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Abstract

From a security standpoint, manual code review is widely regarded as a dependable
practice, particularly in systems with heightened security needs. However, it is also
a time-consuming and laborious task that requires careful consideration. To address
this issue, this project aims to explore the feasibility of an application that would
present graphical presentations of data flow, which would simplify the manual re-
view process. Input data is an excellent starting point when searching for security
vulnerabilities in a program. For that reason, input data traversal is of significant
interest when conducting code review with respect to security. The application will
track the input data flow through function calls in the program to facilitate the task of
identifying which functions require closer examination. The development of such an
application is a significant undertaking, and therefore, the decision is made to limit
the scope of the project to a proof of concept that will function on smaller programs.
The findings indicate that the developed application possesses the capability to per-
form input data backtracking across function calls. However, it is important to note
that a functional forward tracking algorithm has not been integrated into the applica-
tion at present. Despite this limitation, the feasibility of fully realizing the project is
perceived to hold promising potential within the code review market.
Keywords: data flow, visualization, code review, security
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1 Introduction

The introductory section of this report provides an overview of the research objectives,
the problem statement, and the significance of the study. It highlights the motivation
behind the research and introduces the context and background of the topic. Additionally,
it outlines the problem formulation and structure of the report. The chapter aims to set
the stage for the subsequent chapters by establishing the relevance and importance of the
research and providing a clear roadmap for the reader.

1.1 Background

In an era characterized by increasing digitalization, the escalation of potential cyber
threats necessitates heightened security awareness and robust solutions. Consequently,
ensuring the meticulous examination of developed software prior to its deployment in
production is paramount in countering these threats. Among the crucial steps in safe-
guarding the integrity of a program, performing a comprehensive code review assumes
significance [1]. This process entails the systematic scrutiny of a program’s code to iden-
tify, eliminate, and mitigate any vulnerabilities that may compromise its security.

The topic of code review is extensive, and a software program may encompass millions
of lines of code. Conducting a code review holds significant importance for various rea-
sons. It fosters consistency in design and implementation, enhances code performance,
guarantees project quality, and ensures adherence to application requirements. The spe-
cific approach taken during code review can vary significantly depending on the purpose
of the review and the aspects being assessed. In the context of code review with a focus
on programs with high security demands, reviewers must undertake a thorough, manual
examination of the code within the program to identify any flaws that could potentially
jeopardize its security. The article authored by Katerina Goseva-Popstojanova and Andrei
Perhinschi, evaluates three contemporary commercial static analysis tools [2]. The results
of their assessment indicate that these tools are susceptible to generating false-negatives,
highlighting the importance of manual review as the most dependable practice [3]. How-
ever, these automatic tools are a great support for the code review process. Consequently,
the manual review process can be a laborious and time-consuming task. As such, there is
a desire to expedite this process where possible to save time and resources.

This project focuses on providing assistance for static code review, specifically with re-
gard to security vulnerabilities. Hence, factors other than code quality or performance are
taken into account. In accordance with the request made by Combitech, the project aims
to investigate the development of an application that can identify flows and functions in a
program that may pose potential security risks, and present these findings in an accessi-
ble manner for the reviewers. Combitech is a subsidiary of the Swedish company Saab,
and primarily operates in the realm of defense and military [4]. The company is involved
in the development of a range of products such as Jas Gripen and the digital air traffic
tower. It is a large corporation with a significant presence in Sweden and Scandinavia,
employing a substantial number of individuals.
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1.2 Related work

OWASP is a frequently used website in all matters that regard security on the internet
[5]. They are especially famous for their top ten security vulnerabilities to be aware of,
which is updated every year. In an article available on their site, input data validation
is explained, its importance, and how it can be exploited [6]. To summarize, there are
numerous types of input data, and many cases where input data validation is important. If
handled poorly, it can result in severe security vulnerabilities.

Ari Kesäniemi has written an article, which focuses on examining and contrasting manual
and automatic analysis methodologies within the domain of application security document
[3]. The content delves into a comprehensive evaluation of the merits and drawbacks as-
sociated with both approaches. Moreover, it underscores the importance of achieving a
harmonious integration of manual and automatic analysis techniques to proficiently detect
and address security vulnerabilities prevalent in software applications.

Rakan Alanazi, Gharib Gharibi, and Yugyung Lee has written a study that explores the
possibility of increasing comprehension of large call graphs [7]. Providing call graphs for
comprehension becomes difficult as the program increases in size and complexity. With
no stopping point, the graph can become too large to be visually readable. Therefore, a
way of dividing the graph into sub graphs is necessary in order to increase readability.

An academic thesis, conducted by Nico L. de Poel in 2010, explores the assessment of
Static code analysis tools and their suitability in the context of PHP web applications’
security [8]. The research investigates and evaluates the effectiveness of these tools in
addressing security concerns. The primary objective is to assess the applicability of Static
code analysis tools for enhancing the security of PHP web applications. The findings of
this study provide valuable insights into the efficacy and potential benefits of utilizing
such tools in the development and maintenance of secure PHP web applications.

David Evans and David Larochelle, has authored a paper that focuses on the topic of ’Im-
proving Security Using Extensible Lightweight Static Analysis’ [9]. The authors address
the significant challenges posed by security risks and emphasize the importance of miti-
gating vulnerabilities to either eliminate them entirely or minimize the potential damage
they can cause. In this context, the authors conduct an evaluation of a specific tool called
Splint, which employs extensible and lightweight static analysis techniques. The study
critically examines the effectiveness of Splint in enhancing security measures.

Gary McGraw has authored a paper that explores the efforts of three prominent vendors in
automating the code review process with a focus on security [10]. The paper emphasizes
the importance of automating code review as a means to enhance software security. The
three vendors discussed in the paper aim to develop tools that can automatically analyze
code for potential security vulnerabilities. By utilizing various techniques and algorithms,
these tools assist developers in identifying and addressing security issues in their code.

In an article authored by Katerina Goseva-Popstojanova and Andrei Perhinschi, the focus
is on empirical evaluation of the ability of static code analysis tools to detect security
vulnerabilities with an objective to better understand their strengths and shortcomings
[2]. The authors have conducted a comprehensive evaluation of three state-of-the-art
static code analysis tools by subjecting them to benchmarking tests using the Juliet suite.
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The results of their study indicate that none of the tools were capable of detecting all
vulnerabilities during the tests. In fact, numerous vulnerabilities were overlooked by all
three tools. It is crucial to acknowledge that this study was conducted in 2015, and since
then, significant advancements have been made in the capabilities of such tools, rendering
them more proficient today.

1.3 Problem formulation

In the context of code review from a security vulnerability perspective, while automated
tools are used as support, manual code review is necessary when considering programs
with high demands on security [2, 3, 10]. This is due to the fact that the reliability of avail-
able applications and tools cannot be completely trusted, especially when security is of
great importance. These tools are often created with the purpose of automating the whole
review process. The aforementioned paper authored by Gary McGraw, highlights three
prominent vendors in the domain who aim to automate the code review process specifi-
cally for security purposes [10]. In contrast, this project will instead attempt to realize a
prototype, which will serve as a proof of concept, that can assist manual code review. To
accomplish this, the objective is to develop an application capable of leveraging informa-
tion extracted from a code parser to identify data flow within the code. This information
will be presented in the form of a call graph, which will offer an overview of the code and
identify specific areas requiring manual code review.

The following subsections provides the project’s objectives to be addressed, with a brief
explanation of what they will entail.

1.3.1 Create a protoype

The primary objective of this research project is to develop a prototype application that
aims to identify input functions within a program and subsequently track the information
flow originating from these inputs. The ultimate goal is to visually represent this infor-
mation in the form of a call graph. The call graph generated by the application illustrates
the sequence of function calls along with the corresponding code lines that pertain to the
handling of input data.

1.3.2 Evaluation of the prototype

In order to assess the potential value of further developing the application, it is imperative
to ascertain its utility for code reviewers. To achieve this objective, a series of experi-
ments are conducted utilizing the completed prototype. These experiments are designed
to evaluate the performance of the prototype by specifically examining its key features
and assessing their efficacy in fulfilling their designated tasks. Through this evaluation
process, the experiment results will provide insights into the overall performance and
accuracy of the prototype, thus informing the decision-making process regarding the fea-
sibility of advancing its development.
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1.4 Expected Result

The development of an application capable of generating visual representations of pro-
gram code of any size and type is a highly intricate undertaking. The project timeline will
not permit the full realization of this objective. Therefore, the object of the project will
be to present a proof-of-concept demonstration using smaller-scale program code. This
approach will enable the possibility to validate the core functionalities of the application
and assess its potential for future expansion and refinement. Within this context, Fig. 1.1
exemplifies a useful and easily comprehensible graph of a small program, which would
significantly assist in the manual code review process.

Figure 1.1: Example of a graphical representation of a small program.

Fig. 1.1 illustrates the tracking of the input data function scanf() in a small program
and tracing the path of data throughout the program. Given that scanf()is a function
that captures input from the keyboard, it is a potential security vulnerability in the pro-
gram.
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The top node of the resulting tree depicts the sole function that employs scanf(),
namely enterNumber(). The node displays the function’s name, along with perti-
nent lines of code that relate to the variable associated with the scanf() function, and
the function’s return value. The left and right branches of the tree illustrate the functions
that call enterNumber(). Specifically, the branches show that enterNumber() is
used in main() and calcDouble(). Furthermore, the right branch displays another
node that represents how main() calls calcDouble(). When a function utilizes data
for a specific task without returning anything, the branch terminates.

By reviewing this tree, code reviewers can effectively track the flow of input data, its
manipulation, and the functions that employ it. This makes the manual review process
less arduous and more efficient, as reviewers can pinpoint where to focus their attention.

1.5 Motivation

This project is driven by the growing digitization of society and the ubiquitous presence
of software in various domains. Consequently, the imperative to develop secure soft-
ware has become a top priority. A significant aspect of ensuring software security lies
in conducting thorough code reviews, and any advancements in this field can be highly
advantageous. However, the code review process is inherently time-consuming, making
it essential to explore means of expediting the process without compromising security.

The primary emphasis of this project lies in the realm of input data as it represents the
prevailing vulnerability in terms of security. Several noteworthy examples of such vul-
nerabilities include injection and buffer overflow, both of which present significant risks
within a program. Further elaboration on these vulnerabilities can be found in Chapter
Two. Furthermore, the comprehension of visual representations of programs, particularly
those of significant size, can pose challenges. The graphical illustrations typically depict
function calls alone, without presenting information regarding data exchange between
functions. This information is of interest to code reviewers, who require a holistic under-
standing of a program. With respect to security vulnerability, there is information that is
not relevant in the program. Consequently, the development of an application capable of
providing crucial program information, such as input data traversal, would be immensely
beneficial to Combitech and code reviewers in general. Successful implementation of this
proof of concept could pave the way for further study and potentially offer substantial
time-saving capabilities.

1.6 Scope/Limitation

The ambit of the project has been narrowed down to serve as a proof of concept. The
examination of programs shall not be extensive. In order to restrict the ambit, the project
shall concentrate on functions that employ input data, specifically scanf(), getchar(),
getch() and gets(). Encompassing all categories of input data would constitute an
overly extensive endeavor given the time constraints of this project. The application is
only able to search C code.
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1.7 Target group

The target group is code reviewers that work in the security sector. The application is
designed for security vulnerabilities, and since this is a small area of code review, it is
rather focused in its usage and probably not useful to other code reviewers.

