Engineering Degree Project

Anonymization of Sensitive Data
through Cryptography

N
-,
S
o~

N
o~
~

N
0

~

S

-~
~
N

s
A R

7

Author: Isac Holm, Johan Dahl
Supervisor: Tobias Andersson
Gidlund

Lnu Supervisor: Tobias Andersson
Gidlund

Semester: Spring 2023

Subject: Computer Science

Abstract

In today’s interconnected digital landscape, the protection of sensitive information is
of great importance. As a result, the field of cryptography plays a vital role in en-
suring individuals’ anonymity and data integrity. In this context, this thesis presents
a comprehensive analysis of symmetric encryption algorithms, specifically focus-
ing on the Advanced Encryption Standard (AES) and Camellia. By investigating
the performance aspects of these algorithms, including encryption time, decryption
time, and ciphertext size, the goal is to provide valuable insights for selecting suit-
able cryptographic solutions. The findings indicate that while there is a difference
in performance between the algorithms, the disparity is not substantial in practical
terms. Both AES and Camellia, as well as their larger key-size alternatives, demon-
strated comparable performance, with AES128 showing marginally faster encryption
time. The study’s implementation also involves encrypting a data set with sensitive
information on students. It encrypts the school classes with separate keys and as-
signs roles to users, enabling access control based on user roles. The implemented
solution successfully addressed the problem of role-based access control and encryp-
tion of unique identifiers, as verified through the verification and validation method.
The implications of this study extend to industries and society, where cryptography
plays a vital role in protecting individuals’ anonymity and data integrity. The results
presented in this paper can serve as a valuable reference for selecting suitable crypto-
graphic algorithms for various systems and applications, particularly for anonymiza-
tion of usernames or short, unique identifiers. However, it is important to note that
the experiment primarily focused on small data sets, and further investigations may
yield different results for larger data sets.

Keywords: Cryptography, Encryption, Decryption, AES, Camellia

Contents

1

Introduction
1.1 Background
1.2 RelatedWork
1.3 Problem Formulation
1.4 Motivation e e
1.5 Milestones
1.6 Targetgroup e e e
1.7 Outline e e
Theory
2.1 Data Anonymization
2.2 Cryptography e
2.3 Cryptanalysis
24 Symmetric Encryption L L L
2.4.1 Advanced Encryption Standardo
242 Camellia e
2.5 Asymmetric Encryption.
2.5.1 Secure Transfer
2.6 Role-based Encryption
2.7 CHent-server i i e e e e
2.8 AccessControl e
2.8.1 Open Authentication2.0
Method
3.1 ResearchProject,
3.2 Literature review o o e e e e e e e
3.3 Controlled Experiment
3.4 Verification and Validation,
34.1 Rlunittests e
342 R2unittests
343 R3unittest
3.5 Reliability and Validity
3.6 Ethical Considerations i e
Implementation
4.1 Choice of Encryption Algorithms
4.2 Experimental Implementation
4.3 Additional Implementationo

Experimental Setup and Results

5.1 Experimental Setup
5.2 EncryptionTime
5.3 DecryptionTime
54 Ciphertext Growth
5.5 Verification and Validation Lo

12
12
12
13
13
14
14
15
15
15

16
16
16
20

6 Analysis

6.1 Statistical Analysis Setup
6.2 Encryptiontime
6.3 DecryptionTime
6.4 Ciphertext Growth

7 Discussion

8 Conclusion

8.1 Future work .

References

A Appendix 1
A.1 Code snippets

26
26
26
29
30

31

33
33

35

1 Introduction

This paper is done in regard to a 15 HEC bachelor’s degree project. It investigates the
field of computer security and touches on subjects concerning cryptography and privacy
preservation. The goal is to create a software solution that encrypts data to protect the
privacy of the data subjects. The paper puts a high emphasis on the performance of
the encryption algorithm used. Controlled experiments are carried out to evaluate the
algorithms in regard to speed and cipher size metrics. The complete implementation is
also verified on functional requirements using automatic testing.

Chapter 1 serves as the introductory chapter of this thesis, setting the stage for the
research undertaken. It provides a comprehensive overview of the problem under inves-
tigation. The chapter is structured into several subchapters, each dedicated to a distinct
topic or theory. It begins with a detailed background of the problem, followed by a review
of related work in the field. The problem formulation is then presented, clearly defining
the research question and objectives. The chapter also outlines the motivation behind the
study, providing a rationale for the research and its significance. It presents the mile-
stones that guided the progression of the thesis and discusses the scope and limitations of
the study.

1.1 Background

Computer security as a field started to grow in the 1960s and has since then led to a
deeper understanding of threats in the world of computers and how to manage them. Its
most fundamental form addresses four basic premises: vulnerabilities, threats, incidents,
and controls of a system [1]. However, as technology rapidly evolves, new threats and
vulnerabilities within the field arise. With the growing popularity of using cloud-based
capabilities for data storage among enterprises [2], and the great amount of data that is
collected today through rising technologies such as IoT or social media. Stakeholders’
concerns about how to maintain the confidentiality of sensitive data have risen. This
thesis addresses the field of computer security and more specifically the problem of how
to maintain the privacy of individuals in a data set containing sensitive information.

The problem originates from a request of the researcher group EdTechLnu. EdTechLnu
conducts research within the field of educational technology, with three main areas: Tech-
nical research, Pedagogical research, and Organizational research. Some goals of
EdTechLnu’s research include developing new technology that supports teaching and
learning, methods to study the effects of technology-supported learning, as well as an-
alyzing and integrating the use of data related to students’ online learning behaviors to
increase the quality of education [3].

1.2 Related Work

A comprehensive performance study of four symmetric encryption algorithms - Triple
Data Encryption Standard (3DES), Advanced Encryption Standard (AES), Blowfish, and
Twofish is provided in [4]. The study conducts experiments on the different algorithms
by measuring execution time, memory utilization, and cipher text size against different
file sizes. The experiments are conducted by implementing the algorithms in a .NET
environment using C#. The results show that AES has the lowest execution time in terms
of encryption and decryption. AES and 3DES consume a similar amount of memory
in the encryption process. Blowfish and Twofish perform worst in the majority of the

experiments. However, as the file size increases, 3DES is outperformed by the Blowfish
algorithm.

In [5] a performance evaluation on AES is carried out. The author investigates how the
algorithm performs using different input configurations, such as key size and the chaining
modes Cipher Block Chaining (CBC) and Electronic Codebook (ECB), but also different
hardware configurations. The results show that the average increase in encryption time
over the different hardware configurations and file sizes is approximately 16.4% when
using a greater key size. An additional 4.6% increase is added when using the CBC
mode. In terms of decryption time, the numbers result in a 15.4% increase without CBC,
and an additional 7.5% with CBC.

The report in [6] provides another evaluation of various symmetric encryption algo-
rithms, such as AES, ARC2, Blowfish, CAST, and 3DES. The evaluation is implemented
in Python [7]. Some conclusions from the experiments conducted in the report are that
the Blowfish algorithm performs the fastest. AES provides a more consistent performance
overall in comparison to the other algorithms, with the exception of Blowfish. However,
the authors also emphasize the importance of the block sizes when comparing AES and
Blowfish. Blowfish is a 64-bit block cipher, making it more vulnerable to birthday attacks
than AES and its 128-bit blocks.

In [8], the author investigates the encryption and decryption process of the AES algo-
rithm. A brief introduction to cryptography, in general, is given, along with the history of
AES. The paper proceeds to in detail describe the encryption-decryption and key genera-
tion process of AES.

1.3 Problem Formulation

The task, as formulated by EdTechLnu is to find a method that anonymizes a data set of in-
formation on school students. The data holds unique identifiers that need to be encrypted
to ensure the confidentiality of the students. Decryption should only be possible by school
staff with certain roles. For example, the head principal should be able to decrypt and ac-
cess the information on all students in their school. In contrast, class principals should be
able to decrypt and view the information of the students in their class only. The imple-
mentation should also support the need of revoking access to the information, in case of
changes to the staff in the school. Hence, the problem of possibly having to re-encrypt the
data also needs to be addressed. In regard to this, the following research questions will be
examined throughout this thesis:

RQ1 What are the most suitable encryption algorithms for protecting the unique identi-
fiers in a student data set, and why are they considered suitable?

RQ2 How do the identified encryption algorithms perform in terms of speed and resource
usage when applied to the student data set?

RQ3 How can arole or identity-based decryption system be designed and implemented to
ensure secure access to the student data set, and how can this system accommodate
changes in access privileges?

The expected results of this thesis are to identify several encryption algorithms that achieve
a suitable cryptographic storage solution for the student data set. Implement one or several
of these encryption algorithms and evaluate the performance of these algorithms through
a series of controlled experiments. Additionally, an access control mechanism that satis-
fies the functional requirements made by the stakeholders will be implemented and tested
through automatic unit testing.

1.4 Motivation

Emerging technologies such as the Internet of Things (IoT) gather and distribute big data
on sensitive user information across the internet [9]. In the annual report of the cyberse-
curity threat landscape by the European Union Agency for Cybersecurity (ENISA) [10]
it is stated that the global production and consumption of data amounted to 79 zettabytes
in 2021. A number that is projected to increase to more than 180 zettabytes by 2025.
Furthermore, this new role of data used by companies has enabled a data-driven econ-
omy, consequently making data a significant target for cybercriminals. The report also
states that data compromises increased by 68% over the year 2020 and that this increase
in leaked personal and sensitive data has led to a significant increase in identity theft.
Moreover, privacy laws such as the Health Insurance Portability and Accountability Act
(HIPAA) require safeguards that protect and limit the use and disclosure of a user’s data
within the health industry [11].

This recent increase in data usage and cybersecurity threats, coupled with laws requir-
ing protection against these threats, highlights the substantial need for data anonymization
methods to preserve users’ privacy

1.5 Milestones

In the course of formulating this thesis, a series of milestones were established to provide a
structured framework for the progression of the research. These milestones are presented
in Table 1.1

Table 1.1: Established milestones.

M1 First project plan handed in for peer review.

M2 Finished project plan delivered to supervisor.

M3 Find suitable encryption algorithms for implementation.
M4 Finishing chapter 1-3 of the report.

MS Finish implementation of encryption methods.

M6 | Conduct performance experiments on the encryption algorithms.
M7 | Finish implementation of access control and role-based decryption.

M8 Conduct testing of implementation done in M7.
M9 Finishing chapter 4-6 of the report.
M10 Finishing chapter 7-8 of the report.

1.6 Target group

The target group for this work is primarily the researchers at EdTechLnu. However, it
could also be interesting to other developers in the field of computer security. Especially
people that work with cryptography and data storage. Additionally, it can be of further
interest to schools with similar problems. That is, to ensure student confidentiality.

