately to the man-
ufacturers of said IoT devices within a reasonable time frame. While there is no industry
standard for disclosure time, at least 3 months is often recommended. This generic IoT
penetration testing framework discuss IoT client applications and device firmware decom-
pilation for security analysis. As such, it is important to stay within the legal boundaries
and the end-user licensing agreement of the IoT product. This framework is not designed,
nor shall it be used for malicious purposes. As such, this proposed generic framework
will not discuss device persistence mechanisms for when a valid vulnerability has been
exploited.

6

3 Theoretical Background

This section informs the readers about the technical terms and technologies used in this
research. It is intended to give an overview of the IoT architecture and its security chal-
lenges. Secondly, penetration testing as a process and the existing standards are to be
presented for the reader.

3.1 Internet of Things

IoT refers to the interconnected web of physical devices which come equipped with sen-
sors, software, and various other technologies. These features enable them to communi-
cate and share data with other devices and systems via the internet or the local network.
However, there is no universal definition for an IoT device is or how it needs to function
[19].

Kevin Ashton invented and presented the term "Internet of Things" for the first time
in 2009. Ashton described it as: "If we had computers that knew everything there was to
know about things—using data they gathered without any help from us—we would be able
to track and count everything, and greatly reduce waste, loss and cost. We would know
when things needed replacing, repairing, or recalling, and whether they were fresh or past
their best." [20]. Today, the IoT technologies can be found in many different applicable
domains such as smart cities, industrial automation, healthcare, agriculture, smart homes
and more [21].

3.1.1 IoT architecture

As of right now there is no standardized architecture for IoT devices. This is due to how
IoT devices may differ in terms of software, performance, and hardware requirements. As
such, there are three different major architecture classifications that are circulating. These
are the three, four and five layered architecture models [22].
The three-layered architecture approach is described below.

• Perception. This layer contains the sensors and its respective generated data that
are connected to the IoT device.

• Network. This layer describes the protocols and connectivity that is used between
the IoT device and the receiving backend. This can for example be an IoT device
sending data to a external server which stores the sensor data.

• Application. This layer describes the front-end and application logic that the user
interacts with. This can for example be a smartphone application that is connected
to the IoT device.

The three-layer architecture does describe most IoT devices. However, it is limited
in scope, especially when it comes to the network part of the layer which has led to the
creation of the four and five layered architecture. The four and five layered architecture
differs between articles. The IoT architecture study by Zhong, et al, [22] explains a four-
and five-layer architecture. In the five-layer architecture, the network and application
layer are separated into two subcategories.

• Perception layer goes unchanged.

7

• Network access layer defines the preliminary processing done to the collected data
in order to convert it to the needed protocol.

• Network transmission layer describes the data being transferred by different net-
working protocols. E.g., Zigbee, Wi-Fi and more.

• Application support layer describes all the in-between technology used to process
and deliver the data to the front end of the application. This can for example be
specific queries sent to a database, data processing, middleware data processing
etcetera.

• Application presentation layer describes how the managed data is presented to the
end user. This can be for example with a user mobile application, web application
etcetera.

MongoDB’s documentation describe the same three-layer architecture and also a five lay-
ered architecture that focuses less on networking and more on who uses the data and how
it is used [23]. These five layered architectures are described below:

• Perception layer goes unchanged from the three layer approach.

• Transport layer describes the transfer of data between the sensors between the per-
ception layer and the processing layer

• Processing layer which describes the processing needed for the collected data com-
ing from the transport layer. This can for example be filtering, sorting, data com-
pression, etcetera.

• Application layer which goes unchanged from the three layer approach.

• Business layer which describes the human element of the device and is above the
application layer.

3.1.2 Security Challenges

The proliferation of smart IoT technologies and their integration with various devices am-
plifies potential entry points for hackers within a system or network. IoT device security
is further complicated by their distinct design and functionality compared to traditional
computing devices [19]. As IoT systems are often embedded in mission-critical solu-
tions, such as pacemakers, insulin pumps [24], and other vital monitoring systems, en-
suring their security and reliability is of paramount importance and a subject of extensive
discussion [19].

To continue, due to the variety of technologies and protocols used in IoT devices an-
other challenge is Insufficient IoT Device Testing And Updates. It becomes difficult
to integrate and manage all devices securely which leads to security shortcomings. Ad-
ditionally, many IoT devices are not configured to have the ability to be upgraded or the
upgrading process is often a difficult and time-consuming process. In the same context,
IoT devices often have unpatched vulnerabilities due to the problems with the upgrading
and patching process [25] [19].

The Internet society brings up an example in their paper "The Internet of Things (IoT):
An Overview":

8

"Consider the 2015 Fiat Chrysler recall of 1.4 million vehicles to fix a vulnerabil-
ity that allowed an attacker to wirelessly hack into the vehicle. These cars must be
taken to a Fiat Chrysler dealer for a manual upgrade, or the owner must perform the
upgrade themselves with a USB key. The reality is that a high percentage of these
autos probably will not be upgraded because the upgrade process presents an incon-
venience for owners, leaving them perpetually vulnerable to cybersecurity threats,
especially when the automobile appears to be performing well otherwise."[19]

Another security challenge is the Physical Security of IoT devices as they are likely
to be deployed in areas where the physical access is often hard to monitor [19]. This
would lead to physical-based and proximity attacks that could compromise the system
and its integrity [26]. Without any physical protection an attacker could get full access to
the device.

IoT devices with more powerful compute power often have a large attack surface
due to their networking interfaces. For example, attackers can gain access to devices by
exploiting vulnerabilities in the user-end software that interacts with the device directly.
Once an attacker gains access to said device it can give the ability to work as a jumping-off
point to gain access to other devices, effectively creating persistence within the target net-
work. Attackers can also use IoT devices to launch distributed denial-of-service (DDoS)
attacks, flooding servers with traffic and causing them to crash. Figure 3.2 shows an
overview of the IoT security challenges based on reviewed sources [19, 25, 27].

Figure 3.2: IoT security challenges: An overview

Data and information leakage: Security breaches are likely to occur in IoT networks
if data and information are not secured by having appropriate security measures that can

9

malicious intruders from accessing and leaking sensitive information [27].
Eavesdropping (MITM attacks): One common attack and challenge in IoT networks

is the man-in-the-middle attack. Due to the IoT connectivity models, criminals can exploit
an insecure communication channel to capture traffic and thereby steal and or modify
transmitted information [2, 27].

Software Exploitation: With poor security mechanisms, malicious software or code
can easily be injected to firmware upgrades, trusted boot along with other applications
and services running on the device [27].

IoT device hijacking and ransomware: In the same way as data and information
leakage can occur, poor security implementations could lead to devices being hijacked
and exposed for ransomware and other malicious payloads [27].

Impersonation: Many devices have poor authentication and password handling such
as weak, guessable, hardcoded passwords [2, 13, 25, 27]. This results in an uncomplicated
way for malicious intruders to impersonate legitimate users [27] and in that way access
sensitive information, install malicious code or even escalate to higher privileges.

IoT Device Security: Even though there are standards for securing IoT devices [10],
manufacturers still struggle to implement valid security mechanisms [27]. As stated be-
fore, you can often find weak or hardcoded passwords, unpatched operating systems, and
insecure communication channels.

3.2 Penetration Testing

A penetration test refers to the process of identifying security vulnerabilities in devices
and systems before an outside attacker manages to exploit them [4]. Penetration tests are
typically conducted by trained and certified security professionals who use a variety of
tools and techniques to simulate real-world attack scenarios. These scenarios could in-
clude social engineering, phishing attacks, network scans, vulnerability scans, and more.
Furthermore, a penetration test is often divided into these three distinct types of opera-
tions:

Black-box Penetration testing: A testing operation where the tester has no insight
on how the system works and how it is built. This means that the tester can verify contra-
dictions in the actual systems, but often these tests are hard to design [28].

White-box Penetration testing: A testing operation where the tester has complete
access to the system which can be for example: an IP-address, source code, operating
system details and more. A white-box penetration test is often referred to an internal
attack where information is known [28].

Grey-box Penetration testing: A testing operation that is a combination of the black
and white box which entails that the tester is provided limited information about the sys-
tem. A grey-box penetration test is often referred to as an attack where the external hacker
has gained information about the infrastructure [28].

10

3.2.1 Framework definition

Penetration testing standards and methodologies exist to help organizations and individu-
als identify security vulnerabilities. If a penetration testing methodology is agreed upon,
it will help testers to narrow down the scope to be even more effective.

As mentioned earlier the chosen definition of framework is the following:

"A framework encapsulates methodology and methodology encapsulates tools, tech-
niques, and resource" [5].

The following standards and methodologies are guidelines that can help with various
aspects of a penetration test. As all of them can be used in a penetration test, they will be
included in the theoretical comparison. Even though the standards/methodologies refer
to themselves as frameworks, each of them may not be appropriate for the definition of
framework in this research.

3.2.2 Open Source Security Testing Methodology Manual (OSSTMM)

The Open Source Security Testing Methodology Manual (OSSTMM) is an open-source
and peer reviewed project that defines guidelines and best practices for evaluating the
security of information systems, networks, and applications by preforming a "OSSTMM
test" [14].

OSSTTMM is primarily developed as a security auditing methodology to help or-
ganizations meet the security standards and regulations set by various regularities and
industries. It covers a wide range of security testing areas such as human security testing,
physical security testing, wireless security testing, telecommunications security testing
and data networks security testing. However, it does not contain methodologies or tools
on how to evaluate specific cases. The manual is more designed to help testers to identify
areas that should be tested and measures to verify compliance with laws and regulations
[14]. Figure 3.3 shows an example from the wireless security testing chapter with the rec-
ommendations for securing "Configuration, Authentication, and Encryption of Wireless
Networks" and "Authentication".

Figure 3.3: Chapter 9.5 Access Verification [14]

11

3.2.3 Penetration Testing Execution Standard (PTES)

The Penetration Testing Execution Standard is an open-source project that has been de-
veloped and maintained by a community of security professionals. A second version of
PTES is under development [15].

PTES is a comprehensive guide that incorporates best practices for each of the seven
steps involved. It offers an in-depth roadmap for executing each specific test included
in the manual. Testers widely employ PTES to refine their scope and ensure that all
areas, such as networks, applications, systems, and more, are thoroughly examined [15].
PTES includes the tools and methodologies required when doing a penetration test on a
device. It also serves to enhance security awareness within organizations by outlining the
expectations from a penetration test. It can function as a guideline or a checklist for a
team of testers, which is its primary objective. The standard consists of these seven main
phases [15]:

Pre-engagement Interactions: The preparation phase of a penetration test includes
the baseline of tools needed to conduct a test. This phase also includes steps to make sure
that all approvals and regulations are set for the specific test.

Intelligence Gathering: This phase aims to gather information about the system or
application to be tested. The phase involves Open-source intelligence (OSINT) steps and
also the use of scanning tools etcetera.

Threat Modeling: A phase to identify both the potential attackers and the vulnerable
assets.

Vulnerability Analysis: This phase aims to identify vulnerabilities by using the pro-
vided methodologies and tools.

Exploitation: Discovering and evaluation of the identified security vulnerabilities.
Post Exploitation: This phase refers to the phase in which the tester has successfully

gained access to a system or network and is attempting to maintain that access or escalate
privileges to gain further access to the system. By identifying and exploiting vulnerabil-
ities during post-exploitation, the tester can help the organization to improve its security
measures against real-world threats.

Reporting: Defines a structure on how to document the penetration test.

PTES has been successfully used in other research to perform a penetration test. Astrida
et al. [29] used PTES to target wireless network security systems.

3.2.4 OWASP for IoT

The OWASP IoT Project was developed by the Open Web Application Security Project
(OWASP) foundation [16]. The project aims to help consumers, manufacturers, and de-
velopers to assess the security risks associated with IoT devices. It includes detailed
information of common vulnerabilities and attack vectors that IoT systems may be vul-

12

nerable to. The framework, however, does not provide a methodology to perform the tests
and it is limited in providing tools. The IoT project contains methodologies for firmware
analysis, the tools necessary for which are developed by themselves. The OWASP IoT
project contains valuable information about the IoT attack surface along with attacks and
tests that can be used when conducting a penetration test. OWASP also provides external
documentation to other organizations projects and methodologies to penetration test with
automate security auditing of IoT devices [16].

The OWASP Testing Guide (OTG) [30] is another project by OWASP that provides
guidelines and tools for a penetration test. OTG however, focuses on testing web applica-
tions and not on the devices themselves.

3.2.5 NIST 800-115

NIST Special Publication 800-115, issued by the National Institute of Standards and Tech-
nology (NIST), offers comprehensive guidance on conducting information security testing
and assessments [17]. The publication is intended to offer guidance to organizations on
how to plan and execute technical information security testing and assessments. It also
provides guidance on how to analyze the results and produce strategies to mitigate identi-
fied risks. It contains methods towards identifying vulnerabilities in a network or system
and verifying compliance with policies or other requirements [17].

