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A B S T R A C T   

Phasor domain methods had been commonly used in power transmission line fault location. To improve the 
accuracy and line parameter adaptive ability of phasor domain fault location, this paper studies a two-terminal 
phasor domain line parameter adaptive fault location method. First, this paper analyses the convergence issue of 
original multi-dimensional non-linear fault location equations. Then, by regarding the four complexes consist of 
fault distance and line parameters as the new unknowns and thereby supplementing a constraint equation about 
the new unknowns, a quadratic fault location equation set is reconstructed. Furthermore, it is mathematically 
proven that the four new unknowns are all within the first quadrant. Therefore, the elements in the Jacobian 
matrix of the reconstructed equation set are all proven to be of symbolic invariance within the solution space. 
Thus, by using Newton-Raphson method and setting the initial iteration value of the four unknowns to any 
complexes within the first quadrant, the iteration solution of the reconstructed equation set will converge to the 
true solution. Finally, electro-magnetic fault simulations are used to evaluate the proposed method. The test 
results demonstrate that the proposed method is able to guarantee fault location accuracy under different cir-
cumstances without knowing line parameters.   

1. Introduction 

Accurate transmission line fault location is the key to the rapid 
restoration of faulty lines. The fault location method based on funda-
mental frequency domain fault analysis has always been one of the main 
means of AC transmission line fault analysis. Among frequency domain 
methods, the two-terminal frequency domain method has become a very 
common fault location method because of its ability to withstand fault 
resistance [1–6]. Therefore, it has been one of the concerns of fault 
location researchers to study the two-terminal frequency domain fault 
location method and strive to improve its accuracy. 

There are many factors affecting the fault location of two-terminal 
frequency domain method. At present, methods are proposed to esti-
mate fundamental phasors for frequency domain method in many re-
searches. Targeting the influence of transient interferences, methods 
estimate fundamental phasors by utilizing the mathematical relation-
ship between DFT outputs [1,6–9], combining DFT and Prony method 
[10,11], etc. These methods improve the fundamental phasor estimation 
accuracy and thereby help to improve the accuracy of phasor domain 
fault location. 

Considering that line parameters may deviate from the given stan-
dard parameters due to the influence of climatic and geological condi-
tions of the operation environment, the use of inaccurate line 
parameters will bring great errors to the fault location results and line 
parameter estimation for fault location is necessary [12,13]. Methods 
utilize the voltage and current data before [14–18] or after faults happen 
[19–22] are proposed. As protective CT has low resolution and mea-
surement accuracy for normal load current, the sampling data of voltage 
and current before fault in fault transient recording data (FTRD) cannot 
be directly used to calculate the line parameters. On the other hand, the 
synchronous measurement data of voltage and current of Phasor Mea-
surement Units (PMUs) during power system normal operation can be 
used for line parameters estimation. However, it requires smooth in-
formation exchange between the Wide Area Measurement System 
(WAMS) and the Fault Information Analysis System (FIAS), which in-
creases the cost of information system interaction and the difficulty of 
engineering implementation. In other words, it should be the preferred 
scheme to use the voltage and current information after fault in the 
FTRD for line parameter adaptive fault location [19–22]. In these 
methods, line parameters and fault distance are regarded as unknowns 
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to construct multi-dimensional nonlinear equations. Meanwhile, various 
solution schemes are used to solve the equations, such as least squares 
method (LSM) [19], simulated annealing algorithm [20], Quasi-Newton 
method [21], particle swarm optimization (PSO) algorithm [22]. These 
algorithms improved the global optimization performance and effi-
ciency of solving nonlinear equations. However, due to the strong 
non-linearity of the fault location equations, the solution of the equa-
tions is sensitive to the initial iteration value. Therefore, it is easy to 
converge to a wrong solution or diverge. Most of these methods restrict 
the range of line parameters, so as to improve the possibility of 
converging to the correct solution. To do so, the initial iteration value 
must be close to the true line parameters, which means the line pa-
rameters with certain accuracy is needed to be acquired in advance. 
Consequently, the line parameter adaptive ability of previous fault 
location methods still needs to be enhanced. 

