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Abstract

Background. Database synchronization is an essential process due to the large
amounts of data produced in today’s industrial environment. Important data must
be prioritized for synchronization in real time, and optimization algorithms can be
used to produce a prioritized list of data based on an optimization objective. To
prevent data loss and minimize data consumption for efficient synchronization, a
synchronization framework with a prioritization policy is an effective solution.
Objectives. This research aims to develop an efficient synchronization framework
with optimization algorithms that can obtain the optimal order of data for synchro-
nization and identify the most suitable optimization algorithm for the objective. The
proposed solution aims to reduce the burden on the On-Board (source) database and
limit data consumption.
Methods. The research experiment was conducted on two optimization algorithms
to identify the most suitable algorithm for the objective and determine the appro-
priate parameters. The algorithms were performed on a dataset provided by Volvo,
and the synchronization time of rows (documents) across different networks was also
measured.
Results. The results of the experiments indicate that the genetic algorithm and
particle swarm optimization can generate a high-quality solution for the given ob-
jective of minimizing the data consumption during the synchronization in terms of
fitness values and convergence speed. The genetic algorithm outperformed particle
swarm optimization, and the synchronization framework can effectively synchronize
data while handling network errors and concurrent updates.
Conclusions. Based on the experiments, it can be concluded that the genetic al-
gorithm is the most effective optimization algorithm for this optimization objective,
and the proposed synchronization framework works effectively. Further evaluation
and testing are necessary to ensure industrial usage. The framework can be deployed
to synchronize important data trucks produce on board.

Keywords: Database Synchronization, Optimization Algorithms, Prioritization,
MongoDB Atlas
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Chapter 1

Introduction

With the growing number of mobile devices, a lot of data is eventually produced.
This data is stored in the device’s local database. However, these devices have limited
memory, less computational power, and less network bandwidth, making storing and
processing this data more difficult [3]. This data can be valuable sometimes and needs
to be stored in a database that stores, learns, or performs any actions. Database syn-
chronization is maintaining data consistency between two or more databases while
keeping the data clean and avoiding duplications or replications. Several commercial
database synchronization frameworks were proposed for mobile databases and are
already in use. The major problem with commercial database vendors providing
the synchronization is that this forces the developers to use specific libraries and
resources from the same vendor for any further development; this problem has been
highlighted in many papers [3, 6, 8, 9].

This research focuses on synchronizing only prioritized data between two databases
(On-Board and Off-Board) effectively. This thesis work was conducted in partner-
ship with Volvo. The remote database or the on-board here is a truck equipped with
a telemetry device, and the backend database is a database at the off-board. Data is
eventually generated from the truck’s telemetry devices; this data is stored in the lo-
cal database and must be synchronized with the backend databases at Volvo. Also,
there exists data that is more important and requires immediate synchronization
than other generated data. So, it is necessary to prioritize what data to send first
while synchronizing at the same time, minimizing the data consumption.

Wireless networking, as we speak, is evolving rapidly. Yet, a few problems are
associated with it [21], like shaky connections, high-cost mobile data, etc. Since there
are problems like this, we also need to set a prioritization policy for the synchroniza-
tion depending on the network connection. A current study needs a synchronization
framework that prioritizes the order of data to synchronize between the databases.
We explore this gap and develop a synchronization framework that supports data
prioritization while synchronizing the databases.

In this thesis, we implement optimization algorithms used for similar purposes
in the industry to prioritize the data based on a defined prioritization policy and
a framework for synchronizing the changed data between the databases. The syn-
chronization framework must synchronize high-priority changed data rather than the
random order of data or the first produced data because it will reduce the chances
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2 Chapter 1. Introduction

of synchronizing essential data and consume more data. Keeping these in mind, the
scope and objectives of the thesis are identified and described below.

1.1 Aim and objectives

This research aims to review the current literature on optimization algorithms used
for similar problems and apply them to our research. Additionally, to create a frame-
work for synchronization. The objectives of this study are,

1. Perform a literature review to understand the existing literature on optimiza-
tion algorithms and select the algorithms that work to generate prioritized data
according to the set synchronization policy.

2. To set up databases and create a synchronization framework to synchronize
the changed data.

3. Integrating the optimization algorithm with the synchronization framework
and evaluating it.

4. Create a simple GUI for the framework.

1.2 Research questions

1. RQ1: What are the existing optimistic algorithms and their applications for
prioritization in various domains?
Justification: Understanding the existing literature can potentially help the
research, and the Literature Review enables us to get the knowledge and iden-
tify the methods for the problem and how to solve it.

2. RQ2: How do the different parameter settings affect the performance of the
selected optimized algorithms in terms of finding the optimal solution?
Justification: It is essential to evaluate the effectiveness of the devised frame-
work. Comparing the selected algorithms with different parameter settings to
further identify which algorithm produces better results is beneficial.

3. RQ3 How well is the devised prioritized database synchronization framework
working?
Justification: Evaluating the synchronization framework performance is im-
portant as it identifies the framework’s efficiency and the potential improvement
areas.
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1.3 Outline
To ensure a flow, this section outlines the main structure of this document as follows:

• Chapter 1: This chapter introduces the research topic. This section discusses
the research’s purpose, aim, and research questions.

• Chapter 2: This chapter provides the background and information required
to understand the research from a reader’s perspective.

• Chapter 3: This chapter provides the related work of the existing literature
by other researchers on database synchronization and optimization algorithms.

• Chapter 4: This chapter provides the research methods used to answer the
research questions and a detailed discussion on the approach to carry out the
chosen research methods.

• Chapter 5: This chapter provides a detailed view of the synchronization
framework devised, including the Graphical User Interface (GUI).

• Chapter 6: This chapter provides the findings from the results and analysis,
issues faced when conducting the experiments, and validity threats.

• Chapter 7: This chapter provides a discussion of the results and the thesis in
a more elaborate way

• Chapter 8: This chapter provides the conclusions on this research and poten-
tial future work opportunities for this research study.





Chapter 2
Background

In this section, we discuss the optimization algorithms and the synchronization frame-
work used in the research,

2.1 Database Synchronization
Database synchronization is a critical and essential process in today’s database envi-
ronment. The increasing importance of data in various industries and organizations
has made it essential to have backup systems in place and ensure speedy retrieval of
data in case of database malfunctions. Real-time data synchronization is necessary
for tasks such as data mining, data analysis, application support, and so on at the
back end [16].

Database synchronization refers to the process of ensuring that two or more
databases are always in sync with each other. In the modern-day environment,
maintaining identical copies of data in multiple databases is often necessary, which
may be located in different systems or locations. Synchronization ensures the data
storage system’s high availability, fault tolerance, and scalability.

2.1.1 Database Synchronization methods

There are several methods to achieve database synchronization, each with its advan-
tages and limitations.

2.1.1.1 Master-slave

The most commonly used method is master-slave, where one database acts as the
master or source database, and the other databases act as slaves or replicas [39].
The master database is responsible for updating the data, while the replicas receive
updates from the master and apply them locally. This approach ensures that all
databases have the same data, but there may be a delay in replicating updates to
the replicas.

2.1.1.2 Master-Master

Another approach is master-master or multi-master, where each database acts
as both a master and a replica [7]. This method provides better fault tolerance
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6 Chapter 2. Background

and scalability, but it requires careful management of conflicts that may arise due
to simultaneous updates on different databases. In this research, we follow master-
master database synchronization. The process of database synchronization can be
challenging due to the complexity of the data and the frequency of updates. It may
also involve resolving conflicts between different updates or dealing with failures or
disruptions in the network.

2.1.2 Synchronization using MongoDB Atlas

MongoDB Atlas is a cloud NoSQL database management system designed to support
a wide range of use cases, integrating large amounts of data and Supporting hybrid
and multi-cloud applications [17,24]. One such use case is database synchronization,
which involves maintaining consistent data across multiple databases. MongoDB
offers various methods and techniques, including built-in features, to accomplish this
goal.

2.1.2.1 Change Data Capture(CDC)

Change Data Capture is a real-time technique to capture modified data [22]. Change
Streams is a feature in MongoDB that enables databases to receive real-time notifi-
cations for changes made to a collection. To create a Change Stream for a specific
collection in MongoDB, the watch() method is used. This method returns a cur-
sor that can iterate over the real-time changes as they occur. The changes in the
source database collection (optimized) will be captured and streamed/sent as full
documents to the destination database, as shown in Figure 2.1.

2.1.2.2 Connection Failures

In this synchronization framework, we use a method to handle network connectivity
issues that may happen while synchronizing the source and destination databases.
When there is a connection failure, the method waits for a set amount of time (start-
ing at 1 second) and then tries to reconnect to the database. If the connection is not
established, the method doubles the waiting time and tries to connect again, as shown
in Figure 2.2. This continues until a connection is made or the maximum number
of retries is reached, and once the connection is re-established, the synchronization
starts.

It is important to have a connection retry mechanism during synchronization
because network connectivity can be inconsistent. The connection may be lost or
unstable, but the exponential time delay retry mechanism ensures that the synchro-
nization process continues without interruption when the connection is re-established.
Figure 2.2 depicts the whole process of how a connection failure will be handled.

2.1.2.3 Optimistic Concurrency Control (OCC)

Database management systems use Optimistic Concurrency Control (OCC) to man-
age concurrent access to data. In this research, OCC ensures that modifications made
to documents in the source collection are properly synchronized to the destination
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Figure 2.1: Change Data Capture

collection, even when concurrent modifications/updates occur.

When a document is updated in the source database, the framework adds a ver-
sion number to the document and tries to update the corresponding document in the
destination database. If the document’s version number in the destination database
is the same as that of the updated document in the source database, the update is
successful. However, the document’s version number in the destination database is
different. In that case, another process has concurrently updated the document, and
the framework must manage this situation accordingly.