1.7 Outline

This report consists of a total of 8 chapters, including the introduction. The following
Chapter will introduce and describe the theory of important topics that are relevant to
the work done in this thesis. It will in detail explains topics needed to understand the

problem of investigation. As well as methods and theories used to solve the problem.
The chapter is divided into subchapters where each subchapter investigates a different
topic or theory. Chapter 3 describes the methodology used to investigate the problem
of this thesis. It motivates the choices of methodologies made to solve the problems
of this thesis. It discusses issues concerning reliability and validity that can occur with
the chosen methodologies when applied to the problem. In addition, the ethical aspects
of the project are considered. Chapter 4 presents the software implementation of the
solution to the problem of this work. It provides an overview of the implementation
using class diagrams and flowcharts, but also detailed explanations of the source code.
Chapter 5 describes the experimental setup and presents the results of the experiment.
This includes the environment in which the experiment is carried out, such as hardware
specifications, source code programming language, operating system, and experimental
metrics. The results are presented using a combination of tables and graphs. Followed by
Chapter 5 is an analysis of the results, Chapter 6. This chapter analyses the results of the
experiments carried out. Conclusions are made and motivated by the data presented in the
previous chapter along with statistical tests performed on the data. Chapter 7 discusses
the presented results in the context of the problem formulation and if the problem, as
described in Chapter 1.3 has been answered. Chapter 8 draws conclusions about the
findings of this thesis and what the thesis has accomplished. It discusses different possible
approaches that could have made for a better result as well as how future work can further
improve the project.

2 Theory

This chapter lays the groundwork of this thesis by introducing and explaining the key
theoretical concepts that are relevant to the research. It serves as a foundation for under-
standing the work carried out. The chapter begins with a discussion on data anonymiza-
tion, explaining its importance in protecting the privacy of individuals disclosed by the
data. It mentions various methods of achieving data anonymization, both cryptographic
and non-cryptographic. Additionally, this chapter provides a comprehensive examination
of important cryptographic concepts, including symmetric and asymmetric encryption,
along with a description of various encryption algorithms.

2.1 Data Anonymization

Data anonymization is a means to protect the privacy of individuals disclosed by the
data. There are many methods of achieving data anonymization, both cryptographic and
non-cryptographic. Depending on the purpose of the data, it is important that the right
methods are deployed. Examples of cryptographic anonymization techniques are Storage
privacy, Privacy-preserving computations and Secure private communications [12]. Stor-
age privacy can be achieved through encryption techniques and access control. Privacy-
preserving computations allow computations to be carried out on cipher text and can be
achieved by homomorphic encryption. Secure private communications are done by en-
crypting the communications between users, thus preventing any third parties to intervene
and read the data.

Another way to protect privacy is through k-anonymization, originally proposed by
[13]. k-anonymization mainly focuses on the privacy preservation of publicly disclosed
data to avoid linking attacks. The process involves applying operations such as suppres-
sion or generalization on cell values of the data in such a way that each record is indis-
tinguishable from at least k - 1 others [14]. This thesis will further explore cryptographic
techniques, namely storage privacy.

2.2 Cryptography

Cryptography is the practice of information security and has historically been used for
political, religious, and military purposes to prevent opposing factions from intercepting
valuable or sensitive information. It can be traced back to 400 BC, when it was used by
Spartans [15]. However, in recent years cryptography is widely used to mask and protect
any type of data stored on our devices and also to protect the confidentiality of digital
messages sent via networks.

The topic of cryptography is built on several areas such as mathematics, theoreti-
cal computer science, number theory, finite field algebra, computational complexity, and
logic. Combining these areas, we get modern cryptography [1].

The concept cryptography is based on the transformation of plaintext to ciphertext.
Plaintext is the text that has not yet been encrypted. Once the plaintext has been pro-
cessed by an encryption algorithm, it is then called ciphertext, which is the encrypted
version of the plaintext [1]. For this purpose, there exist multiple conventional encryption
algorithms and methods, all of which use cryptographic keys in the process. The keys
used for this purpose are either symmetric or asymmetric. To return the ciphertext to
plaintext, decryption algorithms are used and are the exact opposite of encryption, using
either the symmetric or asymmetric key to perform the operation [16].

Cryptographic keys are bitstrings consisting of random letters, numbers, and signs. They
often range in size from 56 to 2048 or more bits per key, depending on the cryptographic
algorithm. See Figure 2.1 [1] for a simplified example of the encryption, and decryption
process.

Key Key
(Optional) (Optional)
Plaintext Ciphertext Original
. . Plaintext
Encryption Decryption

Figure 2.1: Cryptographic process [1].

In addition, some block algorithms apply padding, such as AES and Camellia. Padding is
the process of adding extra characters to a block of plaintext when it is smaller or larger
than the algorithm’s block size. This additional padding ensures that the plaintext reaches
an even block size.

2.3 Cryptanalysis

The practice of cryptanalysis involves deciphering ciphertext when the corresponding key
is unknown. This is achieved by analyzing the encrypted data or transmission for patterns
and clues, or by attempting various known attacks on the encrypted data to employ a
brute-force approach to uncover the secret key [1].

Analysts look for any kind of pattern and often prefer to have a large amount of data
to analyze. The most preferable case is to have both plaintext and ciphertext so that they
can be compared and see what kind of transformation that has been used. An instance of
this could involve intercepted messages featuring a known template, such as signatures
found in official statements, which can subsequently be employed in cryptanalysis [1].

Cryptanalysis finds applications in various domains, including military operations
where it is used to decipher transmissions from enemy forces. Additionally, hackers may
leverage cryptanalysis to acquire confidential information, thereby exploiting it for mali-
cious ends.

2.4 Symmetric Encryption

Symmetric encryption, also called single-key or secret key encryption, is when the key
used to encrypt the plaintext into ciphertext is also used to decrypt the ciphertext back to
plaintext. This key is known as a “secret key”” and is shared amongst the parties involved.
Symmetric encryption is usually the fastest way of encrypting and decrypting, but it is
also less secure because the same key is used for both encryption and decryption. If the
symmetric key is intercepted during communication the encryption can easily be cracked
by third-party users, such as hackers. See Figure 2.2 [1] for a simplified example of
symmetric cryptography where the same key is used for encryption and decryption.

6

—

Key

Original

Plaintext Ciphertext Plaintext

Encryption Decryption

Figure 2.2: Process of symmetric encryption [1].

In [4], the symmetric encryption algorithms AES [16], 3DES, Blowfish and Twofish
are compared in terms of encryption-decryption time and memory utilization. The author
concludes that AES performed best in all categories. The implementation is done using
C#. However, this conclusion is not shared by the author of [17] where another perfor-
mance evaluation on four common symmetric encryption algorithms is conducted. These
are DES, 3DES, AES, and Blowfish. The implementation is done using Java, which is
motivated by its platform Independence, allowing for testing and comparison on a variety
of platforms. The results show that Blowfish performed best in terms of speed, followed
by DES, AES, and 3DES in that order. However, the authors highlight the importance of
performance vs security trade-offs and that security should be considered first.

24.1 Advanced Encryption Standard

In 1997, the National Institute of Standards and Technology announced its intent to find a
new encryption standard [18]. The goal was to develop a Federal Information Processing
Standard (FIPS) capable of protecting sensitive information and used by the U.S Govern-
ment as well as the private sector. Five finalist candidates were chosen: MARS, RC6,
Rijndael, Serpent, and Twofish. After an extensive evaluation, the Rijndael algorithm, by
Joan Daemen and Vincent Rijmen won the competition and became the new encryption
algorithm of choice. Since then, the algorithm has become more known as the Advanced
Encryption Standard (AES).

AES is a secure symmetric block cipher that processes 16 bytes (128 bits) at a time.
It uses symmetric keys with a length of 128, 192, or 256 bits to encrypt and decrypt
messages [19]. AES is widely used in many fields, as well as in cryptography protocols
such as Socket Security Layer (SSL) [8].

In the encryption process of AES, the plaintext is divided into rows and columns,
which are then manipulated in four steps: byte substitution, shift rows, mix columns, and
add round key. These steps form a standard round and are repeated 10, 12, or 14 times,
depending on the key size [19]. The byte substitution performs S-box transformation on
the 16-byte matrix to mix the bytes from one to another. In the row shift transformation,
the bytes are shifted cyclically left depending on the row number. In the third step, mix
columns multiply each byte in a transformation matrix with each column of the state
matrix. Each multiplication is then used in conjunction with an XOR to produce the new
bytes. Add round key uses a subkey derived from the main key to combine each byte from
the previous state with the byte of the subkey using XOR. This produces the final round

state that is used as input in the next standard round [8].

Plaintext

Input 16 bytes (128 bits)

Inital key

Initial Round Add Round Key 4—?

y
>

Expanded Key

Substitute Bytes

Standard Round Shift Rows

10, 12 or 14 times Mix columns ?
Add round key

(D Final Key
Substitute Bytes
Final Round Shift Rows [€———
Add round key

Y

Cipher Text

Output | 14 1 tes (128 bits)

Figure 2.3: Encryption structure of AES.

The encryption process is described in Figure 2.3. First, the plaintext is manipulated
by an add round key transformation in the initial round. Next follows the standard rounds
containing all four transformations. Lastly, a final round is performed by doing the sub-
stitute byte, shift rows and add round key transformation which outputs the final cipher
text.

2.4.2 Camellia

Camellia, developed by Nippon Telegraph and Telephone and Mitsubishi Electric Corpo-
ration in the year 2000, is a symmetric cryptographic block cipher method that applies
permutation, diffusion, and avalanche effects [20]. Similar to AES, Camellia can accept
key sizes of 128, 192, or 256 bits. For 128-bit encryption, it applies 18 Feistel rounds,
and 24 Feistel rounds for 192 and 256-bit keys. Each iteration in Camellia is safe and ef-
fective in both software and hardware implementations and widely used over the internet
and in applications [21]. Camellia provides strong protection against both differential and
linear cryptoanalysis. Furthermore, it has proven to be resilient against attacks such as
interpolation, related-key, truncated differential, boomerang, and slide attacks. Camellia
substitution tables are 8-by-8-bit, making the algorithm optimal for multiple platforms
with a variety of processors with varying performance, in addition to having low RAM
requirements.

When performing encryption using 128-bit keys, the plaintext undergoes an XOR
operation and is then split into two 64-bit blocks. Feistel, Substitution, and Permutation
functions are then applied for all rounds except rounds 6 and 12, which instead inserts
an FL function to prevent regularity. The FL function is a logical transformation that
performs input and output whitenings on the text. The process for 192 and 256-bit keys

is the same but with one added FL round at round 18. Finally, the result is XORed down
to a 128-bit ciphertext [22].

