
Authors: Albert Henmyr, Kateryna Melnyk
Supervisor: Prof. Dr. Mauro Caporuscio
Semester: VT 2023
Subject: Computer Science

Bachelor Degree Project

Energy Consumption of Behavioral
Software Design Patterns

Abstract

The environmental and economic implications of the increase in Information and
Communication Technology energy consumption have become a topic of research in
energy efficiency. Most studies focus on the energy estimation and optimization of
lower tiers of the hardware and software infrastructures. However, the software itself
is an indirect driver of energy consumption, therefore, its energy implications can be
to some extent controlled by the software design. Software design patterns belong
to high-level software abstractions that represent solutions to common design prob-
lems. Since patterns define the structure and behavior of software components, their
application may come at energy efficiency costs that are not obvious to the software
developers. The existing body of knowledge on energy consumption of software
design patterns contains a number of gaps, some of which are addressed within the
scope of this thesis project. More specifically, we conducted a series of experiments
on the estimation of energy consumption of Visitor and Observer/Listener patterns
within the context of non-trivial data parsing in Python. Furthermore, we considered
a Patternless alternative for the same task. Additionally, our measurements include
runtime duration and memory consumption. The results show that the Visitor pattern
led to the largest energy consumption, followed by Observer/Listener and finally the
Patternless version. We found a strong relationship between runtime duration and
energy consumption, thus coming to the conclusion that the longest-running pattern
is the most energy-consuming one. The findings of the current study can be benefi-
cial for Python software developers interested in the energy implications of software
design patterns.

Keywords: energy consumption, energy efficiency, software design patterns, Visitor,
Observer

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 2
1.3 Problem Formulation . 3
1.4 Motivation . 3
1.5 Results . 4
1.6 Scope/Limitation . 4
1.7 Target Group . 4
1.8 Work Organization . 4
1.9 Outline . 5

2 Method 6
2.1 Research Project . 6
2.2 Research Methods . 6
2.3 Reliability and Validity . 9
2.4 Ethical Considerations . 10

3 Theoretical Background 11
3.1 Software Energy Consumption . 11
3.2 Research Interest in Software Design Patterns 12
3.3 Energy Estimation of Software Design Patterns 12

3.3.1 Embedded Systems and C++ . 12
3.3.2 Mobile Platforms . 13
3.3.3 Java and Patterns in the Open Source Software 13
3.3.4 Further Pattern Energy Estimation Studies 14

3.4 Application of Software Design Patterns for Parsing Tasks 14

4 Research Project – Implementation 17
4.1 Implementation Data and ANTLR Grammar 17
4.2 General Pattern Information . 17
4.3 Patternless (Algorithm Sprawl) . 18
4.4 Listener/Observer . 19
4.5 Visitor . 19
4.6 Separating the Patterns . 19
4.7 Running the Experiment . 20

5 Results 21

6 Analysis 25
6.1 Memory Observations . 25
6.2 Runtime and Energy Consumption Observations 25
6.3 Further Statistical Observations . 26

7 Discussion 27
7.1 Pattern Comparison . 27
7.2 Compared to Related Work . 27
7.3 Generalizability . 28

8 Conclusions and Future Work 29
8.1 Research Questions Consideration . 29
8.2 Future Work . 29

References 31

1 Introduction

The Information and Communication Technology (ICT) sector represents a source of
growing carbon emissions [1]. To offset this, at a society level, we can reduce our re-
liance on ICT; at a hardware level, we can design more efficient equipment; and at a
software level, we can make our programs carbon-aware, postponing non-time critical
operations until the system knows it is running on green energy [2]. Or, we can make the
programs themselves less energy-consuming and more energy efficient.

This subject is more aggressively explored in mobile development, where battery us-
age is an important consideration, than it is when designing for stationary devices, where
inefficiency ’merely’ results in a larger electricity bill and sustainability may end up being
ignored in favor of other quality attributes or simply development speed. In both fields,
the concept of a design pattern [3] is known to developers as a way to describe time-tested
solutions to common problems.

As far as non-mobile development goes, the energy efficiency of various design pat-
terns has been examined for widely-used [4] languages such as Java and C++, yet Python
has received little attention despite its popularity. The research will be focused on the im-
plications of patterns’ application in Python. Particularly, this thesis project will explore
the CPU and DRAM energy consumption of the Visitor and Observer as one of the most
extensively researched software design patterns in experimental studies [5], as well as
runtime and memory use, and compare them to each other and the Patternless approach.

1.1 Background

Software design patterns are code abstractions that developers use as a shared vocabulary
to express known ways to solve common problems. Observer and Visitor belong to the
behavioral software design patterns that are focused on the dynamic interactions between
the system components [3].

Observer allows an object to broadcast updates to interested subscribers. The main
idea is to decouple the event/change handling logic from the code that causes the events
or changes itself by having an abstract Subject that holds a certain state and abstract
Observers that are notified by Subject about changes. A classic version of the Observer
pattern also includes concrete classes that are the specific implementations of Subject
and Observer abstractions [3]. Figure 1.1 illustrates the typical structure of the Observer
pattern. We will be frequently referring to our Observer version as Listener [6–8] in this
report due to the specifics of the experimental setup.

Figure 1.1: Observer UML

1

Visitor allows developers to gather algorithms in one place and automatically use
the one that suits the object being visited. Gamma et al. [3] explain the application of
Visitor with the example of “static semantic” analysis using abstract syntax trees (ASTs).
They motivate that distributing the logic of performing operations on the AST across
heterogeneous nodes is a rather questionable solution that potentially will lead to issues
with the system’s maintainability and modifiability. Therefore a separate entity called
Visitor can be used to package related operations from each AST node and separate the
algorithms from the objects on which they operate [3, 8].

Figure 1.2 represents the typical structure of the Visitor pattern. Classes that imple-
ment the Element interface accept a Visitor as a parameter. At the same time classes
that implement the Visitor interface have visit methods specific to each Element variation.
Subsequently, the respective visit method, which contains certain logic of what operations
to do in the context of the current Element, can be invoked, once the Visitor is accepted.
The Client class represents the context in which the Visitor interacts with the Element
implementations on which it operates. [3, 8].

Figure 1.2: Visitor UML

Being common solutions, it is of interest to know what impact software design pat-
terns have on energy consumption, speed and memory. The former is an aspect not well
explored, especially in Python. Research in this area will aid developers in considering
these dimensions when deciding on how to solve problems for which these patterns may
be considered.

Python itself is not an energy-efficient language [9]. Given this, research in this area is
important to help save what energy can be saved. Choosing between solutions in Python
from the perspective of sustainability is a challenge, given that there seems to exist little
to no published work in the field.

1.2 Related Work

Feitosa et al. deeply explored the energy consumption of the State/Strategy and Template
patterns in Java [10]. They found that these patterns consumed more power than their
non-pattern alternatives in most cases, and that the patterns mostly excelled in complex
code involving many method invocations.

Bree and Cinnéide made a similar investigation into the Visitor pattern, also in Java
[11]. Their conclusion was that using no pattern improved energy efficiency, but that a
solution called reflective dispatch was even better if the load was sufficiently small. Re-
flective dispatch means that when iterating over visitable objects, the programmer directly

2

checks what type of class they are (using instanceof in Java) and treats them accordingly,
instead of sending a Visitor.

The same two authors explored the Decorator pattern in Java [12]. Removal of the
pattern from a textbook example reduced energy consumption by up to 96%, whereas in
a more realistic scenario involving JUnit, they achieved 3–5% reduction by removing just
one instance of Decorator.

Bunse and Stiemer investigated Facade, Abstract Factory, Observer, Decorator, Pro-
totype and Template Method in Java, in the context of mobile software development [13].
Comparing each to its non-pattern counterpart, they found that the patterned versions of
Decorator, Prototype and Abstract Factory were about 133%, 33% and 15% worse, re-
spectively. This is with regards to both execution time and energy consumption. The
other three patterns exhibited no significant difference.

Sahin et al. examined 15 design patterns in C++, comparing them to unpatterned
approaches [14]. The worst ones were Decorator, Observer and Abstract Factory, ex-
hibiting roughly a 713% [sic], 62% and 22% energy consumption increase respectively.
Flyweight and Proxy were the most prominently positive with a 58% and 36% decrease,
again respectively.

1.3 Problem Formulation

The energy consumption of design patterns has received a considerable amount of atten-
tion for both C++ and Java. These two languages are, along with C and Python, among
the most popular in the world [4], yet Python is highly lacking when it comes to such
research.

We will help fill this gap by examining Observer and Visitor, the two most popular
behavioral design patterns [5]. We will compare them to each other and a Patternless
approach (algorithm sprawl), in which the nodes themselves contain the algorithms, as
advised against by Gamma et al. [3] in our Visitor description in the Section 1.1. Note
that Patternless is not the name of a common design pattern; it is merely a label by which
we refer to this solution. We describe it in detail in the implementation section and clarify
how it differs from the other two.

There are many ways in which a solution can be evaluated. Two of these are readabil-
ity and maintainability, expressing how easy the code is to work with. While important,
these attributes are not easily quantified. On the other hand, memory usage (space com-
plexity) and runtime (time complexity) can be easily determined, and these are typical
aspects to consider. Therefore, we will measure these, along with the energy consumption
that is of primary interest. Knowing all three will help inform developers about tradeoffs
involved. Therefore, we will answer these questions:

1. How do Observer, Visitor and Patternless compare for energy consumption?

2. How do Observer, Visitor and Patternless compare for execution time?

3. How do Observer, Visitor and Patternless compare for memory usage?

4. Do different data set sizes favor different patterns?

1.4 Motivation

The motivation of our work from the scientific perspective is associated with the gap in
the existing body of knowledge on energy consumption of software design patterns in the
Python context.

3

Our work has industrial relevance as it aids in reasoning about design choices. This
can lead to reduced system energy consumption, or to the insight that because a necessary
solution will require a certain amount of energy, there will be that much less available for
the rest of the system to use, assuming some kind of constraint on total usage. Considering
the software design process, the more information available for a decision, the better the
result should be. We thus contribute to the general challenge in this field.