NIST 800-115 covers separate phases such as:

• Security Testing and Examination Overview

• Review Techniques

• Target Identification and Analysis Techniques

• Target Vulnerability Validation Techniques

• Security Assessment Planning

• Security Assessment Execution

• Post-Testing Activities

There are multiple security testing techniques such as vulnerability and wireless scanning
that are covered. The document focuses on why those testing techniques are needed,
however, they do not include any guidelines on how they could be used. The standard
also gives recommendations of different security testing tools for each testing technique.
Furthermore, penetration testing is presented as a target vulnerability validation technique
along with password cracking and social engineering. In this standard they present a four-
stage penetration testing methodology [17] which will be shortly described below:

13

Planning: For this phase, the testers identifies rules and obtains final approval from
management. This means that the testing goals are set, and everything is documented.

Discovery: This phase consists of two parts: First, the testers preforms information
gathering by using different types of software scanning combined with OSINT. The sec-
ond part is vulnerability analysis to identify potential security risks.

Attack: This phase is described as the "heart" of a penetration test. The attack phase
can have many different outcomes as systems can be fully compromised or just give more
information about the targeted system. The testers try to exploit a vulnerability, from
there they may get access to sensitive information or find a way to escalate the system.
Figure 3.4 shows the detailed attack phase presented in NIST 800-115.

Reporting: The reporting phase is always in progress during the other phases as all
taken steps need to be documented. At the end of a penetration test, reporting is used
to present the identified vulnerabilities along with a risk rating and its impact. Lastly, it
should also give guidance and a discussion on how to mitigate the exploited vulnerabili-
ties.

Figure 3.4: Detailed Attack Phase [17]

14

4 Framework comparison

From the theoretical background, four standards/methodologies were presented and se-
lected for potential use. The framework comparison is important to distinguish between
penetration testing standards and security assessments as this research focuses on pene-
tration testing frameworks. Next, a selection was made based on how well the standards
applies to the following parameters:

The first parameter (Framework) describes how well the standards suit the definition
of framework described in chapter 3.2.1. This parameter is important due to the pos-
sibility of using it as guidance in a penetration test. This includes how methodologies
for performing specific tests are presented combined with if the standard recommends or
presents tools to be used in the tests.

The second parameter (Penetration testing specific) is a crucial factor for this re-
search since it’s focused on standards that could be applied to penetration testing. This
parameter is used to distinguish between if the standard is penetration specific or more of
a security assessment.

The third parameter (IoT Specific) is used to verify if the standards are IoT specific.
Meaning that it shall either have a subsection for IoT security and testing, or it should
have methodologies and tools included that can be applied to IoT testing.

The fourth parameter (Methodology) describes how well the standards have included
methodologies for specific tests. The framework should encapsulate methodologies, and
methodologies should encapsulate tools (Application suite).

The last and fifth parameter (Application Suite) is an important parameter considered
when evaluating the different standards. This parameter is used to identify if the standards
include any tools, both hardware and software for penetration testing. Having a base
application suite is a valuable source when conducting a test.

Candidate Framework Penetration Testing Specific IoT Specific Methodology Application Suite
OSSTMM Security Assessment
PTES ✓ ✓ ✓ ✓
OWASP IoT ✓ Limited Limited to firmware
NIST 800-115 ✓ ✓ ✓ ✓

Table 4.1: Comparison Table

Based on the comparison and evaluation of standards, two of the originally selected
standards conform to the definition of framework. The Open Source Security Testing
Methodology Manual (OSSTMM) [14] fails to meet any of the parameters and its con-
cluded to be more of a security assessment standard rather than penetration testing spe-
cific. OWASP for IoT [16] is the only candidate that targets IoT devices specifically
with focus on defining the IoT attack surface. OWASP does include methodologies and
an application suite but it’s limited to firmware security testing, however this is the only
candidate that involves tools and methodologies for firmware testing.

15

“The Penetration Testing Execution Standard” (PTES) and NIST Special Publica-
tion 800-115 meets the requirements to be defined as frameworks as they "encapsulates

methodology and methodology encapsulates tools, techniques, and resource" [5]. PTES
and NIST 800-115 do not target IoT testing specifically, and it does not contain a special
subsection for those types of tests. However, both contain methodologies and tools to per-
form specific tests which makes them appropriate to use as a guidance when conducting
a penetration test. The selection of candidates to be used in the next section was made
based on which of them conformed to the definition of framework which resulted in The
Penetration Testing Execution Standard (PTES) and NIST 800-115. The other candidates
have been excluded for the next section as they did not contain enough methodologies or
tools to conform to the definition of framework or to be used in guidance in a penetration
test effectively. Nevertheless, OWASP for IoT and OSSTMM can be a valuable source
of information for a penetration test. While OWASP specializes in identifying the most
common IoT vulnerabilities and firmware testing, OSSTMM can help pinpoint specific
areas that need to be evaluated to meet regulatory and legal requirements.

4.1 Addressing the common vulnerabilities

This section will investigate how and if PTES and NIST 800-115 could be applied to
address and identify the top ten vulnerabilities and possible attacks presented in OWASP
top 10 for IoT [16]. The frameworks may contain a detailed methodology or only recom-
mended tools to perform a specific test and attack.

Figure 4.5: OWASP Top 10 For IoT [16]

16

1. Weak, Guessable, or Hardcoded Passwords.

PTES: PTES has included methodologies and tools to both brute-force passwords and
to extract passwords. The extraction part only refers to obtaining password hashes in
windows. PTES has included tools for brute-forcing (4.2.5) passwords such as Brutus,
Hydra, Medusa and Ncrack. Password cracking techniques as using rainbow tables are
also included. PTES refers to lists of common passwords (3.2.1.1) that can be used when
testing. Furthermore, PTES covers tools with the ability to potentially sniff password
hashes and how to test the possibility to crack Wi-Fi passwords. Overall, PTES covers a
broad list of methodologies and tools to test weak, guessable, or hardcoded passwords.

NIST 800-115: NIST also includes a lot of different methods about how to test weak,
guessable or hardcoded passwords. Target Vulnerability Validation Techniques has a sub-
section for password cracking (5.1) that contains testing techniques such as using a dictio-
nary attack, rainbow tables and the brute-forcing technique. Password cracking tools such
as Hydra, John the Ripper, RainbowCrack and Rcrack is covered. NIST also covers
techniques such as network sniffing and social engineering to catch password hashes or
to get access without any authentication token.

As NIST focuses more on helping organizations to secure their environment, the
methodologies to perform the tests is a bit more limited than PTES, but a set of tools
and what areas to test are included.

2. Insecure Network Services

PTES: There are multiple ways to test unneeded or insecure network services running on
the device. PTES covers this type of test by including tools and methodologies for intel-
ligence gathering, vulnerability analysis, and exploitation. For the intelligence gathering
phase, tools such as Nmap and Metasploit are mentioned. PTES recommends perform-
ing vulnerability analysis on the identified services to identify potential vulnerabilities by
either using automated tools as Nessus and OpenVAS or manual testing techniques such
as code analysis and fuzzing.

For exploitation, PTES covers many different attack vectors. This can include exploit-
ing unpatched software vulnerabilities or misconfigurations in the network services.

NIST 880-115: Compared to PTES, NIST is not as detailed in its coverage of this specific
vulnerability. The framework does include network scanning tools such as Nmap, and the
vulnerability scanner Nessus even though it is mentioned as a "penetration testing" tool
only and not bound to the specific area. For the actual exploitation, NIST does not cover
any potential exploitation techniques or tools than those focused on password cracking.

17

3. Insecure Ecosystem Interfaces

PTES: PTES does cover web application scanners (3.1.3) such as IBM AppScan to iden-
tify vulnerabilities over insecure web interfaces. Additionally, PTES does include metrics
for several types of injection type attacks such as XSS, SQL injections in terms of lack
of input and output filtering, however it’s covering is minimal. It does include network
sniffing tools as Wirekshark and Tcpdump that could be used to capture traffic from and
to insecure ecosystem interfaces.

As for the insecure backend API and cloud testing, PTES fails to provide valuable
information for conducting tests on those types of integrations. APIs and a cloud-based
connection model are commonly integrated into IoT devices. A popular tool like Burp-
Suite that is used for security testing of web applications is not present. Furthermore,
there are no baselines for assessing the security of APIs. Data breaches are often caused
by broken, exposed, or hacked APIs, which can expose sensitive medical, financial, and
personal data to unauthorized access. However, it is important to note that not all data car-
ries the same level of sensitivity. As it’s one of the most frequently used communication
channels for IoT devices, it is essential to test and secure it. [31].

To summarize, PTES does not cover testing methodologies and tools to be used as a
baseline for testing insecure ecosystem interfaces. It does provide guidance towards test-
ing commonly used services and protocols but fails to cover the integration of cloud and
APIs that is being frequently used in the IoT domain.

NIST 800-115: In the same way as PTES, NIST 800-115 does not cover any method-
ologies or tools to be used in detail when testing insecure ecosystem interfaces such as
web services, backend APIs and cloud interfaces. It does include active and passive net-
work scanning by using tools like Wireshark, nonetheless, it is focused on capturing
traffic over Wi-Fi (IEEE 802.11).

NIST 800-115 does not specifically address testing insecure web, backend API, cloud,
or mobile interfaces, it can be used as a reference for evaluating the security of these in-
tegration’s more theoretically to use it as a baseline for conducting a penetration test.

4. Lack of Secure Update Mechanism

PTES: PTES fails to cover methodologies and tools to validate the firmware of a de-
vice. PTES is missing methods to do firmware analysis, which is the process of exam-
ining the firmware code and its behavior on a device to identify any security vulnerabil-
ities, functionality issues, or other potential risks. Firmware analysis involves analyzing
the firmware’s structure, functionality, and interactions with the device’s hardware and

18

software components, as well as identifying potential attack surfaces and security weak-
nesses.

Furthermore, a common vulnerability for IoT devices is not having a proper anti-
rollback mechanism which means that a failure can be a failed update or compromised
firmware. PTES does not cover any test on Firmware modification, Installing unautho-
rized firmware or reverse engineering the firmware. All those firmware testing procedures
mentioned above are commonly occasionally attacks [32].

NIST 800-115: In the same way as PTES, NIST 800-115 does not cover any method-
ologies and tools to test the lack of secure update mechanisms which mainly focuses on
validating and testing the firmware.

5. Use of Insecure or Outdated Components

PTES: To test the use of insecure or outdated components, it would involve techniques
such as using automated vulnerability scanning tools or manual inspections as source code
analysis to identify possible exploits. PTES does cover automated vulnerability scanners
as OpenVas and Nessus (3.1.2). It does also include passive vulnerability scanning tools
like Metasploit (3.1.4). There is no coverage regarding code analysis of firmware, soft-
ware, or applications that can be used to find bugs, exposure of sensitive data or any
other security misconfiguration. Other ways to find vulnerable software are to perform
direct tests rather than using known flaws found by a vulnerability scan. PTES does cover
exploitation techniques such as buffer overflows, DoS, SQL Injection, and XSS tests.
However, some techniques are not that detailed such as DoS, that only includes a variant
of DoS that is the "802.11 RTS/CTS flood attack" and neither does it contain any tool to
assess this.

NIST 800-115: NIST 800-115 does cover the usage of vulnerability scanner along with
a methodology (4.3). NIST 800-115 includes other useful resources that could be used to
identify known vulnerabilities. The additional source of information is Common Vulner-
abilities and Exposures (CVE) databases that consists of known security issues that have
been publicly announced. For example, the National Vulnerability Database is included.

As mentioned earlier, NIST 800-115 does not cover any methodologies or tools for
the exploitation phase. It does however contain theoretical information about the potential
exploitation’s about for example buffer-overflows, Kernel Flaws and briefly about injec-
tion exploitations.

19

6. Insufficient Privacy Protection

PTES: A penetration tester may assess the security of a user’s personal data stored on
a device or within a network by attempting to bypass protections using tactics such as
exploiting weak passwords, outdated software, or poorly configured access controls. This
process also involves scrutinizing file systems, databases, and network traffic to pinpoint
any potential vulnerabilities in the data management procedures.

PTES does cover some ways to uncover personal information by for example, captur-
ing network traffic (WiFi, Bluetooth), brute-forcing a password, or retrieving information
through SQL injections. PTES does not include any basic methodologies or tools to ex-
plore a filesystem, this could include techniques as dumping the filesystem and mounting
it to another device to allow for offline exploring.

Overall, PTES does not cover testing with a focus on the privacy protection of a sys-
tem. And neither discusses the importance of privacy protection or how personal data
should be handled.

NIST 800-115: As NIST 800-115 also defines it as a security assessment it theoreti-
cally describes that its important of organization to address the privacy concerns of the
personal information stored. It does cover file integrity checking tools as Autopsy and
Sleuthkit but does not contain any methodology or description of what the software tools
can be used for.