Similarly, when a document is updated in the destination database, the updated
document’s version number is compared to the corresponding document in the source
database. Figure 2.3 depicts this whole process of OCC; the arrows represent the
acknowledgements between the databases.

2.2 Optimization Algorithms

Optimization algorithms are utilized in multiple fields, including engineering, finance,
and computer science, to determine the most suitable solution to a problem. The
primary objective of an optimization algorithm is to identify the ideal values of one
or more variables that meet specific constraints and minimize or maximize an objec-
tive function.



8 Chapter 2. Background

Figure 2.2: Connection Failure Handling

The Genetic Algorithm (GA) is a popular optimization method that draws on
the principles of natural selection and genetics. With GA, a group of potential solu-
tions evolves over generations through crossover, mutation, and selection operators,
ultimately leading to improved solutions. GA has been utilized in several fields, such
as engineering, finance, and biology, to tackle optimization problems [42].

Particle Swarm Optimization (PSO) is a widely used optimization algorithm in-
spired by the social behaviour of birds and animals. This method involves moving
a population of particles around in the search space, guided by both their own best
position and the best position found by the group, to find the optimal solution. PSO
has effectively solved optimization problems across various fields, such as engineer-
ing, economics, and transportation.

There are several optimization algorithms available, such as Ant Colony Opti-
mization (ACO), Simulated Annealing (SA), and Tabu Search (TS). ACO takes in-
spiration from the behaviour of ants and aims to find the shortest path between their
nest and food source. This algorithm has been applied in different transportation
and telecommunications sectors to solve optimization problems. On the other hand,
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Figure 2.3: Optimistic Concurrency Control

Simulated Annealing is inspired by the process of annealing in metals and has been
used in computer science and physics to solve optimization problems. Finally, TS
is a local search algorithm that maintains a tabu list of previously visited solutions
and has been used in manufacturing and logistics to solve optimization problems [10].

In conclusion, Optimization algorithms are extensively utilized in different in-
dustries to tackle intricate optimization issues. Selecting a suitable optimization
algorithm depends on the problem and available resources. GA, PSO, ACO, SA,
and TS have frequently employed optimization algorithms in diverse industries to
address optimization problems [26].

Figure 2.4 represents some of the optimization algorithms divided and inspired
by various factors.
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Figure 2.4: Optimization algorithms
[1]

2.2.1 Genetic Algorithm (GA)

The Genetic Algorithm (GA) is an optimization algorithm that utilizes the principles
of natural selection and genetics. It is a highly effective algorithm applied in various
fields to resolve intricate optimization problems.

In the process of GA, a group of potential solutions go through evolution over
many generations by employing selection, crossover, and mutation operators. Every
solution within the population is a possible answer to the optimization problem..

In GA, a solution comprises a chromosome containing a string of genes. Each
gene represents a specific variable or parameter related to the solution, and the value
of each gene determines a different trait or feature of the solution.

The population in GA includes multiple chromosomes (or individuals), each rep-
resenting a possible solution to the problem. The fitness function assesses the quality
of each individual in the population by assigning a fitness value based on how well
it solves the problem.
In GA, the selection operator picks the fittest individuals from the population to
be the next generation’s parents. These chosen individuals undergo crossover and
mutation operations to create new offspring [37].
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Figure 2.5: Gene, Chromosome and Population
[27]

Figure 2.5 represents the fundamental concepts of genetic algorithm such as gene,
chromosome and population. In GA, the crossover operator combines two or more
parents to produce new offspring. This method is applied to the selected parents to
create new solutions. Some commonly used crossover methods in GA include one-
point crossover, two-point crossover, and uniform crossover [34].

In GA, the mutation operator maintains genetic diversity by introducing ran-
dom changes in the offspring. This mutation helps to explore new areas in the search
space and avoid premature convergence. The mutation is only applied to the off-
spring with a low probability. Bit-flip, swap, and inversion mutation are commonly
used methods for mutation in GA [42].

Figure 2.6: Genetic Operators
[31]
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The GA algorithm repeats selection, crossover, and mutation operators to gener-
ate improved solutions over multiple generations. The algorithm stops running once
a predetermined condition is met, such as finding an acceptable solution or reaching
a specific number of generations. Figure 2.6 is a visual representation of the working
of the different genetic operators.

In conclusion, GA has been successfully utilized in various fields, including engi-
neering, finance, and biology, to address optimization problems. In summary, GA is
a robust optimization algorithm that uses selection, crossover, and mutation opera-
tors to develop a population of possible solutions. Critical concepts in GA include
genes, chromosomes, and populations. Commonly used methods include tournament
selection, roulette wheel selection, one-point crossover, two-point crossover, uniform
crossover, bit-flip mutation, swap mutation, and inversion mutation.

Figure 2.7: Implementation of genetic algorithm
[9]
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2.2.2 Particle Swarm Optimization (PSO)

PSO is an optimization algorithm that imitates the social behaviour of birds and
other animals. It works by moving a group of particles around in the search space,
guided by their own best position and the best position found by the group. The
algorithm has two main components: position update and velocity update.

In PSO, The process of position update updates the position of each particle
based on its current position, velocity, and personal and global best positions. The
update equation determines the new position of each particle by taking a weighted
sum of the current position, personal best position, and global best position of the
particle. In PSO, this equation is usually used to calculate the new position of each
particle [41].

In PSO, Velocity update is a process that updates the velocity of each particle
based on its current velocity and the difference between its personal and global best
positions. The velocity update equation determines the new velocity of each particle
based on the current velocity and the difference between its personal and global best
positions. The velocity update equation is usually a weighted sum of the current
velocity, the personal best position, and the global best position of the particle [29].

The PSO algorithm uses multiple iterations to update the position and velocity,
ultimately finding the ideal solution. The algorithm stops when it meets a stopping
criterion, such as reaching a set number of iterations or discovering a satisfactory
solution.

PSO has been successful in optimizing engineering, economics, and transportation
problems. In an Elsevier study, PSO was used to reduce costs in hybrid renewable
energy systems, demonstrating promising outcomes.

In conclusion, PSO is a powerful optimization algorithm widely used in various
fields to solve complex optimization problems. The algorithm moves a population of
particles around in the search space, guided by their own best position and the best
position found by the group, using position and velocity updates. Weighted sum,
personal best position, and global best position are commonly used components in
PSO. Figure 2.8 shows the complete implementation of the particle swarm optimiza-
tion algorithm with the process as explained above.
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Figure 2.8: Implementation of Particle Swarm Optimization
[43]

2.2.3 Fitness function

In optimization problems, the fitness function is a crucial component that evaluates
the quality of a potential solution. The fitness function determines how well a so-
lution meets the optimization/prioritization objective. Optimization algorithms aim
to find the best solution(s), and the fitness function helps to find the best solution
from the population for the given problem [23].

When trying to solve optimization problems, fitness functions can take various
forms. They can be straightforward mathematical formulas, intricate simulations,
or a combination of multiple criteria. Additionally, fitness functions can be static or
dynamic, depending on whether the fitness value changes with time.

To ensure optimal results, it is crucial that the fitness function accurately reflects
the optimization objective. A poorly designed fitness function can lead to suboptimal
solutions or premature convergence. This is why it is essential to carefully design
and validate the fitness function before using it in an optimization algorithm.



Chapter 3

Related Work

In the following, we emphasize the existing literature on database synchronization.
These papers also describe the different database synchronization approaches.

We have reviewed several research papers to examine past efforts in database syn-
chronization. It is important to note that while a considerable amount of research
has been done on this topic, studies have yet to explore the prioritization of data
synchronization between the source side and the destination side.

Mi-Young Choi et al. [8] emphasized the need for database synchronization. They
proposed an algorithm called SAMD (Synchronization Algorithms based on Mes-
sage Digest) for data synchronization between a server-side database and a mobile
database. The SAMD algorithm uses message digest tables to compare two images
and select the rows needed for synchronization. The proposed algorithm does not use
any techniques that are dependent on specific database vendors, stored procedures,
triggers or timestamps for picking up changed data; instead, it uses standard SQL
functions for synchronization. However, in the paper, the algorithm uses a wired
connection for data transmission. This paper has laid a foundation regarding the
general framework of database synchronization.

Taqwa A et al. [3] analysed the literature on database synchronization. They
discussed previously proposed solutions to the database synchronization problems,
which included ISAMD [6], which uses standard SQL queries and does not require
to compute message digest values of the databases. They propose a synchronization
wireless algorithm based on message digest (SWAMD) to assist data synchroniza-
tion between server-side and mobile device database. For picking up changed data,
SWAMD also used message digest values to compare two images and spot the rows
that need to be synchronized. They followed the same approach of [6] for pinpointing
the rows for synchronization; however, their proposed algorithm is a wireless synchro-
nization algorithm. They did a performance evaluation of SWAMD and concluded
that it outperforms other synchronization algorithms in terms of network speed and
execution time.

Madhu Ahluwalia et al. [2] discusses an algorithm for synchronizing source and
target databases. Their algorithm arranges data into tuples and compares hashes of
matching parts in the source and destination database. The authors have further
compared their algorithm’s performance against two variations of complete replica-
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tion that employ different locking strategies. Based on the findings, the suggested
approach proves more effective when the database undergoes minimal changes. Fur-
thermore, the algorithm also outperforms row-level locking when fewer than 70%
of the partitions have changes or modifications. The limitations of the algorithm
are the hash function’s capacity and the requirement to retrieve the number of data
entries in a partition from the source-side database. Their approach, however, was
different from [3,6, 8] using message digest values to pinpoint the changed rows.