1.8 Outline

Chapter Two, entitled Theory, serves to present the theoretical underpinnings of the re-
search problem, wherein a review of pertinent literature and theoretical frameworks that
inform the research problem is provided. The chapter also introduces and explicates rele-
vant concepts and tools that are significant for the project.

Chapter Three, named Method, provides a detailed account of the research methodology
adopted to address the research problem. The chapter describes the research design, data
collection methods and data analysis techniques employed to achieve the research objec-
tives. Each method is elaborated upon, and its application in the project is discussed.

Chapter Four, entitled Implementation, explicates how the software was designed and im-
plemented. The chapter provides a schematic overview of the software architecture and
showcases code snippets to further explicate the code. The design and development of the
software are described, with a focus on highlighting the key features and functionalities.

Chapter Five, named Experimental Setup, Results and Analysis, details the experimental
setup and presents the results. The chapter provides comprehensive details of the ex-
perimental design, including research hypotheses and variables under investigation. The
results obtained from the experiments are presented, analyzed, and interpreted.

Chapter Six, named Discussion, focuses on the findings and compares them with what
others in the same field have accomplished. The chapter identifies the strengths and
weaknesses of the research and discusses the implications of the findings for theory and
practice.

The final chapter, Chapter Seven, entitled Conclusion, presents a conclusive summary of
all the findings in the project. The chapter considers the problem formulation and summa-
rizes the main findings of the study. It also discusses the relevance of the findings for the
industry and what further work should be done. The chapter highlights the contributions
of the study and its limitations.
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2 Theory

The following pages will provide a brief explanation of different concepts and tools be-
ing used in this project. It will provide a broad overview with the relevant information
concerning each concept or tool.

2.1 Static code review

Static code review, also known as static code analysis or source code analysis, is the
process of analyzing computer software without executing it [11]. It involves examining
the code structure to detect bad coding style, potential vulnerabilities, and security flaws
in a software’s source code. This process is a common method for detecting bugs and
issues in the code before it is executed. Static code analysis can be done using automated
tools that examine the code for violations of rules and conventions that affect program
execution and non-functional quality aspects of a software system such as complexity and
maintainability. The process could involve transforming the code into an Abstract Syntax
Tree (AST) and applying analysis rules to find potential issues. Static code analysis is
generally good at finding coding issues such as programming errors, coding standard
violations, undefined values, syntax violations, and security vulnerabilities.

2.2 Injection

An injection flaw represents a vulnerability that enables an assailant to transmit malev-
olent code through an application to an alternate system [12]. This encompasses the
compromise of both backend systems and other clients connected to the susceptible ap-
plication. Numerous web applications rely on operating system functionalities, external
programs, and the processing of data queries submitted by users. When a web application
incorporates information from an HTTP request as part of an external request, the possi-
bility arises for an attacker to insert specialized (meta) characters, malicious commands/-
code, or command modifiers into the message. These techniques empower an attacker to
acquire, manipulate, or annihilate the contents of a database, compromise backend sys-
tems, or launch attacks against application users. Successful injection attacks possess the
potential to entirely compromise or destroy a system.

The effects of these attacks include:

• Allowing an attacker to execute operating system calls on a target machine.

• Allowing an attacker to compromise backend data stores.

• Allowing an attacker to compromise or hijack sessions of other users.

• Allowing an attacker to force actions on behalf of other users or services.

2.3 Buffer overflow

Buffer overflow errors are a class of vulnerabilities wherein memory fragments within
a process are overwritten, resulting in unintended modifications either intentionally or
unintentionally [13]. This form of error typically manifests through the overwriting of
critical registers such as the Instruction Pointer (IP), Base Pointer (BP), and other asso-
ciated registers. The consequences of such overwriting are the generation of exceptions,
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segmentation faults, and various other types of errors. These errors often lead to the abrupt
termination of the application’s execution in an unpredictable manner. It is important to
note that buffer overflow errors specifically arise when manipulating buffers of character
(char) type.

2.4 Abstract Syntax Tree (AST)

An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure
of source code written in a programming language [14]. It represents the structure of the
code without including every detail of how it is executed. The AST for C code is built
by parsing the code and then creating a tree structure that represents its syntactic struc-
ture. The nodes of the tree represent different elements of the code such as expressions,
statements, and declarations. The edges between nodes represent how these elements are
related to each other in the code.

The AST provides a high-level representation of the program that can be used for various
purposes such as code analysis, optimization, and transformation. For example, compilers
use the AST to generate machine code, while program analysis tools use the AST to
extract information about the program’s structure and behavior. In summary, the AST is
a crucial data structure in the compilation process of C programs, providing a structured
representation of the program’s syntax that can be used for various purposes. Fig. 2.1
illustrates a graphical representation of the Abstract Syntax Tree.
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Figure 2.1: A graphical representation of an Abstract Syntax Tree. Image by Dcoetzee,
licensed under CC0, via Wikimedia Commons [15].
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2.5 Pycparser, library for parsing C code in Python

Pycparser is a Python module that provides a complete parser for the C language [16]. It is
used to analyze C source code and extract information about the code’s structure, such as
the types of variables, the names of functions, and the structure of control flow statements.

Pycparser can parse C code represented as a string or read directly from a C file. For
the file to be read without being transformed to a string first, Pycparser interacts with the
C preprocessor. The C preprocessor handles preprocessing directives like #include
and #define, removes comments, and performs other minor tasks that prepare the C
code for compilation. If the user choose to just have the code for the C file as a string,
preprocessing directives like #include, #define and comments needs to be removed
manually before parsing the code. The most basic use case is to parse a C file, create an
Abstract Syntax Tree (AST) and traverse it. The AST generated by pycparser can be used
for a variety of purposes, such as code analysis, transformation, optimization, or gener-
ation. The library is widely used in various domains, including software testing, reverse
engineering, and security analysis. It is an open-source project and is actively maintained
by a community of contributors.

Fig. 2.2 illustrates a textual representation of a function definition in an abstract syntax
tree (AST) generated by Pycpaser.

1 FileAST: (at None)
2 FuncDef: (at test:2:9)
3 Decl: add_numbers, [], [], [], [] (at test:2:9)
4 FuncDecl: (at test:2:9)
5 ParamList: (at test:2:25)
6 Decl: a, [], [], [], [] (at test:2:25)
7 TypeDecl: a, [], None (at test:2:25)
8 IdentifierType: [’int’] (at test:2:21)
9 Decl: b, [], [], [], [] (at test:2:32)

10 TypeDecl: b, [], None (at test:2:32)
11 IdentifierType: [’int’] (at test:2:28)
12 TypeDecl: add_numbers, [], None (at test:2:9)
13 IdentifierType: [’int’] (at test:2:5)
14 Compound: (at test:3:1)
15 Return: (at test:4:9)
16 BinaryOp: + (at test:4:16)
17 ID: a (at test:4:16)
18 ID: b (at test:4:20)

Figure 2.2: A part of an Abstract Syntax Tree generated by Pycpaser.
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2.6 DOT, language for describing graphs in Graphviz

The DOT language is a simple, text-based language used to describe graphs and networks
[17]. It was developed as part of the Graphviz project, which is an open-source graph
visualization software package. Each DOT file is started with digraph G {}. Between
the brackets, the nodes and edges are written. To write an edge, the format is as follows:
node1 -> node2. Fig. 2.3 displays a graph description. It contains a small call graph of
two functions, where enterNumber has an edge towards main. This can be visualized with
a tool called Graphviz, which is explained in the next subsection.

1 digraph G {
2 enterNumber [label="enterNumber
3 int input;
4 scanf(’%d’, &input);
5 return input;
6 "]
7

8 main [label="main
9 int number;

10 number = enterNumber();
11 printf(’You entered: %d’, number)
12 "]
13

14 enterNumber -> main
15 }

Figure 2.3: Example of a graph description written in DOT.
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2.7 Graphviz library for visualising data

Graphviz is an open-source software tool that offers a variety of libraries and tools for
generating diagrams and visualizing data structures [18]. It provides support for creating
different types of diagrams, such as flowcharts, trees, and directed and undirected graphs.
To generate an image in various formats, including PNG, SVG, and PDF, the software
uses a simple text-based language referred to as DOT, to specify the structure of the graph
or diagram. The appearance of the graph can be customized by specifying various at-
tributes, including colors, fonts, and shapes. The software’s automatic layout capabilities
enable the visualization of complex data structures in an efficient and user-friendly man-
ner.

Graphviz has numerous applications in software engineering, data science, and network
analysis, and can be used for visualizing code dependencies, project timelines, decision
trees, social networks, and more. Overall, Graphviz is a powerful and valuable resource
for a wide range of applications, with its simple text-based syntax and automatic layout
capabilities. Fig. 2.4 shows a visual representation of the graph description in Fig. 2.3.

enterNumber
   int input;

   scanf('%d', &input);
   return input;

main
   int number;

   number = enterNumber();
   printf('You entered: %d', number)

Figure 2.4: Graph produced with Graphviz.
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2.8 Static Backtracking

In the realm of program analysis, static backtracking pertains to the process of scruti-
nizing a program’s behavior and tracing its execution path, all while abstaining from the
actual execution of the program itself. Rather than dynamically running the program,
static backtracking relies on the utilization of static analysis techniques to investigate the
program’s source code or intermediate representation.

Static backtracking encompasses the examination of the program’s control flow, data de-
pendencies, and variable values without resorting to program execution. It delves into
different paths and execution branches by thoroughly analyzing the program’s structural
elements, including conditionals, loops, and function invocations. Throughout the course
of static backtracking, diverse analysis techniques are employed to monitor the flow of
data and control within the program. Such techniques encompass symbolic execution,
abstract interpretation, data-flow analysis, and constraint solving. By applying these tech-
niques, static backtracking is capable of unveiling potential execution paths, identifying
dead code, detecting unreachable states, and inferring plausible values of variables at var-
ious program junctures.

The methodology employed for backward tracking in this project can be outlined as fol-
lows: the algorithm is implemented recursively, whereby it identifies functions that utilize
a specific input data function, such as scanf(), and subsequently traces the sequence
of functions invoking this particular function. This process extends further to include
subsequent functions that call the previously identified functions, forming an iterative
exploration of the complete function call tree. The algorithm is presented in a form of
pseudocode in Fig. 2.5.

function searchFunctions(inputFunction):
foundFunctions← [];
examineAllFunctions();
for each function in allFunctions do

if function calls inputFunction then
foundFunctions.append(function);

end
end
for each foundFunction in foundFunctions do

searchFunctions (foundFunction);
end

end

Figure 2.5: Back tracking algorithm.
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2.9 Static Forwardtracking

Static forwardtracking, within the realm of program analysis, pertains to the systematic
examination of a program’s behavior and the anticipation of its execution path. This ap-
proach involves commencing from the program’s initial state and progressing along the
flow of control in a forward manner. Static forwardtracking concentrates on scrutinizing
the program’s forthcoming states and projected outcomes, all while abstaining from ac-
tual program execution.