Overall, the penetration testing section does not include the importance of testing in-
sufficient privacy protection.

7. Insecure Data Transfer and Storage

PTES: To test insecure data transfer in transit, PTES does cover the usage network snif-
fers that mainly focuses on WiFi traffic. This means that it leaves out IoT specific pro-
tocols like Zigbee and LoraWAN. Neither does PTES include any techniques nor tools
targeting data recovery, reverse engineering of data extracted or data manipulation. PTES
includes methodologies and tools for testing data storage by SQL injection but without
any database vulnerability scanning tools. Testing insecure data transfer and storage in
terms of IoT may target an SD card or any cloud synchronizing process.

Overall, PTES does cover some methodologies and tools to test the specific area, but
it is not targeting the technologies integrated in IoT devices.

NIST 800-115: NIST 800-115 does not cover testing insecure data transfer or storage
except using different types of wireless scanning. The security assessment part of the
framework presents the importance of ensuring the security level of the data to be trans-

20

mitted or stored within the system. For a penetration test, NIST 800-115 does not cover
any methodologies and tools to evaluate insecure data transfer and storage. The focus is
to address the problem with a proper security assessment.

8. Lack of Device Management

Except for the problem with update management covered in Lack of Secure Update
Mechanism section, this security challenge may not be appropriate for a penetration test.
As it may not be vulnerable per say, the problem by having improper update management,
asset management, secure decommissioning, systems monitoring, and response capabili-
ties will let the attacker explore the system without being noticed. The attack surface of
the device grows without having device management implemented, physical attacks get
easier as-well as establishing persistence.

9. Insecure Default Settings

This security challenge would include evaluating all types of security vulnerabilities that
a newly shipped device with insecure default settings could have, such as bad password
handling, not enabling two factor authentication by default, outdated components and
more. The methodologies and tools to mitigate this challenge are covered in the other
sections.

10. Lack of Physical Hardening

PTES: Physical security measures as locks and access control systems are implemented
to protect from unauthorized access. Without any security measures, an attacker can po-
tentially gain access to sensitive information or even take control of the device by stealing
or tampering with the device. As mentioned, the Physical Security of IoT devices is a
challenge as they are likely to be deployed in areas where the physical access could be
hard to control [19]. Another challenge is the IoT architecture which makes it hard to
implement any device management or access control.

PTES does not include any methodologies or tools for specific tests when having
physical access. Physical security is not mentioned in the frameworks attack surface.

NIST 800-115: Physical security testing is included as a technique in the section about
Target Vulnerability Validation Techniques. The framework states that testing physical
security is important. However, NIST 800-115 does not include any physical testing
methodologies or tools.

21

5 The generic penetration testing framework for IoT

This section of the paper presents the framework structure with the included testing
methodologies and tools.

5.1 Introduction

The proposed framework will include both hardware and software aspects which will be
used to identify the domain specific challenges for IoT penetration testing. It will cover
both the IoT specific testing methodologies that are present in the existing frameworks and
the methodologies and tools that are missing. We create the generic framework by doing
research on existing testing methodologies and tools based on the framework comparison
findings and the theoretical background research.

As it is for most penetration testing framework, it will focus on a security testing
perspective. However, it will also cover some data privacy concerns that can occur if
security is lacking on a tested device. The goal of using this framework is to find security
or privacy vulnerabilities in an IoT device implementation or usage of said device.

The framework will not cover penetration testing of central servers that may interact
or collect data from an IoT device. This is mainly since they are not owned by the IoT
device owner.

5.1.1 Scope

The scope in this case refers to the defined boundaries and goals of the IoT penetration
test. It can for example mean that you only have access to the software and not the
physical hardware part of the IoT device. In such a case, then all hardware attacks should
be skipped. Defining the scope of a penetration test is critical for ensuring that the testing
is focused and does not cause unintended impacts on other connected devices.

Without a defined scope, the penetration test may inadvertently impact systems or
applications that are not intended to be part of the security assessment. It is within this
part of the framework were the user conducting the test must know if the penetration test
should be done silently. If so, then certain subsections such as active reconnaissance will
not be available as they can alert firewalls and or intrusion detection systems. Ideally if the
user only wants to test the security of the device itself rather than the implementation and
usage, then the device needs to be placed on a separate network just for the penetration
test.

5.2 Reconnaissance & Intelligence gathering

Reconnaissance refers to the process of gathering information about a target system or net-
work prior to launching an exploitation [33]. The goal of reconnaissance is to gain a better
understanding of the target environment, including its IP addresses, firmware/operating

22

system, software versions, and other key details that can be used to identify vulnerabili-
ties and potential attack vectors. When something of interest is found then it should be
noted down. Each collection of useful data is referred to as an information point which
will be used in the exploitation part of the framework. These information points may
differ depending on which IoT device is tested. While there are different standards for
IoT, software and architecture can greatly be different from device to device. In this case,
the framework must assume that the user either knows which network the IoT device is
connected to or has access to the physical hardware of said device.

5.2.1 Software

Due to the broad definition of what an IoT device can be there are many software areas
that need to be explored. IoT devices may have their own end user application that is
connected directly to the device. It could be standardized protocols on a network that
sends and receives traffic. However, an IoT device can also host a web server to serve a
web-application. Or it can send data directly to a centralized server which collects and
serves the data in some sort of way to the end user.

Much like stated before, if the device sends data to a non-controlled centralized server,
then penetration test should no be done on said server.

OSINT: Open-Source Intelligence is a type of intelligence gathering technique that in-
volves collecting and analyzing information from publicly available sources. OSINT can
be used to gather information about the hardware revisions, network communications and
software versions. But more importantly it can be used to look up known vulnerabilities
in public databases such as Metasploit, CVE databases and or different online forums.

Passive end user software reconnaissance: If the IoT device relies on an external app
(PC, Android, or iOS), then observing available functions helps build a basic understand-
ing of the app’s workings. There are a handful of questions that can be asked to aid in the
application profile building.

How does the app connect to the device? Is there any form of authentication when
connecting? What can you control with the application? Can you send data to the IoT
device using the application? Is the app generic, I.e., do multiple OEMs use the same
application? If the application is running on an Android device you can open the app in
some sort of application analyzer, such as Apk info.

With that you can see the application package name which may reveal more infor-
mation that you can search for online. Such application analysis often features a way of
showing all needed device permissions which can also give a good insight into how the
application works.

23

Passive networking monitoring: If the scope includes network access that is done over
Wi-Fi, then by simply observing the network traffic using tools such as Wireshark, then
you can see some device information. For example, ARP packets that can reveal the de-
vice IP address and MAC address. If the device does not use randomized MAC addresses,
then that can be looked up to see what vendor and or manufacturer the device belongs to.

Active software reconnaissance foreword: Note that active reconnaissance on the IoT
device should not be done without alerting IT personnel, especially if there are monitor-
ing or intrusion detection systems on the same network. Disregard this if you are the sole
owner of the device, silent penetration testing is disregarded, or have been given confir-
mation of approval to penetration test said device.

Network scanning: This involves scanning the network for IoT devices and mapping
out the network topology. More specifically by sending packets to various ports on a tar-
get host to determine which ports are open and which services are running on those ports.
Different types of port scans, such as TCP, UDP, or SYN scans, may be used depending
on the target environment and the scanning tool being used. With the collection of the
open ports a rough estimation can be created on what services are running on the IoT
device. Tools such as Nmap or ZMap can be used to discover IoT devices and identify
open ports and services [33]. Note that this method creates network traffic that could be
logged by the IoT device or an intrusion detection system.

Banner grabbing: This involves sending requests to IoT devices to retrieve informa-
tion from their banners or headers. This can provide information about the device model,
firmware version, and other details that can be used to identify potential vulnerabilities.
Tools such as Nmap do this automatically unless specified. Much like the network scan,
this creates noticeable traffic on the receiving end that can be logged.

End user application reverse engineering: If an IOS IPA or Android APK applica-
tion is supplied with the IoT application, then that can most likely be decompiled. Doing
so can give insight into how communication is done between the user app and the IoT
device. It can also reveal how authentication is done between the user and the IoT device.
With this intelligence you can see if the app implementation contains any security risk or
vulnerabilities.

IOS An IOS device uses ".ipa" files for its applications. Such apps can be programmed
in Objective-C and Swift. The first plan of action is acquiring the app’s binary file (.ipa).
The file can be downloaded using an existing IOS device or by downloading the app from
the App Store using a tool like Apple Configurator 2. As .ipa file works as an archive it
can be unarchived to reveal its contents, including the app’s executable file and resources
(e.g., images, storyboards, and localization files). The app files are compiled using the

24

LLVM compiler, and their binaries are in the Mach-O format. To analyze the app’s code,
a decompile or disassemble the binary needs to be done. Tools like IDA Pro or Ghidra
can achieve this. The next step is to analyze the app’s classes, methods, and functions. The
focus would be interesting or suspicious code, such as calls to private APIs, hardcoded
credentials, or any code that could be seen as a potential security vulnerability. The code
will be in assembly which makes larger apps more difficult to understand. As such start by
checking the strings found in the file and cross reference that to the code structure itself.
Certain files such as ".plist" or "storyboard" files can also contain sensitive information
[34].

Android An Android device uses ".apk" files for its applications and uses Java and
or Kothlin. While other languages such as C#, C++ can be found, they are less common.
You can also find JavaScript combined with HTML and CSS when an application is using
the Adobe PhoneGap framework.

Unlike the IOS counterpart, Android decompilation is much easier due to the open
nature of the Android ecosystem and its straightforward way to enable developer mode
on retail devices.

Much like the IOS section there is a need to get a hold of the base application file i.e.,
APK file. This can either be downloaded from an APK mirror website or extracted from
an android device using ADB or a file explorer app when already downloaded from the
app store.

By using tools such as APKTool or jadx, the APK can be decoded, converting the
binary DEX files into readable Java source code. These tools will also give the option to
extract resources (e.g., XML files) from the APK. Once the APK is decoded, the app’s
package structure, classes, methods, and variables can be explored. As with IOS apps,
look for interesting or suspicious code, such as calls to hidden APIs, hardcoded creden-
tials, or code that can be seen as potential security vulnerabilities. If there is a need,
a dynamic analysis on the app can be done. This is achieved by running the app in a
controlled environment such as an Android emulator or a rooted device. This can help
uncover hidden features or security issues that may not be apparent from static analysis
alone. If possible, attach a debugger such as Android Studio’s built-in debugger to set
breakpoints and step though code [35]. A good all in one tool to achieve static and dy-
namic analysis is the Mobile-Security-Framework-MobSF which can often convert the
APK to java files.

Vulnerability analysis: Vulnerability analysis is the process of identifying vulnerabilities
in systems and applications. It’s divided into Identification and validation where identifi-
cation is the vulnerability discovery effort and validation is the process where the tester
tries the identified vulnerabilities. This can be done by using automated tools such as
openVAS or Nessus. another approach is search for the model of the device of firmware
version etcetera. at CVE databases.

25

5.2.2 Hardware

As hardware architecture may differ greatly between IoT devices it creates a unique se-
curity challenge compared to other computer devices. An IoT device can use a simple
32-bit microcontroller such as the ESP8266 used to send and receive data, or they can
use more complex 32 bit or 64-bit RISC hardware. Something that is often universally
standard within IoT devices is the use of a RISC computer architecture. This is due to
the power draw limitations of the small devices [36]. Depending on the application, the
device may have different sensors which send the data over different physical interfaces.
The networking interface varies depending on the device.

If hardware is not within the scope of the assignment, then it removes certain hard-
ware reconnaissance techniques. Those techniques will be noted as such.

Tamper mechanisms: IoT device itself may have physical tamper mechanisms, which on
trigger may send an alert to the vendor or device administrator, locking out the device or
rendering the device bricked. This tamper mechanism may come in the form of pogo pins
attached to the ground, pressed buttons, switches, or other forms of pull-down resistors.
These may trigger when the device gets opened.

The user must execute with caution whenever hardware is disassembled for reconnais-
sance. Another tamper proofing mechanism is the use of software or firmware signing. A
checksum or signature for system files can be programmed into a lower-level part of the
device. If a user attempts to modify system files of the device, a flag can be raised which
may alert of affect device functionality [37].

Finding device version and hardware revision: Finding out which version and or hard-
ware revision of the device can aid the penetration testing process.

If the device is sold internationally, you can often use the FCC ID for it which can
contain useful information about the device. Information such as wireless frequencies
used, manual and high-resolution internal photos of the device.
Websites such as https://fccid.io/ which lookup the device in the FCC database
can help with this.

If the device is only sold to European markets, then you can try searching for its serial
number on any search engine or specific websites such as https://device.report.