Kottilingam et al. [21] discuss about the challenge of synchronizing mobile data
within high speed networks. They propose IDBSync (Improved database synchro-
nization), designed to enhance the synchronization process between a server-side
database and mobile database in the context of software defined networking (SDN).
IDBSync uses a method called BaSyM (Batch Level Synchronization Methodology)
that groups similar data cases, such as insertions, deletions, etc., for picking up
changed data and synchronization. The synchronization server’s tables are managed
within the control plane. These tables comprise duplicates of the data tables found
on both the server and client devices. These duplicates are obtained from the data
planes and are used to implement the synchronization policy. This approach, accord-
ing to them, minimized network usage and reduced energy consumption. The authors
have compared the effectiveness of the proposed IDBSync mechanism against com-
mercially available methods, and the results show that the proposed mechanism out-
performs the commercial solutions in terms of network usage, energy consumption,
and synchronization time. The authors furthermore concluded that the suggested
approach can also be expanded to big data by NoSQL. This approach is completely
different from the other papers [2, 3, 6, 8] where they have used message digest or
hash values to compare two tables or images and capture changed data.

Gunasekaran Raja et al. [28] in another study introduces an innovative way to
keep databases in sync, specifically between an SDN-assisted synchronization mid-
dlebox and mobile client databases. This method is all about dynamically managing
caches to ensure data consistency. What sets this mechanism apart is its ability to
handle different types of databases and adaptively synchronize data based on how
often items are accessed. While this approach like [21] groups similar data cases,
such as insertions, deletions, etc., for picking up changed data and synchronization,
this approach also prioritizes data that is recent. The experiment conducted in this
research show that average response time of this approach is faster than commer-
cial solutions and faster than SAMD [8]. The authors conclude that the proposed
mechanism not only matches but surpasses the performance of existing commercial
solutions for database synchronization. as it’s more energy-efficient, and it reduces
the time it takes to synchronize databases.
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3.1 Limitations and Research Gap
The previous research was mostly focused mainly on database synchronization ba-
sic architecture and using message digest, hash values or SDN-based approaches for
picking up changed data and making the synchronization efficient in terms of speed
and response time.

There has been notable lack of research focused on addressing the issue of syn-
chronizing only certain data on the need and urgency. Except for [28] where the
authors have introduced a prioritization policy that synchronizes the most recent
data and frequently accessed data no other research have focused on which data to
sync. However, this research [28] is limited as the prioritization focus is only on
most recent and frequently accessed data, we intend to fill this lack of research on
prioritization of data in database synchronization by introducing optimization algo-
rithm to prioritize the data on the need, importance and urgency of the data which
reduces the mobile data consumption as only important and prioritized data will be
synced first rather than syncing all data. As the urgency, need and importance of
data changes over time the database synchronization framework should be able to
adapt meaning, there should be an option to change the priority levels which will
be incorporated in this research. To fill the research gap the framework should be
able to generate an optimal or prioritized order of data for synchronization while
handling issues such network interruptions and concurrency updates.

Although, extensive research is made on different change data capture methods
and are incorporated to the database synchronization, there is lack of research where
they have set up change streams, meaning synchronizing the data as soon as a change
is detected. We also intend to set up change streams in the prioritized database
synchronization.





Chapter 4
Method

In this chapter, we will discuss the research methods used in this research. There are
mainstream research methods for Computer Science, such as experiments, Surveys,
Case studies, and Literature reviews, but the chosen research method is Experiments.
The first step involves selecting optimization algorithms for prioritization. Then, we
proceed to do experiments to evaluate the performance of the identified optimization
algorithms for the prioritized database synchronization framework.

4.1 Literature Review
A literature review is performed to gain additional insights from current studies,
which will help us answer RQ1. Keywords related to optimization algorithms,
database synchronization, and other related terms are used to identify the relevant
literature. A set of inclusion and exclusion criteria is used in the literature review
to choose the most appropriate research papers and articles. Most of the articles
were searched on notable and trusted knowledge bases such as Google Scholar, BTH
Summon, IEEE Xplore, etc. The snowballing search mechanism is employed for this
literature review.

The steps followed for this literature review:

1. Selecting only the above keywords for searching articles.

2. Selecting the articles according to the inclusion and exclusion criteria.

3. Further selecting the most relevant papers that are related to this research.

4. Study the selected papers.

5. Noting down a summary of all the found relevant research papers to further
use in the research.

Below are the search strings or keywords used to identify the literature

("Database Synchronization" OR "Data Synchronization" AND "Opti-
mization Algorithms" OR "Optimization Algorithms for Prioritization"
OR "Data prioritization Algorithms")
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The inclusion criteria:

1. Articles that are written in the English Language.

2. Articles that are available in full text.

3. Articles that have been published after 2003.

4. Articles related to Optimization algorithms and database synchronization.

5. Articles that are journals, books and conference papers.

The exclusion criteria:

1. Articles that are not written in English.

2. Articles that are not available in full text.

3. Articles that are not related to the research.

4.1.1 Search Mechanism

The search Mechanism refers to the method used to identify relevant papers for this
thesis. The snowballing mechanism is employed for the effective selection of relevant
papers.

4.1.2 Snowballing

Snowballing or snowball sampling is a research method that involves starting with
the initial paper, which fits the inclusion criteria of the thesis and following the
relevant papers from the references. The process repeats, leading to identifying the
relevant literature effectively. This snowballing can be both forward and backward.
Backward snowballing is selecting a paper and tracing backwards in time to find
the studies that have been referenced in the paper, while forward snowballing
is selecting a paper and finding the papers that have referenced the paper, which
is opposite to backward snowballing approach. We used these mechanisms for the
literature study in the thesis [40].

4.2 Experimentation
To answer RQ2 and RQ3, we conducted an experiment using the experimental
methodology, a type of analytical approach. The experiment involved incorporating
a hypothesis and variables that the researcher controls into the experiment design,
monitoring and adjusting as needed.
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The hypothesis for the RQ2 and RQ3 are as follows,

• RQ2: How do the different parameter settings affect the performance of the
selected optimized algorithms in terms of finding the optimal solution?
Null hypothesis (H0): Different parameter settings do not affect the per-
formance of the selected optimized algorithms in terms of finding the optimal
solution.
Alternative hypothesis (H1): Different parameter settings affect the per-
formance of the selected optimized algorithms in terms of finding the optimal
solution.

• RQ3 How well is the devised prioritized database synchronization framework
working?
Null hypothesis (H0): The devised prioritized database synchronization
framework is not working effectively.
Alternative hypothesis (H1): The devised prioritized database synchro-
nization framework is working effectively.

To answer RQ 2, we evaluated different parameter settings on the selected opti-
mization algorithms for prioritized database synchronization through experimental
evaluation. We compared the performance of the algorithms and the synchroniza-
tion framework on various metrics and selected the suitable algorithm for prioritized
database synchronization.

Dependent variables: Convergence speed, elapsed time, synchronization time,
fitness values

Independent variables: Optimization algorithms used for prioritizing the rows
and algorithm’s parameters.

4.2.1 Experimental Setup

Hardware Environment

CPU Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHZ 2.80
GHz

GPU NVIDIA GeForce GTX 1050 Ti
RAM 16 GB

Software tools, libraries, and Environment: The software applications and
libraries used in this study are listed below:

1. Python programming language is used to implement optimization algorithms
and synchronization scripts. It offers a vast collection of libraries and has a
user-friendly syntax, making it an ideal choice for implementing and evaluating
these algorithms and scripts.
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2. NumPy is a Python library that supports sizeable, multi-dimensional arrays
and matrices. It also provides various mathematical operations that can be
performed on these arrays.

3. Pandas is a powerful Python library used for analyzing and manipulating
data. It offers easy-to-use data structures, such as DataFrames, that simplify
working with structured data.

4. The DEAP library is a Python tool that enables the creation and execution of
evolutionary algorithms, including genetic algorithms. Its flexible framework
allows the development of custom operators and evaluation methods.

5. Matplotlib is a library for Python that offers a range of visualization tools,
such as line plots, box plots, bar plots, and scatter plots. It is used to visualize
fitness values and synchronization time.

6. SciPy is a library in Python that builds upon NumPy and provides additional
capabilities for scientific computing. This includes functions for statistical anal-
ysis, linear algebra, and optimization, which help conduct statistical tests.

7. Jupyter Notebook is a web-based computing environment that allows one
to create and share documents with live code, equations, visualizations, and
narrative text. It is used for implementing, evaluating, and recording research
experiments.

8. PyMongo is a Python library that offers tools to connect with the MongoDB
Atlas. One can perform numerous database operations, connect quickly to a
MongoDB instance, and insert and retrieve data. MongoDB integration and
synchronization are made possible using PyMongo in this research.

9. Tkinter is a standard Graphical User Interface (GUI) library for Python. It
is a toolkit that provides various tools and widgets for creating graphical user
interfaces (GUIs). It is based on the Tk GUI toolkit.

4.2.2 Dataset

Volvo Group has provided the data for this experiment in an Excel format. The
dataset includes over 21 attributes, and the relevant ones are listed in Tables 4.1 and
4.2 below. There are no missing values in the dataset, but the timestamps have been
converted to BSON format for more straightforward interpretation by MongoDB.
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Column Name Description
Timestamp Timestamp of data recorded
cruisetime time spent in cruise time
brakeCount number of times brake is used
WithoutTorqueTime time spent without torque
selectedDriveMode Selected mode of driving
tachographSpeed Speed according to tachograph
stopCount number of stops made
serviceDistance Distance travelled in service
trueIdleTime Idle time
vehicleSpeed speed of the vehicle
vehicleMovingTime time the vehicle is in motion
vehicleDistance Distance travelled by the vehicle
loadTruckFront load on front of the truck
loadTruckRear load on the rear of the truck
loadTruck Total load on the truck
ext_gnss_altitude Altitude of the vehicle (GNSS)
ext_gnss_latitude Latitude of the vehicle (GNSS)
ext_gnss_longitude Longitude of the vehicle (GNSS)
ext_gnss_timeStamp Timestamp of the GNSS data
ext_gnss_heading Heading of the vehicle (GNSS)
ext_gnss_horizontalSpeed Horizontal speed of the vehicle (GNSS)

Table 4.1: Dataset description

4.2.3 Research Design

In this section, we provide an overview of how we carried out the experimentation in
steps as shown in the below figure,

1. Step 1: Studying literature to understand which optimization algorithms are
used in the prioritization of data.

2. Step 2: Selecting the optimization algorithms which will be used in this re-
search study to find the prioritized order of data.