The methodology employed for forward tracking within the framework of this project can
be outlined as follows: Firstly, an examination of the program’s functions is conducted to
locate instances of input functions, paying particular attention to pertinent code sections.
Subsequently, the variables associated with the input functions and their respective values
are extracted. Next, an analysis is performed to determine whether these variables are
utilized as arguments in other function calls. In the event that a variable is indeed passed to
another function, an exploration is initiated within that function to trace the progression of
the transmitted variable. Within this new function, the relevant code sections and variables
of interest are identified, and the process is repeated to ascertain if the variable is further
transmitted to subsequent functions. This iterative procedure is continued until a point
is reached where the variable ceases to be passed along any further. The algorithm is
presented in a form of pseudocode in Fig. 2.6.

function forwardTracking(inputFunction):
examineFunctions();
locateInputFunctionInstances(inputFunction);
extractVariablesAndValues();
for each variable in inputFunction.variables do

exploreVariableProgression (variable);
end

end
function exploreVariableProgression(variable):

relevantCodeSections← identifyRelevantCodeSections();
for each functionCall in relevantCodeSections do

if variable is passed as an argument to functionCall then
exploreFunction (functionCall);

end
end

end
function exploreFunction(function):

relevantCodeSections← identifyRelevantCodeSections();
for each variable in function.variables do

if variable is passed as an argument to anotherFunction then
exploreVariableProgression (variable);

end
end
if no more variables are passed to subsequent functions then

return
end
exploreFunction (nextFunction);

end

Figure 2.6: Forward track algorithm.
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2.10 False-negatives, False-positives

False-negative and false-positive are concepts commonly used in the context of testing,
evaluation, and classification [19]. These terms are crucial in understanding the accuracy
and reliability of tests, evaluations, or classification systems. Minimizing both false-
negatives and false-positives is important to ensure effective decision-making and accu-
rate assessments.

A false-negative occurs when a test or evaluation incorrectly indicates a negative result
for a condition or attribute that is actually present. In other words, it is a failure to detect
or identify something that should have been detected. False-negatives can lead to missed
opportunities, overlooked risks, or incorrect conclusions. For example, in medical testing,
a false-negative result would suggest that a person does not have a particular disease or
condition when they actually do. Conversely, a false-positive happens when a test or
evaluation incorrectly indicates a positive result for a condition or attribute that is not
actually present. It is a false alarm or an erroneous identification of something that should
not have been detected. False-positives can lead to unnecessary actions, wasted resources,
or incorrect assumptions. For instance, in security screening at an airport, a false-positive
result would indicate the presence of a prohibited item when there is none.

2.11 Fortify, an automated code review tool

Fortify, developed by Micro Focus, is an esteemed security tool widely employed for
static code analysis purposes, specifically targeting the identification of security vulnera-
bilities in software code [20]. Esteemed for its efficacy, Fortify offers the Static Code Ana-
lyzer feature, which automatically scans source code and delivers comprehensive analysis
data, enabling developers to promptly identify and address violations. Facilitating swift
remediation, Fortify strategically prioritizes the identified violations.

Furthermore, Fortify’s offline functionality allows users to conveniently install the tool on
their local machines, thereby enabling offline code analysis. Execution via the command
line can be accomplished utilizing the "sourceanalyzer" command. Notably, Fortify also
encompasses an IDE plugin for Visual Studio 2017, delivering real-time security analysis
while developers engage in code composition. Fortify further extends its utility by of-
fering integration capabilities with other tools, including Software Security Center, Audit
Workbench, and WebInspect. With its robust capabilities, Fortify emerges as a formidable
security tool, equipping developers with the means to effectively identify and remediate
security vulnerabilities in their code.
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3 Method

This chapter presents a detailed account of the sequential progression of the project, along
with an explanation of the varied methodologies utilized and their implementation to-
wards achieving the project’s objectives.

3.1 Research Project

At the beginning of the project, no prior knowledge existed regarding the relevant tools
and libraries for the subject at hand. For this reason, a preliminary literature search is
being conducted to identify the tools relevant to the project, both for parsing code and
presenting graphs, as well as what others have already done in the field.

In order to evaluate the applications performance, controlled experiments will be con-
ducted using the implemented application on several different test programs. Key features
will be selected, which will serve as a measurement of how well it is performing.

3.2 Method

The following subsections will provide a description of the methodologies used, and how
they are applied to the project. These will involve a literature study, and controlled exper-
iments.

3.2.1 Literature study

A literature study involves an initial exploration of scholarly sources, such as research
articles, books, conference proceedings, and relevant publications, with the aim of ac-
quiring a comprehensive understanding of existing knowledge and identifying research
gaps within a specific field of study. This endeavor serves as a crucial starting point for
any academic or research project, as it facilitates the identification of pertinent literature,
establishes contextual background, and refines research questions or objectives. Through-
out a preliminary literature search, researchers employ a variety of search strategies and
techniques to locate and access relevant publications. The primary purpose of conducting
a preliminary literature search is to obtain an overview of existing literature, ascertain key
themes, theories, methodologies, and findings associated with the research topic. It is im-
portant to note that a preliminary literature search differs from a comprehensive literature
review, as the former is not exhaustive in nature.

For the purpose of conducting the preliminary literature search in this particular project,
both Google Scholar and regular Google search were utilized. Google Scholar was em-
ployed to identify related work and gain insights into previous endeavors within the field.
The search strings utilized on Google Scholar included "code review security thesis" and
"code review security." The search yielded a substantial number of results, which are
presented in Table 3.1. On regular Google search, the search strings employed encom-
passed "c parser," "code to callgraph," and "code review open source tools." The number
of results obtained from these searches is presented in Table 3.2.
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Table 3.1: Search results on google scholar.
Date Search string Results Search engine

2023-04 code review security thesis 1 470 000 Google scholar
2023-04 code review security 3 270 000 Google scholar

Table 3.2: Search results on google search.
Date Search string Results Search engine

2023-04 c parser 256 000 000 Google search
2023-04 code to callgraph 480 000 Google search
2023-04 code review open source tools 681 000 000 Google search

3.2.2 Controlled experiments

Controlled experiments are a scientific methodology employed for the purpose of hy-
pothesis testing and informed decision-making [21]. They involve the selection of one
variable, from among several, to serve as the independent variable, while all other vari-
ables are carefully controlled or held constant to prevent their influence on the indepen-
dent variable. By adopting this approach, it becomes easier to ascertain the effect of the
independent variable on the system under investigation. This experimental technique is
widely employed across numerous scientific disciplines, including but not limited to bi-
ology, psychology, physics, and engineering. Its significance lies in its ability to establish
a cause-and-effect relationship between variables, thereby enhancing the accuracy of re-
search conclusions.

Through systematic variation of test programs, the application will serve as a dependant
variable and the test programs are independent variables. The output of the application
will present how well it is performing with regard to a number of key features.

• Ability to find all functions in the test program.

• Ability to find all important lines of code in the test program.

• Ability to find all input data functions in the test program.

• Ability to track the flow of data regarding each input function in the test program.
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3.3 Reliability and Validity

Reliability and validity are two important concepts in research methodology, which are
used to evaluate the quality of data and the extent to which it is accurate, consistent, and
trustworthy. Reliability refers to the consistency and stability of data over time and across
different observers, instruments, or settings. In other words, it measures the degree to
which the same results can be obtained repeatedly under the same conditions. Validity, on
the other hand, refers to the extent to which a research study measures what it is intended
to measure. It assesses the accuracy and appropriateness of the research design, methods,
and instruments used to collect and analyze data.

The reliability of the project cannot be precisely determined due to various factors that
preclude an unambiguous implementation. While it is possible for another person to se-
lect the same tools and employ them in the same manner, numerous code parsing- and
visualization tools are available, and their use may yield diverse end results. Such diver-
gence is primarily attributed to differences in the code written to execute these tools.

In the initial stages of the project, it was determined that a customized code parser would
be developed instead of utilizing an existing one. This decision was driven by the con-
straints of a tight timeline, which hindered the acquisition of comprehensive knowledge
regarding available code parsers. As a result, it is likely that others would not replicate
the exact implementation approach due to these unique circumstances. Nonetheless, the
key aspects of the project that are pertinent to code reviewers will remain unchanged, and
another implementation will likely provide the same information. However, the specific
tools used and how they are applied may vary, resulting in marginally different outcomes.

In conclusion, the project’s cornerstone comprises of a parser and a graphical presentation
tool. The employment of the DOT language and Graphviz to produce graphs is a probable
choice. Although the program’s logic and tool utilization may differ, the final outcome
should be comparable since the problem formulation stipulates the graph’s appearance. It
is crucial to emphasize that the project is a proof of concept and is limited in its appli-
cation scope. Specifically, it is applicable solely to small programs that are not intricate
and encompass a maximum of 250 lines of code. Furthermore, the project concentrates
on tracking input data; however, it does not encompass all the methods available for ob-
taining user input in C. To validate the project, thorough testing is carried out on multiple
small programs written in C code that have a predetermined anticipated graph. The pre-
cision of the result is monitored throughout the testing process. However, it is crucial to
acknowledge that the project serves solely as a proof of concept and is not feasible for
large-scale programs. Therefore, its validity is restricted to a narrow scope of input data
and cannot not be used in larger and more complex programs.

3.4 Ethical considerations

This project does not encompass any ethical considerations as it does not involve any
research directly involving individuals, nor does it involve the handling of sensitive per-
sonal information that may pertain to individuals’ confidentiality or pose potential harm.
Furthermore, all results generated in the project are presented in their accurate form and
have not undergone any modifications.
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4 Implementation

The project encompasses an implementation comprising a software program that under-
takes the parsing of code, partitioning it into distinct functions, and subsequently scan-
ning these functions for function calls and critical lines of code. Ultimately, the program
presents the obtained information in the form of a call graph. In order to determine the
intended outcome of the application, a process of collaborative decision-making is un-
dertaken with code reviewers at Combitech. Within these discussions, a consensus was
reached regarding a preferred exemplar output, as illustrated in Fig. 1.1.

The software program can be segmented into three main components, each of which
is composed of various subcomponents. Initially, all functions are extracted from the
C file. Within this phase, a dictionary is constructed, containing code lines alongside
their corresponding row numbers. Recursive_function_call_backtrack is
utilizing the backtracking algorithm to track all functions commencing from a desig-
nated starting point, such as scanf. This process is complemented by the utilization
of code_lines_search to extract pertinent lines of code from each function. Fig.
4.1 provides a simplified overview of the program’s structure.

get_functions(file_path)
   Divide all functions in the file and save them as separate functions.

   Save each row with its corresponding position in the program.

recursive_function_call_backtrack(nodes)
   Recursively track all functions starting from an input and track backwards.

code_lines_search(function, var)
   Extract important lines of code.

Run recursively until done.

Display graph.

Figure 4.1: Simplified overview of the program.
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The application has been developed employing an exploratory programming approach.
Following the formulation of a set of requirements shown in Table 4.1, a sequential imple-
mentation approach was adopted. Among these requirements, certain ones posed greater
challenges, with particular emphasis on those necessitating recursion algorithms. Notably,
the backtracking and code line search algorithms fell into this category. An endeavor was
made to devise a forward tracking algorithm, which would have constituted the most
formidable challenge. Regrettably, due to project time constraints, the implementation of
this algorithm could not be realized. However, its implementation is certainly feasible.

Table 4.1: Requirements.
R1 Separate all functions in the program and save them as strings.
R2 Identify function calls inside functions.
R3 Find variables that use input data.
R4 Store all lines of code that are relevant to the input data variable(s).
R5 Follow the function calls that use the data.
R6 Present the flow as a call-graph that is similar to Fig. 1.1.