2.5 Asymmetric Encryption

In asymmetric encryption, a key pair is used, commonly referred to as the public and
private keys. In this method, one of the keys is assigned to be the public key. The public
key could be any of the keys in the pair and it is only important to keep the private key
private. The public key is used for encryption while the private key is used for decryption.
This technique is most often used when you do not want to risk sending the symmetric
encryption over a network and risking interception by a third party. Instead, one of the
parties generates a public-private key pair and sends the public key over the network.
The receiver then uses this key to encrypt the plaintext and returns it to the sender. This
ciphertext can then only be decrypted by the private key, which is held by the party that
generated the key pair and is not shared. This is called a cryptographic key exchange [16].
See Figure 2.4 [1], for a simplified example of asymmetric cryptography where different
keys are used for encryption and decryption.

Encryption Decryption
key key
Plaintext Ciphertext On_gmal
. . Plaintext
Encryption Decryption

Figure 2.4: Process of asymmetrical cryptography [1].

Rivest-Shamir-Adelman (RSA) is an asymmetric public-key cryptography method
used for secure transactions over the internet [23]. The encryption methods using the
RSA algorithm are performed by dividing the plaintext into blocks, then performing a
mathematical exponential computation on each of them by raising them to a power. The
power depends on the key. Since exponentiation can scale up to larger numbers, RSA is
considered heavily time-consuming, up to 10 000 times slower than symmetrical methods
such as DES or AES. There is no known cryptoanalytic attack that is significant to RSA
[1].

When sharing asymmetrical encryption keys over a network, there is a risk of inter-
ception. Therefore, it is necessary to employ cryptographic key exchange methods that
significantly prevent attackers from intercepting the keys. These methods are typically,
if not always, asymmetrical, where the secret key is transmitted in an encrypted form
once a public-private key relationship has been established. Examples of such methods
include Rivest-Shamir-Adelman (RSA), Hypertext Transfer Protocol Secure (HTTPS),
Secure Socket Layer (SSL), and Transport Layer Security (TLS). [24].

2.5.1 Secure Transfer

HTTPS is a technology that combines either SSL or TLS with additional certificate mech-
anisms to provide secure and confidential communication over the web. In the first steps
of HTTPS, secure communication is created by using a public-private key. Once the com-
munication is secured, the data is then sent, using AES encryption. HTTPS is considered
secure by most, but websites with outdated certificates are vulnerable to attacks, such as
Man-In-The-Middle (MITM). In most cases, the user is warned by the web browser and
hence, most incidents are caused by the user ignoring this warning [25].

SSL is an encryption protocol that helps to secure data exchanged between the user’s
web browser and server. It uses a mix of four protocols which strengthens upper layer
protocols [26]. By doing that, SSL 3.0 can provide confidentiality, authenticity, and replay
protection, if sent via TCP. In addition, SSL is also responsible for the initialization of the
key-exchange protocol used for sending sensitive data [27].

TLS is the successor of SSL, with additional features and changes in security param-
eters. But both are still commonly used [24] [26].

2.6 Role-based Encryption

Role-Based Encryption (RBE) is a hierarchical encryption approach that classifies users
into a hierarchy of roles and layers. Each role corresponds to a specific layer, forming a
top-down pyramid structure. Roles positioned at the top of the pyramid possess access to
all resources and can grant access to roles situated beneath them. Roles at lower levels can
only access data available within their layer or any lower layers. Users are assigned spe-
cific roles with varying levels of access rights. Each role is associated with a key(s) that
allows access to particular encrypted data based on the user’s role. Users are authorized to
both encrypt and decrypt data accessible to their designated role(s). RBE builds upon the
concept of Role-Based Access Control (RBAC) while incorporating encryption. Conse-
quently, only users possessing the appropriate role can encrypt and access data associated
with that permission level [28].

2.7 Client-server

Client-server refers to a computing architecture in which tasks are divided between a
client (user) and a server (backend) that communicate over a network using standard-
ized protocols. [29]. This enables multiple clients to connect to a server or database
simultaneously. The most common approach to client-server data processing is to put
this responsibility on the server. This means that the clients send requests to the server,
whilst the server returns the results of those requests back to the clients. This speeds up
the performance of the system since the clients can then further calculate the given result
inside the client-hosted applications, saving performance from the server. It also reduces
data replication since there is one common storage where the final results are saved [30].

Encryption can be performed on either the server or client side, and it can be imple-
mented separately or on both entities. When encryption is implemented separately, it is
called either server-side encryption or client-side encryption, depending on which entity
is responsible for performing the encryption [24].

10

2.8 Access Control

Access control is a mechanism responsible for implementing access rights for users.
Users that want to access certain data or applications must be approved by this mechanism
if it is implemented within the system. User identification is most often performed using a
username and password [24]. It can also be done using services such as role-based access
control (RBAC), attribute-based access control (ABAC), or open authorization (OAuth).

Role-based access control is a mechanism that divides users into roles, each role with a
set of privileges [31]. Each user is assigned one or more roles, which are then used for ac-
cessing data or other resources. Before a user is assigned any role, a system administrator
must first authorize the user as a member of the organization. It is most commonly used
within organizations due to the complexity of its implementation. One of the key concepts
within RBAC is to give the users no more privileges than necessary [32]. Additionally, in
larger systems, additional security measures such as Separation of duties (SOD) are ap-
plied, preventing single users from being able to commit fraud. This is called constrained
RBAC. In addition, RBAC can be implemented as a flat or hierarchical approach, to either
split or inherit role permissions [33]. Due to security concerns, it is typically preferable to
establish a new role when existing roles are unsuitable, rather than giving users excessive
privileges. But excessive roles can also pose a security threat. RBAC is a powerful tool
that provides great flexibility and security, but only if well-planned [32].

Attribute-based access control is rather similar to RBAC. Instead of assigning users to
roles, users are instead assigned attributes, used for boolean auditing. ABAC is simpler
than RBAC to implement due to the set-up of RBAC roles demanding a lot of planning.
But, if the amount of attributes grows large, ABAC could be difficult to manage. ABAC
can also adjust after real-time environmental states when auditing. Examples of attributes
can be user GEO location, time of day, or even a user role. In addition, attributes can also
be user actions such as: read, write, delete, add. This provides the AC system with further
flexibility [33].

2.8.1 Open Authentication 2.0

Open Authentication (OAuth) is an authorization standard with the primary purpose of
authorizing API-calls from third-party applications. OAuth uses long-term access tokens
for authorization. OAuth implements four roles: resource owner, resource server, client,
and authorization server. Each with a responsibility to deliver requested data to a third
party after client verification [1].

11

3 Method

This chapter describes and motivates the choices of methods used to answer the problem
formulated in Section 1.3. An overview of the chosen methods is provided, as well as
how they are planned to be used in this thesis. Reliability, validity, and ethics are also
discussed.

3.1 Research Project

Methods used in this study are well-known methods such as literature review (LR), ver-
ification and validation (V&V), and controlled experiments (CE). To acquire compre-
hensive knowledge and understanding, RQ1 employs LR to explore additional research
within the subject and appropriate methods for implementation. Different techniques and
approaches to the problem are examined and evaluated using fact-checking against books
and peer-reviewed articles published from 1990 onwards. The year 1990 is selected due
to the lack of change in the methods in this field since that time. Encryption is a complex
topic and its next significant transformation is likely to arise from quantum computers
[34]. Peer-reviewed articles are preferred due to their critical evaluation by experts, con-
sequently providing greater evidentiary weight compared to non-peer-reviewed articles.

To answer RQ2, an implementation of encryption algorithms is made through the use
of Python and the Python-based library Cryptography [35]. Python was selected at the
request of the stakeholders at EdTechLnu and is well-suited for the project due to its
cryptographic libraries. The study does not measure file transfer execution time because
the focus lies only on the time of execution of the cryptographic techniques. Hence, a
database is not required to perform the tests, and data, such as plain text and cipher text,
will be written to and stored in .txt files. In a live, real-time environment, a database
would be necessary to host and manage the data. But for this experiment, it is redundant
and disconnected from the cryptographic execution time.

To evaluate the performance of the encryption algorithms, as formulated in RQ2, CE
will be conducted to measure the dependent variables and compare the outcomes. The
outcome shall be documented so that it can be used in performance graphs. The execution
time of encryption and decryption and the data sample size of encrypted data will be
measured for different sizes in data sets. Data sets will consist of synthetic data with
varying sizes during the CE, taking the mean value of the execution time of n runs. The
results will be plotted to further investigate the growth of the data.

To answer RQ3, the V&V method will be deployed to test the functional requirements
in the implementation. A list of functional requirements will be set and tested, using unit
tests, so that the software fulfills them accordingly.

3.2 Literature review

A literature review is implemented to find and narrow down suitable methods to be used
in the controlled experiment. The review will be performed solely by searching for, and
reading, peer-reviewed articles from 1990 and onwards. The year 1990 is motivated by
the lack of change in the industry after this year. When searching for suitable articles, two
search engines are used: Linnaeus University online library OneSearch [36] and Google
Scholar [37].

To find suitable articles that are relevant, search words suited for the area of cryptog-
raphy are used, such as Cryptography, Encryption, Decryption, Symmetric encryption,

12

Asymmetric encryption, multi-key cryptography, and Role-based encryption. When us-
ing these search words, it is expected to find information to locate suitable algorithms that
fit the specific purpose of this research. It is possible that by excluding non-peer-reviewed
articles, there could exist faster and more secure cryptographic algorithms that are not
included in the review. But, by only including peer-reviewed articles it is known that
they have been cross-checked for faults and are not factually incorrect. In addition, us-
ing different search words could generate a different result, but the selected search words
matches the research group at EDTECHLnu’s request and hence used.

3.3 Controlled Experiment

Experiments are often carried out to test a certain process or method. The purpose is to
establish a foundation that can explain, describe or further explore a given hypothesis.
In a controlled experiment, quantitative data are gathered systematically in a controlled
environment, with the purpose of ruling out factors such as randomness. This requires a
definition of independent and dependent variables. The independent variables are inputs
that affect the results while the dependent variables are the measured results themselves.
All variables except for the independent variable should be kept constant to try to mini-
mize the impact they could have on the dependent variable [38].

In this thesis, controlled experiments will be applied by measuring three different
dependent variables:

1. Encryption time (ms).
2. Decryption time (ms).
3. Cipher text size (bytes).

The experiment will be conducted on the encryption algorithms identified by the limited
literature search conducted. The independent variables are the input data set and the
different encryption algorithms. A total of three different-sized data sets are to be used.
Hence, the experiment will be repeated three times for every dependent variable. The test
will be iterated 1000 times for each data set. Data will be gathered from each iteration,
and a mean of the results of all the combined iterations will be calculated. This is done
to further validate the results and reduce the impact of any possible disturbances that can
cause a variation in the results.

