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Abstract

With the background of the increasing volatility in the electricity market the recent years

this thesis investigates the electricity futures market and the benefit for market participants

to perform some trading strategy in order to increase profit or reduce risk. By modeling

the market as a stochastic game the trader acts as a player in the game and with two simple

models the player can predict the probability that the market moves up or down and take

the appropriate position according to the prediction. This is simulated with Nasdaq clos-

ing prices for monthly electricity futures contracts for the years 2018-2022 and evaluated

against a benchmark model.The result shows that a simple trading strategy can give a pos-

itive impact on the outcome and the stochastic game model leaves a good foundation for

modeling with an almost endless number of machine learning algorithms.
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1 Introduction

The European energy market has gained much attention during the recent year, which is no

surprise given the challenges of rising energy costs that affects all energy consumers such as

households, industries etc. every day. The increasing demand due to electrification has been met

with a transition towards a more stochastic supply side, when intermittent energy sources like

wind and solar energy get a larger and larger share of total production while the share of more

predictable energy sources decreases. A vast majority of the European nuclear power plants has

already been shut down or faces problems due to old age and power plants that use fossil fuel

meet higher fuel cost due to rising prices and climate targets. This increasing complexity of

energy markets affect the electricity prices making them much more volatile then we have ever

seen before which in turn affects the financial market with larger risk of financial losses, higher

collateral requirement and lower liquidity.

1.1 The characteristics of the Nordic electricity market

The history of the Nordic spot market began in 1996 after Sweden deregulated its electricity

market and together with Norway, who deregulated the market already in 1991, established

Nord Pool which today is the common Nordic physical energy market.[21] The electricity mar-

ket is of interest for many and is well-described throughout the scientific world as well as in pop-

ular science. An example of a micro economist view is given by Mohammad Reza Hesamzadeh

and Darryl R. Bigger in The Economics of Electricity Markets.[16] In their book they describe

how the deregulation makes also the electricity market work like any other market where the

supply and demand decide price and quantity. Unlike any other markets electricity has some

characteristics that contribute to its volatile nature. In recent years the decarbonisation process

has changed the supply side with less fossil fueled Combined Heat Power and increased re-

newable power sources such as wind and solar power. The nuclear question is seen differently

between countries, where some countries like Poland and Finland have deemed it necessary to

replace other sources and invested in this technology, while other countries like Germany de-

cided to exit existing nuclear power plants. Since electricity cannot be stored in an efficient way

but must be produced and consumed at the same time the volatility increases. This all combined

led to more active power consumers, development in energy storage technology and increased

the need to extend the transmission system. The interest and need of decarbonisation has also
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increased the future demand of (nonfossil fueled) electricity.

1.2 Forward and futures market

Forward and futures contracts are agreements between buyers and sellers of an underlying asset.

The participants are obligated to execute the trade at a specified future time at a specified future

price. In the forward case the payment, that is the difference between spot price and the forward

price, will happen at the delivery date. The futures contracts work in a similar way but unlike

forwards where payment is done once at delivery the participants have an ongoing cash-flow

during the time period (Capinski and Zastawniak, 2003)[5]. Financial contracts in the electricity

markets are usually futures contracts and the contracts specify the volume (typically in MW)

and the period of delivery, which is usually yearly, quarterly or monthly but other products like

e.g. weekly contracts or peak load contracts also exist. We introduce the notation f(t, T ) for

the price of a future contract at time t with delivery time T which should represent the expected

spot price at time T , S(T ), at time t i.e. f(t, T ) ≈ E[S(T )]. If it does not, then the future

should be considered as undervalued or overvalued. The sum of the daily cash-flows for futures

contracts should equal the single payment in the forward case.

1.3 Aim and research question

The larger volatility on the spot market causes much more unpredicted costs for both electricity

users and producers. In order to make this more predictable their interest for a financial hedge

should increase. The aim of this thesis is to investigate the electricity futures market by mod-

eling it as a stochastic game. We will consider two kinds of players who engage in the market,

one of them will be a risk-averse player, which we refer to as hedger, who only takes buying

position, and the other will be a more risk-neutral player purely interested in profit who takes

both buying and selling positions, which we will refer to as speculator. In order to chose the

best position from its feasible set the players wish to predict the most probable future outcome.