The project began by examining available tools for code parsing and graph visualization,
with the realization that utilizing an existing code parser would require a comprehensive
understanding of its inner workings. Consequently, the decision was made to develop a
custom method for parsing C code, as it was deemed more practical for the specific re-
quirements of the project. This made python a logical choice of programming language
for the application, due to its superior text processing capabilities. To streamline the im-
plementation process, individual requirements were tackled and tested in isolation. This
approach facilitated task delegation, with one team member focusing on backtracking and
another on code line searching, both of which presented notable challenges due to their
recursive algorithmic nature.

In order to implement the recursion algorithms, an understanding of the available informa-
tion during each iteration and its utilization for graph creation was imperative. Time and
effort was dedicated to conceptualizing and strategizing these processes, which facilitated
a clear vision and enabled a systematic step-by-step implementation. Once these com-
ponents were successfully implemented, minor adjustments were made to facilitate their
integration. The final phase involved leveraging the accumulated information to generate
a graph. To achieve this, proficiency was attained in the DOT language and Graphviz.
The final step was enabling the automation of the graph generation process.

In the following sections the functions of the application will be explained, some in detail
while others are small and self explanatory.

4.1 Extract and store all functions

The purpose of the function get_functions(file_path), is to open a C file speci-
fied by the provided path argument and extract the functions within it, while also recording
the line numbers associated with each code line. This is necessary for displaying the line
numbers in the final output. The function returns a list of functions and a dictionary that
maps each function to its corresponding code lines, and their line numbers.
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4.2 Recursively backtrack function calls

Fig. 4.2 illustrates the recursive backtrack function, which operates iteratively until all
input data functions and their data traversal have been backtracked.

1 def recursive_function_call_backtrack(nodes):
2 subnodes = []
3

4 for functionName in nodes:
5 subnodes = function_call_search(functionName)
6 add_nodes(functionName, subnodes)
7 recursive_function_call_backtrack(subnodes)

Figure 4.2: Recursive Backtrack Search of Function Calls.

An initial list of nodes is created, which includes four specific input functions: scanf,
getchar, getch, and gets. To commence the backtracking algorithm, the function
is invoked with the argument nodes. Subsequently, the function initiates the search pro-
cess by iteratively traversing the nodes list and examining each function for any calls
to the corresponding node. In the event that such calls are discovered, they are appended
to the list of nodes and serve as subnodes for the subsequent iteration. Conversely, if no
calls are found, the program proceeds to the next iteration.

During the first iteration, the function_call_search method is invoked, returning
a fresh list of nodes that have invoked scanf. Then, the add_nodes function is called,
which employs the subnodes to collect significant code lines and write the collected infor-
mation to the DOT file. In the first iteration, the functionName argument corresponds
to scanf. In the resulting DOT file, this function will serve as the top node, while the
subnodes will represent the originating points of the arrows. Subsequently, the subnodes
are passed as arguments to recursive_function_call_backtrack, and the en-
tire process is repeated for each subnode.
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4.3 Search for function calls

Upon program initialization, the C file is read, and all the functions contained within are
extracted, these are stored in a global functions list. To identify functions that invoke
a particular function, the functions list is iterated, and a check is performed to deter-
mine if the specified functionName is present. If the functionName is found within
a function, and the function name is not identical to functionName, the function is in-
cluded in the list of returned functions. Fig. 4.3 illustrates the function_call_search
function.

1 def function_call_search(functionName):
2 global functions
3 newFunctions = []
4 for function in functions:
5 if f’{functionName}(’ in function and get_function_name(

function) != functionName:
6 newFunctions.append(get_function_name(function))
7 return newFunctions

Figure 4.3: Function to search for function calls.

4.4 Add nodes to graph

Fig. 4.4 illustrates the add_nodes function. This function performs an iteration over the
subnodes, each referred to as caller and representing a function name. Subsequently,
the function get_function_by_name is invoked to retrieve the code lines associ-
ated with the caller function. The call variable is then prepared for transmission
to the create_node function. In the context of the DOT language, this variable is a
string used to establish a graphical connection between two functions. Following this, the
function code_line_search is called to extract code lines from the caller func-
tion that are relevant to the specified functionName (in the initial iteration, scanf is
used as the functionName). The extracted code lines are stored in the global variable
tmp_code_lines which must be sorted to ensure their proper sequence in the result-
ing graph. Finally, the function create_node is invoked, responsible for writing the
node to the DOT file.
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1 def add_nodes(functionName, subnodes):
2 global tmp_code_lines
3 code_lines = []
4 for caller in subnodes:
5 function = get_function_by_name(caller)
6 call = f’{functionName} -> {caller}’
7 code_lines_search(function, f’{functionName}(’)
8 for i in function:
9 if i in tmp_code_lines:

10 code_lines.append(i)
11 create_node(caller, code_lines, call)
12 code_lines.clear()
13 tmp_code_lines.clear()

Figure 4.4: Function to add nodes.

4.5 Create a node

The purpose of this function is to process the information gathered in the add_nodes
function so that it can be appropriately written to the DOT file. The function accepts sev-
eral arguments, including the name of the new node, important code lines, and the call
string generated in the add_nodes function. These inputs are manipulated within the
function to ensure they are ready for writing to the DOT file. As part of the processing,
each call is stored in a global list. This list is necessary because the DOT language does
not permit multiple functions with the same name to be written. In cases where there
are functions with the same name, a number is appended to the function name to dif-
ferentiate them. Once the node text is prepared, it is then passed as an argument to the
write_to_dot_file function for further handling and writing to the DOT file.

4.6 Write to DOT file

The purpose of this function is to write the information about a node to the "graph.dot"
file. It begins by opening the "graph.dot" file and proceeds to write the node_text to
it. This variable is passed as an argument as the function is invoked. Additionally, the
function includes a check to determine if the code lines mentioned in the node_text
already exist in the file. This situation may arise when a function is called by multiple
functions. If the code lines are already present in the file, it indicates that the node has
been previously written, and as a result, the function omits writing the node to the DOT
file to avoid duplication.

4.7 Get a function by name

The purpose of this function is to iterate through the global list of functions and locate the
desired function based on its name, using the assistance of the get_function_name
function. Once the correct function is found, the function retrieves and returns the code
lines associated with that particular function, identified by the name functionName.

4.8 Get a function name

This function utilizes the regular expression library in Python. It employs a predefined
pattern to search the code lines of the function parameter. If a match is found, the
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name of the function is returned as a string. For example, if the function definition line
follows the format: int add_numbers(int num1, int num2) {, the function
will return the string add_numbers, which corresponds to the name of the function.

4.9 Extract variable names

This function serves the purpose of verifying the feasibility of extracting a variable from
a given line of code. The corresponding code is depicted in Fig. 4.5. The function
get_variable accepts a code line as its input argument. Initially, the line is examined
for the presence of ’scanf(’. If ’scanf(’ is detected within the line, the variable is ex-
tracted through a series of operations. This entails eliminating all spaces and the symbol
’&’ by replacing them with an empty string, removing the closing parenthesis followed by
a semicolon (’);’), and subsequently splitting the remaining string at each occurrence of
a comma (,). Consequently, a scanf statement resembling scanf("%d",&input);
would ultimately result in a list containing ["%d", input]. The first element of this
list is then discarded, leaving only the variable behind. In the event that ’gets(’ is
found within the line, an alternative splitting mechanism is employed to extract the vari-
able. Subsequently, an examination is conducted to identify the presence of ’getchar(’,
’getch(’, or ’=’ in the line. This analysis is performed using a function named split_line,
which is called upon to execute the necessary splitting operation for variable extraction.

If none of the aforementioned patterns are identified within a given code line, the function
returns None, signifying the absence of a valid variable extraction.

1 def get_variable(line):
2 variables_list = []
3 if ’scanf(’ in line:
4 variables = line.replace(’ ’, ’’).replace(’&’, ’’).strip

(’);’).split(’,’)
5 variables.pop(0)
6 variables_list.extend(variables)
7 elif ’gets(’ in line:
8 variable = line.replace(’ ’, ’’).split(’(’)[1].split(’)’

)[0]
9 variables_list.append(variable)

10 elif ’getchar(’ in line or ’getch(’ in line or ’=’ in line:
11 variable = line.split("=")[0].strip()
12 if ’ ’ in variable:
13 variable = variable.split(’ ’)[1]
14 variables_list.append(variable)
15 else:
16 variables_list.append(variable)
17 else:
18 return None
19 return variables_list

Figure 4.5: Function to extract variables.
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4.10 Find variables containing input data

This function is designed to systematically examine each line within a given function,
aiming to extract variables using the assistance of the get_variable function. Ini-
tially, an empty list is initialized, which will subsequently serve as a repository for the
identified variables. Subsequently, each line in the function is scrutinized for a specific
keyword. If the designated keyword is detected within a line, the get_variable func-
tion is invoked to extract the variable present in that line. A subsequent verification pro-
cess is conducted to ensure the accurate extraction of the variable. This involves checking
if the extracted variable is not None. In the event that a valid variable is obtained, it is
appended to the list that was created earlier. Once all lines have been inspected, the re-
sulting list of variables is returned. The code exemplifying this functionality can be found
in Fig. 4.6.

1 def find_variable(function, search_word):
2 variable_list = []
3 for line in function:
4 if search_word in line:
5 var = get_variable(line)
6 if var is not None:
7 for vv in var:
8 if vv is not None:
9 variable_list.append(vv)

10 return variable_list

Figure 4.6: Function to find variables containing input data.
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4.11 Recursive code line search

This recursive function is implemented with the objective of extracting significant code
lines, leveraging the assistance of other functions. The code snippet for this function is
presented in Fig. 4.7. The function accepts two arguments: "function" and "var." The
"function" parameter represents the target function within which the search is conducted,
while "var" denotes the search term.

Initially, the function invokes find_variable(function, var) to extract vari-
ables that interact with the search term. The obtained variables are stored in the variable
"variables." Subsequently, a loop iterates through these variables, and the important code
lines containing these variables are extracted. The extracted lines are also subjected to a
loop. The primary aim is to identify lines containing the "=" symbol. Since these lines
involve variables related to the search term, the presence of "=" signifies the assignment
of another variable to the previously discovered variable. In such instances, the additional
variable is extracted by invoking the get_variable function. Following this extrac-
tion, a check is performed to ensure that the newly found variable is distinct from the
previous variable and is not identical to the search term. If these conditions are met, a
recursive call is made, initiating a new search using the newly discovered variable as the
search term.

By employing this recursive approach, all significant code lines are extracted. The uti-
lization of recursion facilitates the continuation of the search process whenever a new
variable is discovered, thereby ensuring the comprehensive identification of all relevant
lines.

1 def code_lines_search(function, var):
2 variables = find_variable(function, var)
3 for variable in variables:
4 lines = add_code_lines(function, variable)
5 for line in lines:
6 if ’=’ in line:
7 newVar = get_variable(line)
8 for vv in newVar:
9 if vv != variable and var != variable:

10 code_lines_search(function, vv)

Figure 4.7: Recursive code line search function.
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5 Experimental Setup, Results and Analysis

This chapter aims to present the outcomes derived from a series of experiments conducted
on a set of fifteen distinct test programs written in the C programming language. These
are available in a GitHub repository [22]. Each of these programs incorporates at least one
of the following input methods: scanf, gets, getch and getchar. Program 1, 2, 3
and 4 was developed specifically for this research, and are written by the authors of this
report. Program 9 is obtained from a github repository [23] and program 10 is obtained
from an educational programming website [24]. Program 5, 6, 7, 8, 11, 12, 13, 14 and 15
were generated using an AI language model based on the GPT-3.5 architecture provided
by OpenAI [25].