Therefore, this paper aims to study a two-terminal phasor domain 
fault location method for HVAC transmission lines without acquiring 
line parameters. Considering that double-circuit line is the main layout 
of HVAC transmission lines, this paper focuses on the fault location of 
double-circuit transmission lines. First, the fundamental phasors of 
positive sequence phase-phase fault currents and voltages at both 
transmission line ends are estimated. Based on the long line equation, 
the line parameter adaptive phasor domain fault location equations of 
fault distance and line parameters are constructed. Considering the 
strong non-linearity of the equations, to guarantee convergence of the 
iterative solution process, this paper regards the four complex terms 
consist of fault location and line parameters as the new complex un-
knowns of the equation. In this way, a quadratic nonlinear equation set 
of four complex unknowns is reconstructed. Furthermore, it is proved 
that the four complex unknowns are all within the first quadrant. Also, 
in the solution space of the first quadrant, the Jacobian matrix elements 
of the reconstructed equation set are of symbolic invariance. Conse-
quently, the reconstructed equation set indicates monotonicity in the 
solution space, which guarantees convergence to the true solution dur-
ing nonlinear least-square iteration. Finally, electromagnetic simulation 
cases are utilized to verify the proposed novel line parameter adaptive 
phasor domain fault location method. 

Comparing to the previous phasor domain fault location methods, 
the main contributions of the proposed method are listed as follow: 

1) The proposed method regards four complex terms as the new un-
knowns and supplements a constraint equation to reconstruct a 
quadric fault location equation set. The reconstructed equation set is 
mathematically proven to be of monotonicity. Therefore, conver-
gence to true solution is guaranteed when using Newton-Raphson 
method to solve the reconstructed equation set. 

2) The proposed method is of strong adaptability. It requires no infor-
mation about line parameters in advance, setting the initial iterative 
value of four complex unknowns to any complex number within the 
first quadrant is able to guarantee that the iteration will converge to 
the true solution. 

3) The proposed method improves the iterative calculations by intro-
ducing the four new unknowns and reduces the difficulty of selecting 
initial iterative value, which enhances the adaptive ability of line 
parameters. 

2. Traditional phasor domain fault location method 

2.1. Computation of positive sequence fundamental phasors 

Fig. 1 shows the 500 kV HVAC transmission system which contains a 
double circuit transmission line. The design of complete transposition 
makes the effect of positive and negative sequence coupling inductance 
ignorable and thereby the positive sequence networks of two circuits are 
independent. Therefore, this paper analyses the positive sequence 
network and construct the phasor domain fault analysis model of two 

circuits. In order to improve the accuracy of fundamental phasor esti-
mation and thereby guarantee the accuracy of phasor domain fault 
location, the phasor estimation method proposed in [1] is used to esti-
mate the fundamental phasors of phase voltages and currents at both 
terminals of both lines. The data time window is from the time fault 
happened to 1.5 cycles after fault happened and UMϕ (ϕ = A,B,C) is the 
fundamental phasor of terminal-M phase voltage, UNϕ (ϕ = A,B,C) is 
the fundamental phasor of terminal-N phase voltage, IIMϕ (ϕ = A,B,C) is 
the fundamental phasor of terminal-M phase current on line I, IIIMϕ (ϕ =

A,B,C) is the fundamental phasor of terminal-M phase current on line II, 
IINϕ (ϕ = A,B,C) is the fundamental phasor of terminal-N phase current 
on line I, IIINϕ (ϕ = A,B,C) is the fundamental phasor of terminal N 
phase current on line II. 

In order to eliminate mutual inductance coupling effect between 
phases, the fundamental phasors of phase-to-phase voltages and 
currentsUMϕϕ, UNϕϕ, IIMϕϕ, IIIMϕϕ, IINϕϕ and IIINϕϕ are calculated by 
using UMϕ, UNϕ, IIMϕ, IINϕ, IIIMϕ and IIINϕ. Furthermore, the 
transformation of symmetric component is utilized to calculate the 
positive sequence phasors UM , UN, IIM , IIIM , IIN and IIIN for fre-
quency domain fault location. 

2.2. The disadvantage of traditional phasor domain fault location method 

From Fig. 1, assuming that line I is the faulty line and line II is the 
healthy line. Utilizing the positive sequence phasors UM, UN, IIM ,

IIIM , IIN and IIIN and basing on the long line equation, fault location 
observation equations of line I and line II can be constructed. In the 
equations, fault distance d is a real unknown, positive sequence char-
acteristic impedance ZC and propagation constant γ are complex 
unknowns. 