3. Step 3: Pre-processing the data so that it can be given to the optimization
algorithm.

4. Step 4: Feeding the data to the selected optimization algorithms and com-
paring the results.

5. Step 5: Setting up databases and a synchronization script for the synchro-
nization of prioritized data picked up by the optimization algorithm.

6. Step 6: Analyzing the devised synchronization framework and the optimiza-
tion algorithm.
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4.2.4 Approach

We used two algorithms, the genetic algorithm and the particle swarm algorithm Al-
gorithm, to prioritize database synchronization. We iteratively tested with different
parameter settings and random seed values to find the best solution. We continued
the process until we found an optimal solution that satisfied our requirements. This
study compared these two algorithms’ performance to determine which was better
suited for the optimization objective.

Genetic Algorithm Implementation
In this section, we explain our approach to the genetic algorithm to prioritize the
data,

1. Parameter settings: The parameters a number of generations (NGEN), pop-
ulation size (MU), offspring size (LAMBDA), crossover probability (CXPB),
and mutation probability (MUTB) are defined.

2. Objective function: To achieve efficient synchronization between source and
remote databases, we have developed an objective function that minimizes
data consumption while ensuring that essential prioritized data is synchronized.
Additionally, we have created a fitness function that evaluates the fitness of each
possible solution based on the provided data. The objective function considers
synchronization parameters such as sync interval and data size.

Sync interval is a synchronization parameter, which means the data synchro-
nization starts for every sync interval.
data_size is a parameter that defines the maximum amount of data in size
that is to be transferred for each interval. This can change during the execution,
depending on the bandwidth.

3. Fitness function: A fitness function is created and tailored according to the
current optimization problem of prioritizing the order of rows for synchroniza-
tion while limiting the data consumption. The fitness function calculates the
score of each possible solution(individual) based on the data provided. In our
case, our fitness function is tailored to consider multiple factors such as column
priorities/weights and the conditions to invoke the priority/weight and load
balance to evaluate each of the possible solutions, with the goal of selecting the
best possible solution that satisfies the above-defined objective.
Row Score: In order to calculate the row score, we assess each row in the
solution by considering the values in the columns and taking into account the
priority/weight of each column. For each row in the individual, calculate the
row_score based on column weights and conditions:

row_score =
∑
i

(column_weight[i] · I(column_condition[i](row_data[i])))

(4.1)

where i is the column index, and I() is the indicator function (1 if the condition
is true, 0 otherwise).



4.2. Experimentation 25

Data Field Weight Factor Condition
selectedDriveMode 0.3 x > 100
tachographSpeed 0.2 x > 30
vehicleSpeed 0.4 x > 30
loadTruckFront 0.3 x > 5000
loadTruckRear 0.3 x > 5000
loadTruck 0.5 x > 10000
ext_gnss_altitude 0.4 x > 50
ext_gnss_heading 0.4 x > 5
ext_gnss_horizontalSpeed 0.2 x > 10

Table 4.2: Data fields, weight factors, and conditions used in the fitness function.

In Table 4.2, each row corresponds to a data field used in the fitness function.
The "Weight Factor" column indicates the weight/priority assigned to each
data field in the fitness function, which determines the relative importance of
each field in determining the overall fitness score of the row. The "Condition"
column specifies the condition that must be met for a given value of the data
field to be considered significant in calculating the row’s score. The Volvo su-
pervisor chose these specific weight factors and conditions and was not chosen
from extensive research. These conditions and weight factors are deemed to
change as the requirement and priority of the data to synchronize change at
the backend, so there could be no fixed weight factors and conditions. Different
conditions and weight factors produce other results, which is a validity threat
to this research.

For example, the "selectedDriveMode" field has a weight factor of 0.3 and a
condition of x > 100, which means that if the value of this field is greater than
100, it will be considered significant in the calculation of the row’s score. It
will be multiplied by a weight factor of 0.3. Similarly, the "loadTruck" field has
a weight factor of 0.5 and a condition of x > 10000, which means that if the
value of this field is more excellent than 10000, it will be considered significant
in the calculation of the row’s score and will be multiplied by a weight factor
of 0.5.

Load Balance: Load balance is calculated by comparing the front and rear
weights of the truck. A separate function computes the absolute difference
between the front and rear weights, as shown below,

load_balance_score =
∑

i∈{3,4}
wi · |load_front − load_rear| (4.2)

load_balance =
|load_front − load_rear|

min(load_front, load_rear)
(4.3)



26 Chapter 4. Method

Final Score:

score = score + row_score − (load_balance_score · load_balance) (4.4)

normalized_score =
score − min_score

max_score − min_score
(4.5)

4. Initialization: We randomly generate an initial population of individuals
(chromosomes). The individual (chromosome) represents an array of indices
corresponding to rows in the provided data. Each individual or chromosome
represents a potential prioritized order of rows.

5. Fitness evaluation: Using the fitness function devised, we calculate each
individual’s fitness in the population.

6. selection: In order to choose individuals for reproduction (mutation and-
crossover), selection operators such as tournament selection, roulette wheel
selection, and elitist selection are used. These operators prioritize individuals
with better fitness values.

7. Crossover: We used the crossover on selected solutions(individuals) to create
offspring. In this implementation, we employ the one-point crossover tech-
nique, in which the segments of the parent chromosomes are switched to create
offspring at a random crossover point.

8. Mutation: We introduce diversity into the population by randomly modifying
some of the offspring’s genes (rows) using a mutation operation (MUTPB).
This helps to delay premature convergence. We modify a few of the offspring’s
genes (rows in this case) with a certain probability by applying the mutation
operation to them (MUTPB). The population is given diversity through this
process, which delays premature convergence.

9. Replacement: Few of the least fit solutions are replaced by adding the off-
spring to the population.

10. Termination: Steps 4 to 8 are repeated until the given number of generations
have passed (NGEN). The best individual is returned as the solution once a
number of generations have passed.
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Particle swarm optimization implementation:
In this section, we explain our approach to particle swarm optimization (PSO) to
prioritize the rows in the given data,
Steps 1-3 are the same as the GA implementation, Particle Swarm Optimization
(PSO) Implementation:

• Initialization: We create an initial swarm of particles where each particle
represents a possible order of rows for data synchronization. The position and
velocity of each particle are initialized randomly within the problem bounds.

• Fitness evaluation: We compute the fitness of each particle in the swarm
using the pso_fitness function, which evaluates the particle based on the same
objectives as the GA.

• Personal and global best update: We update the personal best positions
for each particle and the global best position for the entire swarm based on
their fitness values.

• Velocity update: We update the velocities of the particles using their cur-
rent velocities, personal best positions, global best position, and some random
factors. The velocity equation’s inertia, cognitive, and social components de-
termine how much the particle is influenced by its current velocity, personal
best, and global best, respectively.

• Position update: We update the positions of the particles using their updated
velocities. The new positions should be within the problem bounds.

• Termination: We repeat steps 2-5 for a predefined number of iterations
(n_iterations). Once the termination criterion is met, we return the global
best position found as the solution.

4.2.5 Metrics

1. Convergence speed describes how quickly an algorithm finds a solution. It
can be determined by finding the slope of a line connecting the starting and
ending fitness values and dividing that value by the number of generations for
the two fitness values to converge. A lower convergence speed indicates that
the algorithm found the solution more quickly [32].

cs =
yn − y0

n
(4.6)

Where:

• cs is the convergence speed

• yn is the fitness value of the last generation

• f0 is the fitness value of the first generation

• n is the number of generations required for convergence
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2. Max fitness is the highest fitness value attained by any individual in the
population throughout all generations. It represents the best possible solution
discovered by the algorithm [4].

max =
N

max
i=1

f(xi) (4.7)

3. Avg fitness refers to the average fitness value of all individuals in the pop-
ulation across all generations. It represents the overall quality of solutions
discovered by the algorithm [19].

avg =
1

N

N∑
i=1

f(xi) (4.8)

4. The Standard deviation of fitness values refers to the degree of diversity in
fitness values across all individuals in the population throughout all genera-
tions. It indicates the diversity of solutions found by the algorithm, with a
smaller standard deviation indicating a more homogeneous population and a
more significant standard deviation indicating a more diverse population [4].

std =

√√√√ 1

N

N∑
i=1

(f(xi)− avg)2 (4.9)

Where f(xi) is the fitness function value for the ith individual, and N is the
population size.

As there is no baseline solution for this optimization problem, it is not possible to
use metrics such as accuracy. Instead, we use fitness values and convergence speeds
to evaluate the algorithms. Generally, in maximization optimization problems, if
the fitness values are increasing over a generation, it means that the algorithm is
reaching an optimal or sub-optimal solution, and it is vice versa for minimization
problems. In research conducted by Nguyen et al. [13] for performance comparison
of different algorithms in an experiment, their algorithm MIGA performed well, and
the fitness function values over generations were used for the analysis. In another
study conducted by Sourabh et al. [20], they reviewed applications and research of
genetic algorithms. In their results, they often mentioned studies that used fitness
function as a metric and concluded based on the fitness values. For instance, in
a gaming application, gomkoku [38], the authors have concluded that GA based
approach finds the solution with higher fitness than other methods implying higher
fitness values for a maximization problem is a good sign. In another study by Khader
et al. [12], the optimization is of minimization problem, and their fitness function
was Mean Squared Error (MSE) was assigned as a fitness function and in the results,
they used the fitness function as a metric and showed that the MSE is decreasing
over the generations meaning the algorithm was able to converge to an optimal or
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sub-optimal solution for the minimization problem. Hence, we determined to use
fitness values and convergence speeds as evaluation metrics for the algorithms.