We will suggest two different methods which will be illustrated by simulations together with a

benchmark model. The success of the strategy will be measured by profit, standard deviation

and how many times the correct position was selected.
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1.4 Disposition

This thesis will be structured as follows: Chapter 1 gives the reader an introduction of the sub-

ject, motivation of its relevance and states the research question. In chapter 2 the theoretical

framework is given, including a review of relevant research. Chapter 3 presents the method-

ological framework used in the thesis. Chapter 4 gives a description of the data, a motivation

on how it was chosen and limited, and the simulations of the data. Chapter 5 contains the the

results which are also further discussed in the chapter. The thesis is summarized and assessed

in chapter 6.
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2 Theoretical framework

This chapter will present the theoretical background with relevant literature.

2.1 The basis of Game Theory

The concept of Game Theory was popularized by John von Neumann and Oskar Morgenstern in

the 1940s and heavily contributed to by John Nash in the 1950s and their work can be considered

as the foundation of Game Theory. The theory can be applied in many different situations and

can be used to model and analyse a large number of economic behaviours and interactions.

Some key elements in game theory are the players who wish to maximize a reward or minimize

a cost. Each player has a set of possible actions and the chosen strategies lead to some payoff

for each player. Each player will try to figure out what action to take and what actions the

other players are expected to take. Formalized this can be expressed as a collection of pairs

(Ak, uk)k∈K where K is a set of at least one player. Each player k ∈ K has a set of possible

actionsAk and a utility function uk : A→ R, whereA is defined as the set of Cartesian products

A := ×k∈KAk that represent all possible combinations of actions. [6] In a game with complete

information each player has access to all information in the game including information about

other players such as their cost functions. If it is a game with perfect information the player

knows all previous actions chosen by the others when it is their time to choose. The Nash

equilibrium in a game is the optimal choice for each player given the other players choice, or

in other words when the other players choice is revealed one should not change the first choice.

The Nash equilibrium in a game could be unique, but there could also be several equilibria

or none.[8] The repeated game makes a learning process possible where wrong decisions are

punished with a loss and good decisions are rewarded. One could learn and improve a strategy

by analysing previous steps, since we do know the payoff of previous actions. [19] Even in the

deregulated market one should remember that some bigger companies could have more impact

than smaller companies which implies that such a market could work similar to an oligopoly. In

game theory an oligopoly could be modeled in a simple case like a Cournout game, if the firms

are assumed to chose the quantity, or opposite chose the price like in a Bertrand game. For a

longer period of time the players will interact at several occasions and should be considered as

a repeated game.[16]
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2.2 Stochastic games

The concept of stochastic games was presented in the 1950s by Shapley [18] and is considered

as a subset of Game Theory. This is a sequential game focused around one or more players and

the set of possible states each player can move between according to some transition probabili-

ties. To measure what step would be the best choice we use a probability measure P that maps

all possible outcomes of a sample space Ω into the interval [0, 1], P[∅] = 0 and P[Ω] = 1. If we

consider the event A and measure the probability that A will occur as P[A] then a small value

means that A is not likely to occur and of course the opposite will be a value close to 1 means

that it is very likely to occur. If we want to measure the probability that A occurs given that

the event B occurred, then we consider the conditional probability denoted P[A|B]. For more

details see for example the book by Gut (2005). [9]

If a player has the same transition probabilities for a certain state every time it is reached

the game is said to have stationary strategies, denoted x = (x1, x2, . . . , xN), where each xn =

(xn1 , x
n
2 , . . . , x

n
mn

) and N is the number of possible states and number of sequences can be of

any length and not necessarily the same length every time it is played. Every action is connected

with some reward.

Consider an example with three different states {A,B,C} with probabilities P[st+1 =

A|st = A] = p1, P[st+1 = B|st = A] = p2, P[st+1 = C|st = A] = p3, p1 + p2 + p3 = 1

and so on for state B and C, illustrated with a graph and a corresponding transition matrix,
p1 p2 p3

q1 q2 q3

u1 u2 u3

.
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State A State B

State C

p2

p3

q3

q1

u1

u2

p1 q2

u3

For a game with length T the different steps will look like this: at initial step s0 the player

chooses an action a0 and moves to step s1, which gives the reward r1 and continues this until

the final step of the game, illustrated in the picture below.

s0 s1 . . .