Finding debug headers: IoT devices often contain debug headers such as UART and
JTAG to debug and program the devices from factory. Using a multimeter set-in continu-
ity mode, and then prodding at pads, ports, or unused pins to see where they are traced
to the chip can help with this. Often the pads have a silkscreen labeling on what they
do. UART will often be noted as RX, TX and sometimes also include pads for RTS and
CTS for handshaking mechanism. If the device uses UART, then using tools such as a

26

logic analyser with a RS232 decoder can help to find the correct baud rate for the device.
Alternatively, you can often find the baud rate needed for communicating with the device
in the SoC documentation. If the steps above do not work, hook up TX to an oscilloscope
and set it to trigger a pulse. By measuring the time of the shortest pulse and inputting
the microseconds into the following formula 1

X
· 106 yields a baud rate that needs to be

rounded to the nearest common baud rate [38].

5.3 Exploitation

This part of the framework will denote the most common ways to exploit an IoT device.
It will cover the attack vectors in chronological order from least access (network access)
to most access (hardware level).

5.3.1 Network

IoT networking uses a plethora of different standards. As such, to limit this framework in
scope the six most common networking interfaces is covered:

Protocol Frequency (Europe)
Wi-Fi 2.4 GHz, 5 GHz
Ethernet Wired
Cellular (LTE) Depends on country and network operator. Band 3 at 1800 MHz is commonly used.
Zigbee 2.4 GHz and 800 MHz with Zigbee PRO 2023
Z-Wave 868.4 MHz, 869.85 MHz
LoRaWAN 868 MHz

Table 5.2: Protocol frequencies in Europe

Do note that these frequencies will vary depending on which region the device is sold and
developed in.

Password cracking: IoT devices are known for having limited and insecure password
management due to their lack of hardware resources. As such they are prime targets for
password testing. This involves bruteforcing and looking for hard-coded password or en-
cryption keys. There are a lot of software tools to be used for password brute forcing or
to be used with a word list of known passwords.

The first step would be to check the default password of a device before moving on to
the software tools as RainbowCrack or John the Ripper. Some of the tools require that
the tester has obtained the password hashes. However, there are also software tools that
can target the authentication protocol and connection (SSH, Telnet etcetera.) directly as
Hydra or Metasploit.

27

Web applications: Web applications and interfaces hosted by the IoT device will often
contain a graphical user interface with a underlying server and database. The application
could run as Software-as-a-service (SaaS) or by running connected with the firmware.
Lack of authentication/authorization and input/output filtering may result in information
leakage. XSS, SQL-injections and MITM are attacks that could be tested manually. An
example is CVE-2017-17020 [39], where an attacker could exploit the device web server
with a user interface to inject code and retrieve information directly from the filesystem.

Automated tools as Wega, PwnXSS can automatically be used to scan web applica-
tions for vulnerabilities. Furthermore, Burpsuite is a commonly used web application
testing tools as it can be used to both scan, password crack and setup a man-in-the-middle
proxy to test a web application.

API-testing: An API lets a service communicate with other devices and services. As
IoT APIs are the entrance for IoT apps and how the devices communicate with IoT cloud
platform resources, its important to ensure that they are secure. Li, Yilian, et al. managed
find 21 APIs with vulnerabilities in their work by doing automated scanning [40]. APIs
can be evaluated by sending requests to the API outside the API which tools as SoupUI,
Postman and Pulse can be used for. However, modern IoT integrated APIs may use
encryption and signatures to verify API request which could make the test harder to con-
duct with automated tools. There are ways to bypass security measures as using exposed
dynamic replacement technology to send test request or providing the tester with more
information [40].

Zigbee design issues: There is little documented information regarding design flaws in
the Zigbee standard. Most attacks are theoretical and do not contain any proof-of-concept
code or implementation. As such they have been left out of the framework due to their
lack of repeatability. There are tools in which you can capture and replay packets such as
KillerBee or Attify’s GUI wrapper of the same program. However replaying packets is
not possible on all devices and is very device version specific.

Z-Wave design issues: Normally a list of vulnerabilities does not need be included in
the framework as that is already covered by the reconnaissance stage of the framework.
However, in this case the following vulnerabilities are deemed noteworthy to have their
own category. Z-Wave has a multitude of documented vulnerabilities that can lead to var-
ious outcomes. The chip for Z-wave nodes support AES-128 encryption along with the
Diffie–Hellman key exchange which is used automatically for S2 authentication. How-
ever, there is a authentication downgrade attack using the so called Z-Shave attack which
lowers the security down to S0. S0 uses a hardcoded encryption key which makes MITM
of unencrypted data possible [41].

If the IoT device uses Z-Wave for communication, then it may be vulnerable to a

28

multitude of different attacks. This applies if the device uses a chipset that is from Silicon
Labs series 100 to 500 or series 700 that use S2 for authentication [42]. The following
hardware vulnerabilities are seen below:

• Z-Wave devices based on Silicon Labs 100, 200, and 300 series chipsets do not
support encryption.

• Z-Wave devices based on Silicon Labs 500 series chipsets using CRC-16 encapsu-
lation do not implement encryption or replay protection.

• Z-Wave devices based on Silicon Labs 500 series chipsets using S0 authentication
are susceptible to uncontrolled resource consumption which can lead to battery ex-
haustion.

• Z-Wave devices based on Silicon Labs 500 series chipsets using S2 are susceptible
to denial of service and resource exhaustion via malformed SECURITY NONCE
GET, SECURITY NONCE GET 2, NO OPERATION, or NIF REQUEST mes-
sages.

• Z-Wave devices based on Silicon Labs 500 and 700 series chipsets are susceptible
to denial of service via malformed routing messages.

• Z-Wave devices based on Silicon Labs 700 series chipsets using S2 do not ade-
quately authenticate or encrypt FIND_NODE_IN_RANGE frames.[42]

These vulnerabilities are very device dependent and as such require that information
be collected in the reconnaissance stage.

Software Defined Radio (SDR) based attacks: Most IoT networks operate at 2.4Ghz
or lower. This means that the communication of the protocol can be read out by any re-
ceiver that can achieve that frequency. If there are no or simple replay protections like
incremental frame countering, then you can simply replay the captured messages after
some modification.

This can ultimately create a denial-of-service attack if the SDR sends a more powerful
signal at the same frequency. Alternatively, if the IoT device is using cellular traffic for
sending and receiving data you can emulate a cellular base station using a SDR. If the
device switches over to the rouge base station, then all data can be captured. This can be
achieved with a BladeRF SDR and accompanying software like Nuand’s YateBTS.

Replay attacks: If the device communications model is known it may be vulnerable to re-
play attacks. By intercepting the communication to and from the device, the intermediary
could replay those packets if there are no countermeasures. Those captured packets can
contain actions or other sensitive information which could be replayed to the attacker’s

29

advantage. Communication can be intercepted and replayed by using a SDR or software
tools as Aircrack-ng, Fiddler and mitmproxy combined with python scripts.

Denial of service (DoS): Denial of Service (DoS) attacks are cyber-attacks in which an
attacker seeks to disrupt the functionality of a device, service or network in some sort of
way by overwhelming it with a flood of traffic, requests, or other unwanted activity. This
is a common attack within IT security as a whole and as such also applies to IoT devices.
DoS attacks can be done in many different ways depending on what sort of networking
protocol is being used.

A simple way to achieve a DoS attack is by jamming the radio frequencies used by
the target system using a SDR. This is especially needed if the device does not use Wi-Fi.
With an SDR, an attacker can transmit a high-powered signal on the same frequency as
the target system, effectively jamming the system’s radio signals as it drowns out the le-
gitimate data.

WiFi deauthentication: If the device is using WiFi on WPA2-PSK and lower for its data
communication, then it may be vulnerable to a denial of service attack using WiFi deau-
thentication [43]. IoT devices that are based on the ESP8266 or ESP32 microcontroller
only support WPA2 Personal/Enterprise. By sending deauthentication frames towards the
device it will force the device to lose the connection. Thereafter, the device will try to
reconnect to the same network. Here an attacker could capture the handshake to obtain
a password hash. Another option would be to set up a rouge access point with the same
SSID, if the device then connects to the rouge access point an attacker could capture all
network traffic to and from the device.

With a network card in monitor mode, this test could be done by using software tools
such as Aircrack-ng, Airgeddon for deauthentication or setting up a rouge access point
and Wireshark for capturing network traffic.

ARP poisoning & ICMP based Man-in-the-middle attacks: If the device uses Wi-Fi or
Ethernet as its main communication protocol, then it may be susceptible to ARP or ICMP
based MITM. This will only work on non-encrypted data traffic and most encryption
downgrade attacks such as SSL stripping is useless today if the networking implementa-
tion is done correctly. ARP poisoning is a very noisy attack and can be seen by anyone
listening for ARP packets on the network. ICMP based MITM will not work on a network
that uses static routes or not accept/process ICMP redirect packets. Tools as Wireshark
and Ettercap could be used to create such an attack and gain useful information about the
target.

30

5.3.2 Firmware

This section covers IoT device firmware analysis for the sake of finding vulnerabilities in
the implementation. If hardware is outside the scope of then this part of the framework
can be skipped.

Firmware readout/dumping: The process of reading firmware from a device can be
a valuable technique in identifying vulnerabilities. This method provides a more compre-
hensive understanding of the device’s operations, revealing implementation shortcomings
that may be exploited. This approach intersects with the reconnaissance stage of the test-
ing process, and one can begin by attempting to locate the firmware online. Producers or
OEMs may provide firmware on their websites, especially when the device becomes un-
usable due to issues such as a bricked state. Alternatively, one can intercept traffic during
an OTA firmware upgrade to determine the URL where the firmware is stored. In cases
where none of the aforementioned options are available or firmware upgrades could elim-
inate potential vulnerability leads, physical firmware dumping becomes the best option.
The type of IoT device being penetration test determines whether firmware dumping is
possible. Since these devices require unique Wi-Fi SSIDs and passwords for each user,
they cannot use read-only memory. Therefore, there is usually a UART header left on
the devices from the factory that was used for initial programming. By consulting the
microcontroller schematics and documentation, the pinout for reading firmware can be
identified. However, it is essential to note that the device will often require either 3.3v
or 5v externally if the chip is separated from the power circuit. If the device is based
on an ESP32, the firmware can be easily dumped using ESPtool by specifying the flash
memory size [44].

Firmware decompilation: If the firmware has been obtained, it can be analyzed using
firmware analysis tools such as Binwalk. The filesystem configuration files and binaries
can be carved from the target firmware to be assessed for security misconfigurations that
could lead to exploitation. The file system can be examined for sensitive information that
should not be public. These types of misconfigurations often lead to the possibility of
gaining root access and executing unauthorized code.

Alternatively, you can convert the firmware binary code into human-readable assem-
bly code. This is done by analyzing the machine code instructions and translating them
into a more understandable format. This step can be performed using disassemblers like
IDA Pro or Ghidra. With that the user can examine the assembly code to identify the
various functions, data structures, and algorithms used in the firmware. This may involve
tracing the execution flow of the program, identifying function calls, and understanding
how the firmware interacts with the hardware. If possible, you can convert the assem-
bly code into a high-level programming language, such as C or C++, to facilitate easier

31

analysis and understanding. The mentioned decompilers can perform this task.
Do note that firmware decompilation and reverse engineering may be subject to legal

restrictions, depending on the jurisdiction and the specific firmware being analyzed.

Downgrade attacks: A downgrade attack is the act of downgrading a device firmware
to an older version which has known exploits or security vulnerabilities. This can be
achieved by intercepting the data being sent from an over the air update or by flashing it
via external tools or storage mediums. However, this attack is very device specific and
often requires physical access or application access. This attack vector is often patched
by default by using eFuses, update servers using TLS and or signed firmware.

Malicious firmware upload: This attack works much the same as a downgrade attack,
however the attack instead uses custom firmware that can contain backdoor access or
other modifications that diminish the security of the device.

5.3.3 Hardware

This section of the framework requires physical access to the IoT device. If hardware is
not in the scope of the penetration test, then this part can be skipped.

Reading out data from external storage: There are some IoT devices that use exter-
nal storage to store data such as sensor information or operating systems. This may be
done as an alternative to storing data in a cloud service or adding a history to collected
data. These interfaces can be in the form of SD memory cards, SIM cards, and USB stor-
age devices. If there are no physical barriers, then a user can unplug the external storage
and move it to another system where all data can be read out. If it contains system files
then that can give crucial intel on system information and could show any hard coded
security keys, networking address and certificates unless they are encrypted in any sort of
way. Alternatively, while very device specific if the external storage only stores sensor
data onto external storage, then it could be susceptible to buffer overflow attacks. This is
dependent on whether the system uses a common file system and if the device is poorly
programmed to handle incorrect file sizes. The program could crash if it uses a fixed array
size when reading in data from an external device. By modifying existing files to be larger
than expected it could write data outside the given variable [45].