To generate these programs from the AI, the queries were of this type:

• Design a program written in c, which encompasses at least 10 functions, makes use
of at least one of the following input data functions: scanf, getchar, getch or gets,
and where some functions are calling other functions.

• Write a simple implementation of a hangman game, written in c.

5.1 Experimental setup

Table 5.1 provides an overview of the computer specifications utilized for the experiments.
The test programs employed in the study are characterized by their relatively small size,
ranging from 32 to 258 lines of code. Detailed descriptions and implementations of all test
programs can be found in the aforementioned GitHub repository, while the corresponding
graphs are included in the appendix A section.

Table 5.1: Experimental setup

OS Windows 11 64 bit
CPU Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
RAM 16 Gb

The experiments were conducted using the developed application, wherein each test pro-
gram was executed individually. In order to assess the performance of the application,
four key features have been selected.

• Ability to identify functions.

• Ability to identify input data functions.

• Ability to identify relevant code lines.

• Ability to identify the flow of input data.

Tables were constructed to capture various metrics. These metrics encompassed the man-
ual enumeration of relevant code lines, functions, and input functions within each test
program, as well as an analysis of the expected flow. Subsequently, a comparison was
made between the anticipated output and the actual output generated by the application.
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5.2 Results and Analysis

The findings of the study will be presented through the utilization of three distinct tables.
Specifically, these tables represent 3 out of the 4 key features that determine the perfor-
mance of the application. The fourth feature regards the flow of input data within each
program. To evaluate the flow a manual review of each program is made to determine
the actual flow of the program, and is then compared to the output of the application. A
few of these were selected to be displayed in this chapter, but for the interested reader, all
flows can be manually followed by looking at the code corresponding to each graph that
are present in the appendix section.

5.2.1 Identified functions

Table 5.2 provides an evaluation of the application’s performance in effectively identi-
fying all functions within each respective test program. The ability to accurately detect
functions is a crucial aspect of the application, as each function may potentially encom-
pass an input data function. In the context of the experiments conducted using small-scale
test programs, the application demonstrates a commendable accuracy rate of 100 % in
identifying all functions. It is important to note, however, that this accuracy should be
interpreted within the context of the application’s proof-of-concept nature and the limited
size of the test programs used.

While this level of accuracy is satisfactory for the purposes of this project, it should be
acknowledged that the diverse range of function writing styles in C has not been exhaus-
tively tested. Hence, the accuracy achieved may be misleading. Nevertheless, given the
objectives of the project, the observed performance of the application is deemed sufficient
and satisfactory for a proof-of-concept implementation.

Table 5.2: Functions found.
Program Number of functions Found functions Accuracy

1 3 3 100 %
2 3 3 100 %
3 5 5 100 %
4 3 3 100 %
5 11 11 100 %
6 19 19 100 %
7 22 22 100 %
8 20 20 100 %
9 11 11 100 %
10 5 5 100 %
11 4 4 100 %
12 10 10 100 %
13 12 12 100 %
14 6 6 100 %
15 5 5 100 %

Average 100 %
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5.2.2 Identifiable input data functions

Table 5.3 illustrates the effectiveness of the application in identifying all input data func-
tions within each test program. This aspect holds paramount importance as the application
aims to trace the data flow within these functions. However, it is crucial to note that the
accuracy rate of 100 % achieved in the small-scale test programs may not be indicative
of the application’s performance in more complex scenarios. It is pertinent to emphasize
that the mere identification of input data functions is insufficient; the primary objective
of the project lies in accurately tracking the data flow originating from these functions
throughout the program. The extent to which the application achieves this objective can
be best assessed by examining the resulting graph for each test program.

Table 5.3: Input functions.
Program input functions found input functions Accuracy

1 2 2 100 %
2 3 3 100 %
3 2 2 100 %
4 5 5 100 %
5 1 1 100 %
6 1 1 100 %
7 10 10 100 %
8 2 2 100 %
9 1 1 100 %

10 1 1 100 %
11 3 3 100 %
12 3 3 100 %
13 3 3 100 %
14 3 3 100 %
15 1 1 100 %

Average 100 %
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5.2.3 Identifiable relevant code lines

Table 5.4 illustrates the comparison between the manually counted relevant code lines
within a program and the corresponding code lines detected by the developed application.
Additionally, it provides information on the number of correctly identified code lines. The
accuracy metric is computed by dividing the count of correct lines by the count of relevant
code lines.

These are the features that determine the relevance of a code line.

• Input relevance: A code line is considered relevant if it involves an input. Any code
line that directly handles or processes the input is relevant.

• Variable assignment relevance: If a variable is assigned the value of an input, then
each subsequent code line that refers to this variable is considered relevant. This
includes both direct usage of the variable and any operations performed on it.

• Variable interaction relevance: If a variable interacts with an input variable, either
through an operation or a comparison, the code line involving this interaction is rel-
evant. This includes cases where the interaction is with a variable that was assigned
the input value.

• Function call relevance: When a relevant variable is passed as an argument to a
function, all the code lines within that function that reference the input variable
become relevant. This encompasses both direct usage and any further interactions
with the input variable.

Table 5.4: Relevant code lines.

Program Total code lines Relevant code lines Found lines Correct lines Accuracy
1 32 14 15 14 100 %
2 46 18 18 18 100 %
3 46 7 10 7 100 %
4 43 23 21 21 91.3 %
5 82 10 13 10 100 %
6 183 5 7 5 100 %
7 202 58 66 58 100 %
8 258 64 26 25 39 %
9 221 5 4 4 80 %

10 146 4 3 3 75 %
11 40 18 21 18 100 %
12 68 27 28 21 78 %
13 96 32 30 24 75 %
14 59 17 21 16 94 %
15 70 7 10 5 71.4 %

Average 86.9 %

This aspect of the study is of significant interest, as one of the primary objectives of the
application is to accurately identify relevant code lines while excluding irrelevant ones.
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The graphical output generated by the application is designed to enhance comprehensi-
bility compared to manual inspection of the code. Furthermore, it is crucial for the output
graph to be reliable and trustworthy. Since the current implementation only incorporates
backtracking, the application accurately displays programs that do not forward input. In
order to ensure a comprehensive display, it is deemed preferable to show a slightly larger
number of lines rather than omitting potentially relevant ones.

5.2.4 Evaluation of the flow

Throughout the experimental phase, the application generated a total of 15 graphs as out-
put. The evaluation of these graphs involved a manual inspection of the code for all test
programs, discerning their flow, and subsequently comparing them to the corresponding
generated graphs. In this section, four of these graphs are presented and discussed.

Fig. 5.1 illustrates the graph generated by the application for test program 2. The graph
exhibits accurate call sequences and produces the expected output. This can be attributed
to the absence of any forward calls within the program. The input function, scanf, is
encountered in two functions: main and enterNumber. Consequently, these func-
tions are positioned at the top of the graph. Additionally, the main function includes
a call to enterNumber, which is depicted in the graph. Furthermore, the function
calcDouble invokes enterNumber, and main calls calcDouble, resulting in the
representation of this flow within the graph as well.

main() 
6    int some_input; 
16    scanf('%d', &some_input); 
17    printf('You input is: %d', some_input); 

scanf

enterNumber() 
23    int input; 
25    int another_input; 
29    scanf('%d', &input); 
31    scanf('%d', &another_input); 
33    return input; 

main() 
4    int number; 
8    number = enterNumber(); 
10    printf('You entered: %d', number); 

calcDouble() 
37    int inputNr = enterNumber(); 
39    int doubleNr = inputNr * 2; 
41    int change = inputNr; 
43    int double_change = change * 2; 
45    return doubleNr; 

main() 
12    int doubleRes = calcDouble(); 
14    printf('Double it: %d', doubleRes); 

Figure 5.1: Graph generated for test program 2.
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Fig. 5.2 portrays the output generated by the application when running test program
11. This graph accurately represents the function calls within the program, which can be
attributed to the absence of any forward calls. The presence of multiple input functions
in this program demonstrates the capability of the application to identify and handle such
scenarios. Specifically, this program encompasses three distinct input functions. The top
nodes of the graph highlight the presence of scanf, gets, and getch. The function
number contains the input function scanf and is invoked by the main function. The
function string incorporates the input function gets and is invoked by the main
function. Similarly, the function character involves the input function getch and is
also called by the main function.

number() 
5  int num; 
6  scanf('%d', &num); 
7  return num; 

main() 
23   int num; 
28   num = number(); 
29   printf('number is: %d', num); 

scanf

string() 
17  char str[100]; 
18  gets(str); 
19  return str; 

main() 
25   char str; 
35   printf('Enter a string: '); 
36   str = string(); 

37   printf('%s
', str); 

gets

character() 
11  char ch; 
12  ch = getch(); 
13  return ch; 

main() 
24   char ch; 
25   char str; 
31   printf('Enter a character: '); 
32   ch = character(); 
33   printf('%c', ch); 

getch

Figure 5.2: Graph generated for test program 11.

Fig. 5.3 illustrates the output generated by the application for test program 9. The result-
ing graph represents a concise structure wherein the input function gets is solely present
in the main function. Upon reviewing the code within the main node, it becomes ap-
parent that the input is forwarded to the ManipulateCurrent function, indicating
the necessity for a forward call representation. While the graph accurately depicts the
backtracking process, it lacks the implementation of forward tracking, thereby failing
to capture the forward call connection between the main and ManipulateCurrent
functions.

main() 
192    int playerInput; 
199    playerInput = getch() 
200 if (playerInput != ERR) { 
201   ManipulateCurrent(playerInput); 

getch

Figure 5.3: Graph generated for test program 9.
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Fig. 5.4 provides an example representation of the desired output achieved through the
implementation of the forward track algorithm. The presence of a red arrow denotes
the flow originating from the forward track, indicating the direction of data propagation.
Notably, the parameter action, derived from the playerInput function in the pre-
ceding function, is accurately tracked, ensuring the inclusion of the relevant code line for
a comprehensive understanding of the information flow.

int main()  
192    int playerInput;
199    playerInput = getch()
200 if (playerInput != ERR) {
201  ManipulateCurrent(playerInput);

void ManipulateCurrent(int action)  
153    switch(action){

getch

Figure 5.4: Complete flow of test program 9.
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Fig. 5.5 exhibits the output graph generated by the application for test program 12. This
particular program incorporates several forward calls; however, these connections are not
displayed in the graph due to the absence of the forward track algorithm’s implementa-
tion. Nonetheless, the backward track algorithm functions as intended.