. . .

st st+1 . . .

. . .

T
a0|s0 a1|s1 at−1|st−1 at|st at+1|st+1 aN−1|sN−1

r1 rt rt+1 rT

2.3 Background and previous studies

With the growing complexity of the energy market more powerful tools are required to provide

useful information to market participants and the use of game theory should be helpful also for

financial trading. [11] Pang, Deng and Wang (2017) [15] investigated hog futures, i.e. price

hedging for pork, in the Chinese market by considering it as a two player game with hedgers

and speculators as players. In the game model the players should take a long position if the price

is expected to rise and otherwise take a short position if the price is expected to fall. While the

two different players trade in the same market they are however assumed to have different in-

centives for trading, since hedgers are expected to trade to avoid future losses and speculators

trade to win high profits. In other words, they have different degrees of risk aversion which

will influence their chosen strategies. The possible actions for a hedger in this model would

be buy or not buy and for a speculator speculate or not speculate, Ahedger = {buy, not buy}
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and Aspeculator = {speculate, not speculate}, leaving four possible combinations of actions. If

the aim of a futures market is to give stability, then the conclusion from the article is that the

market should promote the (buy, not speculate) strategy combination. However the absence of

speculators would have a negative impact on liquidity and thus the market should aim to find

an optimal ratio of hedgers and speculators. The importance of speculators is also stressed by

Sebastiao et al. (2020) [17]. In their article they describe the use of Machine Learning meth-

ods when creating a trading strategy by finding risk premium situations and applied this to the

Nordic electricity market. Their models was built only on financial data and did not include

fundamental factors, but both methods have been used by previous researchers.

A game theoretic model for energy commodities was developed by Funk (2017)[7] in his

dissertation where he used Cournot differential games to model a futures market in continuous

time. The benefit of the differential game is that it among other things allows us to take ex-

haustibility and storage possibilities into account, which suits the commodity market well. As

an example of an extension Ludkovski and Yang (2015) [14] used a dynamic Cournot model

to investigate a duopoly consisting of an exhaustible producer and a renewable competitor and

their reaction to high and low demand, showing that the exhaustible producer is sensitive to

changes in demand and may stop producing during low demand, which makes it a reasonable

to think that it should also be an important property to include when hedging in the futures

markets. Funk also argues for several different theories regarding futures market and risk aver-

sion, which are important for our assumptions about the player’s behaviour like how players

can change strategy depending on their own or other player’s risk aversion, and includes risk

aversion in the model as a cost. Hanly et. al. (2017)[10] studied hedging in different electricity

markets, among them the Nordic, as a risk management tool. They made a reference back to

Bystrom(2003)[4] and his findings that Naive, OLS and GARCH models were successful in the

Nordic market, methods that have been widely used for this type of markets. While Bystrom

used weekly contracts and measured success as a reduction of variance, Hanly et al. extend

this to two risk measures, besides variance they also used Value at Risk, and used both weekly

and monthly contracts, but did not find the method as effective as Bystrom did for the weekly

contracts. This can be explained with the larger period of time and increasing volatility in the

market in the latter case. The result for monthly contracts was better than for weekly contracts

and among the included markets best result was found in the Nordic market, but still worse than
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comparable studies in other, non-electricity, markets. This finding should not be surprising for

the electricity market, whose volatility is considered as one of the hardest to handle, but made

Hanly et al. question the utility of the financial market.

This thesis will contribute with new information in the area since it will focus on more

recent years including two extreme years, the wet year 2020 which also included a global pan-

demic with exceptionally low prices and then 2022 with exceptionally high prices due to what

is commonly known as the European energy crisis.
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3 Method

In this chapter we will introduce some important concept and notations. Further on the different

models used to predict future outcomes will be presented as they will provide the player with

valuable information on which action to take and this will be illustrated as simulations in the

next chapter.

Just as the case described by Pang et al. we will allow the two actions buy or not buy for the

hedger while the speculator is also allowed short positions and can chose between buy or sell.

The utility or reward for our player will be the profit from the position, i.e. the change of value

of the contract from current step to next step. A positive value is equal to winning the round of

play at this step, while a negative value is a loss. To help the player decide which step to take

next it has time series with historical data from previous actions and corresponding rewards.

This could be used to form models that provides the player with a suggestion on which action

would be the most likely to give the desired best reward. First let us state some definitions that

will be necessary in order to build the model.