Society will always benefit from reduced software energy consumption. Therefore,
we expect our work within the scope of this thesis project to be beneficial, even if to a
modest extent.

1.5 Results

In this thesis project, we measure the energy consumption, execution time and memory
usage across three versions (Patternless, Visitor, Observer) of the same functionality. The
measurements are taken over the course of 25 runs for the same input size for each ver-
sion. Our results from these experiments reveal a strong relationship between runtime
duration and energy consumption for all three versions. The general picture shows that
the Visitor pattern leads to the largest energy consumption, followed by Observer/Listener
and finally the Patternless version. On the other hand, the memory measurements do not
show significant differences across the three versions and stay approximately equal for
the same input sizes.

1.6 Scope/Limitation

We limit ourselves to comparing Observer, Visitor and the Patternless approach.
We compare the patterns in data parsing tasks involving abstract syntax trees con-

structed with ANTLR [15]. While there are many open source programs we could use,
we have restricted ourselves to this because it is easy to induce heavy usage of Observer,
Visitor, and no pattern in this scenario. This gives us confidence that differences in our
measurements are the result of pattern changes.

Note that Observer in this context means observing an object called a ParseTreeWalker
as it walks the tree. It does not mean subscribing to individual nodes for updates.

1.7 Target Group

Our research is suited for Python developers and architects and anything in between,
essentially anyone empowered to decide on software design. As we explore energy con-
sumption along with time and memory usage, our research should help make informed de-
cisions in situations where these may relate to constraints or important quality attributes.

1.8 Work Organization

This thesis project represents the collaborative efforts of Albert Henmyr and Kateryna
Melnyk. The conceptualization and majority of the theoretical background, development
of the experimental design (methodology) and the basic implementation with the subse-
quent refinements of the testing prototypes are contributed by Kateryna. Refinements of
the testing prototypes, preparation of the experimental setup including the testing data
division and finally the implementation of the alternative Patternless version are credited
to Albert. The actual experiments were run and verified by Albert. The raw results of
the conducted experiments were organized and visualized for the subsequent analysis by

4

Kateryna. Analysis of the experimental results and the writing of the thesis report are
equally contributed by the two authors.

1.9 Outline

This report covers the following sections. The methodological framework, research meth-
ods (experimental research), reliability and validity of the current study as well as ethical
considerations are discussed in Section 2. Section 3 provides context for the conducted
experiments by overviewing the related theoretical background. Section 4 describes the
concrete implementation steps that were taken while preparing the experimental setup
and conducting the actual experiments. The results of the conducted experiments are
consolidated and organized in Section 5. Further on, Section 6 analyzes the obtained ex-
perimental findings by using statistical methods among other things whereas Section 7
delves deeper into the discussion about the generalizability, relation to other studies and
comparison of these findings. Section 8 finalizes the report by summarizing the answers
to the research questions and provides insights into potential areas of future research.

5

2 Method

The methodology employed in this project is the subject of this section. It outlines the
taken experimental design decisions and planning associated with them. Subsequent sec-
tions will delve into the experiment implementation in more detail.

2.1 Research Project

In order to address the research gap identified in the previous subsection, we need to
gather and analyze the data about the energy consumption of Visitor and Observer soft-
ware design patterns in the context of Python. Moreover, the data itself will only be of
usage if compared to that of its design alternative (our Patternless approach). Furthermore,
it is not feasible to evaluate software design patterns in isolation; rather some functional-
ity that heavily utilizes them is required as well as control over this functionality in order
to get accurate measurements. Therefore the assessment of the energy consumption of the
Visitor and Observer design patterns implies a set of activities that comprise the essence
of the experimental research method.

As Wohlin et al. [16] stated, a complete systematic literature review is not needed in
the context of experimental research, although being systematic in analyzing the related
work is rather beneficial for the design of the experiment. Thus literature research as part
of the project methodology will set the stage for the subsequent empirical activities and
outline the methodologies of the previous related works in the Theoretical Background
subsection.

When it comes to the experiment, the main interest involves the cause-effect relation-
ship between a method (called a factor) and attribute of interest as specified by Zelkowitz
and Wallace [17] and Basili [18]. In other words, the project’s experimental setup will
involve two kinds of variables: independent (a factor that can be manipulated) and depen-
dent (changes in response to independent variable) variables [16]. The general design and
flow of our experiment will focus on the following independent variables: 1) type of de-
sign pattern (no pattern version included) and 2) size of input data. The set of dependent
variables of interest includes the following: 1) energy consumption, 2) memory use, and
3) runtime duration.

2.2 Research Methods

We will run an experiment to determine the difference in energy consumption, execution
time and memory usage of using Visitor, Observer and Patternless (henceforth "the pat-
terns") for the same task. As these are highly measurable aspects and we can control
the independent variable, we see little merit in using other research methods such as sur-
veys and interviews, expecting them to yield highly subjective results, if yet perhaps more
generalizable. To our knowledge and based on our searches, the energy consumption of
software design patterns in Python - our most important measurement - is an unexplored
field in academia, so there is nothing to base a large-scale literature review on.

We will use ANTLR 4.12.0 [15] in Python 3.10.6 to facilitate our experiment. ANTLR
is a tool for generating abstract syntax trees (ASTs) that can be traversed using Visitor,
Observer or no pattern. In the first two cases, interfaces are provided, to which we will
write our own implementations. For Patternless, we will insert our own traversal code
into the tree.

The tree will represent syntax to parse research publications from the Linnaeus Uni-
versity DiVA portal [19]. The data of research publications will have the form of comma-

6

separated values in CSV documents; the tree for each file will simply be a Python program
in RAM. A line in a CSV file may look like the following example in Table 2.1:

Table 2.1: DiVA Publication CSV Entry Example
"1656737","Pagliari, Lorenzo (Gran Sasso Science Institute,
Italy);D’Angelo, Mirko [midaab] (Linnéuniversitetet [4853],
Fakulteten för teknik (FTK) [12354], Institutionen för
datavetenskap och medieteknik (DM) [879987]);Caporuscio,
Mauro [macaab] (Linnéuniversitetet [4853], Fakulteten för
teknik (FTK) [12354], Institutionen för datavetenskap och
medieteknik (DM) [879987]);Mirandola, Raffaela (Politecnico di
Milano, Italy); Trubiani, Catia (Gran Sasso Science Institute,
Italy)","Performance modelling of intelligent transportation
systems : Experience report","Konferensbidrag","Refereegranskat",
"eng","","","","","","","ICPE ’21 : Companion of
the ACM/SPEC International Conference on Performance
Engineering","155","160","2021","","","","Association for
Computing Machinery (ACM)","","","","9781450383318","","",
"10.1145/3447545.3451205" ,"","","2-s2.0-85104943502",
"urn:nbn:se:lnu:diva-112446","","","Intelligent Transportation
Systems;Model-based Performance Analysis;Petri Nets;Intelligent
systems;Experience report;Performance modelling;Physical
systems;Intelligent vehicle highway systems", "Kommunikationssystem
(20203)","Computer and Information Sciences Computer Science",
"","","<p>Modern information systems connecting software, physical
systems and people, are usually characterized by high dynamism.
These dynamics introduce uncertainties, which in turn may harm
the quality of systems and lead to incomplete, inaccurate, and
unreliable results. To deal with this issue, in this paper
we report our incremental experience on the usage of different
performance modelling notations while analyzing Intelligent
Transportation Systems. More specifically, Queueing Networks
and Petri Nets have been adopted and interesting insights are
derived.</p>","","","","","","","","","","","","","2022-05-06",
"2022-05-06","2022-05-06"

We will use CSV files containing 1 000, 2 000, 4 000 and 8 000 lines, excluding the
header. Note that each line will result in its own subtree. Thus, larger data sets will not
produce a deeper tree, but a wider one. The root of the tree is a node that contains no data,
but has the header, each row and the end-of-file token (EOF) as its children.

Using each of the patterns, we will traverse the tree and assemble a Python dictionary
mapping research institutions and organizations to the number of papers they are associ-
ated with, by merit of having a contributing researcher represent them. Having multiple
researchers from the same institution will not cause it to be counted additional times for
any one paper. Figure 2.3 exemplifies the part of the AST with the parsed information
about the authors and authors’ affiliations (by no means this example is a complete AST
of one publication record from the CSV file).

Before measuring, we will verify that all three patterns produce the same dictionary,
also inspecting it to make sure it looks reasonable. We cannot make a fair comparison if
the patterns do not arrive at the same results.

The test program will have two parts: building the tree and traversing it. We will
run measurements on the traversal only. Each version of the program will only have the
functionality required to run with one pattern, so as to eliminate any risk of redundant
functionality requiring resources and making a pattern seem slower or hungrier.

7

Welcome to the
ANTLR lab,
where you can
learn about
ANTLR or
experiment with
and test
grammars! Just
hit the button
to try out the
sample
grammar.

To start
developing with
ANTLR, see
getting started.

Feedback/issues
welcome.
Brought to you
by Terence Parr,
the maniac
behind ANTLR.

Disclaimer: This
website and related
functionality are not
meant to be used
for private code,
data, or other
intellectual
property. Assume
everything you
enter could become
public! Grammars
and input you enter
are submitted to a
unix box for
execution and
possibly persisted
on disk or other
mechanism. Please
run antlr4-lab
locally to avoid
privacy concerns.