First, for faulty line I, the voltage along the line is calculated from 
both terminals and only at the fault point the two calculated voltages are 
equal: 

UMcosh(γd) − IIMZCsinh(γd) = UNcosh[γ(l − d)] − IINZCsinh[γ(l − d)] (1) 

Then, at any point of the healthy line II, the two voltages calculated 
from both terminals are equal. Taking the points d km and l-d km from 
terminal-M as the observation point, the following equations can be 
obtained: 

UMcosh(γd) − IIIMZCsinh(γd) = UNcosh[γ(l − d)] − IIINZCsinh[γ(l − d)]
(2)  

UMcosh[γ(l − d)] − IIIMZCsinh[γ(l − d)] = UMcosh(γd) − IIIMZCsinh(γd)
(3) 

Thus, the following multi-dimensional non-linear equation set of d, 
ZC and γ can be obtained: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f 1(d,ZC, γ) = UMcosh(γd) − IIMZcsinh(γd)

− UNcosh[γ(l − d)] + IIN Zcsinh[γ(l − d)] = 0

f 2(d,ZC, γ) = UMcosh(γd) − IIIMZcsinh(γd)

− UNcosh[γ(l − d)] + IIINZcsinh[γ(l − d)] = 0

f 3(d,ZC, γ) = UMcosh[γ(l − d)] − IIIMZcsinh[γ(l − d)]

− UNcosh(γd) + IIIN Zcsinh(γd) = 0

(4) 

For the iterative solution of non-linear equation set, comparing to 

Fig. 1. Schematic diagram of a double-circuit transmission line.  

Y. Liang et al.                                                                                                                                                                                                                                    



Electric Power Systems Research 214 (2023) 108853

3

intelligent group optimization algorithms, Newton-Raphson method 
possesses the advantages of high convergence accuracy and fast solution 
speed. However, the accuracy of Newton-Raphson method relies heavily 
on the initial iteration value, especially when solving multi-dimensional 
equation set with strong non-linearity. Consequently, the situation of 
convergence to pseudo roots or non-convergence will arise if the line 
parameters are totally unknown. 

3. Line parameter adaptive fault location method based on 
substituting unknowns 

3.1. Fault location equation reconstruction by substituting unknowns and 
supplementing constraint equations 

In the original fault location observation Eqs (1)–(3), the terms 
related to unknowns d, γ and ZC are cosh(γd), ZCsinh(γd), cosh[γ(l − d)]
and ZCsinh[γ(l − d)]. To avoid the strong non-linearity of the fault 
location observation equations, assuming that: 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1

A2

A3

A4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cosh(γd)

Zcsinh(γd)

cosh[γ(l − d)]

Zcsinh[γ(l − d)]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5) 

In order to transform the form of unknowns and thereby avoid the 
strong non-linearity, Eq. (4) is rewritten according to Eq. (5): 
⎧
⎨

⎩

f 1(A) = UMA1− IIMA2− UNA3+IIN A4= 0
f 2(A) =UMA1− IIIMA2− UNA3+IIIN A4= 0
f 3(A) = − UNA1+IIIN A2+UMA3− IIIMA4= 0

(6) 

In Eq. (6), the complex unknowns are A1, A2, A3 and A4 which 
means the number of equations is less than the number of unknowns. 
Thus, one more equation should be supplemented. From Eq. (5), the 
following mathematical relationship of A1, A2, A3 and A4 can be 
deduced: 

A1A4 + A2A3 = cosh(γd)⋅ZCsinh[γ(l − d)] + ZCsinh(γd)⋅cosh[γ(l − d)]

= ZC
eγd + e− γd

2
eγ(l− d) − e− γ(l− d)

2
+ ZC

eγd − e− γd

2
eγ(l− d) + e− γ(l− d)

2

= ZC
eγl − e− γl

2
= ZCsinh(γl)

(7) 

Then, using the voltage and current data of the healthy line II, the 
following equation can be obtained: 
{

UMcosh(γl) − IIIMZcsinh(γl) = UN
UNcosh(γl) − IIINZcsinh(γl) = UM

(8) 