The different data sets will be generated using a Python script. The data that are to be
encrypted are unique identifiers. Hence, random identifiers of the following format will
be generated:

xx123yy

That is, the first two letters will be randomly generated. Followed by three random digits,
followed again by two more random letters. Three separate data sets will be created. The
first, d1 contains a total of 1000 entries, separated into 25 different school classes, with a
total size of 9KB. The second, d2 contains 2000 entries, separated into 50 classes with a
total size of 18KB. The third data set, d3 contains 4000 entries, separated into 100 classes,
with a total size of 36KB.

3.4 Verification and Validation

Verification and Validation are used to determine whether an implemented software meets
its requirements and specifications to ensure that the intended purpose is fulfilled. The

13

methodology consists of two phases. The verification phase tests an implementation for
all the requirements. This can be achieved using manual or automated tests. The valida-
tion phase is used to check whether the implementation performs in alignment with the
expectations of a stakeholder, such as a customer or an end user.

In this work, some specific requirements for the software implementation have been
proposed by the stakeholders. These are:

* R1: The system shall be able to encrypt and decrypt a data set of unique identifiers.

* R2: The system shall enable different levels of decryption based on user permis-
sions.

* R3: The system shall be able to revoke a user’s ability to decrypt data without
affecting the encrypted data.

These requirements will be verified by automated tests using the unittest [39] frame-
work in Python. This is done by defining one or more test cases for each requirement.
The test will be carried out by creating a test environment that replicates a scenario of
the system being used by a school. This implies creating a set of user objects, including
one head principal and several class principles. To test and verify the R1, R2 and R3
requirements, the following test will be performed:

3.4.1 RI1 unittests

» T1: This test tries to encrypt a class key using the master key. The resulting cipher-
text is compared to the key in plaintext. The expected outcome of the test is that the
objects differ.

* T2: Decrypts the encrypted class key using the master key. The results of the
decryption are compared to the original class key in plaintext. The expected result
is that the objects are equal.

* T3: Tries to encrypt a string replicating the unique id of a student in the data set, us-
ing the class key. The result of the encryption is compared to the original plaintext.
The expected result of the test is that the two objects differ.

* T4: Decrypts the encrypted unique id. The result is compared to the original id in
plaintext. The expected result is that the two compared objects are equal.
3.4.2 R2 unittests

» T5: This test tries to assign a new role to a user. The users’ role privileges before
invoking the set_role method are compared to the users’ roles after. The expected
result is that the compared objects are not equal.

» T6: Tests the revoke access functionality given by the revoke_role method. The
test compares the user object before invoking the method to the object after invoking
the method. The expected result of this test is that the objects differ.

» T7: Tests the access_control function to see if a user has access to a given class.
The expected result is a boolean that equals true.

14

* T8: Tests the access_control function for a principal user. The expected result is a
boolean that equals true.

* T9: Tests the access_control function for a revoked role of a user. The expected
result is a boolean that equals false.

3.4.3 R3 unittest

* T10: This test compares ciphertext before and after revoking user access to demon-
strate that access control does not require re-encryption. The expected result is that
the ciphertext before revoking access equals the ciphertext after revoking access.

3.5 Reliability and Validity

In this study, reliability is difficult due to being hardware dependent on the related speci-
fications used when performing the tests. The current state of the operating system while
running the tests, plus the OS version is also an important factor. In this report, the
hardware specifications are specified, but replicating these tests, a slight variation in exe-
cution time should be expected due to these reasons if a different computer model is used.
The modifications made in the cryptographic library used in this study are documented.
Changing them could lead to larger variations in execution time and slight differences in
data storage.

The code used in the tests is designed and implemented by the writers of this the-
sis. The time of execution is measured using the Python library named time. The
function time.per f_counter_ns(), is called just before encryption starts and saved in
a variable named “start”, and then called again directly after the encryption is done, saved
into a variable named “end”. The runtime is then calculated by subtracting the variables
result = end — start, which gives the runtime in nanoseconds, dividing the resulting
runtime by 1 000 000 gives us the desired result in milliseconds. This is repeated for the
decryption. The time of execution for encryption and decryption is then saved separately.

In consideration of validation in this study, the tests are performed on a stationary
Windows 10 PC, without considering the current state of OS, see chapter 5.1 for specifi-
cations. The choice of OS, version of current OS version, or OS settings may also affect
the tests in an unforeseeable way but are not taken into consideration during the tests. The
tests are based on Python 3.11.3 code designed for this purpose. The tests are repeated
1000 times per data set for increased accuracy.

3.6 Ethical Considerations

No real data is used in this thesis. Implementations and results are displayed with full
transparency. Hence, no ethical dilemmas have been identified in this thesis.

15

4 Implementation

This chapter provides a detailed description of the software implemented in this work.
The chapter is divided into several sections. The first section discusses the choice of en-
cryption algorithms, in regard to RQ1. The second section presents the implementation of
encryption algorithms and the controlled experiment carried out to test those algorithms,
in regard to RQ2. Parts of the implemented code can be viewed in the appendix A.
The third section presents an additional implementation of an access control mechanism,
which mainly relates to RQ3.

4.1 Choice of Encryption Algorithms

This section will discuss the findings of the literature review, regarding RQ1. That is, to
find suitable encryption algorithms for the unique identifiers in the student data set. The
findings of the literature showed that asymmetric encryption algorithms, such as RSA
perform considerably slower than symmetric encryption. Asymmetric encryption is of-
ten used for creating secure transactions over the internet and encrypting small pieces of
information, such as passwords. Hence, concerning encryption of the student data set,
asymmetric encryption was disregarded as a suitable alternative. Looking at symmetric
encryption algorithms, previous work showed that AES outperforms most of the com-
petition in terms of computational speed. The literature review also demonstrated that
it is one of the safest and fastest symmetric algorithms widely used today. Addition-
ally, the literature search also indicated that the Camellia algorithm is a time-effective
and attack-resilient cryptographic algorithm with a performance similar to AES. In addi-
tion, both AES and Camellia are two out of three block ciphers included in the ISO/IEC
18033-3:2005 standard [40]. Furthermore, the literature study showed limited results in
comparative performance evaluations between AES and Camellia. Thus, this study could
also help fill that gap. Therefore, the cryptographic algorithms that will be further exam-
ined in this work are AES and Camellia, they are considered suitable for encrypting the
student data set because they are both symmetric encryption algorithms that show great
promise in terms of encryption speed and security, both also conform to the recommenda-
tions of symmetric block ciphers in the ISO/IEC 18033-3:2005 standard. The algorithms
are imported from the Python library Cryptography, a well maintained and updated cryp-
tographic library recommended by Google [35][41].

4.2 Experimental Implementation

To conduct the experiment, a software in Python was developed. The main purpose of
this software is to generate unique randomized strings consisting of four letters and three
numbers, and then subject them to encryption and decryption algorithms. Timing the
cryptographic execution and saving the ciphertext results in .txt format to compare with
plaintext data storage difference in Kb. Figure 4.5 displays the flow of the cryptographic
execution.

16

main()

read variables:
(mode, keysize, setsize, iterations)

aes_test()

Camilla

camilla_test()

keys = init_test()

load class i

Start timer,
perform encryption,
End timer

v

save timer result

save cipher to .xt,
read filesize,
save result

Start timer,
perform decryption,
End timer

v

/ save timer result /

keys = init_test()

load class i

Start timer,
perform encryption,
End timer

v

save timer result

save cipher to .ixt,
read filesize,
save result

Start timer,
perform decryption,
End timer

v

/ save timer result /

write_to_csv()

end

write_to_csv()

o

end

Figure 4.5: Experimental flow chart.

The unique randomized strings are created by running a script that randomizes letters
and numbers, adds them to a set to ensure the unique characteristics, and loops until the
set has the right amount of unique strings in the desired form of xxYYYxx, where x
represents a letter from A to Z, and Y represents a number from 0 to 9. This script is run
once, and the results are saved into .txt files, splitting the set into pieces of 40. The text
files are also generated with a script, creating Z amount, all named "class1". The ending
1-Z represents which class that file represents, the .txt files are then saved in a folder
called database. In this experiment, 40 x 100 unique identifiers were created, d/ consists
of classes 1 to 25, d2 of 1 to 50, and d3 1 to 100. For testing, four Python scripts was
implemented: main.py, key_manager.py, aes_algo.py, and camellia_algo.py. The
class representations are visible in Figure 4.6.

main KeyGenerator
-method: str -nr_bytes: int
-keysize: int

+generate_key()

-size-dataset: int .
+generate_iv()

-iterations: int

return key: bytes

+write_to_csv() return iv: bytes

+init_test() A
|
|
|
|
|
|
|

+main()

+camellia_test()

+aes_test()

output: results.csv v
/ \
/ \ KeyManagementSystem
/ \
¥ \ return key_iv: dict
, 4 \ \ -master_key: byte
/ \ -key_iv: dict
|2 N
aesAlgo camelliaAlgo -algo: aesAlgo

-method: algorithms -method: algorithms +set_master_key()
-mode: modes -mode: modes +get_master_key()
+set_method() +set_method() +set_unencrypted_key()
+set_mode() +set_mode() +get_unencrypted_key()
+encrypt_data() +encrypt_data() +get_key_iv_dict()
+decrypt_data() +decrypt_data() +set_decrypted_key()
+write_bytes_to_file() +write_bytes_to_file() +get_decrypted_key()
+aes_test() +camellia_test() +write_keys()

. . . . +read_keys()
return result_encrypt_time: int return result_encrypt_time: int

. . . . +write_master_key()
return result_decrypt_time: int return result_decrypt_time: int

: ;)) +read_master_key()

return filestat: int return filestat: int
output temp.txt output temp.txt return master_key

Figure 4.6: Class diagram of the software.

18

The main class, "main.py" is used to control the experiment inputs, such as key size,
initial vector size, and the type of algorithm to be executed. It has the following functions:
main, write_to_csv, init_test, aes_test and camellia_test. Main takes no arguments
and consists of three tests with the following data sets: dI, d2, and d3. The tests are
constructed in the form of aes_test("aes128", 16, 25, 1000), where "aes128" is the cryp-
tographic method, 16 is the key size in bytes, 25 represents the number of data sets to be
pre-loaded, and 1000 is the number of iterations of this test to be run. This is passed into
aes_test or camellia_test, depending on the algorithm. This is repeated three times with
different sizes of data sets: 25, 50, and 100, previously referred to as d/, d2, and d3. The
results are appended to a .csv file after each run so that the results can be analyzed.