Lexer Parser Sample Input sample.expr
Start rule
row

Tree Hierarchy

﹀row
﹀field

﹀quotedField
"
...
"

,
﹀nameField

"
﹀coauthor

﹀name
Caporuscio
,
Mauro

﹀localId
[
macaab
]

﹀affiliation
(
﹀affiliationSegment

Fakulteten
for
teknik
﹀abbreviation

(
FTK
)

﹀localId
[
12354
]

)
﹀affiliation

(
﹀affiliationSegment

ERES
)

;
﹀coauthor

﹀name
D'Angelo
,
Mirko

﹀localId
[
midaab
]

﹀affiliation
(
﹀affiliationSegment

Ericsson
Research
,
Sweden

)
"

,
﹀restFields

"
Article
title...
"

Run

grammar CSV;

csvFile: hdr row+ EOF ;

hdr : field (',' field)* LINE_BREAK ;

row:
 field ',' nameField ',' restField

field:
 quotedField
 | WORD;

quotedField: '"' (WORD | WORD_EXTRA |

nameField:
 '"' coauthor '"'
 | '"' coauthor (';' coauthor)+ '"

// sometimes 2 localids
coauthor:
 name (' ' localId)* (' ' affiliat

name:
 WORD (' ' WORD)* (', ' WORD (' '

localId:
 '[' WORD ']';

affiliation:
 '(' (' ')? affiliationSegment ('
 | '(' (' ')? affiliationSegment (

affiliationSegment:
 WORD ((', ' | ' ' | ',' | ', ' |

abbreviation:
 '(' WORD ')';

restFields:
 ~LINE_BREAK*;

WORD: (~["()[\],;\p{White_Space}] | '

WORD_EXTRA: [.<>/:+—];

LINE_BREAK : '\r'? '\n' | '\r';

"...","Caporuscio, Mauro [macaab] (Fak
Run

Show profiler

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

1
2

Figure 2.3: Illustrative Abstract Syntax Tree Example

We will use pyRAPL [20] to simultaneously measure energy consumption (CPU and
DRAM). It is based on RAPL [21], which has been found to be reliable [22–24], and
will give us high confidence in our results. Each experiment will be repeated 25 times to
give us sufficient data to analyze. Note that pyRAPL will calculate the CPU and DRAM
energy consumption of the entire system, not just our program, so a large sample size
is needed to filter out outliers caused by background processes [20]. We will use RAPL
itself to estimate the baseline consumption of the system and compare our results against
this.

For measuring memory usage, we will use memory-profiler (a module for monitoring
memory usage of a Python program) [25]. Unlike pyRAPL, this will be isolated to only
what our program does and not the memory occupied by the entire system. We expect
there will be little to no fluctuation involved, but we will still repeat each experiment 25
times.

Lastly, the Python time library will be used for execution time. While pyRAPL does
keep track of time spent, it is the time spent measuring, not necessarily the time spent
executing, even though we limit the measuring to our function.

All in all, this means a total of nine experiments per CSV file, separating the three

8

measurement methods to minimize overhead. As mentioned, our data sets will be of sizes
1 000, 2 000, 4 000 and 8 000. For each of the patterns Observer, Visitor and Patternless
and each data set size, we will:

• Measure energy consumption (CPU and DRAM) 25 times

• Measure memory usage 25 times

• Measure execution time 25 times

The measurements will cover only the traversal of our abstract syntax tree to assemble the
dictionary. The building of the tree is not included. The tree used in each experiment will
not be burdened by containing the functionality required by the two patterns not currently
being tested. While the measurements will all be performed 25 times, they will not be
done together due to overhead.

All experiments will be run on a laptop with these specifications:

• Operating System: Ubuntu 22.04.2 LTS

• Kernel: Linux 5.19.0-40-generic (x86_64)

• Memory: 8GB RAM

• Processor: Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz

2.3 Reliability and Validity

In this section, we outline various potential threats to the validity and reliability of our
experiment and detail the measures we have taken to mitigate their impact. According to
the categorization represented in [16] the validity threats can be viewed in the context of:

• conclusion validity is concerned with the ability of the researchers to arrive at cor-
rect conclusions [16];

• internal validity specifies whether there are any interfering factors that can affect
the relationship between independent and dependent variables [16];

• construct validity defines whether a method measures what it was supposed to mea-
sure, meaning that the main threats to construct validity are the threats related to the
design of the experiment [16];

• external validity is concerned with whether the research results can be generalized
outside the context of the current study [16].

Threats to conclusion and internal validity are firstly associated with the measure-
ments of energy consumption using the RAPL technology [20, 21]. The recorded mea-
surements will include not only the energy consumption of the patterned or unpatterned
processes but also the other processes that were running during the same period of time.
Therefore mitigation of energy noise can be achieved with the trivial shutting down of
any extra applications that may distort the measurements of the main process of the ex-
periment interest [20]. Moreover, each combination of independent variables will be run
a sufficient number of times, thus providing enough data for realistic average results that
are approximated to the real state of things as closely as possible.

9

On top of this, it is certainly possible that our implementations of Visitor, Observer
and Patternless are not optimal. If written by someone more experienced with Python
and/or ANTLR, a fairer comparison could be expected. While we deliberately make every
pattern process every node for simpler comparison, our usage of sets and dictionaries
could be refined.

A smaller concern could be our ANTLR grammar, which dictates how the tree is
built. We consider it smaller because all three patterns have to deal with the same tree,
and we only organize the tree to the extent that we can use it to solve the task described
in 2.2: Tallying university contributions to each paper. That means we do not make our
program create nodes for publication date, abstract, keywords, etc., but rather let these
stay lumped together as a large chunk of text in a single node. By not subdividing them,
we not only save the program unnecessary work when building the tree, but we also do
not turn one uninteresting node into many still-uninteresting nodes that each would have
to be explored by the patterns.

As software design patterns do not exist in isolation, but are part of some function-
ality that employs them, the measurements of the energy consumption of the Visitor and
Observer design patterns are in essence the measurements of some applications. This fact
could be a potential threat to the construct validity due to the assumption that the design
of the experiment is not constructed to narrow down the measurements to the specific
lines of code that represent pattern. However, a software design pattern is the way to de-
sign functionality, therefore it is integral to it and should be researched in the respective
application context.

Our experiment measures the energy consumption of the Visitor and Observer design
patterns when traversing abstract syntax trees using Python because of how heavily this
traversal is dependent on patterns. It may seem that such research could be considered a
threat to external validity due to the narrow application scope. Nevertheless, our findings
can provide insights into the energy consumption of Visitor and Observer design patterns
for the cases where the patterns are planned to be heavily utilized. Therefore the general-
izability of the experiment lies in the fact that it is not about design patterns as applied to
the traversal of the ASTs but about the multiple frequent calls to the pattern functionality.

The main threat to reliability is associated with the reliability of energy measurements
because as mentioned earlier, RAPL technology records the global energy consumption
of all running processes, therefore the exact replication of the energy consumption in the
other similar setting will most likely not be the same. Nevertheless, under otherwise equal
conditions including an absence of extreme environmental conditions that can affect the
hardware, the overall ranking of the patterns’ energy usage should be in line with our
findings.

2.4 Ethical Considerations

As this is an experiment involving no human subjects, there are no ethical considerations
worth mentioning. The data we use are publicly available. The libraries we rely upon are
free and we are using them for non-profit purposes. Anything involving bias will in this
case be a validity concern.

10

3 Theoretical Background

In order to provide the theoretical context for our experimental research, this section starts
with the motivation behind the estimation of energy consumption of the ICT sector; fur-
ther, the focus is narrowed down to the research of software energy consumption. Finally
the software design patterns, as high-level abstractions of the software design stack, are
explored from the energy efficiency point of view.

3.1 Software Energy Consumption

Over the past 70 years, the ICT sector has grown to the point where its significance raises
the question about the impact that it has, in addition to the increase in energy costs [26],
on the environment. Freitag et al. [27] examined peer-reviewed sources that research
greenhouse gas (GHG) emissions, which generally estimate that ICT is responsible for
1.8%–2.8% of yearly global emissions. However, Freitag et al. provide arguments for a
different estimate ranging from 2.1% to 3.9%. On the surface, both value ranges do not
seem to be critically large, but the biggest concern lies in the fact that ICT emissions will
inevitably continue to grow [27].

The issue of GHG emissions is not a standalone factor, but a result of energy gener-
ation and consumption. However, according to Krey et al. [28] the main driver of GHG
emissions is still energy consumption because it creates the demand for energy generation
and raises the question of energy efficiency by the end consumer.

Georgiou et al. [29] analyzed research studies concerning energy efficiency through-
out different stages of the software development lifecycle and emphasized GreenIT as the
way to address the issues of ICT’s increase in energy consumption. However, the sustain-
able practices of GreenIT were mainly considered with the hardware level (e.g. energy
optimizations of CPU) [29, 30].

Along with the work by Georgiou et al. [29], Pinto and Castor [31] state that the
majority of the research related to energy efficiency in computing has been focused on the
lower tiers of the hardware and software infrastructures, and emphasize the importance
of software energy efficiency research due to the fact that software is an indirect driver of
energy consumption and there exists substantial evidence that energy consumption can be
impacted by the software design itself [29, 31].

According to the surveys by Pinto and Castor [31] and Pang et al. [32] regarding
developers’ knowledge of software energy consumption, the respondents had insufficient
understanding of energy efficiency and the energy implications of the decisions taken
during the software development process due to a lack of studies that focus on energy-
aware software.

Despite the focus on energy optimization at the hardware level, the following studies
represent the research interest in the estimation of the energy consumption of the software
stack.

Bozzelli et al. [33] described metrics of software energy consumption through a sys-
tematic literature review of related primary studies. Among other units, the list includes
joule (J) as the derived unit of energy and watt (W) as the unit of power that generates or
consumes 1 joule in 1 second.

Couto et al. [34] classified 10 programming languages based on their energy effi-
ciency, which was measured using the RAPL technology. They used a suite of small self-
contained programs as their benchmarking dataset and monitored CPU energy as well as
runtime.

11

Similarly, Pereira et al. [9, 35] continued research by analyzing the energy efficiency
of 27 programming languages and its correlation with memory and runtime using Couto
et al. [34] methodology as the basis and adding DRAM energy and memory consump-
tion measurements. They extended their benchmarking dataset with the Rosetta Code
chrestomathy repository for [9].

As has already been mentioned, Georgiou et al. [29] categorized studies within the pe-
riod from 2010 to 2017 related to energy efficiency in the different stages of the software
development cycle. One of the aspects of their categorization is the empirical evaluation
of design patterns and their optimization, as design patterns define software components
and their interactions that may affect the energy consumption of the programs in which
the patterns are applied.