Viewing cosh(γl) and ZCsinh(γl) as unknowns B1 and B2, then Eq. (8) 
can be rewritten: 
{

UMB1− IIIMB2=UN
UNB1− IIIN B2=UM

(9) 

According to Eq. (9), B2 can be calculated and ZCsinh(γl) is obtained: 

ZCsinh(γl) = B2 =

(
U2

M − U2
N

)

(UN⋅IIIM − UM⋅IIIN)
(10) 

Thus, after obtaining ZCsinh(γl), Eq. (8) can be rewritten and the 
supplementary equation is acquired: 

f 4(A) = A1⋅A4 + A2⋅A3 −

(
U2

M − U2
N

)

(UN⋅IIIM − UM⋅IIIN)
= 0 (11) 

Thus, the fault location observation equation set can be recon-
structed using Eq. (6) and Eq. (11): 

f(A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1(A) = UMA1 − IIMA2 − UNA3 + IINA4 = 0

f 2(A) = UMA1 − IIIMA2 − UNA3 + IIINA4 = 0

f 3(A) = − UNA1 + IIINA2 + UMA3 − IIIMA4 = 0

f 4(A) = A1A4 + A2A3 −

(
U2

M − U2
N

)

(UN⋅IIIM − UM⋅IIIN)
= 0

(12) 

Therefore, in Eq. (12), the form of double-circuit transmission line 
fault location equations are transformed into the form of quadratic non- 
linear equations. 

3.2. Mathematical proof of convergence for the reconstructed fault 
location equation 

The form of quadratic non-linear equation set Eq. (12) is much 
simpler than that of Eq. (4). Newton-Raphson method is of high 
convergence accuracy and fast solution speed when solving simple non- 
linear equations. Therefore, the characteristics of the Jacobian matrix of 
Eq. (12) should be analyzed. Calculating the partial derivation of A, the 
Jacobian matrix of Eq. (12) is obtained: 

J(A) =
∂fi(A)

∂A
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

UM − IIM − UN IIN

UM − IIIM − UN IIIN

− UN IIIN UM − IIIM

A4 A3 A2 A1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13) 

In the Jacobian matrix J(A), the elements in the first three rows are 
fundamental phasors which are constants in the reconstructed equation. 
The elements in the fourth row are the four complex unknowns of the 
reconstructed equations. In order to analyse the characteristic of J(A), 
how the four complex knowns change as d, γ and ZC changes should be 
analyzed. To do so, the approximate line parameters (γ = 0.0001 + j 
0.001 and ZC = 200 -  j10Ω) are selected. By changing the value of d, ZC 

and γ separately, the changing rule of the four complexes can be 
analyzed. 

First, the traces of A1 and A2 when d ranges from 0 to 1500 km is are 
analyzed. As Fig. 2 shows, both traces are always within the first 
quadrant. As the length of transmission lines is far shorter than 1500 km, 
the values of A1 and A2 will not exceed the first quadrant. 

Then the traces of A1 and A2 when γ changes is are analyzed. Taking 
d as 0, 100 km, 200 km and 300 km, respectively, when the real part of γ 
ranges from 0.0001 to 0.01, the traces of A1 and A2 are displayed in 
Fig. 3. Obviously, A1 and A2 are always within the first quadrant even 
when the real part of γ deviates from the true value. The traces of A1 and 
A2 when the imaginary part of γ changes are displayed in Fig. 4. A1 and 
A2 are always within the first quadrant even when the imaginary part of 
γ ranges from 0.0001 to 0.005. Thus, it can be concluded that A1 and A2 
are always within the first quadrant when γ changes. Similarly, the trace 
of A2 with ZC changing is analysed. A1 is not related to ZC and the traces 
of A2 when the real and imaginary part of ZC change are shown in Fig. 5 
(a) and (b). As can be seen, the value of A2 is always within the first 
quadrant. 