Chapter 5
Synchronization Framework

The synchronization framework is created by integrating the synchronization script
and the optimization algorithm for generating prioritized documents/rows.

5.1 Database Setup
The database setup is discussed below,

1. The databases were set up on different MongoDB Atlas clusters.

2. The Source database has two collections, Primary data collection and Sync
SRC data collection, while the Destination database has one collection, Sync
DST data collection.

3. Truck/Telemetry Data is added to the Primary data collection of the Source
database.

5.2 Synchronization Approach
In this section, we explain our approach to synchronizing the prioritized data between
two databases, and Figure 5.1 depicts the overall framework.

1. At the source side, the primary data collection gets the telemetry data. The
optimization algorithm fetches data using a query, and the optimal order of
data for sync is sent to "Sync SRC data collection."

2. The Python script connects to the configured MongoDB databases and col-
lections using the connection strings of the Source database and Destination
database.

3. The source side, "Sync SRC data collection", and the destination side ", Sync
DST data collection", were configured in the above step.

4. For Source collection, the script creates a ’change stream’ using the ’watch’
method and listens for all the changes, such as Insertions, Deletions, and Up-
date operations.

5. Only the changes happening in "Sync SRC data collection" is in sync with
the destination side database, which only has the prioritized documents/rows
generated by the algorithm.
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Figure 5.1: Prioritized Synchronization Framework

Figure 5.1 is the complete framework with the optimization algorithm integrated
with synchronization script that works as above.

5.3 Graphical User Interface

The GUI for the framework was created using the Tkinter library in Python. The
GUI has the following input fields,

1. Source database connection string: This string is used to connect to the
source database.

2. Destination database connection string: This string is used to connect to
the destination database.

3. Source database name: The name of the source side database we intend to
interact with should be specified.

4. Source collection name: The name of the source side collection we indent
to interact with should be specified

5. Destination database name: The name of the destination side database we
intend to interact with should be specified.

6. Destination collection name: The name of the destination side collection
we indent to interact with should be specified
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7. Timeout(seconds): The amount of time the synchronization framework should
run can be specified here

8. We have two buttons to start the synchronization script and run the genetic
algorithm to generate

9. The output box prints the time taken to synchronize for every 100 docu-
ments/rows.

Figure 5.2 is the GUI after inputting the parameters needed to start synchroniza-
tion. It is to be noted that the GUI shows synchronization time from the time we
run the synchronization script and the actual time taken for synchronizing those 100
documents.

Figure 5.2: GUI with Input parameters





Chapter 6
Results and Analysis

6.1 Literature Review
In this chapter, we show the results of the literature review performed, followed by
the analysis of the results found,

6.1.1 Literature Review Results

Article Result
A systematic lit-
erature review of
test case prioriti-
zation using ge-
netic algorithms
[5]

In this paper, the authors present a systematic literature review
on the use of genetic algorithms for test case prioritization. The
review looks at how genetic algorithms are currently used for
test case prioritization, including the effects of various factors
on solution quality and the authors finally conclude that genetic
algorithms have the potential for solving test case prioritization
problems.

Interactive
requirements
prioritization
using a genetic
algorithm [35]

In this paper, the authors present an Interactive Genetic Al-
gorithm(IGA) for requirement prioritization. IGA combines
incremental knowledge acquisition with constraints such as de-
pendencies and priorities to produce accurate requirements or-
dering. This algorithm is compared in terms of effectiveness, ef-
ficiency, and robustness with the Incomplete Analytic Hierarchy
Process (IAHP) method. The results show that this presented
new IGA outperforms IAHP. This paper contributes to require-
ments prioritization by introducing an interactive genetic algo-
rithm as a search-based technique.
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Article Result
A genetic
algorithm-based
approach for
test Case priori-
tization [11]

In this paper, the authors present a genetic algorithm-based ap-
proach for test case prioritization in software maintenance and
regression testing. The genetic algorithm is compared with a
random technique using a benchmark program, and the exper-
iment shows that the genetic algorithm approach outperforms
the random technique in terms of the Average Percentage of
Fault Detection (APFD). The research shows the effectiveness
of a genetic algorithm-based approach for test case prioritiza-
tion.

Multi-objective
test prioriti-
zation via a
genetic algo-
rithm [30]

In this paper, the authors propose a multi-objective test pri-
oritization approach using a genetic algorithm. The aim is
to determine the criticality of software components at the de-
sign level and rank them in order of importance for testing.
Test cases are then chosen from a large pool using a genetic
algorithm-based technique. The research contributes to the
understanding of genetic algorithm-based techniques for multi-
objective test prioritization.

Optimal test
suite selection
in regression
testing with
test case prior-
itization using
modified Ann
and Whale
optimization
algorithm [14]

In this paper, the authors focus on the issue of selecting the best
test suite for regression testing with test case prioritization. The
aim is to increase fault detection during testing. The method in
this paper involves creating test cases, clustering them using the
kernel fuzzy c-means clustering technique, and then ranking the
pertinent test cases in order of importance. Modified Artificial
Neural Network (ANN) classification algorithms are used for
test case prioritization, and the Whale Optimization Algorithm
is used for weight optimization. The study seeks to increase
the likelihood of spotting source code flaws early. The research
contributes to regression testing and test case prioritization.

Regression test
optimization
and prioritiza-
tion using Honey
Bee optimiza-
tion algorithm
with fuzzy rule
base [25]

In this paper, the authors discuss the problem of regression test
optimization and prioritization. The aim is to increase the fault
detection rate in regression testing by setting up the test case
suite to catch errors earlier in the testing process. A Bee algo-
rithm is modelled from the strategies of honey bee swarms. The
algorithm is implemented and evaluated on two projects, and
the prioritization results are quantified using the APFD met-
ric. The proposed algorithm outperforms all other techniques
in terms of fault detection rate. The research contributes to
regression testing and test case prioritization.
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Article Result
Applying par-
ticle swarm
algorithm to
Prioritizing
Test Cases for
Embedded Real-
Time Software
Retesting [15]

In this paper, the authors propose a particle swarm algorithm
(PSO) algorithm for prioritizing test cases in regression testing
of embedded real-time software. The aim is to prioritize test
cases in a new order and choose higher-priority test cases for the
regression testing process. The PSO algorithm used in the pa-
per demonstrates the effectiveness and efficiency of prioritizing
test cases in test suites. The research contributes to applying
the PSO algorithm to test case prioritization in embedded real-
time software retesting.

Test case prior-
itization using
multi-objective
particle swarm
optimizer [36]

In this paper, the authors present a 3-phase approach for test
case prioritization in regression testing. The aim is to reduce
redundant test cases and prioritize them based on fault coverage
and execution time. Redundant test cases are removed in the
first stage. Using a multi-objective particle swarm optimization
algorithm, test cases are chosen in the second phase to have the
shortest execution times while covering all faults. The test cases
are given priority in the third phase based on the fault coverage
to execution time ratio, with higher values indicating a higher
priority.

Table 6.1: Results of the literature review

These research papers used in the literature review are retrieved from different
databases such as IEEE, Science Direct, Springer, and ACM. Three papers from
IEEE, three from Springer, one from Science Direct and one from ACM, making a
total of 8 papers.

6.1.2 Literature Review Analysis

The papers reviewed for this literature review and their results are presented in the
above table. To assess RQ1, the literature was helpful in determining the optimistic
algorithms used for prioritization purposes. Although the application domain of these
optimistic algorithms used by the authors is software engineering, software testing,
regression testing and test case prioritization, the concept of using optimization al-
gorithms for prioritization can be extended to other domains, such as in this thesis.
From the literature review, it can be seen that various optimization algorithms have
been used for prioritization purposes in the software engineering industry, such as
the Genetic algorithm, particle swarm algorithm, Honey Bee optimization algorithm,
Modified Ann and Whale optimization algorithm, and Ant colony optimization. Con-
sidering the time and scope of the research and also the popularity of the genetic
and particle swarm optimization from the literature review, we have determined to
use genetic and particle swarm optimization in this research.
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6.2 Experimental research
Two optimization algorithms, genetic algorithm and particle swarm algorithm (PSO)
determined from the literature review, were applied to similar problems and the same
dataset for conducting the desired experiment. We iteratively conducted experiments
with different parameter settings for each algorithm and selected three parameter set-
tings across different ranges that are best in the tested parameter settings. We first
present the comparison of 3 different selection operators for the Genetic algorithm
and compare the results of different parameter settings for each algorithm.

Conducting Performance analysis on genetic and particle swarm optimization can
help identify the best parameters. It, in turn, helps the generation of high-quality
solutions [33].

6.2.1 Genetic Algorithm

In order to optimize the problem of obtaining the most prioritized rows, a genetic
algorithm is used with parameter settings, as indicated in Table 6.1. The selection
operators for each parameter setting are presented in Table 6.2. The resulting fitness
values were plotted over ’n’ generations and are depicted in Figures 6.1, 6.2, and 6.3.
The Y-axis of these plots represents the fitness Values, while the X-axis denotes the
generations.