Moreover, Moises et al. [36] conducted a literature review to examine the studies that
provide the practices of sustainable energy consumption and concluded that, among the
practices related to CPU and memory usage, choosing energy-efficient software design
patterns as well as identification of the energy efficiency of design patterns could be ap-
plied to the sustainable development process.

3.2 Research Interest in Software Design Patterns

Feitosa et al. [37] authored a chapter on patterns and energy consumption with a focus
on mobile applications in a book that overviews software sustainability from different
perspectives. Similar to the studies in the previous subsection, the authors emphasize that
ICT energy consumption, as a many-sided problem, should be researched not only on the
hardware but also on the software levels. The chapter begins with an introduction that
highlights the importance of patterns as abstracted solutions to recurrent problems. The
authors divide patterns into patterns that specifically address energy issues and patterns
that indirectly affect energy efficiency. According to such categorization, the software
design patterns as defined by Gamma et al. [3] belong to those that can potentially affect
energy consumption due to the number of created objects and invoked methods. Therefore
the implications of software design patterns application need to be studied [37].

Zhang and Budhen [5] conducted a web-based survey to investigate the usefulness
of software design patterns from the points of view of developers and maintainers. They
noticed an interesting conformity; the three most extensively studied patterns (Composite,
Observer and Visitor) appeared among the most highly favored patterns according to the
survey results, though respondents’ reactions about Visitor were slightly controversial due
to difficulties with understanding the pattern’s abstraction and relative complexity [5].

3.3 Energy Estimation of Software Design Patterns

In this subsection, we will take a look at the existing primary studies that have empirically
measured the energy implications of software design patterns, as defined by Gamma et
al. [3].

3.3.1 Embedded Systems and C++

Sahin et al. [14] researched the energy consumption of 15 software design patterns, with 5
patterns in each category (creational, structural, and behavioral) applied to different pro-
grams running on the Spartan-6 board. The choice of patterns was mainly dictated by the
availability of testing code having patterned and unpatterned versions. The authors devel-
oped a custom hardware system based on an FPGA board with multiple power monitors

12

that allowed them to easily measure the power consumption of individual components
(CPU, memory, etc.). Moreover, measuring patterns on the Spartan-6 board eliminated
the effect of operating system processes because the board is an embedded system. The
main power measurements (wattage) of applications with and without having patterns
were subsequently converted into energy (joules) and served as the basis for finding the
total energy difference between them as well as the energy difference per iteration and
other indicators. As a result, Flyweight and Proxy showed energy-saving results, whereas
Decorator, Observer and Abstract Factory significantly increased energy usage [14].

Litke et al. [38] conducted an experimental study on the energy consumption of 5 de-
sign patterns (Factory Method, Adapter, Observer, Bridge and Composite) using 6 code
examples in C++ in the context of an embedded system. Their energy consumption re-
search consisted of a compiled C++ code analysis where they examined the use of specific
instructions and memory access operations, and from that derived the total energy mea-
surements for CPU and memory. The results showed that Factory Method and Adapter
pattern had minimal consumption overhead [38].

3.3.2 Mobile Platforms

A study conducted by Bunse and Steimer [13] researched the effect of 6 design patterns
(Facade, Abstract Factory, Observer, Decorator, Prototype, and Template Method) on the
energy consumption and runtime of Java applications (small applets based on textbook
pattern implementations and no pattern applets with equal functionality) on Android plat-
forms. They used the PowerTutor diagnostic software tool for Android-based mobile
platforms. The experimental results showed that the patterned versions of Decorator,
Prototype and Abstract Factory were about 133%, 33% and 15% worse (with regards to
execution time and energy consumption), respectively. The other three patterns exhibited
no significant difference [13].

3.3.3 Java and Patterns in the Open Source Software

Feitosa et al. [10] investigated the energy consumption of State/Strategy and Template
design patterns in the context of pattern-participating methods of 2 Java open-source soft-
ware systems (JHotDraw and Joda Time) compared to functionally equivalent alterna-
tives. The pattern-relevant methods were detected with a tool that recognizes the presence
of a pattern structure with the help of a similarity scoring algorithm. PowerApi and Jalen
were used to measure the energy consumption of the CPU. pTop was used to confirm the
accuracy of these measurements. The results showed that alternative versions are more
energy efficient, however, patterned versions demonstrated similar or lower energy usage
in complex cases involving many method invocations [10].

Bree and Cinnéide [11] investigated the energy implications of the Visitor design pat-
tern applied to Java programs. The implementation of Visitor in Java requires two single
dispatches (accept method call and visit method call), therefore the authors were inter-
ested in the energy costs of such behavior. The study consisted of measuring the textbook
pattern examples as well as the Visitor pattern in the context of traversing ASTs of parsed
open source software source code (JHotDraw) with the help of JavaParser. The exper-
iments with textbook examples were aimed to measure the following three cases: (1)
patterned version, (2) unpatterned version, and (3) alternatively patterned version they
called reflective dispatch (instead of sending a visitor, use Java’s instanceof to find the
object’s class). At the same time, the same concept was applied to traversing the JHot-
Draw source code AST: (1) traversal of the tree with the default Visitor implementation

13

that visits every node of the tree, (2) unpatterned traversing of the AST, and (3) alterna-
tive patterned version which checks the type of the tree node and decides whether to visit
it (reflective dispatch). The Wattsup Pro Power Meter hardware was used in the experi-
mental measurements. As for the textbook examples, the results showed a reduction of
over 7% in energy consumption when using reflective dispatch. In the case of the open-
source software (JHotDraw) and JavaParser, the complete removal of Visitor from the
AST traversal resulted in an 8% reduction in energy consumption whereas application of
reflective dispatch version led to a 10% decrease [11].

The same two authors examined the energy implications of the Decorator structural
software design pattern in Java [12]. Bree and Cinnéide were interested in investigating
the energy cost of the indirection that comes with the application of Decorator. The
study investigated Decorator in the context of textbook examples and a JUnit (unit testing
framework in Java) case study. In general, the experiments showed that the removal
of the pattern led to a 96% decrease in energy consumption in the textbook example
measurements and a 5% decrease in the JUnit case [12].

3.3.4 Further Pattern Energy Estimation Studies

As part of their research on the improving energy efficiency of software design patterns
through compiler optimization, Noureddine and Rajan [39] measured the CPU energy
overhead (program with pattern compared to no pattern version) of 14 patterns in C++
and 7 patterns in Java running on a Lenovo Thinkpad X220. They used the Jolinar 2
tool, which is based on the Intel RAPL technology, for their measurements of energy
consumption. The experiment showed that the application of Observer, Decorator and
Mediator resulted in an energy overhead of over 10% [39].

Maleki et al. [40] investigated the impact of object-oriented concepts (inheritance,
polymorphism, dynamic binding, and overloading) and some software design patterns
(Decorator, Facade, Flyweight, Prototype, and Template method) on the performance
and energy consumption of software. In the case of the pattern experiments, the au-
thors measured and compared metrics of the patterned and unpatterned versions with
the same functionality. The experiments ran on a high-performance computing system
codenamed Marcher. Maleki et al. developed a power and energy measuring API that
uses the techniques of Intel RAPL interface among other tools. Concerning the patterns,
the experiments showed that the Flyweight pattern can improve energy usage along with
performance whereas the application of Decorator has a negative impact on energy and
performance metrics [40].

3.4 Application of Software Design Patterns for Parsing Tasks

According to Ortin et al. [41], the concept of parsing in software development can be
applied in multiple areas such as compiler implementation, processing data of various
formats, natural language processing, etc. The general idea of parsing of any kind is to
enable a syntactic analysis by conforming to the rules of the predefined grammar and
building a parse tree that represents a structuring of the input according to the grammar
rules. Further on, by having the tree organized according to the grammar it is possible
to interact with it. The authors mention that the importance of parsing in software devel-
opment has led to the existence of a variety of different parsing tools (parser generators)
that facilitate the process of parser generation and come with certain tool-specific ways
in which to use the generated parser. The authors highlight ANTLR [15] to be among the
most commonly used parser generators [41].

14

The creator of ANTLR, Terence Parr, in his book about the ANTLR v4 [42] states that
ANTLR supports 2 main mechanisms of parse tree traversal that both walk the tree using
depth-first search: Listener and Visitor.

As for the Listener implementation, ANTLR uses it as the default mechanism of parse
tree traversal. ANTLR provides a ParseTreeWalker class that acts like the observable en-
tity walking through the structure of the tree. ParseTreeWalker starts at the root and goes
down recursively in a depth-first search as vizualized in more detail in Figure 3.4 . At the
same time, ANTLR generates a grammar-specific Listener class (that can be extended and
modified by the developer according to certain tasks) that eventually observes the travers-
ing activity of the ParseTreeWalker, meaning that ParseTreeWalker eventually invokes the
respective callbacks of the Listener class once ParseTreeWalker enters or exits a node of
the tree [43]. Terence Parr writes about the beauty of this approach, emphasizing that
the developer does not have to write some custom implementation that is responsible for
traversing the tree (ParseTreeWalker already does it). The Listener mechanism observes
the updates of an entity that automatically walks the tree [42].

On the other hand, more control over the actual traversal activity can be gained using
the Visitor mechanism that explicitly performs the whole tree-walking sequence by in-
voking the visit methods of the respective children on each tree level. Each node having
an accept() function for a visitor is in line with the Visitor software design pattern speci-
fication by Gamma et al [3]. In the same manner as with the Listener, ANTLR generates
a grammar-specific Visitor class whose methods can be modified by the developer [42].

The main difference between these 2 main mechanisms lies in the fact that in Visitor
the developer can control the tree-walking process by explicitly guiding the visitation
order whereas the Listener approach just reacts to the changes/events that are happening
in the ParseTreeWalker activity. Despite these differences, both approaches make use of
the depth-first search and are heavily utilized as ways to interact with the parsed tree [42].

Figure 3.4: Visualization of the processes of a ParseTreeWalker.