Hardware tampering: While not a vulnerability per says, it needs to be stated within
framework. If the IoT device is found in a physically open setting, then it needs to be
physically locked down and secured to a good surface so no malicious user can tamper or
remove it from its premises.

32

Side-channel attacks: Side channel attacks are techniques used by attackers to exploit
the unintentional leakage of information from a system, typically by analyzing physical
aspects of the device.

This is especially prevalent on IoT devices due to their constrained resources and
widespread use. These attacks include but are not limited to

• Timing

• Temperature-based

• Electromagnetic

• Power analysis

• Acoustic

All these outside factors can be impacted on different operations done on the device;
with enough data you can start to carve out what operations the device is doing.

Voltage glitching: Voltage glitching is a technique used to extract sensitive information
from a device by manipulating its power supply voltage. The technique involves intro-
ducing a momentary voltage drop in the power supply or sending a larger than expected
spike of voltage to a microcontroller or other integrated circuit during the execution of
code. This power fluctuation can cause the IoT device to behave unexpectedly such as
skipping cryptographic operations, dumping data, injecting code, or allowing the device
to enter some sort of debug mode [46, 47] . The attack is very "low level" and requires
high technical knowledge of how the device functions. This type of attack is intricate as
it requires specific voltage level, timing, and time span for if the voltage spike leads to a
skipped instruction.

The attack is also device specific as it depends on CPU type, power management,
available pins, and the code itself. The simpler the circuit and SOC is, the "easier" it
becomes to manipulate. As such, this attack should be used for worst case scenarios
when none of the other attacks are viable. A voltage glitch can be achieved with the
use of many different devices that can send specific timed pulses. A common device for
achieving this glitch is the "ChipWhisperer" series of tools.

5.4 Post-Exploitation

While other frameworks do cover some form of persistence. This generic framework will
not cover how to add persistence onto an exploited system. This is done due to the ethical
considerations of the report.

33

5.5 Reporting

Finally, if you find any exploits or vulnerabilities in the IoT device you’ll need to disclose
them. This is usually done by writing a report. If you are the sole developer of the device,
then this may not be necessary.

Writing a report on a security exploit involves documenting the details of the vulnera-
bility, the steps taken to reproduce it, and any potential impact it may have on the system
or organization using said device. A report should be easy to understand and should high-
light if any risks were found. Additionally, it’s important to follow any organizational or
industry-specific reporting guidelines or procedures to ensure the report is submitted in a
standardized and timely manner.

A report should contain the following points.
Brief introduction: Begin by introducing the exploit and providing context on why it’s

important to document it. Explain which part of the device was exploited, the device or
the software that is used and the potential impact it may have on the device user.

Vulnerability description: Provide a detailed description of the vulnerability, including
how it was discovered, the cause of the vulnerability, and how it can be exploited. Include
any relevant technical details, such as code snippets or screenshots, to help illustrate the
vulnerability. Do note that you’ll need to proceed with caution with documenting. For
example, if you find a way to dump the firmware on the device. then it might infringe
on the copyright as it can be classified as proprietary software. You’ll need to check with
your local laws before publishing a report that may contain such sensitive information.

Discussion about impact: Describe the potential impact the exploit could have on the
system or organization. This may include data loss, system downtime, or unauthorized
access to sensitive information.

Outline the steps to reproduce: Provide a step-by-step guide on how to reproduce the
vulnerability. This will help others verify the vulnerability and test for potential mitiga-
tions.

Potential mitigations discussion: Describe any potential mitigations that can be imple-
mented to reduce the risk of the vulnerability being exploited. This may include software
patches, firmware upgrades, hardware upgrades, configuration changes, or other security
measures.

5.5.1 Vulnerability disclosure to vendors

Sometimes it is necessary to contact the vendor or device maker to create a safe disclosure
of a found exploit. This is however only needed if the exploit uses an unknown vulner-
ability. Some vendors do have specific bug bounty programs in which the vulnerability
can be safely disclosed. If that is not found, then you’ll need to identify the right contact
such as their security team or a designated email address for vulnerability reporting.

34

5.6 Application suite

An example of software penetration testing tools that could be used to target IoT devices
and to be used with the framework methodologies.

Penetration Testing Targets Penetration Testing Tools
Reconnaissance & Intelligence gathering
Reconnaissance Nmap/Zenmap, TCPdump, Wireshark, Shodan, Maltego

Vulnerability Scanning
openVAS, Nessus, Burpsuite, CVE Databases, Metasploit,
Sqlmap

Exploitation

Password testing
Rainbowcrack, Hydra, John the ripper, Metasploit, Hashcat,
Cupp

Network
Aircrack-ng, Airgeddon, Wireshark, Fiddler, Mitmproxy,
PCAPdroid, Ettercap, Aireplay-ng

Firmware
Binwalk, IDA Pro, Ghidra, Firmware test suite, Autopsy,
Binary ninja, Esptool

API SoupUI, Postman, Pulse
Web services Wega, PwnXSS, Burpsuite
Reverse engineering Mobile Security Framework, Apktool

Table 5.3: Application Suite - Software Tools

35

6 Cases

All the cases are using the methodologies and tools of the created framework as guidance
for the tests. All the cases are grey box testing operations as we have partial knowledge
of how the devices operate.

6.1 IoT beehive revision 1

Company X have created a Internet connected beehive that needs to be penetration tested.
The device has sensors to monitor the heat, weight, audio of the beehive combined with
camera monitoring. The device gets power from a POE adapter which subsequently trans-
fers the collected data from the sensors. The scope for this test is both software and hard-
ware security flaw analysis. As such we’ve been given network and hardware access to
the device.

Device reconnaissance

The first plan of action when using the framework is to gather useful information regard-
ing the device. This is both done for the hardware and the software of the device. As
we have physical access to the device, we can simply observe the hardware that is used.
In this case it is a Raspberry Pi B3+ single board computer. It uses an external storage
solution in the form of an SD card.

Moving on to the software reconnaissance part of the framework. As we are connected
to the same network as the device, we tried scanning the device for any open ports. Here
we can find a plethora of different ports open.

Figure 6.6: A portscan using Zenmap of the beehive

We can also confirm that the device without doubt runs some sort of Linux based op-
erating system. As the device is using a Raspberry Pi, we can most likely assume that
it runs Raspberry Pi OS (formerly known as Raspbian) with the help of the SSH server
information.

Figure 6.7: Device enumeration using Zenmap of the beehive

The next plan of action is to grab the banners for each of the ports which is done automat-
ically with Zenmap. We can observe which version and service is running on each of the
ports.

36

Port Information
22 ssh - OpenSSH server Version 7.9p1

3000 ppp
8080 tcpwrapped
8090 http - Motion Camera httpd 4.1.1

Testing all missing service version ports in a web browser reveals additional information.
Port 3000 is a http service called Grafana used for graphing data. This would make sense
as the device collects various amounts of sensor data. It is running a non-up to date version
of the service (v7.5.7).

The Port 8080 is a live http camera feed from the built in camera header on the Rasp-
berry Pi. It is a service called Motion 4.1.1 which seems to be the same as detected on
port 8090. There is a sub-directory on the website for controlling camera functions which
does not have any form of authentication. Here it seems like we can write and config-
ure certain camera functions. There is also the ability to restart and stop the service by
clicking on one of the html links which is done with a simple POST.

Moving on to the active reconnaissance part of the framework. Running a directory
traversal script on all the ports revealed nothing of value.

Device exploitation

Starting with the user software, there are a lot of entry points for this device. It has many
open ports with one being the camera feed.

As the device uses Raspbian as its operating system, we can test the default username
and password for SSH. By scanning the device with Zenmap we found a server on the
device used for the camera interface. Without any authentication, the camera could be
accessed and controlled through the web interface. With that we created a simple python
script to send requests to restart the camera multiple times a second. This ultimately
crashed the camera web server.

Having exhausted all possibilities of doing remote exploitation we move on to the
hardware.

Following the framework, we unplug the power of the device and connect the SD card
to a computer to make a firmware dump of the SD card. After that is done, we reconnect
the original SD card to the IoT device and connect power. This does create downtime for
the IoT device, which can be noticeable but, in our case, it wasn’t an issue.

With the SD card dump, we are not bound to the physical location of the IoT device
anymore. As the IoT device uses "off the self-hardware", the device can be recreated and
set-up anywhere to be penetration tested.

As we now also have access to the complete dump of the firmware, we can perform
firmware analysis to see if the disk image contains any sensitive information. Opening the
disk image in Autopsy reveals the complete filesystem along with all the running scripts.
We see the default "pi" user home folder containing a lot of different files. We can observe
that the code responsible for managing the sensor data is written in python and is in the
home folder of the pi user. This code is not compiled which makes it easy to analyze its
logic. The script contains in plaintext the IP address of the receiving server, the server is
publicly open to the Internet and could be accessed. As the script does not contain any
form of authentication a malicious user could spam fake data by knowing the payload
format. A comment in the code reveals how the payload in a post request to the server
should be structured.

37

Moving on we see a script that gets imported by the main script which is used for
just sending the weight to separate servers. That does use authentication in the form of
security certificates. However, these certificate files are located on the device itself and
thus can easily be copied.

Continuing, we can see that there are remnants of postgres files indicating that there
is a postgres server running. Looking at the postgres history we can determine that this
server was used to store sensor data.

We can also see a Wi-Fi name and password in plaintext found inside the
wpa_supplicant.conf file. This is most likely left over from a development test as our
supplied product uses POE for power delivery.

Device findings

We found by using the framework we were able to dump the disk and see how the device
works. With that we found some sensitive data that no user should have access to. As
there are no physical barriers or alarms in any way to block a malicious user, anyone
can make a copy of the disk with off-the-shelf hardware and then steal the certificates, IP
addresses and or the entire running code.

The camera interfaces could be accessed by being on the same network as no authen-
tication was needed. A script could be written to restart the camera continuously as a
denial-of-service.

With access to the IP address and its simplistic authentication, a rouge user could
spam fake sensor data to the external servers making them cluttered.

6.2 IoT beehive revision 2

Company X have created an Internet connected beehive that needs to be penetration test-
ing. The scope for this test is software exploitation. As such we’ve have been given the
device to be tested. The device uses LTE-M to send and receive sensor data. This device,
unlike the first revision, does feature some hardware tamper deterrent in the form of a pull
up resistor connected to an IO pin.

Device reconnaissance

As we have been given the physical device we can find that the smart beehive uses a
Pycom "FiPy" microcontroller. As the schematics is public for the device, we can see
some useful information about the hardware details. The microcontroller is based on an
ESP32 with extra support for other "IoT specific" networks such as LoRa, Sigfox and
Bluetooth Low Energy (LE). It uses firmware that works as a micropython interpreter.
As such the device will run micropython code. We can see that also supports TLS and
different forms of hashing algorithms which could become a hindrance to the exploitation
part of the framework if they are implemented. We can also see in the documentation
that the microcontroller has support for multiple wired data protocols. These protocols
include UART, I2C, JTAG, SD cards etcetera.

Device exploitation

Due to the limited access and interfaces to the device in a real life scenario, the attack
surface is very small. As there are little to no inputs in which we can follow with the

38

framework we are left with the mobile network connection. While infeasible to physically
test in our case, by using a software defined radio we could intercept the data. If the
signal generated by SDR is more powerful than the other cell tower, then the device will
automatically connect to the SDR. With that a user could capture all the data traffic sent
to and from the device. That would give the destination address to which the data is sent
without access to the source code. By creating a script, you could then spam send to that
address with bogus sensor data, rendering the receiving end unusable.

Device findings

There were little to no findings on this device when following the framework. The mobile
networking can be intercepted capture the data sent to and from the device. However,
that step requires an SDR and accompanying software that can emulate a rouge cellular
base station. In conclusion the device was found to be rather secure due to the lack of
interfaces and its small attack surface.

Device discussion

As Fipy uses serial/UART to upload the python files we could connect to PIN 0 (RX0) and
PIN 1 (TX0) and thus get access to the running scripts. When we connected via serial,
we could find sensitive information in an non compiled config file. This file contained
variables for the protocol used, port number, a hardcoded authentication message and IP
addresses of the receiving server. This could be seen as a vulnerability as this information
could be classified as sensitive. However, this was left out of the device findings as this
attack requires physical access which was outside of the scope.

6.3 IoT camera

Company Y uses an Internet connected camera for monitoring a smaller storehouse. The
camera needs to be penetration tested for security vulnerabilities. The scope for this
penetration test is software only. We have an image of what the device looks like, the end
user Android app and we have access to the same network as the device is connected to.

Device reconnaissance

The first plan of action when using the framework is to gather useful information regard-
ing the device. In our case as we are limited to network access, we’ll need to move to the
software reconnaissance part of the framework. As we are connected to the same network
as the device, we try scanning the device for any open ports. Here we can find many
different ports open.