Method named init_test generates pairs of keys and IVs and then saves them to a
dictionary that is passed into the test classes. The amount of generated pairs equals the
size of the data set. aes_test and camellia_test methods are two nearly identical methods
for running the tests. Each consists of a for loop that runs as many times as the size of the
data set. After each iteration, the mode used, encryption time, decryption time, and size
of the ciphertext are saved in lists. The lists are then sent to write_to_csv to be saved in
the .csv file. write_to_csv takes the result from the test classes and appends the results to
a .csv file with headers ["method”,” enctime”,” dectime”,” size”].

The classes aes_algo.py and camellia_algo.py is responsible for performing the tests
and creating the experimental values, such as the time and size of the cipher. Both classes
are nearly identical, with small differences depending on the choice of method. Both
classes have the following methods: set_method, set_mode, encrypt_data, decrypt_data
and write_byte_to_file, as well as a function for testing named after the method, aes_test
or camellia_test. For cryptographic operations, Cipher, algorithms, and modes are im-
ported from cryptography.hazmat.primitives.ciphers, used together with padding from
cryptography.hazmat.primitives.

The set_method and set_mode functions, assign method and mode to the object de-
pending on the method passed as input argument. The method and mode assigned are
used on the first row inside encrypt_data, decrypt_data. write_byte_to_file is used to
save the result from tests performed in aes_test or camilla_test, to a .txt file so that the
cipher size can be measured.

The function takes in a key-iv pair dictionary and the number of datasets as arguments.
It then collects the respective key and iv for each class in the datasets and runs each unique
ID in classn.txt through the encryption and decryption algorithms line by line. The time
of execution is only measured before and after the call for encryption and decryption,
and only measures the padding and the cryptographic operation. The ciphertext produced
comes out as a binary string which is converted to a regular string by applying .hex()
on the variable holding the ciphertext. The conversion is performed so that before/after
comparisons can be done on the same datatype, a string. When all files in the data set have
been put through the algorithm, they are saved in a temporary .txt file using os.stat() to
measure the cipher size in bytes.

In encrypt_data, a cipher object is created using the Cipher library by passing in the
encryption method along with a key and an iv. Since all algorithms used in this experiment
have block sizes of 128 bits, a fixed padding of size 128 is used. In decrypt_data, the
inverse operation is applied.

The key_manager class is used to create and handle the key-iv pair dictionaries. Each
data set has its own pair of key-iv, which is stored as an object and passed on to the test
functions.

In the class KeyGenerator, the key and iv are generated in two separate methods.

19

They both take nr_bytes as an argument which is the key size in bit, 16 or 32. They are
called from init_test and then added to the key-iv dictionary in key_manager.

Method set_unencrypted_key, called from main.py is used to generate the key dic-
tionary used in the experiment. It iterates n amount of times where n represents a school
class, numbered between 1 to 100. When conducting the experiment, unencrypted keys
are used because only encryption and decryption of the identifiers are of interest. En-
crypting the keys using a master key, simply adds an additional layer of security when
storing the keys.

4.3 Additional Implementation

An additional class named roleController was implemented to test and ensure role-based
access control. It creates user objects connected to teachers’ unique IDs and stores user
access rights. It then compares assigned roles to the requested school class when a request
is made. In addition, keyManager was extended so that it can replicate a light version
of a Key management system. This was done by adding additional methods to the class
keyManager to properly support the access control solution and now handles the storage,
creation, and distribution of keys. The methods implemented in key M anager create and
handle encrypted keys, encrypted with the master key. The master key is a single key
created just as any other key but saved outside, separate from the key dictionary, and used
to encrypt the school class keys for an additional layer of security.

The master key is used in the unit tests that concern the access control for the methods
used to save and read the master key from the keyManager. The key is collected if the user
has the correct role to access one of the school classes using the method access_control.

The access_control method compares the roles assigned to the user with the name of
the requested class. For example, a class principal can have a "class1" role and requests
access to "class1", which is then considered a match.

If matched, access_control returns True and the master key can be collected. The
master key is then used to decrypt the encrypted class key using get_decrypted_key,
which is then used to decrypt the encrypted unique IDs of the requested school class.

20

5 Experimental Setup and Results

This chapter presents the empirical data gathered throughout the course of this work. The
chapter begins with a description of the experimental setup. It provides the necessary con-
text for understanding the experimental process and the conditions that may influence the
results. Subsequent to the setup follows three subsections, each dedicated to presenting
the results of the controlled experiment conducted on the dependent variables: encryption
time, decryption time, and cipher text size. Additionally, the chapter incorporates a sec-
tion dedicated to the verification and validation of the software implemented. The section
presents the results of the automatic unit testing performed.

5.1 Experimental Setup

The experimental tests were conducted in a Windows 10 Pro N environment, specifically
version 22H?2 of the x64-bit OS with version number 19045.2846. Before running the tests
all external programs were terminated. The tests were executed through the Windows
CMD window by calling the main function, "main.py," from within the project folder
using the command "python main.py." To prevent any interruptions, the computer was left
alone during the tests, and power saving mode was disabled. The code for the experiments
was written in Python version 3.11.3 and was developed using the cryptography library,
which includes the cipher, algorithms, modes, and padding modules. Visual Studio Code
version 1.78.0 was used to write all the code.

The experiments were performed on a computer with the following hardware specifi-
cations: an Intel(R) Core(TM) 17-8700K CPU clocked at 3.70 GHz, 16 GB of Kingston
DDR4 RAM with a speed of 2400 MHz, and a Samsung SSD hard drive with a maximum
reading/writing speed of 560/530 MBs. Additionally, the computer was equipped with an
NVIDIA GeForce RTX 3070 GPU.

5.2 Encryption Time

This section presents the results of the encryption experiment conducted. Figure 5.7 dis-
plays a bar chart with the result of the measured encryption time using the two different
encryption algorithms AES and Camellia with key sizes 128 and 256 bits. Encryption
time is plotted on the y-axis in milliseconds. The different data sets and their sizes are
plotted on the x-axis.

21

100 Method
mmm ges128
aes256
camellia128

gp camellia256

60

40

Encryption Time (ms)

d1

Encryption

d2
Dataset

d3

Figure 5.7: Encryption time of the different algorithms and key sizes plotted against each

data set in a barplot.

Table 5.2 displays the same data as Figure 5.7. That is, the data gathered in the encryp-
tion experiment. The mean encryption time over the 1000 iterations has been calculated,
along with the standard deviation of that data. The values are displayed rounded to two
decimal points. The first column specifies which algorithm and key size are used. The
second column specifies which data set. The third and fourth columns are the mean and
standard deviation in milliseconds. The raw data from all conducted experiments can be

viewed in Appendix A or handed out upon request.

Table 5.2: Mean and standard deviation of encryption time. Boldface indicates the best-

performing algorithm.

Algorithm Data set

Mean (ms) Standard Deviation (ms)

AES128 d1
d2
d3

AES256 dl
d2
d3

Camellial28 dl
d2
d3

Camellia256 dl
d2
d3

23.99
47.84
95.87
23.89
47.35
97.04
24.20
48.65
97.08
24.44
48.60
98.13

227
2.36
2.46
2.20
2.20
2.59
2.29
2.30
2.30
2.11
2.32
2.45

22

5.3 Decryption Time

This section presents the results of the controlled experiment with decryption time as the
dependent variable. Figure 5.8 illustrates the decryption time over the different data sets
and algorithms as a barplot, in the same manner as the encryption time in Figure 5.7.

Decryption

100
Method

s aes128
aes256
camellia128
80 mmm camellia256
60
d1 d2 d3

Dataset

Decryption Time (ms)

S
o

N
o

Figure 5.8: Decryption time of the different algorithms against each data.

Table 5.3 shows the calculated mean and standard deviation for each algorithm and
data set over the 1000 iterations. The mean and standard deviation are presented in mil-
liseconds.

Table 5.3: Mean and standard deviation of decryption time. Boldface indicates the best-
performing algorithm.
Algorithm Data set Mean (ms) Standard Deviation (ms)

AES128 dl 23.52 0.29
d2 46.88 0.51

d3 94.63 0.76

AES256 dl 23.46 0.18
d2 46.64 0.30

d3 95.34 1.19

Camellial28 dl 23.81 0.19
d2 47.89 0.26

d3 95.86 0.69

Camellia256 dl 23.99 0.19
d2 47.82 0.43

d3 96.54 1.08

23

5.4 Ciphertext Growth

This section provides the results of the controlled experiment with cipher text size as the
dependent variable. Figure 5.9 displays the growth of the cyphertext size in the form of a
barplot. The ciphertext size in kilobytes is plotted on the y-axis and the different data sets
are plotted on the x-axis. The algorithms are separated by bars of different colors.

Ciphertext Growth

Method

s aes128
120 aes256
camellia128
mmm camellia256
100
80
60
40
20 I I
0
d1 d2 d3

Dataset

Ciphertext Size (kb)

Figure 5.9: Growth of plain text after performing encryption on the different data sets.

Table 5.4 presents the numerical data on memory utilization gathered in the experi-
ment. The first column specifies which algorithm is used. The second specifies how many
characters that are to be encrypted in the test file. The third column specifies the size of
the plaintext test file in bytes. The fourth column specifies the size of the encrypted test
file in bytes.

Table 5.4: Memory utilization for the four encryption algorithms.
Algorithm Characters in test file Plaintext (bytes) Ciphertext (bytes)

AES128 7000 9000 32000
14000 18000 64000

28000 36000 128000

AES256 7000 9000 32000
14000 18000 64000

28000 36000 128000

Camellial28 7000 9000 32000
14000 18000 64000

28000 36000 128000

Camellia256 7000 9000 32000
14000 18000 64000

28000 36000 128000

24

5.5 Verification and Validation

Performing test cases using unittest resulted in all tests passing the requirements. The
tests were conducted by running the test.py -v command in the command prompt inside
the project folder of the source code. The fact that all tests pass the set requirements
indicates that the developed software responds to the project’s predefined requirements.
Thus, the implementation passes the verification phase.

Table 5.5: Unittest results and type of test.
Testno. Requirement Type of test Result

T1 R1 Cryptographic Passed
T2 R1 Cryptographic Passed
T3 R1 Cryptographic Passed
T4 R1 Cryptographic Passed
T5 R2 Access control Passed
T6 R2 Access control Passed
T7 R2 Access control Passed
T8 R2 Access control Passed
T9 R2 Access control Passed
T10 R3 Data control ~ Passed

Results seen in Table 5.5 represent the outputs of the conducted unit tests and what
type of test they belong to. Rows displaying R1 tested the cryptographic operations in the
software, used for conducting the experiments. Rows displaying requirement R2 show
the output of the tests that are responsible for testing role-based access to the encrypted
unique identifiers. The result in the requirement row named R3 represents the output of a
single test, responsible for role revocation without the need for re-encryption of the data
for which the role is responsible.