15

Figure 3.4 is understood like so. The walk begins at the root, and function calls are
triggered whenever the walker enters or exits a node. These function calls are how the
walker informs its observers.

1. The walk begins. The walker encounters a node of type A and triggers the enterA()
function.

2. The walker looks for children of this node and finds a node of type B, triggering the
enterB() function.

3. The walker again looks for children of this node (B) and finds a node of type C,
triggering the enterC() function.

4. The walker again looks for children of this node (C) and finds none. It is done with
the node and triggers the exitC() function as it leaves it.

5. The walker looks for more children of the parent B node and finds a node of type
D, triggering the enterD() function.

6. The walker again looks for children of this node (D) and finds none. It is done with
the node and triggers the exitD() function as it leaves it.

7. The walker looks for more children of the parent B node and finds none. It is done
with the node and triggers the exitB() function as it leaves it.

8. The walker looks for more children of the parent A node and finds another node of
type B, triggering the enterB() function.

9. The walker again looks for children of this node (B, the second one) and finds none.
It is done with the node and triggers the exitB() function as it leaves it.

10. The walker looks for more children of the A node and finds none. It is done with
the node and triggers the exitA() function as it leaves it. This concludes the walk.

16

4 Research Project – Implementation

4.1 Implementation Data and ANTLR Grammar

We began by gathering 40 CSV files from the Linnaeus University DiVA portal [19],
each containing 250 lines of data. We made a simple search with an empty query and
exported the first 10,000 entries using the format CSV all metadata. We combined this
data into files containing 1 000, 2 000, 4 000 and 8 000 lines, manually fixing anything
too malformed to be parsed.

Our grammar is designed to decompose a line in a CSV to the degree that it can be used
to tally university contributions. As such, anything after that part (abstract, publication
date, etc.) in the files is lumped together. Figure 2.3 illustrates how one line might be
decomposed into a tree, with the restFields representing the uninteresting data.

We wish to point out two things. Firstly, the DiVA portal is constantly updated. The
curated data is available on our Git repository, along with our test code. Secondly, the data
is used to have our program achieve something meaningful and increase validity, but our
project is about comparing patterns for parsing the data, not about drawing conclusions
from the DiVA data itself.

As such, while our process led us to replace some of the DiVA data and our ANTLR
grammar is likely not optimal, we argue that this is generalizable. As our experiment is
about measuring three different patterns walking the same tree, we disregard the construc-
tion process.

4.2 General Pattern Information

Again, looking at Figure 2.3 and bearing in mind that for each line in the CSV (the row
at the root of the subtree) we only wish to count unique institution names, one might be
tempted to utilize regularities that the trees might exhibit, in order to avoid processing
irrelevant nodes.

We considered this, but elected not to do it for three reasons:

1. It would have meant more work fixing the CSV files, as malformed data would not
contain these regularities.

2. It would involve editing the ANTLR library code to an uncomfortable degree, as
its Listener and Visitor by default process all nodes. It may be fixable for Visitor
without changing the library, but not Listener.

3. We feel our results are easier to put into perspective if the reader does not have to
make too many assumptions about how well we can optimize the patterns.

Therefore, all three patterns will process all nodes, including those consisting of only
a comma or parenthesis, even when we know that this is not necessary. All three patterns
walk the tree in a depth-first search fashion.

To perform its task, each pattern builds a dictionary where each key is the name of an
affiliation and the value is the number of occurrences of the respective affiliation in the
data (that is the count of publications per affiliation). All three of them accomplish this
by, in their own way, making each row responsible for populating a set with institution
names, which the dictionary then parses.

The information we are looking for is held by affiliationSegment nodes. Each node
has a getText() function, provided by ANTLR, that is recursively called on all its children

17

to produce a string, in this case the name of the institution. Note that calling getText() is
not what we refer to by processing a node with a pattern; that is, for example, invoking
the node’s accept() function with a Visitor.

4.3 Patternless (Algorithm Sprawl)

In this implementation, the tree itself contains the logic to assemble the dictionary. Each
node is given a getValue() function whose invocation equates to processing the node.
Examples to follow in Listings 1 and 2:

Listing 1: Node specific functions
root of the tree; the function called by the test
def csvFileContextGetValue(self):

dict = {}
nameSet = set()
for child in self.children:

child.getValue(nameSet)
for name in nameSet:
if name in dict:

dict[name] += 1
else:

dict[name] = 1
nameSet.clear()

return dict

row, but also the default implementation seen in most named nodes
def rowContextGetValue(self, set):

for child in self.children:
child.getValue(set)

here, an institution name is added to the set
def affiliationSegmentContextGetValue(self, set):

set.add(self.getText())
for child in self.children:

child.getValue(set)

default implementation for nodes such as commas
def defaultGetValue(self, set):

pass

These are injected into the ANTLR classes, becoming getValue() functions like so:

Listing 2: Patching/adding node specific functions to the parsed tree
patches the ANTLR-generated parser class
def patchParserWithGetValueFunction(CSVParser):

CSVParser.CsvFileContext.getValue = csvFileContextGetValue
CSVParser.HdrContext.getValue = hdrContextGetValue
CSVParser.RowContext.getValue = rowContextGetValue
...

patches the ANTLR library itself
def patchAntlrBaseClass(antlr):

antlr.tree.Tree.TerminalNode.getValue = defaultGetValue

As seen in the example code, the root iterates over the row nodes and has each of
them build a set of strings naming institutions involved in the publication, then uses this
set to update the dictionary. This is achieved by passing the set down the tree. Nodes
with children send the set to them, leaf nodes pass, and affiliationSegment nodes add to

18

the set before sending it to their children. It may be noted that this set is sent to a lot of
needless locations, but as we mentioned, we make all patterns process all nodes to make
the analysis simpler.

We gather the relevant functions in our own class patternless.py and inject them into
the ANTLR-generated parser class, as well as a default function into the parent class
(TerminalNode) of the tree nodes in the ANTLR library. The former is to avoid editing
the parser itself, which while is not recommended but has worked, would have to be
repeated each time the grammar was recompiled. The latter is to allow it to process nodes
such as commas without crashing, as these are not explicitly named in our grammar and
thus do not get their own node type.

Since Python allows this function injection, it could be argued that this is not true
algorithm sprawl from the perspective of maintainability, but as far as runtime effects go,
it is the same: The objects contain and perform the algorithms themselves, rather than
delegating that responsibility to a Visitor or Observer.

4.4 Listener/Observer

The ANTLR Listener allows us to observe a ParseTreeWalker and catch relevant infor-
mation from it. Note that the tree itself is not what we are observing. The ANTLR AST is
built once and not changed; we are subscribing to updates from the walker as it explores
the tree. This means our measurements also include the activities of the ParseTreeWalker
(the observable).

The Listener has two triggers for each node: the walker entering the node when trying
to reach greater depth, and the walker exiting the node after returning from greater depth,
on its way back to the node’s parent. By default, each is a pass. We override the behavior
of entering affiliationSegment nodes to add their names to the set, and the behavior of
exiting nameField nodes to make the dictionary parse the set.

We described the mechanics of the ParseTreeWalker in detail in Figure 3.4.

4.5 Visitor

The default behavior of the ANTLR Visitor is that unnamed nodes - such as commas -
simply return None, and named nodes - such as row nodes - iterate over their children and
send the Visitor to each of them. We overrode this behavior for nameField and affilia-
tionSegment nodes. Our Visitor contains a dictionary and a set. nameField nodes, after
visiting all their children (and grandchildren, etc) will populate the dictionary using the
set. affiliationSegment nodes will contribute their text to the set.

4.6 Separating the Patterns

In summary, this is the difference between the patterns:

• In Patternless, we ask the tree itself to assemble the dictionary, and each node knows
how to contribute.

• In Listener/Observer, we observe a ParseTreeWalker object as it explores the tree.
Every new node it enters or leaves, it notifies the Observer, and we define behavior
for interesting nodes to help us assemble the dictionary.

• In Visitor, we let a Visitor object walk the tree, and each node "greets" the Visitor,
causing any relevant functions to be invoked.

19

• In all cases, all nodes are processed. While this simplifies comparisons, it also
means all three patterns are playing by Listener’s rules.

4.7 Running the Experiment

As mentioned, we measure energy consumption, memory usage and execution time, in
that order. We do this for Listener, Patternless and Visitor, in automated sequence. We
use the Ubuntu terminal to run the Python scripts, after first making a best effort to close
any unnecessary background processes.

As executing the entire set of measurements takes over three hours (memory mea-
surements consuming the bulk of this), we also disable any power save functions on the
laptop, so that no pattern looks better due to a dimmed/suspended screen reducing energy
consumption.

20

5 Results

This section will focus on a detailed overview of the experimental results. The represented
data is organized into tables to facilitate subsequent analysis. The raw unstructured data
is available on our Git repository [44]. The analysis itself will happen in subsequent
chapters; the results are only presented and described here.