Time series are defined as continuous stochastic processes measured at discrete time periods

t in a time interval I , {Xt} := {Xt|t ∈ I ⊂ R+}. The stochastic process is defined as weakly

stationary if the expected value function E[Xt] is independent of t and the covariance function

C[Xs, Xt] is only dependent on t − s. A simple example of a stationary process is the white

noise {εt} which is a sequence of independent identically distributed random variables with

mean 0 and variance σ2. The white noise is very useful when modeling time series and can be

used to define the moving average process. A process Xt is said to be a moving average process

of order q, MA(q)-process, if

Xn := c0εn + c1εn−1 + · · ·+ cqεn−q =

q∑
k=0

ckεn−k

where εn is the white noise, c0 = 1 and c1, . . . ck 6= 0. A time series depending on its own previ-

ous outcomes is called an autoregressive process. A process Xt is said to be an autoregressive

process of order p, AR(p)-process, if

Xn := b1Xn−1 + · · ·+ bpXn−p + εn,

where εn is the white noise and b1, . . . bp 6= 0.
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It is reasonable to believe that sequential observations, such as financial time series, are de-

pendent on previous values, but also that the values closer in time to be more important than

older observations. It would also make sense to limit the number of values that we consider to

be of importance or otherwise an algorithm used for simulations would be slower and slower.

[2] For all possible choices the player can make it estimates the probability for that outcome,

with for example the models presented below as a tool. The player then chooses the one with

highest probability.

3.1 Naive hedge

For a naive hedge the position in the spot market should have a corresponding opposite position

in the futures market. [4] For this case we let the trader take a long position every day during

the trading period and the result will be used as a benchmark.

3.2 Markov chain

To observe the current state is often helpful information to predict future outcome in a sequential

time series. For a sequence of random variables x1, . . . , xn the first-order Markov chain have

the property

P[xn|x1, . . . , xn−1] = P[xn|xn−1].

This can be extended to anyM th order Markov chain P[xn|xn−M , . . . , xn−1] (Bishop, 2006) [2].

In this case a first simple step would be to only consider two states, the price goes up or the

price goes down, but this could be extended to more steps, for example if we believe that a large

rise would have a different impact than a small rise. We let xt denote the price movement at step

t and xt+1 denote the price movement in the next step. This can be represented as a probability

transition matrix as below:

Up Down

Up P[xt+1 = Up|xt = Up] P[xt+1 = Down|xt = Up]

Down P[xt+1 = Up|xt = Down] P[xt+1 = Down|xt = Down]

12



3.3 Logistic regression model

A linear probability model is a suitable variant of linear regression for a binary variable [20] in

order to predict the probability of event X with the help of explanatory variables X1, . . . , Xk.

While a linear regression could be used there are some problems with using it for this type of

problem, the most obvious being that it can range outside the interval [0, 1] so in order to avoid

this the logistic regression is used instead (James et al. 2021) [12]. In this case we instead use

the logistic function to model the prediction as

p(X) =
eβ0+β1X1+...+βkXk

1 + eβ0+β1X1+...+βkXk
.

The coefficients β are estimated by the maximizing the likelihood function, or log-likelihood

function with the observations x1, . . . , xn

L(β;x1, . . . , xn) =
n∏
i=1

P[xi; β]

⇔

lnL(β;x1, . . . , xn) =
n∑
i=1

P[xi; β]

by finding the zero of the gradient ∇L(β) = 0. The more technical details are omitted since

this can easily be calculated in any statistical software, such as using the glm function in R, see

Bishop (2006) [2] for a deeper explanation.

Moving more straightforward to modeling the first step is to classify the data so that if it

belongs to the category which we want to predict the probability of we assign this value 1 and

otherwise 0. In this case we create an array with data that replaced all days with upward price

movement with 1 and all downward price movement with 0. Next decide what explanatory

variables to include. To compare this with the Markov chain model presented before today’s

price movement is included to predict the probability of tomorrows price being larger than

today, but more explanatory variables could be added.
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4 Data