Generally, the values of A1 and A2 are always within the first quad-
rant even when the transmission line length and line parameters are far 
beyond regular values. Also, the possible values of A3 and A4 are the 
same as those of A1 and A2. Therefore, restricting the range of A1, A2,

A3 and A4 to the first quadrant not only caters to the constraint of actual 
line parameters, but also indicates strong adaptive ability. In the process 
of iteration, the elements of J(A) are actually the gradient of non-linear 
curves at iteration value. Thus, the symbolic invariance of these ele-
ments indicates that the curves are of monotonicity. In this case, when 
the zero crossing point of the curve is within solution space, the least 
square iteration process will certainly converge. If the zero crossing 
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point is where the true solution lies, then convergence to the true so-
lution is guaranteed. In this case, the range of solution space certainly 
contains the range restricted by regular line parameter values, which 
means the true solution is within the solution space. 

In other words, it can be concluded that:  

(1) The solution space of A1, A2, A3 and A4 is within the first 
quadrant and the elements of J(A) are all of symbolic invariance.  

(2) Within the first quadrant, the curves of equations in Eq. (12) are 
of monotonicity. The true solution is unique. 

Thus, convergence to true solution is guaranteed when using 
Newton-Raphson method to solve Eq. (12). 

Fig. 2. The traces of A1 and A2 with d changing.  

Fig. 3. The traces of A1 and A2 with the real part of γ changing.  

Fig. 4. The traces of A1 and A2 with the imaginary part of γ changing.  
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3.3. Solution of the reconstructed fault location equation 

Therefore, Newton-Raphson method is used to solve the line 
parameter adaptive double-circuit transmission line fault location Eq. 
(12). As the Jacobian matrix of Eq. (12) is already obtained, the Taylor 
expansion of f(A) at any iteration point A(p) can be calculated and the 
higher order terms are neglected: 

f
(
A(p))+ J

(
A(p))⋅ΔA(p) = 0 (14) 

Thus, ΔA(p) can be calculated using Eq. (14) and the iteration process 
is continued: 

A(p+1) = A(p) + ΔA(p) (15)  

When |ΔA(p)| < ε (ε is an extremely small number), the iteration process 
is completed and the solution converges at A(p). According to Eq. (5), the 
fault distance d can be calculated: 

d =
arcosh(A1)/arcosh(A3)⋅l

arcosh(A1)/arcosh(A3) + 1
(16) 

In this way, without acquiring line parameters in advance, the fault 
location observation equation is transformed into the simple quadratic 
non-linear equations form by substitution of unknowns. Furthermore, in 
the solution space of the first quadrant, it is mathematically proved that 
the elements in the Jacobian matrix of the reconstructed equation set 
indicate symbolic invariance. Consequently, convergence to the true 
solution is guaranteed when solving the reconstructed equation set by 
using Newton-Raphson method. 

4. Verification of the proposed fault location method by 
electron-magnetic transient simulation 

To verify the proposed double-circuit transmission line fault location 
method, a 500 kV two-terminal power transmission system model which 
contains a double-circuit transmission line is constructed using PSCAD/ 
EMTDC. The fault location calculation is programmed in MATLAB. The 
frequency of the system is 50 Hz. The transmission line model adopts the 
frequency-dependent J. Marti model, which is more close to the prac-
tical transmission lines. The layouts of the transmission system is shown 
in Fig. 1. The line length l is set to 300 km. Faults are set at 1 km, 5 km, 
10 km, 50 km, 100 km, 150 km, 200 km, 250 km, 290 km, 295 km and 
299 km away from terminal-M. 

Setting the middle of the line as the initial iteration value of fault 
distance and selecting the iterative initial values of line parameters 
within the same order of magnitude, the solutions of the original fault 

location observation equations (i.e., Eq. (4)) acquired by using Newton- 
Raphson method are listed in Table 1. 

It can be seen from Table 1 that three different solution situations 
arise due to the strong non-linearity of the equation set, which are ac-
curate convergence, convergence to pseudo root and divergence. 
Therefore, it can be deduced that due to the existence of pseudo root 
problem in the solution of this kind of multi-dimensional strongly non- 
linear equations, when the initial value of iteration cannot be close to 
the true solution, there will be divergences or false convergences, 
resulting in large deviations of fault location. 

In order to verify the effectiveness of the proposed method, utilize 
the reconstructed observation equation set (i.e., Eq. (12)) to solve the 
fault distance for the same fault situation. The initial values of real and 
imaginary parts of A1~ A4 are random positive real numbers. The so-
lutions acquired by using Newton-Raphson method and number of it-
erations (NI) are listed in Table 2. 