Table 5.2: RAPL, memory and runtime measurements of 3 patterns

Data sizes Runtime, ms Memory,
MiB

CPU, mJ DRAM, mJ Energy measure-
ment duration, ms

Patternless

1000 rows

Mean: 366.3

466.6

Mean: 3390.6 Mean: 363.3 Mean: 363.2

SD: 2.1 SD: 16.5 SD: 4.5 SD: 2.2

Median: 365.9 Median: 3391.7 Median: 362.8 Median: 363

2000 rows

Mean: 468.4

1121.50

Mean: 4352.8 Mean: 480.6 Mean: 470.5

SD: 1.2 SD: 29.3 SD: 3 SD: 2.9

Median: 468.1 Median: 4351.9 Median: 480.8 Median: 470

4000 rows

Mean: 707.8

1912.1

Mean: 6448.6 Mean: 736.8 Mean: 702.5

SD: 1.7 SD: 36.1 SD: 4.1 SD: 3.1

Median: 707.6 Median: 6439.9 Median: 737.2 Median: 702

8000 rows

Mean: 1126.9

3478.1

Mean: 10286.8 Mean: 1199.6 Mean: 1121.1

SD: 1.2 SD: 58.3 SD: 7.8 SD: 2.3

Median: 1126.8 Median: 10279 Median: 1198.1 Median: 1121

Listener

1000 rows

Mean: 783.8

466.7

Mean: 7147.4 Mean: 657.3 Mean: 780.4

SD: 2.1 SD: 60.7 SD: 6 SD: 2.5

Median: 783.6 Median: 7148.1 Median: 657.5 Median: 780.8

2000 rows

Mean: 1120.8

1121.5

Mean: 10273.8 Mean: 945.6 Mean: 1121

SD: 2.7 SD: 41.3 SD: 4.1 SD: 2.4

Median: 1120.6 Median: 10271.5 Median: 945 Median: 1121

4000 rows

Mean: 1861.6

1915.5

Mean: 17046.3 Mean: 1561.7 Mean: 1855.3

SD: 3.8 SD: 104.3 SD: 6 SD: 4

Median: 1861.5 Median: 17010.3 Median: 1560.6 Median: 1856.6

8000 rows

Mean: 3195.3

3455

Mean: 29099.4 Mean: 2695.1 Mean: 3207.1

SD: 7.6 SD: 229.3 SD: 14.9 SD: 9

Median: 3194.3 Median: 29183.5 Median: 2694.8 Median: 3206.8

Visitor

1000 rows

Mean: 1004.2

466.6

Mean: 9114.6 Mean: 811.3 Mean: 1003.8

SD: 2.3 SD: 34.8 SD: 3.6 SD: 1.4

Median: 1004.2 Median: 9110.2 Median: 810.5 Median: 1003.6

2000 rows

Mean: 1498.6

1120.8

Mean: 13788.7 Mean: 1216.1 Mean: 1518.7

SD: 2.6 SD: 46 SD: 4.5 SD: 3

Median: 1498.1 Median: 13784.6 Median: 1215 Median: 1518.3

4000 rows

Mean: 2585.9

1932

Mean: 23713.8 Mean: 2053.6 Mean: 2579.1

SD: 4.5 SD: 104.3 SD: 10 SD: 9.7

Median: 2585.8 Median: 23709.3 Median: 2054.7 Median: 2580.2

8000 rows

Mean: 4566.3

3492.5

Mean: 41951.3 Mean: 3675 Mean: 4634.9

SD: 22 SD: 495.5 SD: 88.8 SD: 28

Median: 4556.8 Median: 41930.8 Median: 3663.3 Median: 4631.6

Table 5.2 consolidates all the measurements that were obtained as the result of our
conducted experiments. The data is organized according to the patterns and subsequently

21

according to the sizes of the sample testing data (the number of publication records in
each CSV file). Each table row corresponds to the results of 25 runs of AST traversal
with the respective data size (e.g. 1000 CSV rows). The mean is the arithmetic mean.

Column “Runtime, ms” denotes the runtime of the AST traversal in milliseconds.
Columns “CPU, mJ”, “DRAM, mJ” and “Energy measurement duration, ms” represent
the data that was measured with RAPL. pyRAPL [20] measured CPU and DRAM energy
consumption in microJoules which were transformed into milliJoules for easier presenta-
tion. The mean and median indicators in each cell of these columns are intended to bring
the data of 25 runs to the central tendency. The value of the standard deviation “SD” gives
an idea about the variance of the acquired results.

Column “Memory, MiB” is obtained with the help of memory-profiler tool [25]. This
data does not have a mean, standard deviation and median calculation, because the same
consistent values were received every 25 runs.

Figure 5.5 is intended to visualize the relationship between the data set sizes and
combined mean energy (column “CPU, mJ” + column “DRAM, mJ” from Table 5.2) that
patterns consume while traversing ASTs of different sizes. Plotting Patternless, Listener
and Visitor results in one figure can be used to observe the patterns’ energy consumption
in comparison to each other and depict the general trend of energy usage for each of them.

Data sizes

M
ea

n
en

er
gy

 (
C

P
U

 m
J

+
D

R
A

M
 m

J)

0

10000

20000

30000

40000

50000

1000 2000 3000 4000 5000 6000 7000 8000

Patternless Listener Visitor

Figure 5.5: Combined mean CPU + DRAM, mJ of 3 patterns and 4 data sizes

In the same manner, Figure 5.6 demonstrates the relationship between the data set
sizes and the mean runtime of each pattern traversing the AST structure of the respec-
tive size. As was mentioned before, the runtime measurements account for the complete
execution of the test program.

While we demonstrate the runtime in Figure 5.6, we chose to use the time (ms) met-
rics from the column “Energy measurement duration, ms” of Table 5.2 for the subsequent
calculations because these mean values represent the duration of intervals that were mon-
itored by pyRAPL.

22

Data sizes

M
ea

n
ru

nt
im

e,
 m

s

0

1000

2000

3000

4000

5000

1000 2000 3000 4000 5000 6000 7000 8000

Patternless Listener Visitor

Figure 5.6: Mean runtime, ms of 3 patterns and 4 data sizes

Table 5.3: Performance and energy change

Data sizes Patterns
Mean energy
measurement
duration, ms

Combined
mean energy,
mJ

Time diff., % Energy diff., %

Patternless vs Listener

1000 rows
patternless 363.2 3753.9

114.9 107.9
listener 780.4 7804.7

2000 rows
patternless 470.5 4833.4

138.3 132.1
listener 1121 11219.4

4000 rows
patternless 702.5 7185.4

164.1 159
listener 1855.3 18608

8000 rows
patternless 1121.1 11486.4

186.1 176.8
listener 3207.1 31794.5

Patternless vs Visitor

1000 rows
patternless 363.2 3753.9

176.4 164.4
visitor 1003.8 9925.9

2000 rows
patternless 470.5 4833.4

222.8 210.4
visitor 1518.7 15004.8

4000 rows
patternless 702.5 7185.4

267.1 258.6
visitor 2579.1 25767.4

8000 rows
patternless 1121.1 11486.4

313.4 297.2
visitor 4634.9 45626.3

Listener vs Visitor

1000 rows
listener 780.4 7804.7

28.6 27.2
visitor 1003.8 9925.9

2000 rows
listener 1121 11219.4

35.5 33.7
visitor 1518.7 15004.8

4000 rows
listener 1855.3 18608

39 38.5
visitor 2579.1 25767.4

8000 rows
listener 3207.1 31794.5

44.5 43.5
visitor 4634.9 45626.3

23

In order to provide more comparative data for the subsequent analysis and facilitate
the relative assessment of the patterns’ energy consumption, Table 5.3 depicts the per-
centage change or relative percentage difference between the time and energy metrics of
the pattern pairs (Patternless - Listener, Patternless-Visitor, and Listener-Visitor). The
percentage of change is calculated according to the following formula: Change(%) =
Metric(Pattern2)−Metric(Pattern1)

Metric(Pattern1)
× 100%. The positive percentages denote an increase in

the respective metrics of time and energy consumption.
Finally, Table 5.4 is purposed to give an idea about the actual rate of energy consump-

tion across the three patterns while traversing different sizes of ASTs. The rate as the ratio
between the energy and measurement duration is represented in watts (W) as per the for-
mula: Power(watts) = Energy(mJ)

T ime(ms)
. Both metrics of energy and measurement duration

are the combined mean values that are represented in Table 5.2.
For comparison, the base power consumption of the idle system used to run the tests

is 1.09W, with a standard deviation of 0.04, based on RAPL command-line interface tool
readings.

Table 5.4: Energy measurements and corresponding power values of 3 patterns

Data sizes
Combined mean
energy, mJ

Mean energy
measurement
duration, ms

Power, W

Patternless

1000 rows 3753.9 363.2 10.3

2000 rows 4833.4 470.5 10.3

4000 rows 7185.4 702.5 10.2

8000 rows 11486.4 1121.1 10.2

Listener

1000 rows 7804.7 780.4 10

2000 rows 11219.4 1121 10

4000 rows 18608 1855.3 10

8000 rows 31794.5 3207.1 9.9

Visitor

1000 rows 9925.9 1003.8 9.9

2000 rows 15004.8 1518.7 9.9

4000 rows 25767.4 2579.1 10

8000 rows 45626.3 4634.9 9.8

24

6 Analysis

6.1 Memory Observations

Any memory difference is seemingly overshadowed by the memory requirements of the
tree itself. Even in the most dramatic case, Patternless vs. Visitor for size 4 000, the 20
MiB difference represents only a 1% change. As such, we cannot claim any pattern is
superior in this regard; there is not even one that consistently wins or consistently loses.
As the memory usage is nearly identical for the two smallest data set sizes, we also cannot
suggest that each pattern has a certain "base" memory footprint, the differences between
which would be more pronounced without having the tree involved. In short, changing the
size of the data does not seem to impact which pattern does the best job, because memory
usage remains virtually equal.

6.2 Runtime and Energy Consumption Observations

A similar trend of growth can be observed in Figures 5.5 and 5.6 regarding the values of
the mean combined energy consumption and the mean values of the runtime in relation to
the data set sizes across the patterns. Therefore we can explore the relationship between
these two metrics by using linear correlation analysis [45].

More specifically, we used the Pearson product-moment correlation coefficient as
computed within Google Sheets. Like Bunse and Stiemer [9], we have a strong corre-
lation between runtime and energy consumption. For each of the patterns, the correlation
coefficient is greater than 0.9999: (1) 0.999957 for Patternless, (2) 0.999992 for Listener,
and (3) 0.999993 for Visitor. We explain this by the system simply mustering all available
resources to complete the task at hand. It runs at full speed for as long as it has to; the best
pattern is the one that requires it to run the shortest duration. In other words, the fastest
pattern is also the most energy-efficient pattern.

The power values in Table 5.4 support the notion about the execution time being the
most important factor that influences energy efficiency and overall energy consumption
according to our findings because the rate of the energy consumption stays consistent and
is almost equal (≈10 W) throughout all experiments.