The need for participants in the energy market to handle risks in the markets has made a fi-

nancial market necessary. Such contracts, usually forward or futures contracts, can be traded

at Nasdaq Commodities who offer energy derivatives and related products and also operate as

a clearing house via Nasdaq Clearing. The contracts are an agreement between a buyer and a

seller to pay the difference between the agreed price and the spot price. The data in this thesis

consist of Nasdaq closing prices for monthly electricity futures contracts for the years 2018-

2022, from the first trading day which is 6 months before delivery until the last trading day

before delivery. Monthly contracts are considered to be the most liquid contracts and this thesis

will be limited to only consider this type of contracts. The choice on the five year period is be-

cause it is long enough to experience both an exceptional low priced period and an exceptional

high priced period and will give a trading result for 60 months, enough data points to be able to

present a result which exemplifies the methods presented in chapter 3. The underlying asset for

the Nordic electricity futures contracts is the Nordic system price from Nord Pool, which is a

common theoretical price for the Nordic area. The closing prices for all 60 contracts are plotted

in figure 1 together with the rolling front month which corresponds to the last months trading

period for each contract. The rolling front month contracts are further illustrated in figure 2 to-

gether with the spot price to give a feeling on how the spot prices give a price driving influence

on the futures contract and with the spot result for each contract. A total list of the contracts

and relevant statistics is given in the appendix.

What the player wishes to predict is the profit or loss for the next trading day, PLt+1, defined

as PLt+1 := (f(t + 1, T )− f(t, T )), where f(T, T ) = S(T ). The profit and loss for the front

month contracts are illustrated in 3. If a positive number of PLt is more often followed by a

positive number than a negative number and vice versa then the data points in a plot like figure

4 should be more clustered in quadrant I and III. For this example data there is also a lot of

opposite findings, suggesting that such an approach would also fail several times and that a

more refined method would be necessary to ensure more winnings.
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Figure 1: Monthly Nordic electricity futures contracts 2018-2022 with 6 months trading period,

rolling front month in dashed line.

Figure 2: Nordic electricity futures contracts front month 2018-2022 with corresponding spot

result and spot price at trading day.

Figure 3: Profit and loss for front month.
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Figure 4: Profit and loss plotted against profit and loss for the next day, front month data.

4.1 Simulations

In this section we will use the methods presented in chapter 3 in order to perform some simula-

tions.

For the benchmark model we chose to use a naive hedge that takes a buying position every

trading day for every contract. The next day the player receives a profit if the price did go up

or a loss if the price went down. The last trading day is settled against the corresponding spot

result.

The next strategy is based on Markov chains and in this attempt we divide the data into

three different states and calculates the probability transition matrix T with the conditional

probabilities which shows that there is a little higher probability to guess right if we use todays

price movement to predict the movement of the nexyt day. Buying after a non-negative profit is

in this case successful 56% of the time.

PLt+1 > 0 PLt+1 = 0 PLt+1 < 0

PLt > 0 0.56 0.03 0.41

PLt = 0 0.56 0.03 0.41

PLt < 0 0.47 0.02 0.51

With only this information the hedger decides to buy if PLt ≥ 0 and otherwise not buy.
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For the speculating player we allow both short and long positions so this player chose buy if

PLt ≥ 0 and otherwise sell. From the probability transition matrix we can also get informa-

tion about steps ahead. By performing matrix multiplication with itself we get a new matrix

T 2 that tells us the probability of the states two steps forward. Repeating this n times until the

probabilities stabilize will give the steady state vector for this probability transition matrix as

(0.519, 0.025, 0.456). This matrix stabilizes after only a few iterations which indicates that the

current state will not have a great influence for the events a few steps ahead. This is interesting

information also for the naive hedge, since it predicts that a naive hedger will take the right

position in 52% during this time period. To capture more of the price trend one could instead of

todays value consider the moving average of some different lengths and compared with current

value perform the same strategy, if todays value is larger then the moving average the price

trend seems to be upwards and one should take a buying position. A test performed on the front

month contracts for MA(1)-MA(10) visualized in figure 5 showed that it gave the same number

of wins or worse and this method was therefor not investigated further.

Figure 5: Number of wins for different moving averages compared with todays value, with front

month contracts for 2018-2022 as data.

The same thought was also tested in the logistic regression case with the front month data.

A first model included the lagged values from 1 to 5 previous steps as explanatory variables

with the true direction as response variable. A positive coefficient suggests that an increased

value of previous profit and loss gives higher probability that tomorrows value is positive, which
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corresponds to previous hypothesis. The z-statistic tests the null hypothesis H0 : β = 0 and a

larger (absolute) value of the z-statistic is associated with evidence against the null hypothesis.