In the program, the input function scanf is encountered in the get_integer function
and is subsequently called by the main function. Additionally, scanf is also present
in the get_float function, which is invoked from the main function. The function
get_char involves the input function getchar and is similarly called by the main
function. Upon closer examination of the code within the main node, it becomes apparent
that forward calls are present, where variables containing input values are passed forward.

get_integer() 
6    int num; 
8    scanf('%d', &num); 
9    return num; 

main() 
51    int anInteger = get_integer(); 
55    print_integer(anInteger); 
59    int sum = add(anInteger, aFloat); 
60    int difference = subtract(anInteger, aFloat); 
61    float quotient = divide(anInteger, aFloat); 

63    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
64    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

65    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 

scanf

get_float() 
13    float num; 
15    scanf('%f', &num); 
16    return num; 

main() 
52    float aFloat = get_float(); 
56    print_float(aFloat); 
59    int sum = add(anInteger, aFloat); 
60    int difference = subtract(anInteger, aFloat); 
61    float quotient = divide(anInteger, aFloat); 

63    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
64    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

65    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 

get_char() 
20    char c; 
21    printf('Enter a character: '); 
22    c = getchar(); 
23    return c; 

main() 
53    char aChar = get_char(); 
57    print_char(aChar); 

getchar

Figure 5.5: Graph generated for test program 12.
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Fig. 5.6 serves as an illustrative example demonstrating the implementation of the forward
track algorithm. This depiction underscores the non-trivial nature of combining both
forward and backward tracking algorithms. The graph effectively portrays the forward
calls made to the functions print_integer, print_float, print_char, add,
subtract, and divide. Each of these functions contains a critical line of code that
warrants inclusion for a comprehensive understanding of the input data flow. Within the
graph, the red arrows signify forward calls without return values, while the blue arrows
represent the returned values, facilitating a clear visualization of the information flow.
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Figure 5.6: Complete flow of test program 12.
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5.2.5 Result discussion

The application’s performance can be inferred from the results presented in the tables,
with each component manually counted within the test programs, as previously men-
tioned.

Tables 5.2 and 5.3 exemplify two fundamental functionalities of the application. The
accuracy of the application in these specific aspects is of paramount importance, as any
deviation from a 100 % accuracy rate would significantly undermine its reliability. The
application’s proficiency in identifying all functions within the code holds substantial sig-
nificance, as any oversight in this process may result in the omission of crucial input data
functions. Consequently, the ability to identify and capture all input data functions within
the codebase is essential for ensuring the detection of potential vulnerabilities. As in-
dicated in the tables, the application demonstrates excellent performance in this regard,
specifically in the context of the small-scale programs on which it has been tested.

Table 5.4 exhibits certain outliers concerning the count of code lines. This is attributed to
the absence of a functional forward track for data traversal in the application. However,
the important code lines that would be presented if forward tracking were implemented
were still taken into account during the manual counting process. This discrepancy is
highlighted to acknowledge the flaw in this particular aspect of the application. Upon
reviewing the results in Table 5.4, it becomes evident that the experiments with a 100 %
accuracy rate pertain to test programs where the data traversal can be achieved solely
through backtracking. The accuracy calculation disregards the fact that some lines are
detected even if they are not considered relevant. This approach was chosen to account
for the situation where the application may identify more lines than necessary, yet still
successfully detect all relevant code lines. Conversely, the experiments with an accuracy
rate lower than 100 % correspond to test programs requiring forward tracking to identify
all relevant code lines. As the forward tracking functionality is not yet implemented, the
accuracy falls short in these cases.

One of the crucial aspects of the application is accurately representing the flow of data.
In this regard, the application exhibits strong performance in terms of backtracking, ef-
fectively capturing the backward flow of data. However, it becomes evident that the in-
clusion of forward tracking is essential to provide a comprehensive depiction of the data
flow. The presented graphs vividly illustrate this requirement. Through manual inspec-
tion of the code for each program, it becomes evident that the backward flow is accurately
represented by the application. However, the absence of forward track implementation
results in the incomplete representation of the forward flow of data.

The conducted experiments reveal the potential of the application. It consistently achieves
100 % accuracy in detecting all functions and input functions within the small test pro-
grams. The reduction in the number of lines that need manual examination by a code
reviewer is substantial in most cases. Across all test programs, comprising a total of
1,592 lines of code, the application successfully identifies 293 lines, resulting in an over-
all reduction of 81.6 % in the manual examination effort.
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6 Discussion

This project had a primary objective of developing a proof-of-concept application aimed
at streamlining code review processes. The main focus of the project was to investigate
the feasibility of implementing a comprehensive tool and explore its potential applica-
tions. Specifically, the emphasis was placed on input data functions and the traversal of
data within a program. The importance of input data in terms of program security became
apparent when considering known vulnerabilities. Input validation emerged as a crucial
factor in mitigating security risks, thereby underscoring the project’s focus on input data
functions.

The literature search section discussed the significance of OWASP (Open Web Applica-
tion Security Project) as a prominent resource for documented security vulnerabilities.
The OWASP cheat sheet provided valuable insights into input data validation, its impor-
tance, and recommended implementation strategies [6]. With this objective in mind, the
application was designed to identify code sections that may require input validation and
subsequently trace the flow of data by traversing backward through function calls. The
application presents the findings in a comprehensive call graph format, accompanied by
relevant lines of code associated with each function. It is crucial to note that the aim of
the application is to provide assistance for manual code review rather than replacing it
entirely.

In the subsequent sections of this discussion chapter, the performance of the proof-of-
concept application will be evaluated, and a comparison will be drawn with existing code
review tools. The limitations encountered during the development process will also be
addressed. Through these discussions, the achievements of this project and its potential
impact on code review practices will be elucidated.

6.1 Evaluation of the implementation

A backtracking algorithm was implemented to identify function calls within the codebase.
Furthermore, a mechanism was devised to locate the relevant code lines associated with
these function calls. The visualization of the results utilized the DOT language in conjunc-
tion with Graphviz, facilitating the creation of clear and comprehensive representations.
The rationale behind this approach was to enable code reviewers to easily understand the
flow and dependencies of data within the program, thereby facilitating efficient and effec-
tive code review processes. By presenting a visual representation of the data flow as a tree
structure, the aim was to enhance the reviewer’s comprehension of the code and its com-
plexities. In the aforementioned paper, titled ’Facilitating program comprehension with
call graph multilevel hierarchical abstractions’, the authors examine the limitations of
static call graphs and propose mitigating approaches involving multi-level graph abstrac-
tion, hierarchical clustering algorithms, and varying levels of granularity [7]. The authors
highlight that static call graphs often suffer from size inflation and lack of granular de-
tail. Specifically, the paper emphasizes the challenges associated with comprehending
call graphs representing entire programs. To address these concerns, multi-level graph
abstraction is employed to reduce graph size by transitioning from package calls to class
calls and ultimately to function calls. Additionally, hierarchical clustering algorithms are
utilized to diminish the size of the graph by reducing the size of the execution paths and
their complexity.
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In the context of this project, static call graphs are employed to present the findings.
However, an additional layer of granularity is introduced by incorporating relevant code
lines for each function call. Furthermore, the graph size is minimized by exclusively
tracing the paths of input data within the program. As a result, we are confident that
program comprehension, specifically regarding input data, is enhanced, which is the key
objective of this project.

6.2 Evaluation of the application

As discussed in the previous chapter’s result discussion, the developed application ex-
hibits promising potential. Although the reduction in the number of lines for code re-
viewers to examine may not be a perfect measure of time reduction, it serves as an indica-
tor that the program effectively reduces the time and effort required for manual program
analysis.

The application successfully identifies all input functions and can identify all relevant
code lines if specifically requested, providing a focused view that encompasses fewer
lines than the entire program. Notably, the backward algorithm performs admirably, yet
it possesses a flaw in the absence of a termination mechanism. In its current implemen-
tation, the algorithm stops backtracking function calls only when there are no further
calls remaining, regardless of the relevance of the return values. Ideally, the algorithm
should cease backtracking when the data traversal concludes, such as when a function
utilizes an input data function without subsequently returning any relevant value. This
refinement would improve the algorithm’s efficiency and accuracy. Moreover, the appli-
cation occasionally identifies more relevant code lines than necessary due to its reliance
on string-based algorithms for line gathering. Consequently, the algorithm may include
lines that contain the search string as a substring, even if they are unrelated to the intended
variable.

For example, if the algorithm searches for lines relevant to variables named ch, or in, it
may capture lines such as:

• char aChar;

• int anInt;

• printf("Enter an integer: ");

The experiments indicate that the inclusion of a forward track algorithm is essential to
fully visualize the flow of data and identify relevant code lines. Currently, when an input
is passed forward in a program, none of the forward calls or associated code lines within
the called function are detected. Forward tracking is a necessary implementation in or-
der to get a complete comprehensive flow of data. However, Fig. 5.6 in chapter 5.2.4
illustrates problems that will surface when combining backward- and forward tracking
algorithms. In a complex software program, it is essential to devise an effective approach
for presenting the interconnected components in a manner that ensures comprehension
without overwhelming the graphical representation. Utilizing distinct colors for arrows
is one potential solution, although it may not suffice on its own. An alternative idea
involves positioning the forward track to the left or right of the relevant function, as op-
posed to below it as demonstrated in the example. This arrangement would enable the
downward continuation of the backward track, while allowing the forward track to extend
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sideways. Nonetheless, implementing this approach may introduce readability concerns
and potential complications. Despite this limitation, the application still enhances pro-
gram comprehension and provides code reviewers with a starting point for analysis.

6.3 Comparisons with other tools

The purpose of this project’s application is to facilitate the process of manual code re-
view. Consequently, comparing it with fully automatic tools is not straightforward due to
differences in how the application is utilized. Although fully automatic tools offer speed,
they also possess the potential for generating false positives and false negatives. In the
context of conducting a code review for a highly secure program, such inaccuracies are
unacceptable, particularly with regards to false negatives. As a result, fully automatic
tools are deemed less reliable, and code reviewers, particularly in the security sector, can-
not depend solely on them. Given that our application aims to aid in manual code review,
its design focuses on identifying all sections of the code that may pose security risks. As-
suming a complete implementation of the application, it is expected to yield a significant
number of false positives, but ideally no false negatives. This aspect holds paramount
importance in the code review of programs with high security requirements.

Among the currently available tools for code review, Fortify is considered one of the
most promising options for detecting security vulnerabilities. As stated in their product
information available on their website (Fortify, n.d.[20]), Fortify offers a comprehensive
solution capable of identifying 815 distinct vulnerabilities across 27 different program-
ming languages. It incorporates a semi-manual review approach, whereby it highlights
potential vulnerabilities within the code and provides explanations regarding their threat-
ening nature. In this context, "semi-manual" refers to the application’s ability to automat-
ically identify these threats while offering a manual review process for resolving them.
Fortify employs a sequence diagram to visually represent the data flow associated with
each identified vulnerability. This mechanism operates in a similar manner to the call
graph employed in our application, wherein relevant function calls and data traversal are
presented as a sequence. Both sequence diagrams and call graphs have their benefits as
presented in Table 6.1.

Table 6.1: Benefits of Sequence Diagrams and Call Graphs.
Sequence Diagram Call Graph
Shows the order of interactions be-
tween objects in a system over time

Shows the relationships between
different function calls within a pro-
gram

Focuses on the messages ex-
changed between objects

Focuses on the functions in a pro-
gram and how they interact with
each other

Typically used to model a single use
case or scenario

Provides a more abstract view of the
potential execution paths of a pro-
gram (static call graph)

Can show both the call and the reply Can be useful for debugging, opti-
mizing, and maintaining code
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Both sequence diagrams and call graphs serve as valuable tools for understanding soft-
ware behavior and structure. While sequence diagrams excel in illustrating specific sce-
narios, call graphs offer a better overview of a program as a whole. By leveraging call
graphs, developers can gain insights into the program’s structure, dependencies, and po-
tential areas for optimization, facilitating more efficient and maintainable codebases. The
call graphs that are presented with our application are, like sequence diagrams, illustrating
specific scenarios. However, we posit that by incorporating crucial code lines and fully
backtracked function calls, the comprehension of the program is enhanced.