While the scatterplots in Figure 5.6 look fairly linear, Table 5.3 suggests that Pat-
ternless has a greater relative (as well as absolute) advantage as the size of the data set
increases. Bearing in mind that our data is heterogeneous, and that a row in a CSV is thus
not a constant amount of work to process, we ran an informal post-experiment runtime
test with homogeneous data; all files had the same row duplicated over and over. Un-
der these conditions, all three patterns exhibited heavily linear behavior, to the point that
we could almost say that runtime (ms) is simply the number of CSV lines multiplied by
some pattern-specific constant: Approximately 0.102 for Patternless, 0.340 for Listener
and 0.555 for Visitor.

We will not draw too many conclusions from an informal test with an arbitrary CSV
line, especially about the differences between the patterns. There is also the possibility
that Python or ANTLR makes optimizations about this repeated data. We still feel it adds
some context to the analysis.

Instead, what Table 5.3 does show is that the relative advantages of Listener over
Visitor, and of Patternless over both of them, grow as the size of the data set does. As this
is based on heterogeneous data, we argue it is the more realistic conclusion to draw.

25

6.3 Further Statistical Observations

The mean and median that are calculated based on the measurements consolidated in
Table 5.2 have almost identical values signifying that the experimental findings have an
approximately symmetrical normal distribution. The relatively small values of the stan-
dard deviation in relation to the mean identify the high precision and consistency of the
gathered experimental data.

While the differences in the energy consumption across the pattern alternatives are
evident for the same respective data sizes, as presented in Tables 5.2, 5.3 and 5.4 as well
as Figure 5.5, we conduct a basic form of statistical hypothesis testing in order to find out
if the differences between these observations are statistically significant.

We have conducted two-tail, two-sample unequal variance distribution t-test [46] within
Google Sheets for the metrics of energy CPU and DRAM consumption as those represent
the most interest for the purpose of our research. The results are presented in Table 6.5.

Table 6.5: T-test for the measurements of energy consumption (CPU and DRAM, mJ)

Data sizes CPU energy test p-value DRAM energy test p-value

Patternless vs Listener

1000 rows 7.01E-50 2.32E-67

2000 rows 4.91E-86 4.21E-82

4000 rows 2.82E-59 2.52E-84

8000 rows 1.46E-52 4.69E-69

Patternless vs Visitor

1000 rows 9.94E-74 2.43E-82

2000 rows 1.73E-88 1.32E-85

4000 rows 1.45E-65 1.63E-66

8000 rows 4.66E-46 7.77E-37

Listener vs Visitor

1000 rows 1.65E-53 4.65E-51

2000 rows 2.49E-78 2.22E-73

4000 rows 2.55E-74 1.65E-61

8000 rows 8.61E-46 8.82E-28

All of the respective p-values are much smaller than the typical significance levels
(alpha levels) of 0.05 or even 0.01, indicating statistically significant differences between
the sample means, that is, our observations for the three patterns [46].

26

7 Discussion

7.1 Pattern Comparison

Having established that the patterns do not differ significantly in the memory aspect, and
that lower runtime strongly correlates with lower energy consumption, we will simply
examine the patterns from the perspective of efficiency, which then means both speed and
energy consumption.

With effectively only one metric for comparison, and the outputs of this metric re-
maining consistent with data set size, Patternless is a clear winner. We have made every
effort to make it a fair competition: As we keep repeating, every pattern processes every
node, the tree is the same, and even the method for assembling the dictionary is the same
(make the subtree fill out a set). Still, "our" pattern has proven the most efficient.

Our best explanation is lack of indirection. In every pattern, we have the tree itself.
In Patternless, we do not have anything else. The tree simply has functions added to
it, and accomplishes with these functions what Visitor accomplishes by having the tree
constantly talk to a Visitor object, and what Listener achieves by having the tree constantly
interact with a ParseTreeWalker, which in turn interacts with its Observer.

Also, because Python allows function injection, our Patternless solution is just as
maintainable as the other two.

Yet, based on this logic, should we not expect Visitor to outperform Listener? It looks
like it should cause less object message traffic.

We can only suspect there are optimizations at work, as Listener is intended to walk
the whole tree; we could not make it do otherwise without changing the ANTLR library
itself. The power we have is deciding what nodes we want updates about, not whether it
walks them.

Visitor, on the other hand, exists for more controlled traversal. By default it visits
every node. ANTLR allows us to change this behavior, but we have not done so to allow
for simpler comparison. It still visits every node, but in some, it also gathers the data we
need. Note that this is Visitor playing by Listener’s rules.

Our best theory is that Listener causes less message traffic because the ParseTree-
Walker does not need to consult any other object about how to continue traversing. It
reaches a node, notifies the Observer (who usually does not care and simply has a pass
reaction), then continues. The Visitor, on the other hand, is greeted by a node which tells
the Visitor what to do next (visit any children of the node). Listener and Visitor both talk
to the tree, but the tree also talks back to Visitor.

7.2 Compared to Related Work

We have a much more pronounced advantage for Patternless as compared to Visitor than
Bree and Cinnéide observed [11]. This could be both due to Java and Python differences,
as well as the test program used.

Bunse and Stiemer [13] found practically no difference between Observer and no
pattern, but it is unclear how they tested it. The ANTLR Listener, while qualifying as an
Observer, is still observing something inspecting static data, a process for which there are
a few alternatives. If on the other hand our AST could be updated and we could subscribe
to updates to single nodes, Observer would probably be the best pattern for keeping the
dictionary accurate. We suspect that Bunse and Stiemer’s Observer accomplished a task
like that, making our results difficult to compare.

27

Sahin et al. [14] had a slight (≈7%) improvement from using Visitor, while Observer
was worse by 62%, each compared to no pattern. Again, the exact implementations are
difficult to infer. The authors did document an increase in object creation and messages
from using these patterns, which may support our own theories about the costs of Visitor
and Listener in our project.

Unfortunately, design pattern energy efficiency is not a richly explored subject, and so
it is rather hopeless to say what results to expect. This may very well be the first paper of
its kind in the context of Python. We remind the reader that Python is a notoriously ineffi-
cient language when it comes to energy consumption and execution time [9], which could
very well mean our results must be placed in the context of a wildly different landscape
than these Java/C++ studies.

7.3 Generalizability

To begin with, we will use the context of ANTLR ASTs. The results for Listener and
Visitor were to be expected (in the sense that Listener is better when the task is to walk the
entire tree), but the superiority of Patternless means that this can certainly be considered
for ANTLR AST parsing in general. We hope the reader will agree that once function
injection is understood, it is not much more difficult to implement than a Listener or
Visitor.

We deliberately chose AST parsing so that we could be confident that we could induce
heavy usage of our patterns, and thus be able to say that different results are indeed caused
by different patterns. As such, our findings should transfer well to other use cases (outside
of ANTLR and ASTs), though bearing in mind what was pointed out about the ANTLR
Listener as compared to traditional Observer usage in the previous subsection.

As Python is an inefficient language [9], in particular compared to the alternatives with
which it competes for worldwide popularity [4], we dare not make any claims that our
results are applicable outside Python. Readers with insight into what makes programming
languages different from, and similar to, each other may be able to reason about this well
enough to use our findings in other contexts.

28

8 Conclusions and Future Work

In this thesis project, we decided to investigate the problem of software energy consump-
tion, as this topic seems to be overlooked by the majority of the studies that are focused
on the implications of the ICT sector increasing energy consumption. More specifically,
we chose to concentrate on software design patterns as those are the high-level design
abstractions that can shape the structure and behavior of the software, therefore we were
interested in the energy cost that comes with the indirection of pattern application. To
help inform tradeoffs, we also measured runtime and memory usage. Our patterns were
Visitor, Observer and an unpatterned solution. Based on the received measurements and
their analysis, we are able to answer the research questions in Section 1.3.

8.1 Research Questions Consideration

How do Observer, Visitor and Patternless compare for energy consumption? We
found that Patternless consistently outperformed the other two, spending between half
and a third as much energy as Observer and in the ballpark of a third and a fourth as much
energy as Visitor. Observer consistently outperformed Visitor, spending roughly 25-30%
less energy.

How do Observer, Visitor and Patternless compare for execution time? We found
an extremely strong correlation between execution time and energy consumption. Con-
sequently, our answers are the same as those to the previous question: Patternless is 1-2
times faster than Observer and 2-3 times faster than Visitor, while Observer is 25-30%
faster than Visitor.

How do Observer, Visitor and Patternless compare for memory usage? This turned
out to be a highly irrelevant consideration. There were extremely small differences in
memory usage, and no pattern was consistently the best or worst. Their memory footprints
are the same for all intents and purposes.

Do different data set sizes favor different patterns? No. Larger data set sizes only
make the established differences even more pronounced. Patternless is always the best
and Visitor is always the worst.

All of these results provide a rather consistent picture of 3 patterns ranking with re-
spect to different metrics, while no surprising deviations (e.g., Visitor suddenly becoming
faster or consuming less energy than Listener or Patternless) were observed.

8.2 Future Work

This experiment could be repeated with the reflective dispatch approach from Bree and
Cinnéide’s experiment included [11]. It could also be redone with a few sets of homoge-
neous data, as well as with optimized Patternless and Visitor that do not process unneces-
sary nodes. We recommend repeat experimenters to use far fewer iterations for memory
measurements, as they are slow and do not seem to provide any benefit, given the com-
plete lack of variance in the results.

We implemented our testing prototypes using the default Python interpreter CPython.
The other interpreter options can be configured to process the Python script. The choice of
interpreter highly impacts the execution of the Python code therefore conducting similar

29

experiments using different interpreter configurations could be a potentially interesting
addition to the research of the software design patterns energy consumption in the Python
context.

Zooming out, design pattern efficiency in Python remains a heavily unexplored field,
although the extreme correlation between runtime and energy consumption that we ob-
served could very well mean that any knowledge that exists about design pattern perfor-
mance can be drawn upon to make assumptions about efficiency.

At an even higher level, design pattern efficiency in general is mostly uncharted terri-
tory. It has received some attention for Java and C++ as far as desktop environments go.
There is no shortage of languages for which this knowledge gap could be addressed, and
should the experimenter favor languages that already have some research in this field, the
existing conclusions could certainly stand to be verified independently.