For β1 we can reject the null hypothesis but the result suggest less impact from lag 2-5. In

the next try these were excluded and only lag1 remained and the result of this model with the

plotted predicting line is presented in the graph in figure 6.

Call:

glm(formula = Direction ˜ Lag1 + Lag2 + Lag3 + Lag4 + Lag5,

family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1207 -1.1888 0.9519 1.1626 1.5571

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.030486 0.054586 0.559 0.57650

Lag1 0.027266 0.010007 2.725 0.00644 **

Lag2 0.005141 0.008770 0.586 0.55773

Lag3 0.005223 0.008638 0.605 0.54543

Lag4 -0.002748 0.008784 -0.313 0.75437

Lag5 -0.006498 0.008949 -0.726 0.46772

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

For the final logistic regression simulation the coefficients was re-estimated for each contract

with the most recent 6 months data as observations, lag1 as explanatory variable and direction

as response variable. Recall from previous chapter that this gives a model of the form

P[PLt+1 ≥ 0] =
eβ0+β1PLt

1 + eβ0+β1PLt
(1)
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Figure 6: Plot with data points and corresponding logistic regression.
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5 Result and discussion

A summary of the simulation result presented in the table below shows that just a simple first

model did help to improve the trading profit. From previous research we know that a risk avert

player is willing to pay a premium to avoid risk while others are willing to take the risk for the

possibility of profit, and the strategy of choice would depend on the players utility function.

Hedger Speculator

profit/contract σ wins profit/contract σ wins

Naive 20.42 4.91 51.8%

Markov model 36.08 3.89 55.3% 51.73 4.90 55.3 %

Logistic regression 36.82 4.15 57.4 % 53.24 4.90 57.4 %

A small change for the hedger in just trying to predict what days to not buy decreased the

volatility and improved profit and number of wins. The more risk taking speculator more than

doubled the profit during the period compared to the inactive naive hedge, but in order to win

higher profit the player has to accept larger volatility. An interesting result is that the largest

differences are seen in the periods 2020 and 2022 when the price changes start to deviate more

and the risk for both larger profits and larger losses increases.

Figure 7: Profit for each contract and method.
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Figure 8: Wins for each contract and method.

6 Conclusion

In this thesis a stochastic game as a subarea of game theory was presented together with a

suggestion on how to model transition probabilities as a tool for the player to choose the next

step in a sequential game. This was applied on data from the Nordic electricity futures data

with two different players. The data in this thesis was limited to only monthly contracts, but

the strategies could be extended to also include yearly, quarterly and/or weekly contracts. The

scenarios could also be extended to include more possible states. Instead of just considering the

movements up or down, would we find a difference with four steps and divide up and down into

large and small ups and downs or extend this to even more steps?

A game theoretical approach for trading strategies should give valuable insights for partici-

pants, but one should not focus only on a technical analysis but combine it also with fundamental

analysis for the full picture. An example of this was presented in chapter 2.3 where the model

of Ludkovski and Yang (2015) [14] also included high and low demand. Another factor that

is reasonable to include if one wishes to extend the model to also include such factors could

the hydrobalance in the area, the expected nuclear availability or expected windpower output.

Interactions between the different players would be an interesting next step for further research,

stochastic games gives a very good foundation for modeling with machine learning algorithms

and this gives an almost endless number of variations one could use to perform simulations of

this type. As a conclusion it should benefit market participants to invest in trading strategies as
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a tool to manage the increased price volatility in order to reduce risk. The result from this thesis

shows that even simple strategies can improve the outcome.
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7 Appendix