25

6 Analysis

This analysis chapter will further analyze the empirical data gathered in the controlled
experiment. The chapter is divided into subsections, each concerning one of the mea-
sured dependent variables. For encryption time and decryption time, the Kruskal-Wallis
[42] test is performed to investigate the statistical significance between the algorithms.
Additionally, the Shapiro-Wilk [43] test is performed to investigate the distribution of the
results. Furthermore, the chapter draws conclusions based on the results of the statis-
tical testing, as well as a discussion on the actual difference in effect size between the
algorithms. Lastly, the ciphertext growth is further analyzed and reasoned about.

6.1 Statistical Analysis Setup

This section is dedicated to providing a foundation for the statistical analysis performed
in Section 6.2 and 6.3, namely the Kruskal-Wallis test. The test objective is to check if
the difference seen between the ranks of the algorithms reflects a significance, or if the
difference is caused by random noise inside the groups.

The null hypothesis, Hy is defined as follows:
Hy: MR, =..= MRk
The alternative hypothesis, H; states the opposite:
Hy: (MR, =...= MRkg)

Where MR is the mean rank, K is the group, or in this case the encryption algorithm.
In simpler terms, the test examines whether choosing a value from any of the algorithms
will have an equal chance of selecting the highest value. The test calculates a probabilistic
value (p-value) which is compared to a significance level a. If the p-value is less than the
significance level, H| is rejected. In addition to examining whether there is a significant
difference between the group, the test will also perform multiple comparisons between the
mean ranks of each group to determine which of the groups differ. For further explanation
on the computations of the Kruskal-Wallis test, please refer to the original documentation
provided in [42].

6.2 Encryption time

The data presented in 5.2 shows that the mean encryption time is similar across all algo-
rithms. There is a slight advantage to the AES128 method on the largest data set, and
AES256 on the smallest and middle-sized data set. However, the difference looks minor.
To further explore whether there is any significant difference between the encryption time
of the algorithms, some statistical analysis can be performed. First, the data are tested
for normality using the Shapiro-Wilk test. This is done to determine which statistics can
be used to examine the significance of the difference between the algorithms. Table 6.6
shows the results of the Shapiro-Wilk test on encryption time with the different algorithms
and data sets. First, we note that all p-values produced by the test are very small, with
the exception of the AES128 which has a p-value that equals 0. The statistics software
used for the calculations rounds small p-value to 0. Hence, the value also indicates a very
small number. With that in mind and using a significance level of 0.05, all tests reject
the null hypothesis. Meaning there is strong evidence against the hypothesis that the data
originate from a normal distribution.

26

Table 6.6: Shapiro-Wilk test for normality

Algorithm Dataset P-value Reject Null Hypothesis

AES128 d1 0.0 Yes
d2 1.10e — 42 Yes

d3 1.54e — 21 Yes

AES258 dl 8.83e — 25 Yes
d2 5.03e — 12 Yes

d3 8.00 — 28 Yes

Camellial28 d1 4.30e — 07 Yes
d2 2.54e — 14 Yes

d3 6.35e — 26 Yes

Camellia256 dl 5.45e — 18 Yes
d2 5.12e — 35 Yes

d3 9.78¢ — 26 Yes

Working with the hypothesis that the data are not normal-distributed, the Kruskal-
Wallis test can be performed to analyze if there are any statistical differences between the
algorithms. The test will also identify which pairs of methods are significantly different.
The test is performed on the complete sample from the experiment, meaning the results
from all 1000 iterations. The result of the Kruskal-Wallis test on the encryption times is

presented in Table 6.7.

Table 6.7: Kruskal-Wallis statistical test on encryption time.

Dataset P-value « Reject Null Hypothesis

Pairs

d1 0.0 0.05
d2 0.0 0.05
d3 0.0 0.05

YES

YES

YES

AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial 28
AES256-Camellia256

Camellial28-Camellia256

AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial 28
AES256-Camellia256

Camellial28-Camellia256

AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial 28
AES256-Camellia256

Camellial28-Camellia256

The test provides evidence against the null hypothesis, with a significance level of
0.05. Meaning that the test support the theory that the differences we see between the
data set are statistically significant. It also indicates that the difference is significant be-
tween all pairs. However, it is important to note that with a large sample size, even small

27

differences in the distributions can produce a significant result. Hence, it could be more
valuable to further analyze the effect size to determine whether the difference is substan-
tial. From the mean values presented in Table 5.2. The largest difference in absolute value
is between the AES128 and Camellia256 in data set d3, with a difference of 2.26 ms and
an average of 1.16 ms across all three data sets. The difference between the algorithms
seems to grow slightly when the input size is larger, in favor of the two AES algorithms.
The standard deviation for encryption time is on average approximately 2.3 ms across all
data sets and algorithms. Meaning that the data collected, on average deviates & 2.3 ms
from the mean.

In conclusion, the data gathered from the encryption time experiment gives no clear
result on which algorithm performs best in terms of encryption time. The statistical anal-
ysis, as presented in Table 6.7 gives evidence for the hypothesis that the difference seen
between the algorithms is statistically significant. However, that difference does not trans-
late to a substantial amount in reality. There’s also not a substantial difference inherently
between the algorithms and key sizes, which is a slight surprise considering a larger key
size amount to more rounds performed by the algorithm. Hence, one would expect that
the runs with a key size of 256 bits would be slower than the ones with 128 bits. The
slight edge in this experiment by only considering the mean values is given to AES128,
followed by AES256, Camellial28, and Camellia256 in that order.

28

6.3 Decryption Time

In this section, the data presented in 5.8 will be further analyzed. Similar to the previous
section, the Kruskal-Wallis test is performed to analyze whether there is a significant
difference between the methods. However, here on the decryption time. The results are
presented in Table 6.8.

Table 6.8: Kruskal-Wallis statistical test on decryption time.
Dataset P-value « Reject Null Hypothesis Pairs
dl 0.0 0.05 YES AES128-AES256
AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial28
AES256-Camellia256
Camellial28-Camellia256
d2 0.0 0.05 YES AES128-AES256
AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial28
AES256-Camellia256
Camellial28-Camellia256
d3 0.0 0.05 YES AES128-AES256
AES128-AES256
AES128-Camellial28
AES128-Camellia256
AES256-Camellial28
AES256-Camellia256
Camellial 28-Camellia256

The test again strengthens the hypothesis that there is a significant difference between
the algorithms when performing decryption. As well as a pairwise difference between all
algorithms. By further analyzing the effect size, the mean values between the respective
algorithm and key size are compared to each other. AES128 performs better than the
others on the largest data set. However, AES256 is slightly faster on data sets d/ and d2.
Again, the difference between the fastest (AES128) and slowest (Camellia256) perform-
ing algorithm amounts to 1.91 ms, or in percent, AES128 is approximately 2% faster than
Camellia256 on the d3 data set. The indication that the difference between the methods
seems to grow is also seen here, where both Camellia versions tend to be slower than the
others as the data set increases in size. However, not by a great amount. The standard
deviation between all data sets and algorithms is on average approximately 0.5 ms, which
is smaller in comparison to encryption time.

In conclusion, no algorithm outperforms any other algorithms by a clear amount. The
statistical test again gives evidence of a significant difference between the algorithms. The
effect size between the slowest and fastest performing algorithm amounts to 1.91 ms for
a data set with unique ids corresponding to 4000 students. Which could be considered
negligible in the use case of the problem formulation of this thesis. By only analyzing the

29

mean value of decryption time, the same conclusion as in encryption time is drawn. That
is, AES128 performs the fastest, followed by AES256, Camellial28, and Camellia256.
Consequently. By combining the results of encryption and decryption time the same
conclusion is drawn.

6.4 Ciphertext Growth

In 5.4 it is seen that the algorithms produce the same constant size of the ciphertext file.
For a test file of 9 000 bytes, the ciphertext file grows to 32 000 bytes, corresponding to
approximately a 3.6 times increase from plaintext to ciphertext. The same is true for the
test files of 18 000 and 36 000 bytes respectively. Considering the similarities between
the algorithms, a result like this is to be expected. The four algorithms are all 128-bit
block ciphers. Meaning that fundamentally a 128-bit block of plaintext translates to a
128-bit block of ciphertext. Using the CBC mode with an initial vector, the size of the
ciphertext would increase by a constant. Additionally, adding padding to the 56 bits of
plaintext increases the size of each ciphertext by an additional 72 bits. The experiments
are conducted on the same data, hence the same amount of padding should be expected.

In conclusion, the size of the file with the ciphertext is approximately 3.6 times larger
than the original file with the plaintext using any of the four algorithms. The number of
characters in the test files also translates to approximately 4.6 bytes per character after
encryption.

30

7 Discussion

The experiments conducted with encryption time, decryption time, and cipher text size
as the dependent variables gave some interesting findings. The performance results of
AES in comparison to Camellia showed that there is a significant difference between the
algorithms. However, it was found that the difference did not amount to a substantial
amount in reality. The results also indicate that the sample collected on encryption time
is more spread than the sample on decryption time. The results between the two encryp-
tion methods AES and Camellia and their respective larger key-size alternative showed
no substantial difference in terms of performance, which is not to be expected. This is
in contrary to the findings in [5], where the encryption and decryption time of AES on
average increased by 21% for each increment in key size while using the CBC mode.
Consequently, going from AES128 to AES256 would indicate a 42% increase. In this
work, the 256-bit AES version performed marginally faster with the 9KB and 18KB data
sets. Only when the data set grew to 36KB, the 128-bit version was faster. This was also
true for the Camellia algorithm. The reason for not seeing a larger difference could be
that the data sets used in the experiment are not large enough to get a measurable differ-
ence. There could also be a problem with the implementation and how the experiments
are conducted, however, any issues that would somehow favor the 256-bit version could
not be identified.

In the study carried out by [4], the AES algorithm with a key size of 256 bits with
CBC mode encrypted a 1KB file in 52.7 ms on average. Compared to the results gathered
in this thesis, the AES 256 algorithm encrypted a 9KB data set in 23.89 ms on average.
That would amount to approximately 2.65 ms per KB under the assumption of linear
growth, which is considerably faster than the implementation in [4]. On the other hand,
the authors of [4] also performs experiments on considerably larger input sizes, namely
100KB, IMB, 10MB, and 100MB. The results differ from the findings of this thesis.
Namely, the 100KB file took 58.4 ms, followed by IMB at 64.3 ms. Meaning there is
not a major increase in encryption time when the input size of 1KB increases by 100 and
1000 times. The results in this thesis point to a somewhat linear increase. Meaning the
encryption time approximately doubles when the size of the input doubles. The belief is
that the difference partly depends on the implementation of the algorithms. In this work,
the unique ids read from the file are encrypted as a string one by one sequentially which
might not be the case in [4]. Additionally, it’s hard to draw any conclusions from the
comparison considering their implementation is done in C#, not to mention the hardware
differences.