Figure 6.8: A portscan using Zenmap of the camera

39

By using the banner grabbing of Zenmap we can see that the vendor is a TP-link. By
looking up IP cameras of the same maker and cross-referencing it with the photo we can
boil it down to two different models which it can be. These devices support a multitude of
different features, such as microphone, speaker, camera movement, OTA (Over-the-air)
updates and SD card storage or cloud upload.

Moving on in the framework we get to the end user app decompilation stage. As a non-
configured APK app was supplied, it was decompiled and analyzed using the program
"Mobile Security framework" (MobSF). An attempt to find the URL for the over-the-air
update was done using the string search function. It gave some results when searching
for web addresses, but nothing related to the over-the-air update was found. By looking
at the app code, it seems like the URL for the binary file is generated dynamically from a
set of variables.

There was a mention of a debug mode in the file in which you can send and update a
firmware bin file. This was found in the following file:

com/tplink/iot/debug/device/DeviceDebugActivity.java
Continuing with the information we have. As we roughly know the model of the device,
the next step when following the framework is to lookup known vulnerabilities as we
know the hardware details. By searching for the model number at the National Vulnera-
bility Database we found CVE-2021-4045 [48] that may affect this device if its firmware
has not been updated. Looking into the device manuals, the firmware update mechanism
needs to be triggered manually through their app. Without knowing the firmware version,
we try launching the known exploit.

Device exploitation

The found vulnerability CVE-2021-4045 is an exploit that affects this IP camera with
a firmware version 1.1.15 or below. The exploit makes use of a vulnerability present
in the uHTTPd binary that runs as root by default [48]. This was found by doing reverse
engineering on the uHTTPd binary with the tool Ghidra. It was discovered that an attacker
could inject code that was directly executed by the camera without any authentication by
sending a "set language" post request. Remote code execution would give an attacker full
control over the device.

By following a write-up on the CVE [49], we could obtain a python script that was
used successfully to obtain a root shell against the camera. Furthermore, this script has
two different attack modes, one to establish the root shell and another mode to access
the camera’s live stream unauthorized. So, by using the python script we were able to
spawn a root shell against the camera as-well as viewing the cameras video stream over
the rtsp (Real-Time Streaming Protocol) protocol, the video could be accessed by loading
the RTSP stream in VLC media player.

Figure 6.9: Launching the script with the rtsp parameter

40

Device findings

The device findings of the camera were a CVE that allowed us to gain complete access
over the device by spawning a root shell. Additionally, the vulnerability allowed us to
view the video stream without any authentication. The CVE still exists since the device
required manual firmware updates which had not been done by company Y.

6.4 IoT Wi-Fi Smart Lamp

Company Z sells a smart LED light that is controlled over Wi-Fi. It’s an RGB color spot-
light lamp which uses a GU10 connector. The device can be bought over the counter at
many retail stores that sell home improvement or electrical equipment. The scope of this
case is software with limitations to the android application, network, and hardware access.
The device has been connected to the network using the supplied end user application.

Device reconnaissance

The first step when following the framework is passive software reconnaissance followed
by active reconnaissance.

The app supplied with the lamp is called "smart life" on Android based devices. Its
package name is called "com.tuya.smartlife". With that we can google and find that Tuya
is Chinese based company focusing on creating IoT solutions as an OEM. As such we can
conclude that Company Z sells a re-branded Tuya device. These devices are extensively
documented online, and users have created custom modules for different programming
languages to control these devices. With a simple search we can find that the devices
use three parameters for controlling the device. There is the IP-address, "local key" and
the "device id". The device id can be found when using tools such as "tinytuya scan".
However, the "local key" is more secretive and requires some prodding around to find.
Looking at the "tinytuya" python library we can find that the lamps all use port 6668 to
send and receive data.

Moving on to the active reconnaissance stage of the framework. As the device comes
with an app, we can capture the data being sent and received using an app such as PCAP-
Droid.

Figure 6.10: Data interception and viewing of the smart life app using PCAPDroid

41

We see that it sends data to multiple servers and the device itself. Figure 6.10 shows the
data sent to the lamp itself. The data seems to be encoded in some sort of way.

We did a network capture during the device setup in which you send over the SSID
and password for your Wi-Fi. The SSID and password does not seem to be sent directly
to the device, instead a middleman server by Tuya gets the data and returns some sort of
token that the device receives instead. The middleman server uses HTTPS which makes
this hypothesis difficult to confirm. A try to install a root certificate to decrypt the HTTPS
data wasn’t possible as the server rejected the certificate and just closed the connection.

Some data which most likely is the "token" is sent over unencrypted TCP to the device
itself which could be intercepted and in theory replayed by an external user doing an
MITM attack. However, this wasn’t tested.

Figure 6.11: Data interception and viewing of the smart life app using PCAPDroid

A notewothy observation in figure 6.11 is that the app sends unknown data to a "sailor-
moon.tuyaeu.com" AWS domain. Moving on to scanning the device we can confirm that
it uses port 6668.

Figure 6.12: A portscan using Zenmap of the smart lamp

As software-based testing was out of the question, the next step in the framework is
hardware-based hacking. Looking at the lamp shows that it does not have any physi-
cal screws or any other way to access the PCB. As such we resulted in cutting the plastic
casing in half. This revealed the 230v lamp power connector, its power circuit, a 3.3v
converter, an unknown microcontroller, and the LEDs themselves. The LEDs are sepa-
rated into a daughterboard. By looking at other people doing the same thing, they found
that the board include RX and TX pins for programming the chip [50]. They were able
to see a UART log containing the entire bootup process. They also noted that the device
stores the Wi-Fi name, password, "device ID" and the "Local Key" in plaintext inside the
firmware dump. The firmware dump was done using ESPtool.

42

Figure 6.13: The esp2866 board desoldered from the main power circuit

The microcontroller is separated onto a board that is soldered onto the power circuit board.
So, after desoldering the device we can also see some more information. The device is
based upon an ESP8285 chip as noted on the chip die printing. Looking at the PCB
silkscreen we can also see that it is named "TYLC5". After an online search we can find
that the board is documented on the Tuya developer website [51].

More interestingly we can also find some debug pads on the PCB. Pads labeled as RX,
TX, RST and IO0 can be found. This indicates that UART is also available on this device.
As the pads are very small, we used 0.4mm copper wire to solder directly to the pads.
Then we connected RX, TX, 3.3v and GND to their respective pins on a client computer
UART serial adapter. As stated in the documentation of the microcontroller, the crystal
oscillator sets the baud rate for UART. Unfortunately, we didn’t get any data from the
device despite resetting the device with the RST pad. This is most likely due to the fragile
nature of wiring up the device.

Device exploitation

As we didn’t get any data from the UART we moved on to testing for common network
vulnerabilities. As the device is using an ESP8285 which does not support WPA3 it
connects to the Wi-Fi using downgraded WPA2.

As the device itself does not contain any sensitive information we strive to use it as a
way into the internal network. By using Aireplay-ng to scan the network, it was possible
to identify the lamp by its MAC address. Thereafter, by sending deauthentication packets
to the lamp it became inaccessible, and we could capture the 4-way handshake when it
tried to reconnect to the same access point. Aircrack-ng was then used to crack the ob-
tained password hash from the handshake, thereby network access has been accomplished
by targeting the communication channel of the lamp. Even though it is the network that is
vulnerable to this attack, it was found by targeting the smart lamp. We do need to note that
this attack can be done on any device that is using the older Wi-Fi WPA2 authentication
standard. However, since the device does not support WPA3, It would’ve been impossible
to fix without replacing the device.

43

Figure 6.14: Sending deauthentication packets to the lamp

The only thing left to test was to reverse engineer the corresponding Android application
(Android APK) to see if there were any vulnerabilities. Weak encryption was found in
some of the Java files, but we could not conclude if it affected the communication with
the smart lamp.

Figure 6.15: MobSF Scan; Weak Encryption

Device findings

We did find by following the framework that the device stores the Wi-Fi username and
password in plaintext on the device. So, if a corporation or an individual user throws out
the LED lamp, you could tear down the device, connect it to UART and display all its
data. As described in the device reconnaissance stage, we were unable to do this most
likely due to poor wiring.

The lamp did not support WPA3, which resulted in a connection over downgraded
WPA2. The access point was configured for WPA2/WPA3, which made it possible to
establish a connection. By using WPA2, the handshake could be obtained when the the
lamp reconnects to the network after being deauthenticated and thus the password hash
could be cracked to gain the Wi-Fi password.

Additionally, the application supplied with the device had weak encryption, but it
could not be proven if it affected the communication between the device itself and the
Tuya cloud.

44

7 Results and Analysis

This section is divided into three sub-sections that represent the results and analysis of
each research question respectively.

7.1 How does the existing standards/framework apply to IoT penetration testing?
(RQ1)

The results from section 4.1, show how the existing frameworks address the IoT common
vulnerabilities from OWASP [16]. The theoretical comparison is summarized in table 7.4.
The common vulnerability Insecure Default Settings is not included in the table since
the testing methods are the same which are covered by the other common vulnerabilities.
Additionally, the common vulnerability Lack of Device Management is not included as
it’s not within the scope for a penetration test.

The parameter "Yes" indicates that the respective framework has included methodolo-
gies and tools to conduct a test towards the specific vulnerability.

The parameter "No" indicates the respective framework does not cover any method-
ologies or tools to conduct a test towards the specific vulnerabilities.

The parameter "Partially" indicates that the respective frameworks have included
methodologies and tools to test a specific vulnerability to some degree. The parameter
"Partially" is used when a framework does include ways to test a vulnerability but cannot
be applied to IoT devices or leaving out IoT specific communication models and hardware
aspects.

Common vulnerability PTES NIST 800-115
Weak, Guessable, or Hardcoded Passwords Yes Yes
Insecure Network Services Yes No
Insecure Ecosystem Interfaces Partially No
Lack of Secure Update Mechanism No No
Use of Insecure or Outdated Components Partially Partially
Insufficient Privacy Protection No Partially
Insecure Data Transfer and Storage Partially No
Lack of Physical Hardening No No

Table 7.4: Summary how existing frameworks addresses common vulnerabilities

The table provides the results from how PTES and NIST 800-115 could be used to address
and conduct a test for the respective common vulnerability. This has been theoretically
examined.

The results in table 7.4 indicate that the chosen frameworks are very limited in their
coverage against IoT penetration testing. Both frameworks could partially be used to
test some of the vulnerabilities but as the result shows neither PTES and NIST 800-115
include tests targeting IoT specific protocols and hardware aspects.

The results indicates that if the IoT device is using any other communication pro-
tocol than Wi-Fi, then both the frameworks are very limited in its coverage. However,
both the frameworks could be a valuable source of information for testing some of the
common vulnerabilities as Weak, Guessable, or Hardcoded Passwords and unsecure
Network Services. Additionally, the frameworks is a valuable source of information re-
garding what areas should be tested and how the testing process and reporting shall be

45

done. The research done about how the existing framework addresses the common IoT
vulnerabilities resulted in that PTES and NIST 800-115 lacks information about testing
the following aspects:

• IoT specific communication protocols as Zigbee, Z-Wave and LoRa.

• Hardware and physical access testing.

• Firmware testing.

• API testing.

• File system exploration.

• Reading out data from external storage.

From the results, we can see that the frameworks do not cover testing of IoT-specific
common vulnerabilities. The frameworks do not include methods to mitigate and test
most of the vulnerabilities. PTES does cover more testing methodologies and tools that
can be used in a penetration test than NIST 800-115. On the other hand, NIST 800-
115 provides more information about the legal aspects of a test and how it can be used
to create and maintain a security assessment. Based on these findings, PTES would be
more appropriate to use as guidance when conducting a test, even though it may lack
information for testing IoT devices. This concludes that there is no penetration testing
framework that covers testing IoT technologies.

7.2 Cases - Mapping vulnerabilities that were found when using the artifact (RQ2)

Table 7.5 summarizes the findings when conducting penetration tests for each case in
Section 6. The table describes the scope and findings of each case and whether the device
findings were an exploit that could be linked to a common vulnerability.

Case Device findings OWASP vulnerabillity

Beehive rev 1
Scope: Full acess

Found sensitive data and got full controll over the device.
The camera could be controlled and was vulnerable to a DoS attack.

Insecure Ecosystem Interfaces,
Insecure Data Transfer and Storage,
Lack of Physical Hardening

Beehive rev 2
Scope: No physical access

No findings without physical access. None

IoT Camera
Scope: No physical access

Known CVE was found which could be exploited due to old firmware.
Could gain complete access of the device by creating a reverse root shell.
Could view the video stream over rtsp unauthorized.

Insecure Network Interfaces,
Lack of Secure Update Mechanism
Use of Insecure and Outdated Components

IoT smart-lamp
Scope: Full access

SSID and WiFi password was stored in plaintext.
Wi-Fi and App communication uses weak encryption.
Deauthenticated to capture handshake.