Although a personal assessment of the Fortify application has not been conducted, avail-
able information and reviews suggest its commendable performance. However, it is worth
speculating on the reasons why companies with stringent security requirements might
choose not to adopt such applications.

We believe that one of the main reasons for not placing complete faith in automated tools,
is the inherent lack of trust in the automated vulnerability detection process. Certain
vulnerabilities escape detection by these applications that would otherwise be identified
through a manual code review. False-negatives must not occur, especially for a company
that deals with confidential and sensitive information. Another reason could be that many
of these automated applications are hosted and executed within the company’s cloud in-
frastructure. This would necessitate placing the code to be reviewed on the company’s
server for the purpose of executing the automated process. Considering the presence of
confidential and sensitive information, such an approach is likely deemed unacceptable.
This arrangement also necessitates regular updates, which entails establishing a connec-
tion between the host machine and the company’s server to retrieve these updates. Given
the sensitive nature of the information involved, relying on external servers for updates
may raise concerns about the potential leakage of classified code, or other malicious in-
tentions. These considerations may contribute to the hesitation of companies with high
security demands in utilizing applications like Fortify for their code review processes.
However, it is imperative to acknowledge that offline-capable automated code review ap-
plications serve as valuable support tools within the reviewing process.
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6.4 Limitations and Challenges

Within the designated timeframe of the project, the inclusion of forward tracking func-
tionality in the application proved to be unfeasible. As a result, the application currently
only supports backward tracking. The theoretical section of this project elucidates the
algorithm employed for forward tracking.

The present iteration of the application possesses limited capabilities, restricted to the
identification of specific input functions, namely scanf(), gets(), getch(), and
getchar(). However, the application lacks a mechanism to halt backward tracking in
instances where a function receives an input but does not return a value. During the anal-
ysis of code rows, the program exclusively verifies the presence of a string, which could
encompass either a variable or a function name. Consequently, the program is susceptible
to identifying redundant rows due to the potential occurrence of the string as a substring
within a row.

Considering the designated timeframe, the utilization of an existing parser such as pyc-
parser was not pursued, as it was deemed more convenient to develop a custom string-
based parser using Python. Pycparser, being a complex library, necessitates substantial
expertise for proper utilization. Additionally, such parsers do not offer an optimal means
of collecting pertinent code lines.

The primary objective of this project revolved around the creation of a proof of concept.
Hence, these limitations are considered acceptable, as they still facilitate an evaluation of
the concept’s viability and potential for subsequent development.
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7 Conclusion

In conclusion, our proof-of-concept application has yielded satisfactory results, thereby
warranting further investigation into its potential for a full implementation. While there
are already established vendors in the market offering similar tools, it is worth noting that
our application distinguishes itself by serving as a complement to manual code review
rather than aiming to fully automate the process. This distinction is particularly valuable
in cases where manual code review is necessary. A full implementation of the application
would aim to achieve zero false negatives, which holds significant importance.

The current implementation of the application utilizes a custom-built parser. However,
it is preferable to employ an existing parser, such as pycparser. Pycparser is designed
to parse C code and construct an Abstract Syntax Tree (AST), which would provide a
more reliable foundation for traversing function calls and accurately identifying relevant
variables. The adoption of pycparser would enable the application to incorporate both
backward and forward tracking algorithms, thereby enhancing its reliability and over-
all performance. Furthermore, it is worth noting that while the application is designed
to identify input data functions, its potential applicability extends beyond code review. It
could potentially be utilized to locate any function within a program and perform function
call backtracking, offering utility in various domains requiring program comprehension.

Overall, the results obtained from the proof-of-concept application demonstrate its via-
bility and merit further exploration for a comprehensive implementation. By leveraging
an established parser like pycparser, the application’s reliability and effectiveness can be
significantly improved. Nonetheless, the supervisors at Combitech expressed satisfaction
with the demonstrated outcomes. Consequently, their response serves as validation for the
application, affirming its status as a proof of concept that could merit further investigation.
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7.1 Future work

The objective of this project was to develop a proof of concept application. However,
for the implementation of a fully functional and robust application, it would be advisable
to rebuild the application around an existing parser that offers more advanced features,
such as the ability to build an Abstract Syntax Tree (AST). Such parsers are more reliable
in identifying function calls, input data functions, and variables within the code. Further-
more, the implementation of a forward tracking algorithm is essential for a comprehensive
visualization of the data flow. This algorithm was not fully realized in the proof of con-
cept, but it is a crucial component to include in a complete application. While the current
implementation utilizes DOT and Graphviz for graph visualization, these tools may prove
challenging to use in a larger-scale implementation. For instance, to represent multiple
function calls, a strategy was implemented to assign unique names to each node. How-
ever, combining this strategy with the attempted forward tracking algorithm led to some
difficulties. Exploring alternative visual presentation tools or alternative methods of writ-
ing to the DOT file may be beneficial in a full implementation. Expanding the application
to detect additional input data functions and other security vulnerabilities would also be
necessary to make the application more useful. Nevertheless, the concepts of backtrack-
ing and code line search employed in the current implementation still hold value. The
AST alone does not provide sufficient information to create a comprehensive graph of
function calls or identify all relevant code lines. Therefore, the algorithms utilized in this
project could serve as inspiration and be further explored in future work towards a com-
plete implementation.

To develop a complete application, it is recommended to acquire in-depth knowledge
of a well-documented and reliable parser. Careful consideration should be given to the
overall program execution and thorough planning should be undertaken. While a set of
requirements was initially defined, the exploratory programming approach used in this
project led to situations where previously functioning components needed to be modified
to integrate with other program elements. Such issues increase complexity and reduce
flexibility, highlighting the importance of clear structural planning before commencing
the implementation phase.

42



References

[1] G. McGraw, “Software security: Building security in,” in 2006 17th International
Symposium on Software Reliability Engineering, 2006, pp. 6–6.

[2] K. Goseva-Popstojanova, A. Perhinschi, “Capability of static code analysis to detect
security vulnerabilities,” Information and Software Technology, vol. 68, pp. 18–33,
2015, December.

[3] A. Kesäniemi, “Manual vs automatic analysis,” https://owasp.org/www-pdf-archive/
Ari_kesaniemi_nixu_manual-vs-automatic-analysis.pdf, 2023, accessed: May 17,
2023.

[4] Combitech, “Om oss,” accessed: Mar. 28, 2023. [Online]. Available: https://www.
combitech.se/om-oss/.

[5] OWASP, “Code review guide,” 2016, accessed: Mar. 27, 2023. [Online]. Available:
https://owasp.org/www-project-code-review-guide/.

[6] OWASP, “Input validation cheat sheet,” accessed: Apr. 27, 2023. [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_
Sheet.html.

[7] R. Alanazi, G. Gharibi and Y. Lee, “Facilitating program comprehension with call
graph multilevel hierarchical abstractions,” Journal of Systems and Software, 2019,
Dec.

[8] N. L. de Poel, “Automated security review of php web applications with static code
analysis,” Master’s thesis, University of Groningen, Groningen, Netherlands, 2018,
Feb.

[9] D. Evans and D. Larochelle, “Improving security using extensible lightweight static
analysis,” IEEE Software, vol. 19, no. 1, pp. 42–51, 2002.

[10] G. McGraw, “Automated code review tools for security,” Computer, vol. 41, no. 12,
pp. 108–111, 2008.

[11] OWASP, “Static Code Analysis,” accessed: Apr. 30, 2023. [Online]. Available:
https://owasp.org/www-community/controls/Static_Code_Analysis.

[12] OWASP, “Injection Flaws,” accessed: Apr. 27, 2023. [Online]. Available: https:
//owasp.org/www-community/Injection_Flaws.

[13] OWASP, “Buffer Overflow Attack,” 2023, accessed: Apr. 27, 2023. [Online]. Avail-
able: https://owasp.org/www-community/attacks/Buffer_overflow_attack.

[14] D. Cruz, “AST (Abstract Syntax Tree),” Oct. 2018, accessed on:
Apr. 24, 2023. [Online]. Available: https://medium.com/@dinis.cruz/
ast-abstract-syntax-tree-538aa146c53b.

[15] Wikimedia Commons, “File:Abstract syntax tree for Euclidean algorithm.svg,”
https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_
algorithm.svg, 2021.

43

https://owasp.org/www-pdf-archive/Ari_kesaniemi_nixu_manual-vs-automatic-analysis.pdf
https://owasp.org/www-pdf-archive/Ari_kesaniemi_nixu_manual-vs-automatic-analysis.pdf
https://www.combitech.se/om-oss/
https://www.combitech.se/om-oss/
https://owasp.org/www-project-code-review-guide/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-community/Injection_Flaws
https://owasp.org/www-community/Injection_Flaws
https://owasp.org/www-community/attacks/Buffer_overflow_attack
https://medium.com/@dinis.cruz/ast-abstract-syntax-tree-538aa146c53b
https://medium.com/@dinis.cruz/ast-abstract-syntax-tree-538aa146c53b
https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg
https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg


[16] E. Bendersky, “Pycparser documentation,” 2023, accessed: Mar. 30, 2023. [Online].
Available: https://github.com/eliben/pycparser.

[17] “Dot language,” 2022, accessed: Mar. 30, 2023. [Online]. Available: https://
graphviz.org/doc/info/lang.html.

[18] “Graphviz homepage,” 2021, accessed: Mar. 30, 2023. [Online]. Available: https:
//graphviz.org/.

[19] M. Santos, “False Positives or False Negatives: Which is worse?” ac-
cessed: May 10, 2023. [Online]. Available: https://towardsdatascience.com/
false-positives-vs-false-negatives-4184c2ff941a.

[20] Micro Focus, “Fortify homepage,” 2023, accessed: May 21, 2023. [Online]. Avail-
able: https://www.microfocus.com/en-us/cyberres/application-security.

[21] Khan Academy, “Experiments and observations,” 2023, accessed: Mar.
30, 2023. [Online]. Available: https://www.khanacademy.org/science/biology/
intro-to-biology/science-of-biology/a/experiments-and-observations.

[22] viktormollerstrom, “Test-Programs,” https://github.com/viktormollerstrom/
Test-Programs/tree/a0c1446057fb39ddcb24bdb21585f4fe6caf2b0f/testprograms,
2023.

[23] G. Najib, “Tetris200lines,” 2021, accessed: May 10, 2023. [Online]. Available:
https://github.com/najibghadri/Tetris200lines.

[24] GeeksforGeeks, “Snake game in c,” 2020, accessed: May 10, 2023. [Online]. Avail-
able: https://www.geeksforgeeks.org/snake-game-in-c/.