Looking at the performance analysis made by [6], which is done in Python. The
AES128 algorithm encrypted 1MB of plaintext in approximately 40 ms, which is also
considerably faster than our implementation, while also using a hardware configuration
similar to or worse than the configuration used in this work. The cipher-to-text ratio in [6]
is approximately 1.6, compared to 3.6 from the results of this study. On the other hand,
their study does not use the CBC mode of operations with an initial vector, which leads
to a smaller ratio. In addition, this study performs cryptographic operations on strings
smaller than one block. Hence, for each produced ciphertext, execution time and data
storage for 72 bits of padding is added to the results.

Even though the findings of this thesis did not give a clear winner in terms of perfor-
mance, the results give some indications that favor AES. When choosing an encryption
method to use in a particular system is it important to also consider other factors other than
performance. For example, security aspects. On the one hand, AES256 is more resistant

31

to a brute-force attack than its 128-bit variant [44]. However, comparing their brute-force
resistance is not a meaningful metric since both would take an unrealistic amount of time
to break. On the other hand, AES128 has a stronger key schedule [44], making it less
likely to have an attack developed against it. AES128 also has broader support in Python
libraries. For these reasons, the AES128 version is used together with the access con-
trol mechanism in the proposed implementation which is tested in the verification and
validation method.

In reference to the problem formulated in 1.3, the two symmetric encryption algo-
rithms AES and Camellia were identified by the literature review as candidates for en-
cryption of the unique identifiers of the students. These two were tested and evaluated for
performance using a series of controlled experiments. The evaluation gave a slight edge
to the AES128 algorithm. However, it’s also important to acknowledge that the hardware
implementation of both algorithms was not taken into consideration. While the focus of
this thesis was to examine the computational performance of the AES and Camellia en-
cryption algorithms, it’s worth noting that the performance in a real-time scenario could
be significantly affected by hardware capabilities and optimizations. For instance, many
Intel processors come with a dedicated AES instruction set [45] that can significantly im-
prove the performance of AES encryption. Likewise, other encryption algorithms may be
better suited for devices where power consumption is a constraint, such as IoT devices.
Not considering these factors could affect the analysis of the results gathered in this the-
sis. For instance, an algorithm that was considered to perform better in the context of this
work might perform poorly in a context with different conditions.

To solve the problems related to role-based access to the data, a system where each
class data get encrypted with a separate key and each user gets assigned a role was imple-
mented. The role determines if the user gets access to a master key which is then used to
decrypt the class key related to that role. By doing this, the implementation ensures that
a head principal can decrypt all data and a class principal can only decrypt the data of its
own class. This solution was tested using the verification & validation method. The im-
plementation passed the verification phase, using automated testing created through the
unittest framework. The solution was also validated by the stakeholder of this project,
who stated that it fulfilled the basic requirements agreed upon. By disconnecting the roles
from the encryption of the unique identifiers, the problem of having to re-encrypt the
data when changes to access occurred was also eliminated. Hence, the research questions
formulated in 1.3 are considered to have been answered.

32

8 Conclusion

In this thesis, two cryptographic algorithms with two different key sizes are implemented
in Python, AES128, AES256, Camellial28, and Camellia256. Both are tested regarding
performance when it comes to the time of execution and the size of data growth between
plaintext and ciphertext when encrypting and decrypting unique identifiers. In all tests,
the algorithms performed equally both in time of execution and growth of data, but with
AES128 performing marginally faster.

The findings are relevant in the matter of industry and society where cryptography is a
vital part of protecting individuals’ anonymity and integrity when stored in databases all
over the world. Due to the generality of encryption, the results presented in this thesis can
be used as ground when choosing a cryptographic algorithm to implement in any system.
Results in this thesis in particular can be used for anonymization of usernames or short,
unique identifiers. For example, digital grading systems where student anonymity is a
priority to prevent biased grading or simply protect students in case of an IT breach.

Test results in this thesis can be applied anywhere where any of the tested algorithms
are used. But it is worth noting that the data used in the experiment consists of small
strings of length 7. Hence, bigger sizes of data might give different results due to the
block size and added padding.

The results could have been optimized if performed on a machine with Linux installed
and more advanced hardware. When performing the tests, no consideration was taken of
the current state of OS. Hence, uncontrolled background processes can affect the results,
such as built-in anti-virus.

8.1 Future work

In the beginning, when starting writing this thesis, the plan was to find and use, a crypto-
graphic method that made use of multi-key encryption. But the literature review showed,
that there exists a very limited amount of multi-key encryption methods all of which are
computationally heavy. Since computational speed is an important factor in selecting an
algorithm, we decided to choose an algorithm that only handles a cryptographic oper-
ation, and instead implement separate access control. By doing that, the cryptographic
operations will be executed faster while maintaining secure access.

Additionally, a web interface with administrative responsibilities would be imple-
mented to demonstrate an RBAC solution to perform live changes to access rights of users
for further tests in functionality and security. The web interface would be responsible for
displaying an interactive admin interface used to administer access rights for teachers.
It would show specific school classes from a teacher’s perspective based on their access
rights. Furthermore, the interface would offer the ability to re-encrypt all or some data,
providing further control in the event of data compromise.

A database would be set up with synthetic data so that the data could be displayed
in the web interface as well as consider making the data inference safe by further hiding
additional unique identifiers for the individuals.

In addition, further research to find a fitting solution for sending data securely over the
internet would be considered to prevent MITM attacks. Further explanation of this can
be seen in the literature review, see 2.5.1 and 2.8.1 where HTTPS and OAuth 2.0 were
reviewed.

Within the limited time of this degree project, a light version of a key management sys-
tem was implemented to demonstrate a prototype. However, in continuous work within
this project an outsourced key management system such as Microsoft Azure Key Vault

33

[46], AWS Key Management System [47] or Google Cloud Key Management [48] should
be considered to further enhance security within key storage and transfer. The key man-
ager would be responsible for securely storing all cryptographic keys in an encrypted
format. It would only decrypt and retrieve the requested key for a specific school class
when a user with the correct login credentials and role requests the data from the server.
By separating the keys from the medium which holds the data, a higher level of security
would be achieved.

Database

8 — E- —8;

App-Server Client

Figure 8.10: Client-server communication flow.

Figure 8.10 shows an abstraction of how the final system can look when all parts are
implemented.

Going forward, a more comprehensive analysis of encryption algorithm performance
could include factors such as hardware optimization and applicability to specific use cases.
Such an approach would provide a more realistic and robust assessment of algorithm
performance, thus allowing for more accurate comparisons and more informed decision-
making in the selection and implementation of encryption algorithms.

34

References

[1] C.P. Pfleeger, Security in computing, Sth ed. Pearson, 2015.

[2] “Cloud computing - statistics on the use by enterprises — ec.europa.eu,’
https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=416727#Use_
of_cloud_computing:_highlights, [Accessed 24-Apr-2023].

[3] “Eddtechlnu,” 2023, accesesed Mars. 29, 2023. [Online]. Available: https:
//Inu.se/en/research/research-groups/edtechlnu/

[4] H. Dibas and K. E. Sabri, “A comprehensive performance empirical study of the
symmetric algorithms:aes, 3des, blowfish and twofish,” in 2021 International Con-
ference on Information Technology (ICIT), 2021, pp. 344-349.

[5] D. E Garcia, “Performance evaluation of advanced encryption standard algorithm,”
in 2015 Second International Conference on Mathematics and Computers in Sci-
ences and in Industry (MCSI), 2015, pp. 247-252.

[6] A. Kubadia, D. Idnani, and Y. Jain, “Performance evaluation of aes, arc2, blowfish,
cast and des3 for standalone systems : Symmetric keying algorithms,” in 2019 3rd
International Conference on Computing Methodologies and Communication (IC-
CMC), 2019, pp. 118-123.

[7] “Python offical site.” [Online]. Available: https://www.python.org/

[8] A. Abdullah, “Advanced encryption standard (aes) algorithm to encrypt and decrypt
data,” 06 2017.

[9] J. J. V. Nayahi and V. Kavitha, “Privacy and utility preserving data clustering
for data anonymization and distribution on hadoop,” Future Generation
Computer Systems, vol. 74, pp. 393-408, 2017. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0167739X16304459

[10] European Union Agency for Cybersecurity, “Threat landscape report 2022,”
European Union Agency for Cybersecurity, Tech. Rep., 2022. [Online]. Available:
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022

[11] “The hipaa privacy rule,” 2022, accesesed Mars. 29, 2023. [Online]. Available:
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

[12] J. Salas and J. Domingo-Ferrer, “Some basics on privacy techniques, anonymization
and their big data challenges,” Math. Comput. Sci., vol. 12, no. 3, pp. 263-274, Sep.
2018.

[13] P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression,” 1998.

[14] R. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in
21st International Conference on Data Engineering (ICDE’05), 2005, pp. 217-228.

[15] G.J. Simmons, “History of cryptology,” "accessed : 14-apr-2023".

[16] E. Nyman, “Cryptography: A study of modern cryptography and its mathematical
methods,” Master’s thesis, Uppsala universitet, 752 36 Uppsala, 2021.

35

https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=416727#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=416727#Use_of_cloud_computing:_highlights
https://lnu.se/en/research/research-groups/edtechlnu/
https://lnu.se/en/research/research-groups/edtechlnu/
https://www.python.org/
https://www.sciencedirect.com/science/article/pii/S0167739X16304459
https://www.sciencedirect.com/science/article/pii/S0167739X16304459
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

[17] A. Nadeem and M. Javed, “A performance comparison of data encryption algo-
rithms,” 09 2005, pp. 84 — 89.

[18] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback,
“Report on the development of the advanced encryption standard (AES),” J. Res.
Natl. Inst. Stand. Technol., vol. 106, no. 3, pp. 511-577, May 2001.

[19] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and J. Dray,
“Advanced encryption standard (aes),” 2001-11-26 2001.

[20] Y. Deng, T. Xie, H. Shi, and J. Gong, “Research on the f-function of camellia,” in

2011 International Conference on Electrical and Control Engineering, 2011, pp.
1232-1235.

[21] M. M. J. Nakajima, “A description of the camellia encryption algorithm,” 04 2004,
pp. 1-15. [Online]. Available: https://www.rfc-editor.org/rfc/rfc3713

[22] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms — design and-

analysis,” in Selected Areas in Cryptography, D. R. Stinson and S. Tavares, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 39-56.