Insecure Data Transfer and Storage
Insecure Default Settings
Lack of Physical Hardening

Table 7.5: Cases - Mapping vulnerabillity

From the results of the tests done on Beehive revision 1, it was shown that it was possible
to gain full control over the device and to view sensitive information by having physical
access. The device findings about the vulnerable camera interface and the corresponding
web server could be linked to the OWASP vulnerability Insecure Ecosystem Interfaces.
It links to this vulnerability because it is a device-related component that had issues due to
a lack of authentication; the camera could be controlled without any authentication. The
web interface for the camera didn’t use any authentication hence a script could be written
to restart the camera continuously as a denial-of-service.

The Lack of Physical Hardening and Insecure Data Transfer and Storage were
additional common vulnerabilities that could be identified. As the device did not have

46

any physical protection, it was possible to dump the firmware and filesystem, thereby
we could examine the complete filesystem. The examination of the filesystem resulted
in sensitive information being accessed due to a lack of physical hardening and insecure
data storage.

The results from the tests done on Beehive revision 2 show that there were no device
findings when the scope was limited to physical access. When redefining the scope to
physical access, sensitive information could be retrieved by filesystem exploration and
code analysis. The pycom device used LTE-M as its communication channel which made
it hard to test and attack remotely as a result. With that, no common vulnerability could
be exploited on Beehive revision 2 with the original scope.

From the results of the tests done on IoT camera, it is shown that it was possible to
gain full control over the device by spawning a root shell. Additionally, the rtsp video
stream could be accessed over the network without any authentication. Both exploits
were found by a CVE present in uHTTPd binary. One of the identified vulnerabilities is
Insecure Network Interfaces as the uHTTPd network/web service was exposed to the
rest of the network and used to spawn the root shell and access the rtsp video stream. The
network service was concluded to be an insecure network service running on the device
which led to unauthorized remote control and compromised integrity. As the vulnera-
bility was present in the uHTTPd binary and was proven to be an insecure component
that compromised the device, the OWASP vulnerability Use of Insecure and Outdated
Components could be identified. Furthermore, the CVE could be used due to the fact that
no firmware update had been done, which required a manual update through the supplied
mobile app. The OWASP vulnerability Lack of Secure Update Mechanism could be
identified. Additional firmware testing was done, but nothing was found. The identified
CVE was due to a physical attack to retrieve the uHTTPd binary, therefore we can argue
that there was a lack of physical hardening even though we not specifically exploited this.

The tests done on the smart lamp resulted in two major device findings. Firstly, in the
reconnaissance stage we found that the Wi-Fi SSID and password are stored in plaintext
on that specific SoC by doing physical testing. As such whenever a firmware dump is
done, opening the bin file in a hex editor reveals the SSID and password. The OWASP
vulnerabilities Insecure Data Transfer and Storage and Lack of physical hardening
links to the device findings as sensitive information were stored insecurely. In addition
to sensitive information being stored in plaintext, it was found that the supplied app used
for communication between the device and the cloud service used weak encryption algo-
rithms somewhere within the device ecosystem. The other OWASP vulnerability Inse-
cure Default Settings was identified, as the use of WPA3 was not supported. This makes
the device vulnerable to deauthentication attacks and made it possible for us to capture
the handshake and obtain the password hash to gain network access by cracking it.

To summarize, the results of the device findings show that three out of four tested de-
vices had common vulnerabilities that could be exploited. The device indicates that the
IoT devices were more vulnerable to physical-based attacks than network based attacks.
Multiple common vulnerabilities could be identified and exploited, which compromised
the confidentiality, integrity, and availability of these IoT devices. The results also show
that the created generic framework could be used in conjunction when conducting a pen-
etration test against IoT devices.

47

7.3 The challenges when testing IoT devices (RQ3)

We found that there are a multitude of different challenges when security testing IoT
devices compared to traditional computing and networking devices.

To start, there is no uniform set of penetration testing standards that can be used as
guidance for testing IoT devices as shown in this research. This lack of standardization
could make it difficult for penetration testers to conduct a test targeting IoT devices. Each
type of IoT device uses unique communication protocols and architectures, resulting in
a complex and challenging penetration testing process. Understanding the complexity
of different IoT devices and their ecosystems required us to gain specialized knowledge
about each device which was very time consuming. This combined with a broad set
of different networking and hardware standards for IoT makes an automated penetration
testing solution more difficult.

The tests done on beehive revision 2 indicate that physical protection greatly shrinks
the attack surface, which resulted in no common vulnerability that could be exploited.
With no physical access combined with the devices’ usage of IoT-specific communica-
tion protocols such as LTE-M, the testing phase becomes more complicated. The attack
surface shrinks and additional hardware components as an SDR are needed to test the
communication channel to test the device. This raises the starting costs and resources
compared to non IoT penetration testing.

Devices often automatically interact with external cloud services which may prove a
hindrance to penetration testing. This was found when testing the case for the Wi-Fi smart
lamp. Some parts of lamp initial configuration are sent and processed on external servers
which are not controlled by the user who owns the IoT product. This can make penetration
testing difficult as there is often little to no way in getting approval to penetration test the
cloud services themselves. Finally, ethical considerations should be considered, such
as the potential harm that could arise from exploiting vulnerabilities in real-world IoT
deployments. While penetration testing a smart lamp may not have ethical complications,
conducting a test on a more critical system such as smart healthcare products may do so.

48

8 Discussion

The purpose of this report was to find out if the existing penetration frameworks could be
applied to IoT. To continue, to answer what challenges there are when testing these IoT
devices compared to non IoT devices. Finally, when presented with a generic penetration
testing framework for IoT if applied to test cases, could any common IoT vulnerabilities
be found when cross referenced with OWASP Top 10 for IoT?

The answers to these research questions were found through a multi-method scientific
process.

To answer the first question, a theoretical comparative study was done on the existing
penetration testing frameworks. The frameworks were evaluated to see if they could be
used as guidance in a penetration test for only IoT. OSSTM and OWASP for IoT were
excluded as it did not fit the criteria set for being defined as a framework. PTES and
NIST 800-115 did fit the criteria in being defined as a framework. In comparison with the
study by Shanley and Johnston [5], our research resulted in defining PTES as a framework
to which they did not conform. The next section investigated how well those frameworks
could be applied to testing the common vulnerabilities for IoT. Testing IoT devices with
PTES and NIST 800-115 is not feasible due to the lack of adequate testing methodologies
that can address the common vulnerabilities and attack surface. This proves that there
was no penetration testing framework for IoT devices. Building a complete framework
for penetration testing is a challenging task, specifically as IoT devices exhibit variations
in form factors, functionalities, and architectures. The created framework in this paper
aims to cover most of the IoT specific challenges and protocols in this challenging area of
research. From the evaluation of the existing frameworks, we found that it would not be
possible to apply its testing methodologies to IoT as there were many attack and testing
vectors missing. Based on the insights obtained from this section, the newly developed
framework incorporates previously missing testing methodologies, including hardware
and firmware testing, among others.

When it came to finding IoT testing methodologies, it was challenging to find sources
with a more comprehensive analysis of the method. Additionally, many sources covered
only theoretical methods that had not been applied to real-life devices and protocols.

However, penetration testing frameworks are not the only way to test and enforce
IoT security. Other ways to detect security issues in IoT devices are through security
standards, security assessments and protocols as shown in the research done by Johansson
[52].

The second part of this research was testing the security on a set of devices by fol-
lowing the framework. Moreover, we investigated if any of the common vulnerabilities
seen in the OWASP Top 10 could be identified and exploited. The experiments resulted in
finding vulnerabilities on three out of the four tested devices. If the scope for Beehive re-
vision 2 was redefined, we found that all the devices were vulnerable to physical attacks.
As these devices are likely to be deployed in areas where physical access could be hard to
control [19] or where insiders could access the device unnoticed, physical protection, de-
vice management, and anti-tamper mechanisms need to be in place to maintain the device
security.

Williams et al. [53], used the vulnerability scanner Shodan to scan consumer IoT
devices exposed to the Internet. Their study showed that 20,237 of the 156,680 (12.92%)
scanned devices had vulnerabilities of different risks. In our research, the more consumer-
oriented products like the camera and the lamp could be exploited. From the cases in this
research, we can argue that it was easier and less time consuming to exploit the more

49

commercial products compared to the beehive devices. There were no devices in the
cases that used protocols like Zigbee, LoRaWAN or Z-Wave which the framework could
be tested against.

Moving on, the design issues of these types of communication protocols are covered
by the framework. Assessing the beehive that used LTE-M proved to be challenging,
mainly due to the direct form of data communication. When devices use this type of
low-power radio communications, penetration testers would require additional hardware
testing tools, such as an SDR. In this research, we did not have access to this type of hard-
ware. With that, there were limitations to which devices, protocols, and communication
channels could be tested fairly.

From all the knowledge gained, we could show that the security of IoT devices is not
particularly strong, which is why they pose a huge security risk when being integrated
into daily systems. While these common vulnerabilities are known, manufacturers and
developers still fail to mitigate these challenges. The results show that the common vul-
nerabilities could be detected by following the guidelines in the created framework. This
work also discusses other ways to prevent these issues by following security assessments
and using protocols with higher security.

50

9 Conclusions and Future Work

In this thesis, the results show that existing penetration testing frameworks cannot be ap-
plied to IoT devices without significant modifications. We also identified the challenges
of testing IoT devices and the importance of addressing common vulnerabilities. The
report proposed a new framework for testing IoT devices that covers IoT-specific test-
ing methodologies, which were successfully used to detect vulnerabilities in IoT devices.
Section 6 with the cases shows how the manufacturers and developers could have identi-
fied these common vulnerabilities by having a proper penetration testing framework with
guidelines to follow. The results of this research can be used both within the industry
and for science, to expand the knowledge and interest about IoT security issues and test-
ing methodologies. The created framework could be used by organizations to enforce
security and detect security vulnerabilities among their IoT devices connected to their
networks and assets.

In conclusion, as IoT devices often come with security vulnerabilities, it becomes
important for the manufacturers, developers, and the consumers to test these devices for
vulnerabilities before putting them in production. By conducting regular penetration tests,
it would be possible to mitigate the vulnerabilities before a malicious actor can take ad-
vantage of it.

Future work from this research could be to conduct penetration tests on a larger set of
devices by following the created framework. As this report did not target all IoT specific
protocols it would be interesting to develop more comprehensive methods to target pro-
tocols like Zigbee, Z-Wave and LoRA. Additionally future work would be to extend the
framework with more testing methods. As the results indicate that the tested IoT devices
were more vulnerable to physical attacks, it would be interesting to see research about
mitigation strategies and testing methodologies targeting the physical security aspects
only.

51

References

[1] “Iot connected devices worldwide 2019-2030,” Statista, 05
2022. [Online]. Available: https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/

[2] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “Iot privacy and
security: Challenges and solutions,” Applied Sciences, vol. 10, no. 12, p. 4102, Jun
2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/12/4102/pdf

[3] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of things is a revolutionary approach
for future technology enhancement: A review,” Journal of Big Data, vol. 6, no. 1,
2019.

[4] H. M. Z. A. Shebli and B. D. Beheshti, “A study on penetration testing process and
tools,” in 2018 IEEE Long Island Systems, Applications and Technology Conference
(LISAT), 2018, pp. 1–7.

[5] A. Shanley and M. N. Johnstone, “Selection of penetration testing methodologies:
A comparison and evaluation,” 13th Australian Information Security Management
Conference, p. 65–72, 2015.

[6] G. Yadav, A. Allakany, V. Kumar, K. Paul, and K. Okamura, “Penetration testing
framework for iot,” in 2019 8th International Congress on Advanced Applied Infor-
matics (IIAI-AAI), 2019, pp. 477–482.

[7] G. Yadav, K. Paul, A. Allakany, and K. Okamura, “Iot-pen: A penetration testing
framework for iot,” in 2020 International Conference on Information Networking
(ICOIN), 2020, pp. 196–201.

[8] G. Yadav, K. Paul, A. Allakany, and K. Okamura, “Iot-pen: An e2e penetration
testing framework for iot,” Journal of Information Processing, vol. 28, no. 0, p.
633–642, 2020.

[9] I. Brass, L. Tanczer, M. Carr, M. Elsden, and J. Blackstock, “Standardising a moving
target: The development and evolution of iot security standards,” SSRN Electronic
Journal, 2018.

[10] J. Saleem, M. Hammoudeh, U. Raza, B. Adebisi, and R. Ande, “Iot standardis-
ation,” Proceedings of the 2nd International Conference on Future Networks and
Distributed Systems - ICFNDS ’18, 2018.