30

References

[1] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: Quantifying the
carbon footprint of computation,” Advanced Science, vol. 8, no. 12, p. 2100707,
2021.

[2] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte, B. Roy, D. Xiao,
M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen, K. Smith, M. Cottman, and
W. Cirne, “Carbon-aware computing for datacenters,” IEEE Transactions on Power
Systems, vol. 38, no. 2, pp. 1270–1280, 2023.

[3] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, 1994.

[4] TIOBE, “TIOBE index for April 2023,” 2023, accessed 16.04.2023. [Online].
Available: https://www.tiobe.com/tiobe-index/

[5] C. Zhang and D. Budgen, “A survey of experienced user perceptions about software
design patterns,” Information and Software Technology, vol. 55, no. 5, pp. 822–835,
2013.

[6] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, “Automatic design pattern de-
tection,” in Proceedings of 11th IEEE International Workshop on Program Compre-
hension. IEEE, 2003, pp. 94–103.

[7] N. Shi and R. A. Olsson, “Reverse engineering of design patterns from Java source
code,” in Proceedings of the 21st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’06). IEEE, 2006, pp. 123–134.

[8] A. Shvets, Dive Into Design Patterns. Refactoring.Guru, 2018.

[9] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Ranking programming languages by energy efficiency,” Science of Computer Pro-
gramming, vol. 205, p. 102609, 2021.

[10] D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa, “Inves-
tigating the effect of design patterns on energy consumption,” Journal of Software:
Evolution and Process, vol. 29, no. 2, p. e1851, 2017.

[11] D. C. Bree and M. Ó. Cinnéide, “The energy cost of the visitor pattern,” in Pro-
ceedings of the 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2022, pp. 317–328.

[12] D. Connolly Bree and M. Ó. Cinnéide, “Removing decorator to improve energy
efficiency,” in Proceedings of the 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2022, pp. 902–912.

[13] C. Bunse and S. Stiemer, “On the energy consumption of design patterns,”
Softwaretechnik-Trends, vol. 33, pp. 7–8, 05 2013.

[14] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and K. Win-
bladh, “Initial explorations on design pattern energy usage,” in Proceedings of the
2012 First International Workshop on Green and Sustainable Software (GREENS),
2012, pp. 55–61.

31

https://www.tiobe.com/tiobe-index/

[15] T. Parr, “ANTLR: Another tool for language recognition,” 2013, accessed
16.04.2023. [Online]. Available: https://www.antlr.org/

[16] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in Software Engineering. Springer Berlin Heidelberg, 2012.

[17] M. V. Zelkowitz and D. Wallace, “Experimental validation in software engineering,”
Information and Software Technology, vol. 39, no. 11, pp. 735–743, 1997.

[18] V. R. Basili, “The experimental paradigm in software engineering,” in Experimental
Software Engineering Issues: Critical Assessment and Future Directions. Springer
Berlin Heidelberg, 1993, pp. 1–12.

[19] “Linnaeus University DiVA portal,” accessed 16.04.2023. [Online]. Available:
https://lnu.diva-portal.org/

[20] C. Belgaid, A. d’Azémar, G. Fieni, and R. Rouvoy, “pyRAPL,” 2019, accessed
16.04.2023. [Online]. Available: https://pypi.org/project/pyRAPL/

[21] Intel, “Intel® 64 and IA-32 architectures software developer’s manual, volume 3B:
System programming guide, part 2,” Tech. Rep., Mar. 2023.

[22] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy consumption for
short code paths using RAPL,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 3, pp.
13–17, Jan. 2012.

[23] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan, “Power-
management architecture of the Intel microarchitecture code-named Sandy Bridge,”
IEEE Micro - MICRO, vol. 32, pp. 20–27, Mar. 2012.

[24] S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of dram rapl power
measurements,” ser. MEMSYS ’16. Association for Computing Machinery, 2016,
pp. 455–470.

[25] “memory-profiler 0.61.0,” 2022, accessed 16.04.2023. [Online]. Available:
https://pypi.org/project/memory-profiler/

[26] S. Flucker and R. Tozer, “Data centre energy efficiency analysis to minimize to-
tal cost of ownership,” Building Services Engineering Research and Technology,
vol. 34, no. 1, pp. 103–117, 2013.

[27] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday,
“The real climate and transformative impact of ict: A critique of estimates, trends,
and regulations,” Patterns, vol. 2, no. 9, p. 100340, 2021.

[28] V. Krey, O. Masera, G. Blanford, T. Bruckner, R. Cooke, K. Fisher-Vanden,
H. Haberl, E. Hertwich, E. Kriegler, D. Mueller, S. Paltsev, L. Price, S. Schloe-
mer, D. Uerge-Vorsatz, D. Van Vuuren, T. Zwickel, K. Blok, S. De La Rue Du Can,
G. Janssens-Maenhout, D. Van Der Mensbrugghe, A. Radebach, and J. Steckel, “An-
nex II: Metrics & methodology.” Cambridge and New York (UK and USA): Cam-
bridge University Press, 2014, pp. 1281–1328.

[29] S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle for energy
efficiency: Techniques and tools,” ACM Computing Surveys, vol. 52, no. 4, Aug.
2019.

32

https://www.antlr.org/
https://lnu.diva-portal.org/
https://pypi.org/project/pyRAPL/
https://pypi.org/project/memory-profiler/

[30] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, P. Lawthers,
and S. Das, “Harnessing voltage margins for energy efficiency in multicore cpus,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO-50 ’17. Association for Computing Machinery, 2017, pp.
503–516.

[31] G. Pinto and F. Castor, “Energy efficiency: A new concern for application software
developers,” Communications of the ACM, vol. 60, no. 12, pp. 68–75, Nov. 2017.

[32] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers know
about software energy consumption?” IEEE Software, vol. 33, no. 3, pp. 83–89,
2016.

[33] P. Bozzelli, Q. Gu, and P. Lago, “A systematic literature review of green software
metrics,” Vrije Universiteit Amsterdam, Tech. Rep., 2014.

[34] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. a. Saraiva, “Towards a green ranking
for programming languages,” in Proceedings of the 21st Brazilian Symposium on
Programming Languages, ser. SBLP ’17. Association for Computing Machinery,
2017.

[35] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. a. P. Fernandes, and J. a.
Saraiva, “Energy efficiency across programming languages: How do energy, time,
and memory relate?” in Proceedings of the 10th ACM SIGPLAN International Con-
ference on Software Language Engineering, ser. SLE 2017. Association for Com-
puting Machinery, 2017, pp. 256–267.

[36] A. C. Moises, A. Malucelli, and S. Reinehr, “Practices of energy consumption for
sustainable software engineering,” in 2018 Ninth International Green and Sustain-
able Computing Conference (IGSC), 2018, pp. 1–6.

[37] D. Feitosa, L. Cruz, R. Abreu, J. P. Fernandes, M. Couto, and J. Saraiva, Patterns
and Energy Consumption: Design, Implementation, Studies, and Stories. Springer
International Publishing, 2021, pp. 89–121.

[38] A. Litke, K. Zotos, A. Chatzigeorgiou, and G. Stephanides, “Energy consumption
analysis of design patterns,” World Academy of Science, Engineering and Technol-
ogy, International Journal of Electrical, Computer, Energetic, Electronic and Com-
munication Engineering, vol. 1, pp. 1655–1659, 2007.

[39] A. Noureddine and A. Rajan, “Optimising energy consumption of design patterns,”
ser. ICSE ’15. IEEE Press, 2015, pp. 623–626.

[40] S. Maleki, C. Fu, A. Banotra, and Z. Zong, “Understanding the impact of object ori-
ented programming and design patterns on energy efficiency,” in Proceedings of the
2017 Eighth International Green and Sustainable Computing Conference (IGSC),
2017, pp. 1–6.

[41] F. Ortin, J. Quiroga, O. Rodriguez-Prieto, and M. Garcia, “An empirical evaluation
of Lex/Yacc and ANTLR parser generation tools,” PLOS ONE, vol. 17, no. 3, pp.
1–16, 03 2022.

[42] T. Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.

33

[43] ANTLR Documentation, “Class ParseTreeWalker,” accessed 16.04.2023.
[Online]. Available: https://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/
ParseTreeWalker.html

[44] “Project github repository,” accessed 22.05.2023. [Online]. Available: https:
//github.com/alberthatesnewsletters/bachelor-project

[45] J. Frost, Regression Analysis: An Intuitive Guide for Using and Interpreting Linear
Models. Statistics By Jim Publishing, 2020.

[46] ——, Hypothesis Testing: An Intuitive Guide for Making Data Driven Decisions.
Statistics by Jim Publishing, 2020.

34

https://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/ParseTreeWalker.html
https://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/ParseTreeWalker.html
https://github.com/alberthatesnewsletters/bachelor-project
https://github.com/alberthatesnewsletters/bachelor-project

	Introduction
	Background
	Related Work
	Problem Formulation
	Motivation
	Results
	Scope/Limitation
	Target Group
	Work Organization
	Outline

	Method
	Research Project
	Research Methods
	Reliability and Validity
	Ethical Considerations

	Theoretical Background
	Software Energy Consumption
	Research Interest in Software Design Patterns
	Energy Estimation of Software Design Patterns
	Embedded Systems and C++
	Mobile Platforms
	Java and Patterns in the Open Source Software
	Further Pattern Energy Estimation Studies

	Application of Software Design Patterns for Parsing Tasks

	Research Project – Implementation
	Implementation Data and ANTLR Grammar
	General Pattern Information
	Patternless (Algorithm Sprawl)
	Listener/Observer
	Visitor
	Separating the Patterns
	Running the Experiment

	Results
	Analysis
	Memory Observations
	Runtime and Energy Consumption Observations
	Further Statistical Observations

	Discussion
	Pattern Comparison
	Compared to Related Work
	Generalizability

	Conclusions and Future Work
	Research Questions Consideration
	Future Work

	References