As can be seen in Table 2, in the same fault situation, the solutions 
converge to the true fault distance at the NI of 9 or 10 or 11 by using the 
reconstructed equation set. It shows that the proposed method is 
insensitive to initial values for unknowns. To further test the accuracy of 
the proposed method, more fault simulations are carried out and the 
proposed fault location method is utilized to calculate fault distance 
under different fault cases. The fault type includes single phase to 
ground fault, phase to phase fault and three phase fault. For all three 
types of fault, the fault resistances are set to 0, 50Ω, 100Ω, 200Ω and 
300Ω, respectively. The results are listed in Tables 3–5. 

It can be derived from Tables 3–5 that the proposed double-circuit 
transmission line fault location method is able to accurately locate the 
fault under different circumstance without knowing line parameters. 
The fault location errors are all less than 0.5 km, thereby the two nearest 
towers to the fault point can be identified. When the faults occur near 
line terminals, the fault location errors are still small. On the other hand, 
fault location results with the existence of fault resistance are an 
important index for fault location methods. As can be seen from 
Tables 3–5, with the existence of fault resistance, the proposed method 
still provides accurate fault location results. When the fault resistance is 
up to 300Ω under the circumstance of single phase to ground fault, the 
fault characteristics are obviously weakened and the proposed method is 
still able to locate the fault accurately. Thus, the proposed fault location 
method possesses robustness to fault resistance. 

Generally, the proposed double-circuit transmission line fault loca-
tion method possesses strong adaptive ability of line parameters and 
ample precision in fault location. Moreover, as the accuracy of fault 
location improves, the proposed method shows robustness to fault 
resistance which can be up to 300Ω. 

Fig. 5. The trace of A2 with ZC changing.  
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5. Conclusion 

This paper presents a two terminal line parameter adaptive fre-
quency domain method for fault location of double-circuit transmission 

lines. Targeting the issue of divergence or convergence to pseudo roots 
for strong non-linear equations, the proposed method regards the four 
complex terms consist of fault location, line parameters as the new 
complex unknowns of the fault location observation equation. After 

Table 1 
Solution situation of original non-linear equation set for fault location.  

Fault distance(km) RF = 0 RF = 50Ω RF = 100Ω 
Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) 

1 1.27 0.27 0.15 − 0.85 0.01 − 0.99 
5 6.42 0.42 5.33 0.33 1.84 − 3.16 
10 9.86 − 0.14 10.96 0.96 4.18 − 5.82 
50 150.00 100.00 150.00 100.00 Divergence / 
100 100.10 0.10 99.30 − 0.70 150.00 50.00 
150 150.00 0 150.00 0 150.00 0 
200 Divergence / Divergence / Divergence / 
250 Divergence / 150.00 − 100.0 Divergence / 
290 0 − 290.0 291.26 1.26 293.51 3.51 
295 299.99 4.99 Divergence / 150.00 − 145.00 
299 933.66 634.66 Divergence / 150.00 − 149.00  

Table 2 
Solution situation of reconstructed equation set for fault location.  

Fault distance(km) RF = 0 RF = 50Ω RF = 100Ω 
Result (km) Error (km) NI Result (km) Error (km) NI Result (km) Error (km) NI 

1 0.96 − 0.04 11 1.08 0.08 10 1.10 0.10 10 
5 5.07 0.07 9 4.98 − 0.02 10 5.26 0.26 9 
10 9.88 − 0.12 10 9.95 − 0.05 10 10.05 0.05 9 
50 50.18 0.18 10 49.91 − 0.09 9 49.91 − 0.09 9 
100 99.86 − 0.14 9 99.95 − 0.05 10 99.93 − 0.07 9 
150 150.13 0.13 11 150.01 0.01 10 150.00 0.00 10 
200 200.07 0.07 10 200.02 0.02 9 199.97 − 0.03 11 
250 249.84 − 0.16 9 250.04 0.04 10 249.96 − 0.04 10 
290 290.13 0.13 10 290.06 0.06 11 289.93 − 0.07 11 
295 294.92 − 0.08 10 295.01 0.01 10 294.94 − 0.06 9 
299 299.05 0.05 10 298.99 − 0.01 9 298.95 − 0.05 10  

Table 3 
Fault location results of single phase to ground fault cases.  