[11] Vumetric, “Top 5 penetration testing methodologies and stan-
dards,” Sep 2019. [Online]. Available: https://www.vumetric.com/blog/
top-penetration-testing-methodologies/

[12] EC-Council, “Five methodologies that can improve your penetration testing roi,”
Mar 2022. [Online]. Available: https://www.eccouncil.org/cybersecurity-exchange/
penetration-testing/improve-penetration-testing-roi/

[13] OWASP, “Penetration testing methodologies.” [Online]. Avail-
able: https://owasp.org/www-project-web-security-testing-guide/v41/3-The_
OWASP_Testing_Framework/1-Penetration_Testing_Methodologies

52

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.mdpi.com/2076-3417/10/12/4102/pdf
https://www.vumetric.com/blog/top-penetration-testing-methodologies/
https://www.vumetric.com/blog/top-penetration-testing-methodologies/
https://www.eccouncil.org/cybersecurity-exchange/penetration-testing/improve-penetration-testing-roi/
https://www.eccouncil.org/cybersecurity-exchange/penetration-testing/improve-penetration-testing-roi/
https://owasp.org/www-project-web-security-testing-guide/v41/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://owasp.org/www-project-web-security-testing-guide/v41/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies

[14] P. Herzog and ISECOM, “The open source security testing methodology manual
(osstmm),” 2010. [Online]. Available: https://www.isecom.org/OSSTMM.3.pdf

[15] PTES, “Ptes technical guidelines - the penetration testing execution standard,” 2011.
[Online]. Available: http://www.pentest-standard.org/index.php/PTES_Technical_
Guidelines

[16] OWASP, “Owasp internet of things,” 2018. [Online]. Available: https:
//owasp.org/www-project-internet-of-things/

[17] NIST, “Special publication 800-115 technical guide to information security
testing and assessment recommendations of the national institute of standards
and technology,” Sep 2008. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-115.pdf

[18] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” Journal of Management
Information Systems, vol. 24, pp. 45–77, 01 2007.

[19] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,” The
internet society (ISOC), vol. 80, pp. 1–50, 2015.

[20] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7, pp.
97–114, 2009.

[21] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of things is a revolutionary approach
for future technology enhancement: a review,” Journal of Big Data, vol. 6, no. 1,
Dec 2019. [Online]. Available: https://journalofbigdata.springeropen.com/articles/
10.1186/s40537-019-0268-2

[22] C.-l. Zhong, Z. Zhu, and R.-G. Huang, “Study on the iot architecture and access
technology,” in 2017 16th International Symposium on Distributed Computing and
Applications to Business, Engineering and Science (DCABES), 2017, pp. 113–116.

[23] “What is iot architecture? guide and examples.” [Online]. Available: https:
//www.mongodb.com/cloud-explained/iot-architecture

[24] W. Saltzstein, “Bluetooth wireless technology cybersecurity and diabetes technol-
ogy devices,” Journal of Diabetes Science and Technology, vol. 14, no. 3, p.
193229681986441, Jul 2019.

[25] Balbix, “Iot security challenges and problems,” Jan 2020. [Online]. Available:
https://www.balbix.com/insights/addressing-iot-security-challenges/

[26] S. Bhatt and P. R. Ragiri, “Security trends in internet of things: A survey,” SN Ap-
plied Sciences, vol. 3, pp. 1–14, 2021.

[27] N. M. Karie, N. M. Sahri, W. Yang, C. Valli, and V. R. Kebande, “A review of
security standards and frameworks for iot-based smart environments,” IEEE Access,
vol. 9, pp. 121 975–121 995, 2021.

[28] Tutorialspoint, “Types of penetration testing - tutorialspoint,” 2019. [On-
line]. Available: https://www.tutorialspoint.com/penetration_testing/types_of_
penetration_testing.htm

53

https://www.isecom.org/OSSTMM.3.pdf
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-internet-of-things/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0268-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0268-2
https://www.mongodb.com/cloud-explained/iot-architecture
https://www.mongodb.com/cloud-explained/iot-architecture
https://www.balbix.com/insights/addressing-iot-security-challenges/
https://www.tutorialspoint.com/penetration_testing/types_of_penetration_testing.htm
https://www.tutorialspoint.com/penetration_testing/types_of_penetration_testing.htm

[29] D. N. Astrida, A. R. Saputra, and A. I. Assaufi, “Analysis and evaluation of wireless
network security with the penetration testing execution standard (ptes),” Sinkron:
jurnal dan penelitian teknik informatika, vol. 7, no. 1, pp. 147–154, 2022.

[30] OWASP, “4.0 testing guide,” 2014. [Online]. Avail-
able: https://owasp.org/www-project-web-security-testing-guide/assets/archive/
OWASP_Testing_Guide_v4.pdf

[31] RedHat, “What is api security?” Jan 2019. [Online]. Available: https:
//www.redhat.com/en/topics/security/api-security

[32] M. Bettayeb, Q. Nasir, and M. A. Talib, “Firmware update attacks and
security for iot devices: Survey,” in Proceedings of the ArabWIC 6th Annual
International Conference Research Track, ser. ArabWIC 2019. New York,
NY, USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi-org.proxy.lnu.se/10.1145/3333165.3333169

[33] W. Mazurczyk and L. Caviglione, “Cyber reconnaissance techniques,” Communica-
tions of the ACM, vol. 64, no. 3, pp. 86–95, 2021.

[34] C. Holguera, S. Schleier, B. Mueller, and J. Willemsen,
“Owasp mobile application security testing guide,” Sep 2022. [On-
line]. Available: https://github.com/OWASP/owasp-mastg/blob/master/Document/
0x06c-Reverse-Engineering-and-Tampering.md

[35] OWASP, “Android tampering and reverse engineering - owasp mobile appli-
cation security.” [Online]. Available: https://mas.owasp.org/MASTG/Android/
0x05c-Reverse-Engineering-and-Tampering/

[36] IBM, “Choosing the best hardware for your next iot
project,” 2017. [Online]. Available: https://developer.ibm.com/articles/
iot-lp101-best-hardware-devices-iot-project/

[37] X. He, S. Alqahtani, R. Gamble, and M. Papa, “Securing over-the-air iot firmware
updates using blockchain,” 05 2019, pp. 164–171.

[38] Kumari, “Determing unknown baud rate,” Apr 2023. [Online]. Avail-
able: https://web.archive.org/web/20230426103924/https://www.kumari.net/index.
php/random/37-determing-unknown-baud-rate

[39] N. N. V. Database, “Nvd - cve-2017-17020,” 2017. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2017-17020

[40] Y. Li, Y. Yang, X. Yu, T. Yang, L. Dong, and W. Wang, “Iot-apiscanner: Detecting
api unauthorized access vulnerabilities of iot platform,” in 2020 29th International
Conference on Computer Communications and Networks (ICCCN), 2020, pp. 1–5.

[41] A. Tierney, “Z-shave. exploiting z-wave downgrade at-
tacks | pen test partners,” Apr 2023. [Online]. Avail-
able: https://web.archive.org/web/20230414103525/https://www.pentestpartners.
com/security-blog/z-shave-exploiting-z-wave-downgrade-attacks/

[42] Jan 2022. [Online]. Available: https://kb.cert.org/vuls/id/142629

54

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://www.redhat.com/en/topics/security/api-security
https://www.redhat.com/en/topics/security/api-security
https://doi-org.proxy.lnu.se/10.1145/3333165.3333169
https://github.com/OWASP/owasp-mastg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/OWASP/owasp-mastg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://mas.owasp.org/MASTG/Android/0x05c-Reverse-Engineering-and-Tampering/
https://mas.owasp.org/MASTG/Android/0x05c-Reverse-Engineering-and-Tampering/
https://developer.ibm.com/articles/iot-lp101-best-hardware-devices-iot-project/
https://developer.ibm.com/articles/iot-lp101-best-hardware-devices-iot-project/
https://web.archive.org/web/20230426103924/https://www.kumari.net/index.php/random/37-determing-unknown-baud-rate
https://web.archive.org/web/20230426103924/https://www.kumari.net/index.php/random/37-determing-unknown-baud-rate
https://nvd.nist.gov/vuln/detail/CVE-2017-17020
https://web.archive.org/web/20230414103525/https://www.pentestpartners.com/security-blog/z-shave-exploiting-z-wave-downgrade-attacks/
https://web.archive.org/web/20230414103525/https://www.pentestpartners.com/security-blog/z-shave-exploiting-z-wave-downgrade-attacks/
https://kb.cert.org/vuls/id/142629

[43] Y. Kristiyanto and E. Ernastuti, “Analysis of deauthentication attack on ieee 802.11
connectivity based on iot technology using external penetration test,” CommIT
(Communication and Information Technology) Journal, vol. 14, p. 45, 05 2020.

[44] Apr 2023. [Online]. Available: https://github.com/espressif/esptool

[45] OWASP, “Buffer overflow | owasp,” owasp.org, 05 2022. [Online]. Available:
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

[46] Y. Lu, “Injecting software vulnerabilities with voltage glitching,” 02 2019.

[47] Feb 2020. [Online]. Available: https://cwe.mitre.org/data/definitions/1247.html

[48] N. N. V. Database, “Nvd - cve-2021-4045,” 2021. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2021-4045

[49] V. Fresco, “Cve-2021-4045 poc,” Mar 2023. [Online]. Available: https:
//github.com/hacefresko/CVE-2021-4045-PoC

[50] LimitedResults, “Tuya smart life : How to hack and pwn this lightbulb -
limitedresults,” Nov 2018. [Online]. Available: https://web.archive.org/save/https:
//limitedresults.com/2018/11/pwn-the-tuya-lightbulbs/

[51] Tuya, “Tylc5 module datasheet-tuya iot development platform-tuya developer,” Aug
2022. [Online]. Available: https://developer.tuya.com/en/docs/iot/wifilc5module?
id=K9605t3bpxf75

[52] M. Johansson, “Internet of things security in healthcare: A test-suite and standard
review,” 2018.

[53] R. Williams, E. McMahon, S. Samtani, M. Patton, and H. Chen, “Identifying vul-
nerabilities of consumer internet of things (iot) devices: A scalable approach,” in
2017 IEEE International Conference on Intelligence and Security Informatics (ISI).
IEEE, 2017, pp. 179–181.

55

https://github.com/espressif/esptool
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://cwe.mitre.org/data/definitions/1247.html
https://nvd.nist.gov/vuln/detail/CVE-2021-4045
https://github.com/hacefresko/CVE-2021-4045-PoC
https://github.com/hacefresko/CVE-2021-4045-PoC
https://web.archive.org/save/https://limitedresults.com/2018/11/pwn-the-tuya-lightbulbs/
https://web.archive.org/save/https://limitedresults.com/2018/11/pwn-the-tuya-lightbulbs/
https://developer.tuya.com/en/docs/iot/wifilc5module?id=K9605t3bpxf75
https://developer.tuya.com/en/docs/iot/wifilc5module?id=K9605t3bpxf75

A Application reverse engineering

Figure 1.16: MobSF security score; IoT camera Android application

Figure 1.17: MobSF security score; IoT lamp Android application

B List of abbreviations

Abbreviations
OEM Original equipment manufacturer
ADB Android Debug Bridge
DDoS Distributed Denial-Of-Service
DoS Denial-Of-Service
MITM Man-In-The-Middle
OSINT Open-source intelligence
XSS Cross site scripting
SQL Structured Query Language
API Application Programming Interface
RTS/CTS Request to Send and Clear to Send
CVE Common Vulnerabilities and Exposures
RISC Reduced Instruction Set Computer
SaaS Software-as-a-service
AES Advanced Encryption Standard
SDR Software Defined Radio
uHTTPd micro HTTP daemon
RTSP Real-Time Streaming Protocol
SoC System on chip

A

	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Results
	Scope/Limitation
	Target group
	Outline

	Method
	Research Project
	Literature review
	Define the objectives for a solution
	Design and development
	Demonstration and evaluation
	Reliability and Validity
	Ethical considerations

	Theoretical Background
	Internet of Things
	IoT architecture
	Security Challenges

	Penetration Testing
	Framework definition
	Open Source Security Testing Methodology Manual (OSSTMM)
	Penetration Testing Execution Standard (PTES)
	OWASP for IoT
	NIST 800-115

	Framework comparison
	Addressing the common vulnerabilities

	The generic penetration testing framework for IoT
	Introduction
	Scope

	Reconnaissance & Intelligence gathering
	Software
	Hardware

	Exploitation
	Network
	Firmware
	Hardware

	Post-Exploitation
	Reporting
	Vulnerability disclosure to vendors

	Application suite

	Cases
	IoT beehive revision 1
	IoT beehive revision 2
	IoT camera
	IoT Wi-Fi Smart Lamp

	Results and Analysis
	How does the existing standards/framework apply to IoT penetration testing? (RQ1)
	Cases - Mapping vulnerabilities that were found when using the artifact (RQ2)
	The challenges when testing IoT devices (RQ3)

	Discussion
	Conclusions and Future Work
	References
	Application reverse engineering
	List of abbreviations