[25] OpenAI, “Gpt-3.5-turbo,” ChatGPT, an AI language model, 2023. [Online].
Available: https://openai.com

44

https://github.com/eliben/pycparser
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://graphviz.org/
https://graphviz.org/
https://towardsdatascience.com/false-positives-vs-false-negatives-4184c2ff941a
https://towardsdatascience.com/false-positives-vs-false-negatives-4184c2ff941a
https://www.microfocus.com/en-us/cyberres/application-security
https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations
https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations
https://github.com/viktormollerstrom/Test-Programs/tree/a0c1446057fb39ddcb24bdb21585f4fe6caf2b0f/testprograms
https://github.com/viktormollerstrom/Test-Programs/tree/a0c1446057fb39ddcb24bdb21585f4fe6caf2b0f/testprograms
https://github.com/najibghadri/Tetris200lines
https://www.geeksforgeeks.org/snake-game-in-c/
https://openai.com


A Appendix 1, Output graphs

This appendix encompasses the collection of graphs generated by the application during
the execution of the test programs.

enterNumber() 
18    char ch; 

19    printf('
Enter any character : '); 
20    ch = getch(); 

21    printf('
You have entered : %c
',ch); 
23    return ch; 

main() 
4    int number; 
6    number = enterNumber(); 
8    printf('You entered: %d', number); 

calcDouble() 
27    int inputNr = enterNumber(); 
29    int doubleNr = inputNr * 2; 
31    return doubleNr; 

getch

main() 
10    int doubleRes = calcDouble(); 
12    printf('Double it: %d', doubleRes); 

main() 
5    int test; 
7    test = getchar(); 

getchar

Figure 1.1: Graph for testprogram 1.

main() 
6    int some_input; 
16    scanf('%d', &some_input); 
17    printf('You input is: %d', some_input); 

scanf

enterNumber() 
23    int input; 
25    int another_input; 
29    scanf('%d', &input); 
31    scanf('%d', &another_input); 
33    return input; 

main() 
4    int number; 
8    number = enterNumber(); 
10    printf('You entered: %d', number); 

calcDouble() 
37    int inputNr = enterNumber(); 
39    int doubleNr = inputNr * 2; 
41    int change = inputNr; 
43    int double_change = change * 2; 
45    return doubleNr; 

main() 
12    int doubleRes = calcDouble(); 
14    printf('Double it: %d', doubleRes); 

Figure 1.2: Graph for testprogram 2.
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factorial() 
20    int num4; 
32    scanf('%d', &num4); 

test() 
43    int asd; 
44    asd = factorial(asd); 
45    return asd; 

scanf

add_numbers() 
37    int num3; 
38    scanf('%d',num3); 
39    return num1 + num2 + num3; 

main() 
9    int result = add_numbers(num1, num2); 

10    printf('The result is %d
', result); 

Figure 1.3: Graph for testprogram 3.

main() 
4    int number1; 
5    int number2; 
6    int number3; 
7    int number4; 
9    scanf('%d', &number1); 
10    printf('You entered: %d', number1); 
11    scanf('%d%d%f', &number2, &number3, &number4); 
12    printf('You entered: %d', number2); 
13    printf('You entered: %d', number3); 
14    printf('You entered: %f', number4); 
16    int doubleRes = calcDouble(number1, number2); 
18    printf('Added: %d', doubleRes); 

scanf

enterNumber() 
23    int input; 
24    int another_nput; 
28    scanf('%d', &input); 
30    scanf('%d', &another_nput); 
32    return input; 

calcDouble() 
36    int input; 
37    int input2; 
38    scanf('%d', &input); 
39    input2 = enterNumber(); 

calcDouble() 
37    int input2; 
39    input2 = enterNumber(); 

main() 
16    int doubleRes = calcDouble(number1, number2); 
18    printf('Added: %d', doubleRes); 

Figure 1.4: Graph for testprogram 4.
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get_sc() 
77    int input_data; 
79    scanf('%d', &input_data); 
80    printf('You entered: %d', input_data); 
81    return input_data; 

main() 
4  int number = 5; 
5  int factorial; 
6  int in; 
7  int put; 
9  factorial = fact(number); 
12  in = get_sc(); 
13  put = get_sc(); 
19  int test = in + put; 
20  printf('Result: %d', test); 

scanf

Figure 1.5: Graph for testprogram 5.

getInput() 
103  int num; 
104  printf('Enter a number: '); 
105  scanf('%d', &num); 
106  return num; 

main() 
160  printf('Random number between 1  and 100: %d
', generateRandomNumber()); 
169  int num = getInput(); 

170  printf('You entered: %d
', num); 

scanf

Figure 1.6: Graph for testprogram 6.
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Figure 1.7: Graph for testprogram 7.
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getInt() 
14    int num; 
16    scanf('%d', &num); 
17    return num; 

main() 
194    int num1 = getInt(); 
195    int num2 = getInt(); 

197    printf('Sum: %d
', add(num1, num2)); 

198    printf('Difference: %d
', subtract(num1, num2)); 

199    printf('Product: %d
', multiply(num1, num2)); 

200    printf('Quotient: %.2f
', divide(num1, num2)); 

202    printf('%d! = %d
', num1, factorial(num1)); 
204    if (isPrime(num1)) { 

205        printf('%d is prime.
', num1); 
207        printf('%d is not prime.
', num1); 
216    decimalToBinary(num1); 
241    fibonacci(num1); 

scanf

getString() 
6    static char str[100]; 
7    printf('Enter a string: '); 
8    gets(str); 
9    return str; 

main() 
191    char* str = getString(); 

192    printf('You entered: %s
', str); 
210    if (isPalindrome(str)) { 

211        printf('%s is a palindrome.
', str); 
213        printf('%s is not a palindrome.
', str); 
237    reverseString(str); 

239    printf('Reversed string: %s
', str); 

gets

Figure 1.8: Graph for testprogram 8.

main() 
192    int playerInput; 
199    playerInput = getch() 
200 if (playerInput != ERR) { 
201   ManipulateCurrent(playerInput); 

getch

Figure 1.9: Graph for testprogram 9.
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input() 
64  char move; 
66      move = getch(); 
67      switch (move) { 

main() 

getch

Figure 1.10: Graph for testprogram 10.

number() 
5  int num; 
6  scanf('%d', &num); 
7  return num; 

main() 
23   int num; 
28   num = number(); 
29   printf('number is: %d', num); 

scanf

string() 
17  char str[100]; 
18  gets(str); 
19  return str; 

main() 
25   char str; 
35   printf('Enter a string: '); 
36   str = string(); 

37   printf('%s
', str); 

gets

character() 
11  char ch; 
12  ch = getch(); 
13  return ch; 

main() 
24   char ch; 
25   char str; 
31   printf('Enter a character: '); 
32   ch = character(); 
33   printf('%c', ch); 

getch

Figure 1.11: Graph for testprogram 11.

get_integer() 
6    int num; 
8    scanf('%d', &num); 
9    return num; 

main() 
51    int anInteger = get_integer(); 
55    print_integer(anInteger); 
59    int sum = add(anInteger, aFloat); 
60    int difference = subtract(anInteger, aFloat); 
61    float quotient = divide(anInteger, aFloat); 

63    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
64    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

65    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 

scanf

get_float() 
13    float num; 
15    scanf('%f', &num); 
16    return num; 

main() 
52    float aFloat = get_float(); 
56    print_float(aFloat); 
59    int sum = add(anInteger, aFloat); 
60    int difference = subtract(anInteger, aFloat); 
61    float quotient = divide(anInteger, aFloat); 

63    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
64    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

65    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 

get_char() 
20    char c; 
21    printf('Enter a character: '); 
22    c = getchar(); 
23    return c; 

main() 
53    char aChar = get_char(); 
57    print_char(aChar); 

getchar

Figure 1.12: Graph for testprogram 12.
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get_integer() 
6    int anInteger; 
8    scanf('%d', &anInteger); 
9    return anInteger; 

main() 
66    int anInteger = get_integer(); 
70    print_integer(anInteger); 
74    int sum = add(anInteger, aFloat); 
75    int difference = subtract(anInteger, aFloat); 
76    float quotient = divide(anInteger, aFloat); 

78    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
79    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

80    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 
91    int fact = factorial(anInteger); 

93    printf('The factorial of %d is %d
', anInteger, fact); 

scanf

get_float() 
13    float aFloat; 
15    scanf('%f', &aFloat); 
16    return aFloat; 

main() 
67    float aFloat = get_float(); 
71    print_float(aFloat); 
74    int sum = add(anInteger, aFloat); 
75    int difference = subtract(anInteger, aFloat); 
76    float quotient = divide(anInteger, aFloat); 

78    printf('The sum of %d and %f is %d
', anInteger, aFloat, sum); 
79    printf('The difference of %d and %f is %d
', anInteger, aFloat, difference); 

80    printf('The quotient of %d and %f is %f
', anInteger, aFloat, quotient); 

get_char() 
20    char aChar; 
22    aChar = getch(); 

23    printf('%c
', aChar); 
24    return aChar; 

main() 
68    char aChar = get_char(); 
72    print_char(aChar); 

getch

Figure 1.13: Graph for testprogram 13.

getChoice() 
10    char choice; 
12    scanf(' %c', &choice); 
13    return choice; 

playRound() 
26    char choice = getChoice(); 
28    if (choice == 'h') { 
37        } else { 
34    } else if (choice == 'l') { 
37        } else { 
40    } else { 

41        printf('Invalid choice!
'); 

scanf

getGuess() 
17    int guess; 
18    printf('Enter your guess: '); 
19    scanf('%d', &guess); 
20    return guess; 

playAgain() 
46    char choice; 
48    scanf(' %c', &choice); 
49    return choice; 

playRound() 
27    int guess = getGuess(); 
29        if (guess > card) { 
35        if (guess < card) { 

main() 
57    } while (playAgain() == 'y'); 

main() 

Figure 1.14: Graph for testprogram 14.
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getGuess() 
29    char guess; 
31    scanf(' %c', &guess); 
32    return guess; 

playHangman() 
37    int guessedLetters[numLetters]; 
39        guessedLetters[i] = 0; 

44        printf('You have %d guesses left.
', maxGuesses - numGuesses); 
45        printWord(word, numLetters, guessedLetters); 
46        char guess = getGuess(); 
47        if (checkGuess(word, numLetters, guessedLetters, guess)) { 
49            if (memcmp(word, guessedLetters, numLetters) == 0) { 

scanf

main() 

Figure 1.15: Graph for testprogram 15.

H


	Introduction
	Background
	Related work
	Problem formulation
	Create a protoype
	Evaluation of the prototype

	Expected Result
	Motivation
	Scope/Limitation
	Target group
	Outline

	Theory
	Static code review
	Injection
	Buffer overflow
	Abstract Syntax Tree (AST)
	Pycparser, library for parsing C code in Python
	DOT, language for describing graphs in Graphviz
	Graphviz library for visualising data
	Static Backtracking
	Static Forwardtracking
	False-negatives, False-positives
	Fortify, an automated code review tool

	Method
	Research Project
	Method
	Literature study
	Controlled experiments

	Reliability and Validity
	Ethical considerations

	Implementation
	Extract and store all functions
	Recursively backtrack function calls
	Search for function calls
	Add nodes to graph
	Create a node
	Write to DOT file
	Get a function by name
	Get a function name
	Extract variable names
	Find variables containing input data
	Recursive code line search

	Experimental Setup, Results and Analysis
	Experimental setup
	Results and Analysis
	Identified functions
	Identifiable input data functions
	Identifiable relevant code lines
	Evaluation of the flow
	Result discussion


	Discussion
	Evaluation of the implementation
	Evaluation of the application
	Comparisons with other tools
	Limitations and Challenges

	Conclusion
	Future work

	References
	Appendix 1, Output graphs