Contract # of obs. Mean Min Max Std. Dev Spot result

NPENOMJAN18 128 33,55 31,4 36,45 1,29 32,93

NPENOMFEB18 129 34,03 31,7 36,63 1,16 39,58

NPENOMMAR18 126 30,35 27,2 39,8 2,70 43,43

NPENOMAPR18 125 29,70 25,65 39,5 3,56 39

NPENOMMAY18 123 26,49 20,85 32,98 3,30 33,45

NPENOMJUN18 120 26,91 18,6 42,25 5,84 44,8

NPENOMJUL18 122 29,06 18,25 47,25 8,19 51,7

NPENOMAUG18 122 36,32 23,4 54,6 9,67 51,73

NPENOMSEP18 125 42,29 27,7 59,4 9,03 47,98

NPENOMOCT18 125 44,58 31,95 58,65 6,87 43,04

NPENOMNOV18 128 48,18 38,5 59,15 4,57 48,37

NPENOMDEC18 131 49,43 43,6 59 3,47 51,56

NPENOMJAN19 127 52,10 46,45 61 3,21 53,78

NPENOMFEB19 127 53,06 46 60,75 4,10 45,86

NPENOMMAR19 124 47,23 39,65 56,3 4,79 40,86

NPENOMAPR19 125 44,47 36,7 54,65 5,12 40,82

NPENOMMAY19 121 40,71 33,5 48,85 4,12 38,07

NPENOMJUN19 119 40,05 33,55 47,55 3,43 27,96

NPENOMJUL19 121 37,11 27,35 45,9 4,57 35,15

NPENOMAUG19 122 37,50 29,5 43,48 3,71 36,11

NPENOMSEP19 124 38,92 33,6 45,45 3,35 32,92

NPENOMOCT19 124 37,79 33 44,28 3,32 37,1

NPENOMNOV19 128 40,24 35,9 45,88 2,54 42,15

NPENOMDEC19 129 41,09 38,15 46,15 1,65 36,79

NPENOMJAN20 128 43,68 34,45 48,5 2,01 24,1

NPENOMFEB20 127 40,67 18,05 47,15 6,68 13,08

NPENOMMAR20 125 33,14 10,65 42,35 9,96 9,01

NPENOMAPR20 126 26,91 5,7 40,2 11,76 5,26

NPENOMMAY20 122 19,83 5,2 35 10,80 8,34
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Contract # of obs. Mean Min Max Std. Dev Spot result

NPENOMJUN20 120 13,99 3,9 31,55 8,73 3,15

NPENOMJUL20 123 9,02 4,18 23,55 5,10 2,35

NPENOMAUG20 124 9,68 4,55 15,25 2,53 8,79

NPENOMSEP20 125 14,22 7,65 22,75 3,02 15,73

NPENOMOCT20 125 16,39 10,35 25 3,23 14,63

NPENOMNOV20 128 22,16 13,75 28,15 2,74 6,32

NPENOMDEC20 130 22,69 6 29 5,03 20,09

NPENOMJAN21 129 26,03 12,1 32,65 4,59 45,81

NPENOMFEB21 126 28,75 14 51,4 7,55 46,84

NPENOMMAR21 125 25,42 9,65 42,65 8,43 34,21

NPENOMAPR21 126 24,49 8,7 38,13 8,18 37,86

NPENOMMAY21 123 23,87 7,95 37,6 8,00 44,28

NPENOMJUN21 120 25,81 11,2 43,55 7,10 43,54

NPENOMJUL21 122 28,03 18,7 45,05 7,17 53,99

NPENOMAUG21 124 34,60 21,75 57 9,36 65,39

NPENOMSEP21 126 41,55 25,7 72,75 12,34 86,01

NPENOMOCT21 125 48,51 29,15 89,13 15,18 57,1

NPENOMNOV21 127 55,61 36,88 88,78 13,41 84,05

NPENOMDEC21 131 62,28 38,98 129 15,26 147,18

NPENOMJAN22 130 78,91 46,8 188 29,66 93,25

NPENOMFEB22 129 83,08 55 145 20,32 90,25

NPENOMMAR22 127 66,51 40,1 116,1 15,62 144,79

NPENOMAPR22 128 72,87 37 161,5 31,71 133,8

NPENOMMAY22 125 64,40 25,5 125,65 26,83 113,61

NPENOMJUN22 123 57,31 30,13 107,5 21,58 116,12

NPENOMJUL22 123 58,72 24,33 115,5 25,14 94,02

NPENOMAUG22 123 84,78 29,25 143 33,53 222,86

NPENOMSEP22 126 133,05 61,5 320 57,48 212,27

NPENOMOCT22 125 154,93 81,75 322 53,06 73,54

NPENOMNOV22 128 209,96 108,88 400 71,81 109,26

NPENOMDEC22 130 265,65 126 530 86,52 223,17
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