Fault distance(km) RF = 0 RF = 50Ω RF = 100Ω RF = 200Ω RF = 300Ω 
Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) 

1 0.96 − 0.04 1.08 0.08 1.10 0.10 1.11 0.11 1.11 0.11 
5 5.07 0.07 4.98 − 0.02 5.26 0.26 5.31 0.31 5.37 0.37 
10 9.88 − 0.12 9.95 − 0.05 10.05 0.05 10.11 0.11 10.15 0.15 
50 50.18 0.18 49.91 − 0.09 49.91 − 0.09 49.94 − 0.06 49.84 − 0.16 
100 99.86 − 0.14 99.95 − 0.05 99.93 − 0.07 99.88 − 0.12 99.83 − 0.17 
150 150.13 0.13 150.01 0.01 150.00 0.00 150.01 0.01 150.01 0.01 
200 200.07 0.07 200.02 0.02 199.97 − 0.03 200.10 0.10 200.18 0.18 
250 249.84 − 0.16 250.04 0.04 249.96 − 0.04 250.04 0.04 250.08 0.08 
290 290.13 0.13 290.06 0.06 289.93 − 0.07 289.88 − 0.12 289.84 − 0.16 
295 294.92 − 0.08 295.01 0.01 294.94 − 0.06 294.82 − 0.18 294.81 − 0.19 
299 299.05 0.05 298.99 − 0.01 298.95 − 0.05 299.08 0.08 299.11 0.11  

Table 4 
Fault location results of three phase fault cases.  

Fault distance(km) RF = 0 RF = 50Ω RF = 100Ω RF = 200Ω RF = 300Ω 
Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) Result (km) Error (km) 

1 0.92 − 0.08 0.96 − 0.04 0.94 − 0.06 0.91 − 0.09 0.89 − 0.11 
5 5.13 0.13 5.03 0.03 4.97 − 0.03 4.94 − 0.06 5.11 0.11 
10 9.64 − 0.36 10.03 0.03 10.03 0.03 10.05 0.05 10.07 0.07 
50 50.45 0.45 49.90 − 0.10 49.88 − 0.12 49.87 − 0.13 49.88 − 0.12 
100 99.86 − 0.14 99.93 − 0.07 99.97 − 0.03 99.93 − 0.07 99.91 − 0.09 
150 150.13 0.13 149.99 − 0.01 150.00 0.00 149.99 − 0.01 150.00 0.00 
200 199.92 − 0.08 200.06 0.06 200.06 0.06 200.08 0.08 200.06 0.06 
250 250.43 0.43 250.09 0.09 250.10 0.10 250.13 0.13 250.12 0.12 
290 290.21 0.21 290.03 0.03 289.94 − 0.06 289.97 − 0.03 289.93 − 0.07 
295 294.93 − 0.07 295.03 0.03 294.93 − 0.07 294.93 − 0.07 294.86 − 0.14 
299 299.08 0.08 299.04 0.04 299.06 0.06 299.08 0.08 299.11 0.11  
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supplementing a constraint equation by utilizing the mathematical 
relationship between the new complex unknowns, a quadratic non- 
linear equation set is reconstructed. 

It is mathematically proven that the four complex unknowns are 
always within the first quadrant even if the line parameters and length 
are far beyond regular value. Thereby, within the solution space of the 
first quadrant, the elements in the Jacobian matrix of the reconstructed 
equation set are all of symbolic invariance, which means the recon-
structed equation are of monotonicity. Thus, setting the initial iteration 
value of the four complex unknowns to any complex number in the first 
quadrant is able to guarantee convergence to true solution. Then, the 
fault distance can be calculated. 

The test of ATP/EMTP-generated signals indicates that the proposed 
method guarantees accurate convergence and fault location by setting 
the initial iteration value to any complex in the first quadrant. The 
adaptive ability to line parameters of the proposed methods is strong. 
Also, with the improvement of fault location accuracy, the proposed 
method possesses strong robustness to fault resistance. Even when the 
fault resistance of single phase to ground fault is up to 300Ω, the fault 
location accuracy of the proposed fault location method is still high. 
Therefore, the proposed phasor domain fault location method is of 
strong robustness, strong adaptive ability of line parameters and high 
accuracy in fault location of double-circuit transmission lines. 
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