Parameter settings NGEN MU LAMBDA CXPB MUTPB
1 50 100 50 0.6 0.6
2 100 50 100 0.7 0.6
3 200 150 200 0.8 0.8

Table 6.2: Parameter settings for Genetic Algorithm

6.2.1.1 Parameter settings 1

The results in Figure 6.1 show that the genetic algorithm with parameter setting 1
optimized the objective function, as the fitness values of all three selection operators
are increased over 50 generations. From Table 6.4 and Figure 6.1, it is also evident
that each selection operator is performing differently, indicating that the algorithm
with different parameter settings and operators can have an impact on the results.

Of the three selection operators (tournament, roulette wheel, and elitist), the
roulette wheel operator performed better than the tournament operator and elitist
operator regarding results, which is also clearly evident in Figure 6.1. The elitist
selection operator has the lowest avg fitness value, std deviation and max fitness
value, meaning that it may have reached a point in finding a near-optimal solution,
but the other operators have found better near-optimal solutions. Regarding elapsed
time, the roulette wheel operator is slightly faster than the others.
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Selection Op-
erators

Function Description

selTournament Tournament Selection Selects individuals based on their fit-
ness scores in a tournament. It ran-
domly selects a population subset and
chooses the individual with the highest
fitness score.

selRoulette Roulette Wheel Selec-
tion

Selects individuals with probabilities
proportional to their fitness scores.
The probability of selecting an individ-
ual is determined by dividing its fitness
score by the sum of all the fitness scores
in the population.

selBest Elitist selection Selects the best-performing individuals
based on their fitness scores. It chooses
the top individuals with the highest fit-
ness scores in the population.

Table 6.3: Selection operators in Genetic Algortihm

Operator Elapsed
Time(s)

Max fitness Avg Std devia-
tion

Tournament
Selection

18.53 0.000097 0.000036 0.000036

Roulette
Wheel Se-
lection

16.9 0.00017 0.000053 0.000058

elitist selec-
tion

18.53 0.000048 0.000017 0.0000179

Table 6.4: GA Parameter 1 Results

Selection operator Convergence speed
Tournament selection 1.02e-06

Roulette selection 2.49-06
elitist selection 3.83-07

Table 6.5: GA parameter settings 1 Convergence speeds

From Table 6.5, the elitist selection operator has the fastest convergence speed,
followed by tournament and roulette wheel operators.

Overall, it can be concluded that the roulette wheel selection operator performed
the best regarding fitness values, while the elitist Selection operator performed the
best regarding convergence speed.
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Figure 6.1: GA Parameter settings 1 plot

6.2.1.2 Parameter settings 2

With these parameter settings, GA successfully optimized the objective function,
as the fitness values of all three selection operators increased over 100 generations.
From Table 6.6 and Figure 6.2, it is also evident that the fitness value statistics also
improved with these parameter settings, indicating that the algorithm with these
parameter settings was able to find near-optimal solutions than parameter settings
1. When the parameter settings are changed, the algorithm behaviour is also slightly
changing in these settings. Figure 6.2 shows fewer fluctuations than in parameter
setting 1, and the algorithm reached a near-optimal solution.

Regarding convergence speed from Table 6.7, the tournament selection operator
has the fastest speed, followed by the elitist and roulette Wheel operators.

Overall, the roulette Wheel Selection operator performed the best regarding fit-
ness values. In contrast, the tournament Selection operator performed the best
regarding convergence speed.
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Operator Elapsed
Time(s)

Max fitness Avg fitness Std devia-
tion

Tournament
Selection

16.73 0.00011 0.00006 0.00001

Roulette
Wheel Se-
lection

18 0.00021 0.0.0001 0.00003

elitist selec-
tion

18.38 0.00005 0.00003 0.00005

Table 6.6: GA Parameter 2 Results

Selection operator Convergence speed
Tournament selection 6.82e-07

Roulette selection 2.04e-06
elitist selection 2.87e-07

Table 6.7: GA parameter settings 2 Convergence speeds

Figure 6.2: GA Parameter settings 2 plot

6.2.1.3 Parameter settings 3

With these parameter settings of adjusted parameters, the genetic algorithm suc-
cessfully optimizes the objective function. As shown in Figure 6.3, the fitness values
increase over time, giving an optimal order of data for synchronization while limiting
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the data consumption. However, it is to be noted that the elapsed time has dras-
tically increased when compared to other parameter settings, and the max fitness
value 0.0001 of the roulette operator, according to Table 6.8, is still less than the
parameter settings 2.

From Table 6.9, the tournament selection operator has the fastest convergence
speed, followed by the elitist and roulette wheel operators.

Overall, it can be concluded that the roulette wheel Selection operator performed
the best regarding fitness values. In contrast, the tournament Selection operator
performed the best regarding convergence speed.

Operator Elapsed
Time(s)

Max fitness Avg fitness Std devia-
tion

Tournament
Selection

107.17 0.00006 0.00004 0.00045

Roulette
Wheel Se-
lection

114.27 0.0001 0.00006 0.00001

elitist selec-
tion

117.03 0.00004 0.00003 0.000003

Table 6.8: GA Parameter 3 Results

Selection operator Convergence speed
Tournament selection 1.43e-07

Roulette Wheel Selection 4.48e-07
elitist selection 9.0395e-08

Table 6.9: GA parameter settings 3 convergence speeds

The results of parameter setting 3 for the genetic algorithm are not better than
parameter setting 2, which has fewer generations than parameter setting 3. Though
the fitness values progress over time, the maximum fitness value of parameter setting
3 is still less than the one with 100 generations (parameter setting2). This means
the algorithm is getting stuck and is unable to find even better results. So, further
increasing the number of generations would only produce less optimal solutions and
take much time to find an optimal solution as the number of generations increases.
So, there is no point in increasing the generations because it is evident that the results
of parameter setting 3 are not better than parameter setting 2, which has even fewer
generations, meaning the algorithm is getting stuck in the process of finding optimal
solutions when the number of generations is increased.
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Figure 6.3: GA Parameter settings 3 Plot

6.2.2 Particle Swarm Optimization

Parameter
settings

Num of
Parti-
cles

Num of Iter-
ations

Inertia
Weight

Weights

1 50 100 0.9 1.5, 1.5
2 100 200 0.7 2.0, 2.0
3 200 300 0.6 2.5, 2.5

Table 6.10: Particle Swarm Optimization parameter settings

The results of parameter setting 3 for particle swarm optimization are not bet-
ter than parameter setting 2, which has fewer generations than parameter setting 3.
Though the fitness values progress over time, the maximum fitness value of param-
eter setting 3 is still less than the one with 100 generations (parameter setting2).
This means the algorithm is getting stuck and is unable to find better solutions or
results. So, further increasing the number of generations would only produce fewer
results and take much time to find an optimal solution as the number of generations
increases.

After analyzing the data provided in Table 6.11 and the insights from Figure 6.4,
parameter setting 2 is the most effective for the particle swarm algorithm as it pro-
duced the highest fitness value and a balanced elapsed time comparably, indicating
the ability to get better solutions than other parameter settings. The fitness values
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of all parameter settings increased over iterations, suggesting that they are able to
find near-optimal solutions. The Y-axis of the plots represents the fitness values, and
the X-axis represents the number of iterations. It is evident that parameter setting
2 had the highest fitness value from Figure 6.4.

Regarding the convergence speeds from Table 6.12, the results show that param-
eter settings 3 has the fastest convergence speed and is more efficient in optimizing
the objective, followed by settings 2 and 1.

Overall, parameter setting 2 performed the best regarding fitness values, while
parameter setting 3 performed the best regarding convergence speed.

Parameter Elapsed Time(s)
Fitness Value

Max Avg Std

P1 19.18 0.00018 4.30e-05 3.92e-05
P2 85.59 0.00027 2.63e-05 4.27e-05
P3 250.12 0.00019 2.60e-05 3.64e-05

Table 6.11: PSO algorithm results

Parameter setting Convergence speed
1 3.82883903e-06
2 2.74865423e-06
3 1.00124971e-06

Table 6.12: PSO parameter settings Convergence speeds

To determine which algorithm performs better for this optimization objective, we
can compare the best results of both Genetic and Particle Swarm optimization.

After examining the results of parameter settings 2 of both the algorithms, in-
cluding elapsed time, fitness value plots, and convergence speeds, it is evident that
the parameter settings of the genetic algorithm outperform those of the particle
swarm algorithm. Though parameter setting 2 of particle swarm optimization has
slightly better fitness values than parameter setting 2 of the genetic algorithm, they
are almost the same, and the elapsed time of the genetic algorithm is much less than
the particle swarm optimization. Therefore, we conclude that the genetic algorithm
performs better than the particle swarm algorithm in this research.

For RQ2, The results of the experiments confirmed our hypothesis. Different
parameter settings affect the performance of the selected optimized algorithms in
terms of finding the optimal solution, as presented in the above results.
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Figure 6.4: PSO parameter settings Plot

6.3 Synchronization results
To evaluate the synchronization framework, we measured the time it took to synchro-
nize all the changes to the remote database from the source database over different
networks. We inserted over 800 documents into the source side collection and then
initiated the sync. Table 6.13 shows the measured speeds of different networks during
synchronization, and Table 6.14 and Figure 6.5 shows the time taken for different
numbers of documents over different network speeds over time. Since in the frame-
work, we are using MongoDB Atlas, a cloud database, the network speeds between
the framework server and the MongoDB servers can have a significant effect. It is
expected that faster speeds can result in faster data access and retrieval times.