[23] G. J. Simmons, “Rsa encryption,” "accessed : 14-apr-2023". [Online]. Available:
"https://www.britannica.com/topic/RSA-encryption"

[24] D. E. Comer, "Computer Networks and Internets, 6th ed”". Pearson Education,
2015.

[25] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to the https
protocol,” IEEE Security privacy, vol. 7, no. 1, pp. 78-81, Feb. 2009.

[26] A. Satapathy, J. Livingston et al., “A comprehensive survey on ssl/tls and their vul-

nerabilities,” International Journal of Computer Applications, vol. 153, no. 5, pp.
31-38, 2016.

[27] D. Wagner, B. Schneier et al., “Analysis of the ssl 3.0 protocol,” in The Second

USENIX Workshop on Electronic Commerce Proceedings, vol. 1, no. 1, 1996, pp.
29-40.

[28] N. H. Sultan, V. Varadharajan, L. Zhou, and F. A. Barbhuiya, “A role-based en-
cryption (rbe) scheme for securing outsourced cloud data in a multi-organization
context,” IEEE Transactions on Services Computing, pp. 1-14, 2022.

[29] T. E. of Encyclopaedia Britannica, “client-server architecture,” "accessed
16-apr-2023". [Online]. Available: "https://www.britannica.com/technology/
client-server-architecture"

[30] H. S. Oluwatosin, “Client-server model,” IOSR Journal of Computer Engineering,
vol. 16, no. 1, pp. 67-71, 2014.

[31] L.Zhou, V. Varadharajan, and M. Hitchens, “Generic constructions for role-based
encryption,” vol. 14, pp. 417-430, 2014.

[32] D. Ferraiolo, J. Cugini, and R. Kuhn, “Role-based access control (rbac): Features
and motivations,” Dec. 1995.

36

https://www.rfc-editor.org/rfc/rfc3713
"https://www.britannica.com/topic/RSA-encryption"
"https://www.britannica.com/technology/client-server-architecture"
"https://www.britannica.com/technology/client-server-architecture"

[33] E. Bertino, “Rbac models — concepts and trends,” Computers Security, vol. 22,
no. 6, pp. 511-514, 2003. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404803006096

[34] V. Chamola, A. Jolfaei, V. Chanana, P. Parashari, and V. Hassija, “Information secu-
rity in the post quantum era for 5g and beyond networks: Threats to existing cryp-
tography, and post-quantum cryptography,” Computer communications, vol. 176,
pp- 99-118, 2021.

[35] “Cryptography, Python encryption Library.” [Online]. Available: https:
/lcryptography.io/en/latest/

[36] “Linnaeus university online-library.” [Online]. Available: https://Inu.se/ub/
[37] “Google scholar.” [Online]. Available: https://scholar.google.com/

[38] P. Bhandari, “What Is a Controlled Experiment? | Definitions 038; Examples,”
Scribbr, 12 2022. [Online]. Available: https://www.scribbr.com/methodology/
controlled-experiment/

[39] “Unittest library.” [Online]. Available: https://docs.python.org/3/library/unittest.
html

[40] “ISO/IEC 18033-3:2005.” [Online]. Available: https://www.iso.org/standard/37972.
html

[41] “Including the Pyca cryptography library.” [Online]. Available: https://cloud.
google.com/kms/docs/crypto

[42] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,”
Journal of the American Statistical Association, vol. 47, no. 260, pp. 583-621,
1952. [Online]. Available: http://www.jstor.org/stable/2280779

[43] S.S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, no. 3/4, pp. 591-611, 1965. [Online]. Available:
http://www.jstor.org/stable/2333709

[44] E. Tobias, “128 or 256 bit encryption: Which should i
use?” Feb 2022. [Online]. Available: https://www.ubigsecurity.com/
128bit-or-256bit-encryption-which-to-use/#:~:text=AES.

[45] Intel. (2012) Intel® advanced encryption standard instructions (aes-ni). Accessed:
2023-07-11. [Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

[46] “Azure key vault.” [Online]. Available: https://learn.microsoft.com/en-us/azure/
key-vault/general/overview

[47] “AWS key management.” [Online]. Available: https://docs.aws.amazon.com/kms/
latest/developerguide/overview.html

[48] “Google cloud key management.” [Online]. Available: https://cloud.google.com/
kms/docs

37

https://www.sciencedirect.com/science/article/pii/S0167404803006096
https://www.sciencedirect.com/science/article/pii/S0167404803006096
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://lnu.se/ub/
https://scholar.google.com/
https://www.scribbr.com/methodology/controlled-experiment/
https://www.scribbr.com/methodology/controlled-experiment/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://www.iso.org/standard/37972.html
https://www.iso.org/standard/37972.html
https://cloud.google.com/kms/docs/crypto
https://cloud.google.com/kms/docs/crypto
http://www.jstor.org/stable/2280779
http://www.jstor.org/stable/2333709
https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/#:~:text=AES.
https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/#:~:text=AES.
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://cloud.google.com/kms/docs
https://cloud.google.com/kms/docs

A Appendix 1

The raw data from the experiments are uploaded to a public google drive folder and can
be accessed by clicking this link:
https://drive.google.com/drive/folders/1ThO4zpMo-NvFnIMEvxRKPaQU3nvkVbF_8§

A.1 Code snippets

#

Size: DI

#

AES 128

aes_test ("aesl1l28", 16, 25, 1000)

AES 256

aes_test ("aes256", 32, 25, 1000)

Camellia 128

camellia_test ("camellial28", 16, 25, 1000)
Camellia 256

camellia_test ("camellia2b56", 32, 25, 1000)

Figure 1.11: DI initiated from main.

def set_method(self, method: str) -> algorithms:
if method == "aesl28":
return algorithms.AES128
if method == "aes256":
return algorithms.AES256
else:
return None

Figure 1.12: Set method and set mod functions in the AES class.

https://drive.google.com/drive/folders/1hO4zpMo-NvFnIMEvxRKPaQU3nvkVbF_8?usp=sharing

def aes_test (self, key_ dict: dict, class_entries: int):

0
0

result_encrypt_time
result_decrypt_time
cipher_result = []

for i in range(class_entries):
txt_file = f"class{i+l}.txt"
key = key_dict[f"class_{i+1}"][0]
iv = key_dict[f"class_{i+1}"][1]
with open ("database/"+txt_file, 'r') as out_f
for line in out_f:
line = bytes(line.replace("\n",""),
encoding="utf-8")

start_enc = time.perf_counter_ns ()

cipher = self.encrypt_data(line, key, 1iv)
end_enc = time.perf_counter_ns ()
result_encrypt_time += end_enc - start_enc

hex_string = cipher.hex()
cipher_result.append (hex_string)

start_dec = time.perf_counter_ns()

cipher = self.decrypt_data (cipher, key, iv)
end_dec = time.perf_counter_ns()
result_decrypt_time += end_dec - start_dec

self.write_bytes_to_file(cipher_result, "results/temp.txt")

filestat = os.stat ("results/temp.txt").st_size

return result_encrypt_time, result_decrypt_time,

Figure 1.13: AES test function inside the class aesAlgo.

filestat

def encrypt_data(self, data: bytes, key: bytes, iv: bytes):
cipher = Cipher (self.method(key), self.mode (iv))
encryptor = cipher.encryptor()

padd = padding.PKCS7(128) .padder ()
padded_data = padd.update (data)
+ padd.finalize ()

cipher_text = encryptor.update (padded_data)
+ encryptor.finalize ()

return cipher_text

Figure 1.14: AES encryption function.

def decrypt_data(self, data: bytes, key: bytes, iv: bytes):
cipher = Cipher(self.method (key), self.mode (iv))
decryptor = cipher.decryptor ()

padded_pt = decryptor.update (data)
+ decryptor.finalize ()
unpadd = padding.PKCS7(128) .unpadder ()

plain_text = unpadd.update (padded_pt)
+ unpadd.finalize ()

return plain_text

Figure 1.15: AES decryption function.

class KeyGenerator:

def generate_key (nr_bytes: int) -> bytes:
key = os.urandom(nr_bytes)
return key

def generate_iv (nr_bytes: int) -> bytes:

iv = os.urandom(nr_bytes)
return iv

Figure 1.16: KeyGenerator which generates key and iv based on argument size.

def set_unencrypted_key(self, class_id: str, key_size: int,
iv_size: int) —> None:
self.key_iv[class_id] =
[KeyGenerator.generate_key (key_size),
KeyGenerator.generate_iv(iv_size)]

Figure 1.17: Method inside key_manager called from main to create a key dictionary for
the experiment.

def write_master_key(self):
with open ("bin/masterKey.bin", "wb") as writer:
pickle.dump (self.master_key_iv, writer)

def read_master_key (self):
with open ("bin/masterKey.bin", "rb") as reader:
self.master_key_iv = pickle.load(reader)

Figure 1.18: Methods used to save and read the master key.

def access_control (self, requests_access_to: str) —-> bool:
if ('principal' in self.roles):
return True
if (requests_access_to in self.roles):
return True
else:
return False

Figure 1.19: Methods inside roleController, used to save and read the master key.

def get_decrypted_key(self, class_id) —-> bytes:
if class_id in self.encrypted_key_iv:
return self.algo.decrypt_data(
self.encrypted_key_iv([class_id] [0],
self .master_key_iv[0], self.master_key_ iv[1]
)

return None

Figure 1.20: Method inside keyManager, used to decrypt an encrypted key, using the
master key.

	Introduction
	Background
	Related Work
	Problem Formulation
	Motivation
	Milestones
	Target group
	Outline

	Theory
	Data Anonymization
	Cryptography
	Cryptanalysis
	Symmetric Encryption
	Advanced Encryption Standard
	Camellia

	Asymmetric Encryption
	Secure Transfer

	Role-based Encryption
	Client-server
	Access Control
	Open Authentication 2.0

	Method
	Research Project
	Literature review
	Controlled Experiment
	Verification and Validation
	R1 unittests
	R2 unittests
	R3 unittest

	Reliability and Validity
	Ethical Considerations

	Implementation
	Choice of Encryption Algorithms
	Experimental Implementation
	Additional Implementation

	Experimental Setup and Results
	Experimental Setup
	Encryption Time
	Decryption Time
	Ciphertext Growth
	Verification and Validation

	Analysis
	Statistical Analysis Setup
	Encryption time
	Decryption Time
	Ciphertext Growth

	Discussion
	Conclusion
	Future work

	References
	Appendix 1
	Code snippets