Network Download Speed (MB/sec) Upload Speed (MB/sec)
WiFi 106.4 51.07
4G 37.5 4.93
3G 14.49 4.72

Table 6.13: Network speeds

Figure 6.5 shows the time taken to synchronize different numbers of documents
over different networks and speeds. As expected, the time taken for synchronization
is strongly affected by the type of network, with WiFi being the fastest and 3G being
the slowest across different numbers of documents. Table 6.13 shows the results; from
that, we can conclude in exact numbers that WiFi took 31.42 seconds to complete
the synchronization of over 800 documents and the same, 4G took 50.21 seconds,
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Number of Documents WiFi Time (s) 4G Time (s) 3G Time (s)
100 4.8 6.35 8.08
200 9.84 12.36 17.21
300 11.92 18 25.56
400 16.58 23.9 34.96
500 19.41 27.93 44.46
600 24.7 37.16 49.63
700 28.18 37.72 58.57
800 31.42 50.21 68.16

Table 6.14: time taken to synchronize documents over different networks

followed by 3G, which took 68.16 seconds. From this, we can conclude that network
speeds can significantly affect the synchronization time.
We have also evaluated the features of this framework; the changed data capture is

Figure 6.5: Time taken for synchronization

working well, as only the changed data was synchronized. We disrupted the network
at the times of synchronization, and the synchronization framework, for the most
time, did not raise any error, waited in exponential time delay, and later connected
when the connection was back to normal. We updated the same document/row in
both databases. The framework prioritized the most recently updated document/row
over the other; thus, the concurrent changes are handled. Figure 6.6 shows the before
and after synchronization of the destination side database. It is to be observed
that the changes from the source side are successfully synchronized. Figure 6.6 and
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6.7 shows the MongoDB Atlas interface before and after synchronization. All 398
documents on the source side were successfully synchronized, which we can see in
the "After Sync" picture.

Figure 6.6: Before Synchronization (Destination Side)

For RQ3, The results of the experiments and synchronization times confirmed
our hypothesis. The devised framework is working effectively, but as stated above,
the synchronization times are high, so further research is needed, and this is the
limitation of this framework.
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Figure 6.7: After Synchronization (Destination Side)



Chapter 7

Discussion

In this chapter, the discussion will explore the study results, consider their potential
significance, and suggest directions for future research.

In the thesis, we have proposed a framework for synchronizing prioritized data
between source and remote databases in the context of telemetry data of trucks at
Volvo. From a literature review, we have selected two optimization algorithms, the
genetic algorithm and the particle swarm algorithm, for this problem. We have also
devised a synchronization framework that integrates with this algorithm.

For Answering RQ1, a literature review on existing optimistic algorithms used for
prioritization purposes was conducted, and the literature review was helpful in an-
swering this question. Optimization algorithms from the literature review were se-
lected for the experimentation and implementation of the framework addressing the
next research questions. This literature review has served as the basis for the further
parts of the research.

For Answering RQ2 and RQ3, as discussed above, an experimental research
method was conducted. For the algorithm, different parameter settings for GA and
PSO and operators for GA were used to identify the best parameters and give qual-
ity solutions. These are evaluated using Maximum fitness, Avg fitness, Standard
deviation, and convergence speeds. We aim to minimize data consumption while the
necessary prioritized data is synchronized between the source and remote databases.
By prioritizing rows based on their level of importance and specific conditions, the
optimization algorithm can ensure that critical data is synchronized while minimiz-
ing unnecessary data consumption. This approach helps to improve the efficiency
and effectiveness of the synchronization process, as only the most important data is
being synchronized, reducing the load on the database and the network. It also helps
reduce the risk of data loss or corruption, as the most critical data is prioritized and
synchronized first.

For RQ2, the algorithms were run with different parameter settings. The exper-
iments showed that changing and adjusting the parameters of the genetic algorithm
and particle swarm algorithm significantly affected their performances. Parameter
tuning for the genetic algorithm shows that it significantly influenced the quality
of solutions obtained. Increasing the number of generations (NGEN) and the pop-
ulation size (MU and LAMBDA) while also increasing the crossover and mutation
probabilities (CXPB and MUTPB) resulted in better solutions. Parameter setting 2
for GA with the roulette operator is the most effective for optimizing the objective

49
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function because, in these settings, the algorithm achieved a higher maximum fitness
value. For a maximization optimization problem, it indicates that the algorithm
could find quality solutions. It also had a good balance of exploration and exploita-
tion of the search space with increased CXPB and MUTPB (0.7 0.7). Additionally,
the execution time compared is relatively less, and the standard deviation is also
comparably low than parameter setting 3, which makes it better.

The experiments also showed that changing and adjusting the parameters of the
PSO algorithm can significantly affect its performance. Increasing the number of
particles and iterations allowed for more exploration and exploitation of the search
space while adjusting the inertia weight and weights helped to balance these aspects
of the algorithm. Parameter setting 2 was the best, with the highest, maximum,
average fitness values and standard deviation indicating a good balance between ex-
ploration and exploitation. These findings suggest that careful parameter tuning can
lead to improved optimization performance.

The synchronization, the Change Data Capture (CDC) technique, is utilized,
which captures only modified data using the MongoDB method "watch()". Since
intermittent, unstable network connections and failures are likely to occur, an expo-
nential time delay method is employed to wait before attempting to reconnect. This
approach ensures that a minimum load is placed on the source database. It is also
possible for the same row or document to be changed in both databases. The synchro-
nization framework employs the Optimistic Concurrency Control (OCC) technique
to address this issue. This technique handles concurrent modifications and prioritizes
the most recently modified document when handling these changes.

Based on the results, parameter setting 2 with the roulette operator was found
to be most effective for optimizing the objective function for the genetic Algorithm.
For the particle swarm optimization algorithm, its PSO parameter setting two was
the most effective for optimizing the objective function. Overall, the framework with
the genetic algorithm integrated into it is working well, but comparing it with other
approaches of synchronization and other prioritization techniques would actually be
a more effective way to evaluate and understand the results.

For RQ3, when integrated with the genetic algorithm, the framework was working
fine. It can be observed in Figure 5.2 that when run first, the framework starts an
initial sync and synchronizes any changes. Once we run the genetic algorithm, the
algorithm takes some time to run and sends the data to another collection of the
source database, which is in sync with the destination side database. The GUI
prints the time taken for the genetic algorithm to run and also prints the time
taken to synchronize for every 100 documents. Figure 6.5 shows the time taken
to synchronize different numbers of documents. Although the speeds are relatively
higher than normal, it was able to synchronize the changed documents, which were
the optimized rows/documents generated by the genetic algorithm. We conclude
that the overall framework is also working fine, accepting our initial hypothesis for
this research question.

The other optimization algorithms might also optimize this problem and generate



51

reasonable solutions, but considering the time frame of this research, we did not con-
sider the synchronization; it seems that the time taken to synchronize the documents
is relatively high, and the synchronization framework needs more sophisticated fea-
tures that would synchronize the documents faster, more about is discussed in the
next chapter.
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7.1 Validity Threats
In this section, we discuss the validity threats in this research,

7.1.1 Internal validity

Internal validity generally is about how well the experiment is designed and how
accurately it measures what it intends to measure. The data for the experiment is
provided by Volvo, and it is accurate. However, there is a selection bias; only the
genetic algorithm and particle swarm algorithm to optimize the objective function of
generating the optimal order of data for synchronization. Using other optimization
algorithms might produce different results.

7.1.2 External validity

External validity is about how the research findings could be applied in other scenar-
ios outside the research. The data used is from Volvo; however, with different data
and the right data prepossessing, these algorithms could be applied to it. However,
the other scenarios would not get the same results because the priority/weight and
conditions to invoke are specific to the Volvo Supervisor and are not chosen from
extensive research. The results are only for these settings, and the other settings
might produce other results. It would take a considerable amount of time to find
the appropriate parameter settings for the problem, so these results could not be
applied to other problems. The synchronization framework, however, can be used
without any modifications for the intended use or could be modified if more features
are needed.

7.1.3 Construct validity

Conclusion Validity is about the conclusions drawn from accurate results and can be
generalized. Since no baseline solution exists for this optimization objective, we com-
pared the parameter settings and algorithm with statistic tests, fitness values, and
convergence speeds. However, these metrics also efficiently compare the parameter
settings and algorithms and draw conclusions from them.

7.1.4 Selective reporting bias

Selective Reporting Bias is about deliberately not fully including results. Although
many parameter settings across different ranges were tested for both algorithms, only
three parameter settings results were included as they were the best among the tested
ones. The experiment was to see if the different parameter settings yield different
results and select the best among them.
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Conclusions and Future Work

8.1 Conclusions

The thesis aims to develop a prioritized database synchronization framework that
mainly focuses on prioritizing the order of rows for synchronization with the desti-
nation database. The features of the framework include

1. Fetches data from the source database using PyMongo and performs the basic
data transformation.

2. Prioritizing the rows based on their attribute values

3. Effective synchronization using MongoDB ’watch’ method to listen to all the
changes made

4. Handles connection errors and retries for the synchronization operation after
an exponential delay.

5. Handles concurrent changes using OCC.

We can conclude that optimization algorithms have also performed well regarding
the fitness values over generations, convergence speeds and elapsed time. Still, the
genetic algorithm outperformed the particle swarm algorithm and yielded better
results. It is evident that different parameter settings have a significant effect on the
algorithm’s performance. Altering these can change the results of the algorithms.
The overall framework, when implemented together, as seen in Figure 5.2, works
well.

8.2 Future Work

Genetic algorithm and particle swarm optimization were used in this research, so
considering other optimization algorithms or another method for prioritizing the
documents/rows could be a potential future work.

The synchronization framework developed for the thesis is more generalized and
would take considerable time to transform into an industry-ready framework and
handle all the connections.
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While the synchronization framework works effectively when there is a good con-
nection, it might struggle and raise errors if there are continuous disruptions in the
network. It is to be noted that the devised synchronization framework does not
handle different network conditions. Making the framework to handle the intermit-
tent connections is a possible future scope, given that the devised synchronization
framework in this thesis is a simple generalized synchronization framework focused
on prioritizing the order of data for sync.

In the devised framework, the algorithm fetches data from the source database
and returns the optimal order of data ready for sync back to the source database,
but the different collection; this puts additional load and occupies additional space
on the source database. Minimizing the load on the source database would be a
potential future work.

One potential solution could be using MQTT protocol [18], making the algorithm
directly send the data to MQTT which not only puts less load on the source database
but also effectively transmits and receives the data over a constrained network with
only limited bandwidth. This thesis did not consider the approach, considering the
scope and the constrained time.



References

[1] L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool, “Salp swarm algo-
rithm: a comprehensive survey,” Neural Computing and Applications, vol. 32,
pp. 11 195–11 215, 2020.

[2] M. Ahluwalia, R. Gupta, A. Gangopadhyay, Y. Yesha, and M. McAllister,
“Target-based database synchronization,” in Proceedings of the 2010 ACM Sym-
posium on Applied Computing, 2010, pp. 1643–1647.

[3] T. A. Alhaj, M. M. Taha, and F. M. Alim, “Synchronization wireless algo-
rithm based on message digest (swamd) for mobile device database,” in 2013
INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND
ELECTRONIC ENGINEERING (ICCEEE), 2013, pp. 259–262.

[4] M. Ali, M. Pant, and V. Singh, “Two modified differential evolution algorithms
and their applications to engineering design problems,” World J Model Simul,
vol. 6, no. 1, pp. 72–80, 2010.

[5] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case pri-
oritization using genetic algorithms,” IEEE Access, vol. 7, pp. 126 355–126 375,
2019.

[6] V. Balakumar. and I. Sakthidevi., “An efficient database synchronization algo-
rithm for mobile devices based on secured message digest,” in 2012 International
Conference on Computing, Electronics and Electrical Technologies (ICCEET),
2012, pp. 937–942.

[7] E. Cecchet, Middleware Support for Database Replication and Caching.
Boston, MA: Springer US, 2009, pp. 1738–1743. [Online]. Available:
https://doi.org/10.1007/978-0-387-39940-9_1538

[8] M.-Y. Choi, E.-A. Cho, D.-H. Park, C.-J. Moon, and D.-K. Baik, “A database
synchronization algorithm for mobile devices,” IEEE Transactions on Consumer
Electronics, vol. 56, no. 2, pp. 392–398, 2010.

[9] J. Domingos, N. Simões, P. Pereira, C. Silva, and L. Marcelino, “Database syn-
chronization model for mobile devices,” in 2014 9th Iberian Conference on In-
formation Systems and Technologies (CISTI), 2014, pp. 1–7.

[10] M. Dorigo and T. Stützle, Ant colony optimization: overview and recent ad-
vances. Springer, 2019.

[11] G. M. Habtemariam and S. K. Mohapatra, “A genetic algorithm-based approach
for test case prioritization,” in Information and Communication Technology for

55



56 References

Development for Africa, F. Mekuria, E. Nigussie, and T. Tegegne, Eds. Cham:
Springer International Publishing, 2019, pp. 24–37.

[12] K. M. Hamdia, X. Zhuang, and T. Rabczuk, “An efficient optimization approach
for designing machine learning models based on genetic algorithm,” Neural Com-
puting and Applications, vol. 33, pp. 1923–1933, 2021.

[13] N. T. Hanh, H. T. T. Binh, N. X. Hoai, and M. S. Palaniswami, “An efficient
genetic algorithm for maximizing area coverage in wireless sensor networks,”
Information Sciences, vol. 488, pp. 58–75, 2019.

[14] S. Harikarthik, V. Palanisamy, and P. Ramanathan, “Optimal test suite selection
in regression testing with testcase prioritization using modified ann and whale
optimization algorithm,” Cluster Computing, vol. 22, no. 5, pp. 11 425–11 434,
2019.

[15] K. H. S. Hla, Y. Choi, and J. S. Park, “Applying particle swarm optimization
to prioritizing test cases for embedded real time software retesting,” in 2008
IEEE 8th International Conference on Computer and Information Technology
Workshops. IEEE, 2008, pp. 527–532.

[16] M. I. Hossain and M. M. Ali, “Sql query based data synchronization in hetero-
geneous database environment,” in 2012 International Conference on Computer
Communication and Informatics. IEEE, 2012, pp. 1–5.

[17] C. Huang, M. Cahill, A. Fekete, and U. Röhm, “Data consistency properties of
document store as a service (dsaas): Using mongodb atlas as an example,” in
Performance Evaluation and Benchmarking for the Era of Artificial Intelligence:
10th TPC Technology Conference, TPCTC 2018, Rio de Janeiro, Brazil, August
27–31, 2018, Revised Selected Papers 10. Springer, 2019, pp. 126–139.

[18] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s—a publish/sub-
scribe protocol for wireless sensor networks,” in 2008 3rd International Con-
ference on Communication Systems Software and Middleware and Workshops
(COMSWARE’08). IEEE, 2008, pp. 791–798.

[19] M. Isiet and M. Gadala, “Sensitivity analysis of control parameters in particle
swarm optimization,” Journal of Computational Science, vol. 41, p. 101086,
2020.

[20] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past,
present, and future,” Multimedia Tools and Applications, vol. 80, pp. 8091–8126,
2021.

[21] K. Kottursamy, G. Raja, J. Padmanabhan, and V. Srinivasan, “An improved
database synchronization mechanism for mobile data using software-defined
networking control,” Computers Electrical Engineering, vol. 57, pp. 93–103,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0045790616300064

[22] K. Ma and B. Yang, “Log-based change data capture from schema-free document
stores using mapreduce,” in 2015 International conference on cloud technologies
and applications (CloudTech). IEEE, 2015, pp. 1–6.



References 57

[23] S. Mahajan, S. D. Joshi, and V. Khanaa, “Component-based software sys-
tem test case prioritization with genetic algorithm decoding technique using
java platform,” in 2015 International Conference on Computing Communica-
tion Control and Automation. IEEE, 2015, pp. 847–851.

[24] MongoDB, “Why use mongodb?” https://www.mongodb.com/
why-use-mongodb, accessed: May 4, 2023.

[25] S. Nayak, C. Kumar, S. Tripathi, N. Mohanty, and V. Baral, “Regression test
optimization and prioritization using honey bee optimization algorithm with
fuzzy rule base,” Soft Computing, vol. 25, no. 15, pp. 9925–9942, 2021.

[26] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” Handbook of meta-
heuristics, pp. 1–39, 2010.

[27] K. Ogunyale, “Understanding the genetic algorithm,”
https://medium.com/@kennyrich/understanding-the-genetic-algorithm-
4eac04a07a59, 2019.

[28] G. Raja, K. Kottursamy, S. H. Chaudhary, A. Hassan, and M. Alqarni, “Sdn
assisted middlebox synchronization mechanism for next generation mobile data
management system,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computed, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–7.

[29] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchi-
cal particle swarm optimizer with time-varying acceleration coefficients,” IEEE
Transactions on evolutionary computation, vol. 8, no. 3, pp. 240–255, 2004.

[30] M. Ray and D. P. Mohapatra, “Multi-objective test prioritization via a genetic
algorithm,” Innovations in Systems and Software Engineering, vol. 10, no. 4,
pp. 261–270, 2014.

[31] J. Scholz, “Genetic algorithms and the traveling salesman problem a historical
review,” arXiv preprint arXiv:1901.05737, 2019.

[32] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of selection
techniques in genetic algorithm,” in 2015 international conference on futuris-
tic trends on computational analysis and knowledge management (ABLAZE).
IEEE, 2015, pp. 515–519.

[33] C. Srinivas, B. R. Reddy, K. Ramji, and R. Naveen, “Sensitivity analysis to
determine the parameters of genetic algorithm for machine layout,” Procedia
materials science, vol. 6, pp. 866–876, 2014.

[34] D. Srivatsa, T. K. Teja, I. Prathyusha, and G. Jeyakumar, “An empirical analysis
of genetic algorithm with different mutation and crossover operators for solving
sudoku,” in Pattern Recognition and Machine Intelligence: 8th International
Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings,
Part I. Springer, 2019, pp. 356–364.



58 References

[35] P. Tonella, A. Susi, and F. Palma, “Interactive requirements prioritization using
a genetic algorithm,” Information and software technology, vol. 55, no. 1, pp.
173–187, 2013.

[36] M. Tyagi and S. Malhotra, “Test case prioritization using multi objective particle
swarm optimizer,” in 2014 International Conference on Signal Propagation and
Computer Technology (ICSPCT 2014). IEEE, 2014, pp. 390–395.

[37] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems,” in Proceedings of the 2004 congress on evolutionary com-
putation (IEEE Cat. No. 04TH8753), vol. 2. IEEE, 2004, pp. 1980–1987.

[38] J. Wang and L. Huang, “Evolving gomoku solver by genetic algorithm,” in 2014
IEEE workshop on advanced research and technology in industry applications
(WARTIA). IEEE, 2014, pp. 1064–1067.

[39] G. Wen, M. Z. Chen, and X. Yu, “Event-triggered master–slave synchroniza-
tion with sampled-data communication,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 63, no. 3, pp. 304–308, 2015.

[40] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

[41] Z. Xiao-Jun, Y. Chun-Hua, G. Wei-Hua, and D. Tian-Xue, “A particle swarm
optimization algorithm with variable random functions and mutation,” Acta
Automatica Sinica, vol. 40, no. 7, pp. 1339–1347, 2014.

[42] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World congress
on nature & biologically inspired computing (NaBIC). Ieee, 2009, pp. 210–214.

[43] M. Yousefi, M. Omid, S. Rafiee, and S. Ghaderi, “Strategic planning for mini-
mizing co2 emissions using lp model based on forecasted energy demand by pso
algorithm and ann,” International Journal of Energy and Environment (Print),
vol. 4, 2013.





Faculty of Faculty, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden


