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Abstract 

Globally, a significant portion of energy comes from hydropower. However, 

harnessing hydro energy interrupts the natural state of river flows, thus affecting 

the ecological processes of the surrounding communities. In this thesis, a water 

level control model is described to sustain a desired head for a hydropower plant 

despite the nature of the stream flows. A scientific analysis is carried out on the 

physical set up of a hydropower reservoir via mathematical modelling. The study 

depicts that the amount of electric power, 𝑃𝑒(𝑡) generated from a specific hydro 

reservoir is mainly controlled by the current water level, ℎ(𝑡) and its 

corresponding outflow volumes, 𝑓𝑜𝑢𝑡(𝑡). However, these two variables are largely 

constrained by the behaviour of the inflow volumes, 𝑓𝑖𝑛(𝑡). So, by relating the 

torque-force balance equations of all the dynamic elements involved we develop 

a mathematical model that maintains a steady water level at sustainable inflow 

rates. The Routh-Hurwitz stability criterion and the Final Value theorem are 

applied to decide the PD-control actions that stabilize the system. The penstock 

cross-sectional area, 𝐴𝑃 is varied to attain the correct 𝑓𝑜𝑢𝑡(𝑡) for the desired ℎ(𝑡). 

The model behaviour is verified using Simulink simulation software. Eventually, 

the model accounts for hydroelectric power production patterns that depends on 

the nature of the stream flow rates. 

 

Keywords: Automatic control, Hydropower modelling, PD-controller, 

Sustainable power production, Water level control. 
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1. Introduction 

1.1. Background 

In the world today, sustainability has become a key topic for discussion and 

integration in almost all industrial sectors. The main goal is to have the current and 

future generations enjoy the same resources repeatedly without wastage. The 

Sustainable Development Goals (SDGs), 2030 results into great challenges to the 

energy sector to transform power production towards sustainability amidst the 

growing energy demands due to growing populations around the world. 

Hydropower is a renewable source of electricity that has the potential to balance 

its production as well as the production of other variable renewable sources like 

wind and solar through damming and storing water in the reservoirs. It is one of 

the world’s most used sources of electricity [6], [8]. It is expected that the global 

hydropower generation will raise by 85% by 2050 aiming to decarbonize the globe 

by substituting fossils with hydropower [6]. Nevertheless, since hydropower 

production uses water as a key resource to drive the turbines, hydropower 

producers employ reservoirs to provide hydraulic heads to facilitate electricity 

generation.  

In addition, a water reservoir can be used to release water through the turbines (on 

schedule) when it’s required to balance the energy demands [5], [7]. This is 

because water reservoirs assist in storing water between seasons of limited flows. 

More so, reservoirs act as connections between the river flow availability and the 

energy demand by stocking and storing the required amount of water for electricity 

production throughout the year. In turn, they introduce artificial water-level 

changes which alter the natural flow rate of the river due to the numerous 

fragmentations along the river course. Moreover, the nearby ecological processes 

and communities are greatly affected [5[, [9]. The Millennium Ecosystem 

Assessment, 2005 research revealed that of recent days the freshwater ecosystems 

are among the world’s most endangered ecologies [5]. Thus, such environmental 

impacts need to be alleviated to preserve the environment for both the current and 

future generations.   
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In Sweden, about 2000 hydropower plants are installed around the country 

accounting for an average annual energy production of 65 TWh. This is based on 

calculations made for periods between 1960–2010 [7]. All such power stations are 

supposed to undergo environmental rehabilitation through implementing the EU 

Water Framework Directive (Directive 2000/60/EC) [7]. This is because during 

the development of river regulations, ecological effects were less considered, 

where migration paths and minimum flow releases are lacking in most dams [5], 

[6]. Consequently, new advancements to improve the ecological conditions are 

equally required. In most cases, hydropower producers would want to implement 

environmental preservation measures while maintaining their productivity high in 

the industry.  

One of the Swedish regulations set aside to companies operating hydro power 

stations is that they are required to breed fish to compensate for the damaged 

breeding grounds around the dam [15]. For instance, at Stornorrfors dam, 

Vattenfall has set up one of the largest fish-breeding plants (located at Norrfors) 

[15]. Vattenfall harvests 80,000 salmon smolt, 20,000 sea trout and 20,000 

graylings fish annually [15]. In the same spirit, the Vindelälven Fish Council and 

the Swedish University of Agricultural Sciences have partnered with Vattenfall to 

analyse how the passage of fish past Stornorrfors can be improved [15]. 

Thus, in this study, we develop a control model that can be adopted to improve 

and balance the ecosystem’s health around the dam by controlling the water level 

of the reservoir to a desired height based on the nature of the inflows. We start by 

examining the water flow data trends of Sweden and then select a sample 

population to be used in validating the model subsequently. The criteria used to 

select data was based on location and the annual energy production per installed 

power capacity on a specific river. Table 1.1 describes some streams in Sweden 

along with their installed capacities. Lule River located in the Northern part of 

Sweden, serves the 1st and 3rd largest power stations in Sweden; Harsprånget and 

Porjus power station with 977 MW and 480 MW installed capacities respectively.  

It also accommodates the first remotely monitored station (Ligga). In addition, 
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Umea River serves the 2nd largest power station in Sweden; Stornorrfors power 

station with 599 MW installed capacity.  

Table 1.1: Swedish rivers and installed capacities [9], [15], [16]. 

Sr. River name 

River length 

(miles) 

Installed power 

capacity (MW) 

Energy production 

capacity (TWh) 

1 Lule älv 460 4117 13,4 

2 Indals älv 430 2111 8,5 

3 Ångerman älv 460 2599 6,8 

4 Ume älv 465 1765 6,8 

5 Ljusnan älv 440 817 4,8 

6 Dal älv 540 1156 5,6 

7 Skellefte älv 440 1017 3,9 

8 Fax älv 400 2599 3,5 

9 Göta älv 750 303 2,1 

10 Ljungan älv 400 602 2,1 

11 Klara älv  388 1,9 

 

The installed power stations on such rivers were also sampled to have details of 

different reservoir information like the water heads and base area estimates. Table 

1.2 depicts a list of 10 power plants built along Lule River with their corresponding 

water heads.  

Table 1.2: Hydropower plants in Lule River, Sweden [9], [15]. 

Sr. Power plant  River(basin) Electricity Capacity (MW) Head (m) 

1 Akkats Lesser Luleälven 157 46 

2 Parki Lesser Luleälven 19 14 

3 Laxede Luleälven 207 25 

4 Porsi Luleälven 282 33 

5 Boden Luleälven 80 13 

6 Porjus Stora Luleälven 417 60 

7 Letsi Lesser Luleälven 483 135 

8 Seitevare Lesser Luleälven 214 182 

9 Harsprånget Stora Luleälven 818 107 

10 Ligga Stora Luleälven 342 40 

 

Thus, based on such samples above we display some flow data below graphically 

in Figure 1.1. The figure shows the mean monthly water flow rates, [17] that were 
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measured at Porjus Power station along River Lule in the North of Sweden during 

the year 2020. From the graph, it’s clear that the flow rate follows a trend that 

depends on the nature of seasons throughout the year. Due to snow melting and 

high rainfall, the flows increased during the months of January, February and 

continued into March. Spring floods occurred around early April, thus an increase 

in the flow rates throughout this period. The flow rates started to decrease from 

May to July. A rapid flow rate rise kicked off between July and August. This was 

probably due to the melting snow that remained especially in the mountain areas. 

The high precipitations during the months of September through into November 

maintained relatively high flow rates during these months. 

 

Figure 1.1: Lule River average monthly flow rate [17], [25].  

Using the sample flow data pattern above, we later derive a likely production 

pattern for hydropower units from the plant.  

In summary, the model is demonstrated using Simulink software with such hydro 

flow data collected from Lule River at Porjus Power plant, Sweden. Findings are 

presented in the results section of this report. 
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1.2. Problem 

Hydropower plants require water reservoirs to suitably facilitate their power 

generation throughout the year. To fill up a reservoir, often the flow and direction 

of natural rivers are altered. In most cases, power plants interrupt the water flow 

by stocking reservoirs basing on seasons, for instance spring through to winter. 

This disrupts the ecological characteristic of the streams, thus harming dependent 

habitats. Eventually, it causes a decline in biodiversity around the affected regions. 

Moreover, in situations of unpredictable extreme rainfalls and melting snow 

seasons where the stream flow rates are considerably high, the reservoirs attain 

higher water levels that may result to unnecessary overflows and consequently 

floods the environs. This may lead to excessive damages to the affected 

communities. On the other hand, low flow rates may not support the necessary 

hydropower production.  

Further, the Swedish Agency for Marine and Water Management is expected to 

impose new rules to improve ecological balance [10], [19]. Besides, the EU Water 

Framework Directive came into force to maintain good ecological and chemical 

status of water [5]. In this situation, hydropower plants are required to adapt new 

production models to achieve such green targets. Otherwise, they may face 

legislative complexity to keep the plants running.  

Therefore, in this thesis we design a water level control system model that is aimed 

at regulating water level in the reservoir to the desired operating level based on the 

nature of the stream flow. The model is meant to maintain a steady hydro level in 

the reservoir without interfering with the natural flow behavior of the stream. This 

is done by manipulating the volume of water that leaves the reservoir to the turbine 

house depending on what ecologically flows into the reservoir. As a result, we 

derive a sustainable power production trend that follows the natural flow behavior 

of the stream, thus reducing damage to the river ecosystems. This will create a 

smooth bridge between power producers and environmental organizations. This 

model may be especially suitable for small-scall hydropower plants. 
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1.3. Purpose 

The thesis is aimed at designing a suitable water level control model that can 

facilitate a green production trend for hydroelectric power units based on the 

availability of ecological river flows.  

1.4. Objectives 

The following write up highlights the specific objectives of this thesis work. 

o To review related literature and understand in detail different types of 

controllers as regards to automation and control engineering. 

o To identify the water flow mode pattern of Sweden and gather the relevant 

river flow data. 

o To retrieve suitable parameters from river flow data for use in the model 

validation process. 

o To derive the dynamic system equations and hence transfer functions for each 

dynamic element through the set values to the measured value. 

o To establish a controller that can generate a suitable optimized control signal 

to the actuator to enable system stability.  

o To estimate periodic green production patterns for hydroelectric power units 

of a power plant that is controlled to maintain a steady hydro level for the 

reservoir.  

o To simulate the model, validate it with actual data and acquire results in form 

of Simulink block diagrams and graphs. 

o To document all the findings of this thesis in a report format for future 

references. 

1.5 Methodology  

Based on literature review of automation and control theory, hydroelectric power 

production, and environmental flows, we design a suitable water level control 

model for a hydroelectric power reservoir. System transfer functions were 

modelled using mathematical tools like differential equations (DEs) and Laplace 

transforms to link the system dynamics from set values to the measured values. 

Moreover, the study of control theory in a more detailed approach provided us 
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with skills to decide the corresponding parameters for implementing the controller 

design via the approaches of the Routh-Hurwitz stability criterion and the Final 

Value theorem. 

The samples of water flow data and reservoir information from two major rivers, 

the Lule River and Umea River of Sweden, were collected using secondary data 

sources such as SMHI, the Swedish Meteorological and Hydrological Institute and 

Vattenfall, a Swedish multinational power company that generates power. Mean 

values from such statistics was utilized to simulate and verify the model via 

Simulink software. A report detailing the model design and results was presented 

with block diagrams and graph formats here in.   

1.6 Scope of the work 

The study is limited to the dynamics of the water reservoir amidst other elements 

that make up the power plant. We focus on the reservoir inflow and outflow 

analysis while keeping factors like temperature among others constant. A 

rectangular cross-sectional area is assumed as the inlet to the penstock. Further, it 

is assumed that there is no energy loss along the penstock passage to the turbines. 

All energy at the mouth of the penstock entry is directly transferred to the turbine 

blades, thereby accounting to a total plant efficiency of around 95%. Moreover, 

the actuator is implemented with a non-flexible connection shaft to the load. This 

means that the motor rotor and the load experience equal displacements whenever 

they happen. Porjus power station water flow information was used as input data 

to the model. The same data is limited to a measure resolution of mean monthly 

values. Yet, water heads are actual reservoir heights from the sampled power 

stations of Porjus power station, Harsprånget power station among others.  
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2. Theory 

2.1 Hydropower  

The phrase hydro is a scientific word used in the field of hydrology to mean 

‘water’. The fall, movement, and circulation of water both on and below the earth’s 

surface is a continuous natural cycle of water known as the water cycle. This water 

cycle is constantly renewed by the sun and other natural processes. Which means 

that, if this natural water cycle is not interrupted, water-energy will continue to be 

available for conversion to other forms of energy especially electric energy, 𝐸𝑒  by 

both the current and the future generations, hence a sustainable energy source.  

Creating a dam not only stores and supplies huge volumes of water but also creates 

an elevation from which water is dropped along a steep pipeline, the penstock to 

the turbine blades installed in the powerhouse. At the water head, the accumulated 

water volumes include potential energy, 𝐸𝑝 due to the height difference between 

the head and the tail race just after the powerhouse.  The giant penstock (normally 

round cross-section area of 2–3-meter diameter) provides a column of water with 

a force directed to the turbine blades via the nozzle (end of the penstock). Figure 

2.1 displays a basic schematic configuration of a hydroelectric power plant. 

 

 

Figure 2.1: Basic schematic set up of a hydroelectric power plant (top view). 

 

The water stored in the reservoir has potential energy. It is this potential energy 

that is converted to kinetic energy, 𝐸𝑘 (with a high velocity) as it flows out of the 

reservoir via the penstock to the turbine buckets. In turn, the blades rotate the drive 
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shaft connected to the electricity generator thereby changing the water kinetic 

energy into mechanical energy, 𝐸𝑚. Furthermore, the rotational mechanical 

energy is changed to electrical energy, which is then transformed by transformers 

to higher voltage values for transmission, distribution, and consumption. Figure 

2.2 depicts the stages and energy forms involved in converting water energy to 

electricity energy.  

 

 

Figure 2.2: Hydro-to-Electric energy conversion block diagram. 

2.2 The three-term control actions 

In feedback control systems, the fundamental concept is to control and minimize 

the error signal between the set value and the measured value to an acceptable 

quantity if not zero. Thus, one can employ at least one form of standard feedback 

controllers readily available, for instance, the Proportional (P-only), Proportional-

Integral (PI), Proportional-Derivative (PD) and Proportional-Integral-Derivative 

(PID) controllers. The implementation of any of the control modes above depends 

on the process operating conditions as well as performance requirements. The 

controller is used to calculate and provide a control (manipulated) signal to the 

actuator. The signal manipulation is based on how much the system output is offset 

from the set point. It is not straight forward to choose a particular type of controller 

to be used. This is because each term responds differently to the error signal. 

Therefore, one can carry out analysis through some of the available standard 
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design techniques like Routh-Hurwitz stability criterion [3], Nyquist stability 

criterion [3], [12], Pole placement [12], [14] among other techniques. Such 

practices can ease the process of determining specific responses of control terms 

to the error signal, thereby tuning the controller to a suitable combination. In this 

thesis, we utilize the Routh-Hurwitz stability criterion which checks whether the 

roots of the closed loop characteristic equation are in the right half-plane or in the 

left half-plane and hence derive the range in which the gain values lie for system 

stability. Moreover, the Final value theorem is also employed to determine steady 

state errors for each controller combination. Most commonly, a P-only controller 

is examined first. This is done to ensure that the correction to the controlled 

variable is relative to the error between the measured value and the desired value. 

Once this error is acceptable for control, the other control terms are added to the 

proportional term one by one (if not all at once) to account for the resulting poor 

system behavior likely to occur during the P-term tuning. Consider the general 

control system block diagram in Figure 2.3. By assuming an ideal sensor in the 

negative feedback path, each control term is elucidated further in the next section.  

 

Figure 2.3: General control system block diagram. 

 

2.2.1 The Proportional (P) term 

In feedback control, the P-term is supposed to close the feedback loop for the 

system thereby tracking the reference signal (set point) closely [4]. It is considered 

the main driving force of the controller [13]. The P-term produces a control signal, 

𝑢(𝑡) that is proportional to the present error, 𝑒(𝑡) between the set value and the 
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plant output [3]. In other words, 𝑢(𝑡) is the controller gain multiplied by 𝑒(𝑡)  plus 

a bias [13]. The bias is required to make the resultant control signal a non-zero 

value once 𝑒(𝑡) is zero.  Hence, based on this we establish (2.1). In most cases, 

the bias is neglected in the expressions but considered during implementations. 

𝑢(𝑡) = 𝑘𝑝  𝑒(𝑡)                                                                                                              (2.1)  

𝑤ℎ𝑒𝑟𝑒, 

𝑘𝑝 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Thus, transforming this expression (2.1) to Laplace can support in deriving the 

controller transfer function further down. 

𝑈(𝑠) = 𝑘𝑝  𝐸(𝑠) 

𝑈(𝑠)

𝐸(𝑠)
= 𝐷(𝑠) = 𝑘𝑝                                                                                                        (2.2) 

It should be noted that a higher gain value results into a higher system output. This 

may cause the system to oscillate and hence unstable. If 𝑘𝑝 is very low, the control 

action may be very low in response to disturbances. In essence, all these actions 

could lead to an offset between the set value and actual output value [4], [13]. The 

offset value is a steady error retained by the controller proportional control action. 

This is the major drawback of using the P-only control and it cannot correct this 

problem alone. You must call upon other control terms to eliminate this offset. 

2.2.2 The Integral (I) term 

This is a control mode, where the control signal 𝑢(𝑡) is linearly proportional to the 

integral of the error signal, 𝑒(𝑡). This control term forces the error to zero by 

considering the past system responses [2]. This implies that 𝑢(𝑡) is a sum of all 

the past tracking errors at each instance the controller is deriving the control signal 

[3], [4]. We note that, the integral term is not just proportional to the present 𝑒(𝑡) 

but also considers the past errors (if any) cumulatively. This implies that a pure 

integrator considers both the P-term plus the I-term. This in turn accounts for the 

constant disturbance cancellation [3]. On the other hand, the response to 

accumulated past errors can cause the present value to overshoot the set point. So, 

if the process variable is not at the set value, the integral controller will continue 

to change the controller output until the error is zero. Of course, you must give 
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adequate time to this control term to carry out the control action sufficiently. 

Therefore, from this information we define the 𝐼 − 𝑡𝑒𝑟𝑚 mathematically in (2.3) 

below.  

𝑢(𝑡) = 𝑘𝑖 ∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏                                                                                                    (2.3) 

𝑤ℎ𝑒𝑟𝑒, 

𝑘𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜏 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑡𝑎𝑘𝑒𝑠 𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡

= 0 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒, 𝑡 

If we transform (2.3) to the 𝑠 − 𝑑𝑜𝑚𝑎𝑖𝑛, the following transfer function for the 

integral term is obtained. 

𝑈(𝑠) = 𝑘𝑖  
𝐸(𝑠)

𝑠
 

𝑈(𝑠)

𝐸(𝑠)
= 𝐷(𝑠) =

𝑘𝑖 

𝑠
                                                                                                      (2.4) 

For small errors, the integral term will increase or reduce the value of the control 

signal at a slow rate. If 𝑒(𝑡) is large, the controller output will be changing at 

faster rates. The controller’s integral time, 𝜏 sets the speed of the integral action 

[13]. A longer 𝜏 results in a slow integral action and vice versa. 

2.2.3 The Derivative (D) term 

The third and final control term is the derivative term, where the control law 

suggests that 𝑢(𝑡) is proportional to the time derivative of 𝑒(𝑡) [3]. That is, it looks 

at the present rate of change of the error as expressed below in (2.5). 

𝑢(𝑡) = 𝑘𝑑

𝑑

𝑑𝑡
𝑒(𝑡)                                                                                                        (2.5) 

𝑤ℎ𝑒𝑟𝑒, 

𝑘𝑑 = 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Expression (2.5) can be transformed into Laplace to obtain the controller transfer 

function below in (2.6). 

𝑈(𝑠) = 𝑘𝑑  𝑠𝐸(𝑠) 

𝑈(𝑠)

𝐸(𝑠)
= 𝐷(𝑠) = 𝑘𝑑  𝑠                                                                                                    (2.6) 
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It should be noted that, the 𝐷 − 𝑡𝑒𝑟𝑚 improves the system closed loop stability, 

speeds up transient response, and reduces overshoots [3]. The most important 

feature of this controller is that it predicts where the future error is heading [2], 

thereby giving a control action based on the 𝑒(𝑡) behavior. Thus, leaving other 

factors constant the design engineer has control over the three controller constant 

gains (𝑘𝑝 , 𝑘𝑖  and 𝑘𝑑) only, which he/she can modify to achieve a suitable control 

signal to the process under control. 

2.3 Motors 

In most cases, various types of direct current (DC) motors like shunt motors, 

compound motors and series motors are applied as primary movers depending on 

the load connections, type of loads, amount of starting torque, among others. For 

instance, the load can be connected directly to the motor shaft or through a gear 

arrangement [18]. More so, the load can be constant or intermittent. Thus, in this 

thesis a typical DC motor is selected to provide a translational motion to the 

outflow gate valve. However, the motor theory is partially covered by this thesis: 

(see section 4.1). 
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3. Electric power from a hydropower plant 

In this section, we specifically examine and derive expression that can evaluate 

the amount of electric power from a given water reservoir set for generation of 

hydropower units.  

3.1 The instantaneous electric power from a given hydropower 

reservoir 

The electric power, 𝑃𝑒 in joules per second or watts can be expressed as a function 

of the present water level difference, ℎ  and the corresponding amount of water, 

𝑓𝑜𝑢𝑡 exiting the reservoir at a certain time. That is, 𝑃𝑒 = 𝑓(ℎ, 𝑓𝑜𝑢𝑡). Thus, given 

the volumetric outflow rate (m3/s) of water, the head (m), installed capacity (MW) 

and the efficiency of the plant, the amount of electricity to be generated can be 

determined. This can be derived from the gravitational potential energy, 𝐸𝑝 (which 

depends on mass and vertical position of the object) present in the volumes of 

water contained in the reservoir at a particular time, 𝑡. Hence, referring to Figure 

3.1 below we assume a water reservoir of base area, 𝐴𝑟 (𝑚2) and the penstock 

aperture area, 𝐴𝑝 (𝑚2). The theoretical 𝑃𝑒 is obtained and henceforth decide the 

actual by involving the overall plant efficiency. We let the average total weight of 

the water body to be at the centre of gravity (c.g). 

 

Figure 3.1: Hydropower reservoir water inflow and outflow relationship. 
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We start by noting the energy-balance fact that electrical energy, 𝐸𝑒 is equal and 

opposite to the corresponding potential energy, 𝐸𝑝 currently available in the 

reservoir. In other words, as we extract 𝐸𝑒 from the moving or falling water of the 

reservoir, 𝐸𝑝 reduces in the reservoir. Hence, 

𝐸𝑒 = −𝐸𝑝                                                                                                                   (3.1) 

And from definition, power is the rate of change of energy. Therefore, the 

theoretical instantaneous electrical power available in the falling water from any 

given reservoir can then be expressed as the time derivative of the present potential 

energy in the reservoir.  This leads us to (3.2) below. 

  𝑃𝑒 =  
𝑑

𝑑𝑡
(−𝐸𝑝)                                                                                                            (3.2) 

Also, there are some energy losses along the energy conversion process which 

reduce the practical 𝑃𝑒 to some value less than the theoretical 𝑃𝑒. This means that 

the system efficiency, 𝜂 must be well-thought-out to account for these losses. 

Hence equation (3.3) results. 

  𝑃𝑒 =  𝜂
𝑑

𝑑𝑡
(−𝐸𝑝)                                                                                                        (3.3) 

Then, from (3.3) we need to obtain 𝐸𝑝 since this is the present potential energy in 

the volume of water contained by the reservoir. Thus, using the formula for 

gravitational potential energy, we assume a water body of mass 𝑚 elevated against 

the gravitational force, 𝐹 = 𝑚𝑔 to an elevation of height, ℎ. Then, the potential 

energy in (3.4) results. 

𝐸𝑝 = 𝑚𝑔ℎ                                                                                                                      (3.4) 

If we consider c.g to act at half the height, the average potential energy of the 

water in the reservoir will be as defined below in (3.5). 

𝐸𝑝 = 𝑚𝑔 (
ℎ

2
)                                                                                                                (3.5) 

Then, considering the definition of the total mass of water contained in the 

reservoir, we get the following derivation in (3.6). 

𝐸𝑝 = (𝜌𝑉)𝑔 (
ℎ

2
) = (𝜌𝐴𝑟ℎ)𝑔 (

ℎ

2
) = 𝜌𝐴𝑟𝑔 (

ℎ2

2
)                                               (3.6) 

𝑤ℎ𝑒𝑟𝑒, 
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𝑔 = The acceleration due to gravity (𝑚𝑠−2) 

𝜌 = The density of water (𝑘𝑔𝑚−3) 

Therefore, we now substitute for 𝐸𝑝, (3.6) in (3.3), which turn out to be (3.7) as 

described below.   

𝑃𝑒 = 𝜂
𝑑

𝑑𝑡
 (−𝜌𝐴𝑟𝑔 (

ℎ2

2
)) 

     = − (𝜂
1

2
(𝜌𝐴𝑟𝑔))

𝑑

𝑑𝑡
(ℎ2) 

= −(𝜂𝜌𝐴𝑟𝑔)ℎ
𝑑ℎ

𝑑𝑡
 

                    𝑃𝑒 = −(𝜂𝜌𝐴𝑟𝑔)ℎℎ̇                                                                              (3.7) 

If we apply the continuity relation governing fluid flow [2], the rate of change of 

height can be given by equation (3.8).   

ℎ̇ =
(𝑓𝑖𝑛 − 𝑓𝑜𝑢𝑡)

𝐴𝑟
                                                                                                           (3.8) 

𝑤ℎ𝑒𝑟𝑒, 

𝑓𝑖𝑛 = Volumetric inflow rate (𝑚3𝑠−1) 

𝑓𝑜𝑢𝑡 = Volumetric outflow rate (𝑚3𝑠−1) 

Since the final power is only influenced by the amount of water flowing out of the 

reservoir instantaneously, the volumetric inflow rate, 𝑓𝑖𝑛  tends to zero at that 

instant. Hence, the rate of change of the reservoir water level (3.8) becomes (3.9) 

ℎ̇ = (
−𝑓𝑜𝑢𝑡

𝐴𝑟
)                                                                                                                 (3.9) 

The negative sign implies that the flow rate reduces with decrease in height. 

Substituting  (3.9) in (3.7), we get (3.10) as described below. 

𝑃𝑒 = −(𝜂𝜌𝐴𝑟𝑔)ℎ (
−𝑓𝑜𝑢𝑡

𝐴𝑟
) 

                       𝑃𝑒 = 𝜂𝜌𝑔(ℎ𝑓𝑜𝑢𝑡)                                                                             (3.10) 

Consequently, the practical 𝑃𝑒 is a function of the current water level difference, 

ℎ and the total present volume, 𝑓𝑜𝑢𝑡 of water exiting a given reservoir through a 

guided path, the penstock. That is, 𝑃𝑒 = 𝑓(ℎ, 𝑓𝑜𝑢𝑡).  
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4. System mathematical modelling and design  

In this section, we develop mathematical models for the three main dynamic 

elements interconnected within the water level control system for a hydropower 

water reservoir. That is, the motor, water valve and water reservoir. The model for 

the expected 𝑃𝑒 is also obtained herein. Each dynamic element has a specific DE 

that explains its dynamics. The idea of the DEs model dynamic phenomena is to 

support in determining the various system dynamic equations that describe the 

dynamics of each subsystem from the input voltage, 𝑣𝑎 to the resultant water level, 

ℎ. Thus, the transfer functions of the dynamic elements can be obtained by relating 

the DEs with Laplace transforms. We start by providing an illustration of the 

intended set up of the hydropower reservoir, Figure 4.1. A DC motor is connected 

to the water valve to provide it with translational motions.  

 

Figure 4.1: Simplified schematics for a motor-controlled hydropower water reservoir. 

 

The motor has the ability to move in both clockwise and anticlockwise rotational 

motions. In this model we use an armature controlled DC motor to control the 

position, 𝑥 of the outflow valve by rotating the connected shaft in either direction. 

Figure 4.2 illustrates the physical system model as a simplified block diagram of 

two subsystems. 
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Figure 4.2: Block diagram for the motor controlled water reservoir. 

 

We consider natural water inflows as disturbances to the water reservoir and the 

main control objective of the model is to maintain the water level at the desired 

height. This is because, a height too high may produce an overflow to the reservoir 

hence unsafe and height too low may not support the anticipated production of 

hydropower units. The water reservoir operation is assumed to be continuous 

throughout the year depending on the availability of the natural hydro intake rates. 

Thus, the water reservoir is the process under control. It should be noted that the 

manipulated variables depend on the existing input variables to the process. There 

are two types of control strategies that can be employed here: The feed-back 

controller and the feed-forward controller. The feed-back controller is designed to 

measure the output of the process and compares it with the desired value while the 

feed-forward controller measures the disturbance inputs and sends them to the 

controller to tune the manipulated variable to an acceptable performance of the 

control system before it’s too late [2]. It should be noted that there are various 

benefits related to the feedforward control strategy, for instance disturbance is 

measured and allows immediate correction to be done before it affects the 

reservoir level. However, in this model only feed-back control strategy is 

considered. This is detailed in Figure 4.3 below. 



  
 

 

 

 
21 

 

Figure 4.3: Detailed block diagram showing dynamic elements interconnecting the 

intended water level control system model for a hydropower reservoir with manipulated 

outflow volumes. 

 

Each dynamic element relates a particular output to a specific input within the 

system. That is, the reservoir section relates 𝑓𝑜𝑢𝑡 to the overall system output, ℎ, 

the level controller relates the resultant error, 𝑒 between the desired height and the 

measured height to the control signal, 𝑢 and the actuator relates 𝑢 to the actuating 

signal, 𝑥, which in turn translates to 𝑓𝑜𝑢𝑡. The assumption is that the output 

measurement is done perfectly with zero errors, so we can neglect the transfer 

function of the measurement element in the closed loop set up.  

4.1 The system dynamic equations describing the motor 

In general, we consider an armature equivalent electrical circuit and load 

connections, Figure 4.4. A control signal (voltage source) is applied to the 

armature windings which in turn induce an electro motive force (back emf), 𝑒𝑐𝑜𝑖𝑙. 

The emf is proportional to the rotary motion velocity, 𝜃̇𝑟 = 𝜃̇ of the shaft by the 

electrical constant, 𝐾𝑒 [4]. There is a motor torque, 𝑇𝑚 generated by the DC motor. 

This torque is also proportional to the armature current by the torque constant, 𝐾𝑡 

[4].  
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Figure 4.4: The armature equivalent electrical circuit and the connected load. 

 

Hence, based on the above description the following coupling equations are true. 

𝑒𝑐𝑜𝑖𝑙 = 𝐾𝑒𝜃̇                                                                                                                                 (4.1)  

𝑇𝑚 = 𝐾𝑡𝑖𝑎                                                                                                                                    (4.2)  

Also, we use Kirchhoff’s voltage law (2nd law) to sum up all the voltages around 

the loop. We can as well call it the voltage balance equation. 

𝐿𝑎

𝑑𝑖𝑎

𝑑𝑡
+ 𝑖𝑎𝑅𝑎 = 𝑣𝑎 − 𝐾𝑒𝜃̇                                                                                                     (4.3) 

In many cases, the relative effect of the inductance is negligible compared with 

the mechanical displacements, hence neglecting the armature inductance, 𝐿𝑎 [3]. 

Thus, (4.3) becomes (4.4). 

𝑖𝑎𝑅𝑎 = 𝑣𝑎 − 𝐾𝑒𝜃̇                                                                                                                       (4.4) 

Applying Laplace transform, (4.4) can be expressed in the s-domain as below. 

𝑅𝑎𝐼𝑎(𝑠) = 𝑉𝑎(𝑠) − 𝐾𝑒𝑠Θ(𝑠)                                                                                                   (4.5) 

4.2 The system dynamic equations describing the rotor 

In principle, the rotational motion is governed by Newton’s 2nd law of motion, 𝐹 =

𝑚𝑎. Therefore, the total moment, 𝑀 about the point is equal to the product of the 

body’s mass moment of inertia, 𝐼 about the same point and its acceleration, 𝜃̈ [2], 

[3]. It should be noted that a non-flexible shaft is assumed, thereby leading to the 

same angle of rotation, 𝜃𝑟 = 𝜃𝑝 = 𝜃 for both the rotor and the pinion gears. This 

leads us to equation (4.6).  
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𝑀 = 𝐼𝜃̈                                                                                                                                         (4.6)  

4.2.1 The torque balance equations: Rotary motion 

As earlier highlighted, a non-flexible shaft connection between the motor rotor 

and the load (the valve system) is considered, Figure 4.5. So, the shaft spring 

constant, 𝐾𝑠 and viscous damping, 𝐵𝑠 values are negligible (𝐾𝑠 = 𝐵𝑠 = 0). This 

implies that the angular rotation of the rotor is equally transferred to the connected 

load, the pinion gear.  

 

Figure 4.5: The physical rotor, the load and free body diagram. 

 

Therefore, the following definitions are considered from [2], [4]. 

𝑇𝑚 = Motor torque proportional to the armature current, 𝑖𝑎 

𝑇𝑚 = 𝐾𝑡𝑖𝑎 

𝑇𝐽𝑟
= Opposing torque due to rotor inertia, 𝐽𝑟 

= proportion to angular acceleration, 𝜃̈ 

𝑇𝐽𝑟
= 𝐽𝑟𝜃̈ 

𝑇𝐵𝑟
= Opposing torque due to viscous friction, 𝐵𝑟 around the rotor 

= proportion to angular velocity, 𝜃̇ 

𝑇𝐵𝑟
= 𝐵𝑟𝜃̇ 

𝑇𝐽𝑝
= Opposing torque due to load (pinion gear) inertia, 𝐽𝑝 

= proportion to angular acceleration, 𝜃̈ 

𝑇𝐽𝑟
= 𝐽𝑝𝜃̈ 

𝑇𝑓 = Opposing torque due to the force, 𝑓(𝑡) exerted by the pinion gear to the rack 

gear as it rotates 

= 𝑓𝑜𝑟𝑐𝑒 𝑥 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 



 

 

 

 
24 

𝑇𝑓 = 𝑟𝑝𝑓(𝑡) 

𝑤ℎ𝑒𝑟𝑒, 𝑟𝑝 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑛𝑖𝑜𝑛 𝑔𝑒𝑎𝑟 

 

Hence, based on Newton’s 2nd law of motion stated above, ∑ 𝑇 = 0 we sum up all 

the torques acting on the system to get (4.7) 

𝑇𝑚 − (𝑇𝐽𝑟
+ 𝑇𝐵𝑟

+ 𝑇𝐽𝑝
+ 𝑇𝑓) = 0 

𝐾𝑡𝑖𝑎 − (𝐽𝑟𝜃̈ + 𝐵𝑟𝜃̇ + 𝐽𝑝𝜃̈ + 𝑟𝑝𝑓(𝑡)) = 0                                                                             (4.7) 

If we rearrange and apply Laplace transform, (4.7) can be expressed in s-domain 

as in (4.8). 

𝐽𝑟𝑠2Θ(𝑠) + 𝐵𝑟sΘ(𝑠) + 𝐽𝑝𝑠2Θ(𝑠) + 𝑟𝑝𝐹(𝑠) = 𝐾𝑡𝐼𝑎(𝑠) 

(𝐽𝑟𝑠2 + 𝐽𝑝𝑠2 + 𝐵𝑟s)Θ(𝑠) + 𝑟𝑝𝐹(𝑠) = 𝐾𝑡𝐼𝑎(𝑠)                                                                  (4.8) 

4.3 The system dynamic equations describing the valve 

A rectangular valve of horizontal length, 𝑙, connected in rack and pinion gear 

arrangement is considered, Figure 4.6 with gear ratio of 1: 1. The figure also 

includes the free body diagram showing the forces experienced by the sliding gate 

due to the force exerted by the pinion gear. Moreover, a balancing weight is 

assumed hanging at the opposite side of the sliding gate to balance the gravitational 

force, 𝐹𝑔 = 𝑀𝑔𝑔 where 𝑀𝑔 is the mass of the sliding gate. This indicates that the 

force due to gravitational acceleration is also ignored from the final translational 

equations of motion.  
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Figure 4.6: The physical structure of the outflow valve system and a free body diagram. 

 

The setup of the rack and pinion gears converts angular displacements into linear 

motions. This arrangement will cause the valve to move vertically in either 

direction thereby allowing less or more volumes of water out of the reservoir.  The 

rotation, 𝜃 rads of the pinion gear provides a linear displacement, 𝑥  meters in the 

rack gear attached to the valve.  Therefore, we must consider the two motions. 

This is illustrated in equation (4.9) and (4.10) further down. 

𝑟𝑝𝜃 = 𝑥                                                                                                                                        (4.9) 

And using Laplace transform, we get (4.10) 

𝑟𝑝 𝛩(𝑠) = 𝑋(𝑠)                                                                                                                        (4.10) 

It should be noted that equation (4.10) is the coupling expression for the motor 

with the valve system by translating the rotor motion into a valve displacement. 

4.3.1 The force balance equations: Translational motion 

The pinion gear exerts a force on the rack to enable it to move in either direction. 

As a reaction, the rack (and the valve) exerts a force, 𝑓  which is equal in magnitude 

and opposite in direction to the force exerted by the pinion gear. The following 

forces are realised as shown on the free body diagram of figure 4.6 above. 
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𝑓 = Pinion force equal and opposite to rack force 

𝐹𝑚 = Opposing force due to valve inertia, 𝑀𝑔 

= proportion to translational acceleration, 𝑥̈ 

𝐹𝑚 = 𝑀𝑔𝑥̈ 

𝐹𝑣 = Opposing force due to viscous friction around the valve, 𝐵𝑔 

= proportion to translational velocity, 𝑥̇ 

𝐹𝑣 = 𝐵𝑔𝑥̇ 

 

Therefore, from Newtons 2nd law of motion stated above, ∑ 𝐹 = 0. We sum up all 

the forces acting on the valve to get (4.11). 

𝑓 − (𝐹𝑚 + 𝐹𝑣) = 0 

𝑓(𝑡) − (𝑀𝑔𝑥̈ + 𝐵𝑔𝑥̇) = 0                                                                                                     (4.11) 

If we rearrange and apply Laplace transform, (4.11) can be expressed in the s-

domain as in (4.12). 

𝐹(𝑠) − (𝑀𝑔𝑠2𝑋(𝑠) + 𝐵𝑔𝑠𝑋(𝑠)) = 0 

𝐹(𝑠) = (𝑀𝑔𝑠2 + 𝐵𝑔𝑠)𝑋(𝑠)                                                                                                  (4.12) 

4.4 The system dynamic equations describing the water reservoir 

We consider the rate of change of the water level in equation (3.8) as the 

continuity relation governing the fluid flow in the reservoir. This is recalled as 

below. 

ℎ̇ =
(𝑓𝑖𝑛 − 𝑓𝑜𝑢𝑡)

𝐴𝑟
  

Since we intend to control 𝑓𝑜𝑢𝑡 in this model, we define the volumetric flow rate 

out of the reservoir by the following expression. 

𝑓𝑜𝑢𝑡 = 𝐴𝑝𝑣                                                                                                                  (4.13) 

𝑤ℎ𝑒𝑟𝑒,  

𝑣 = velocity (𝑚𝑠−1) of water as it leaves the reservoir. 

To find the velocity of water leaving the reservoir bottom, we employ Bernoulli’s 

equation: The principle of conservation of energy relates pressure, 𝑝, velocity, 𝑣, 
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(kinetic energy), height, ℎ, (potential energy) of any two points in a flowing fluid 

of density, 𝜌 [15].  

𝑝 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                               (4.14) 

So, for the water reservoir under consideration, we name the topmost water surface 

as point-1 and point-2 at the out-flow valve of the water reservoir, Figure 4.7.  

 

Figure 4.7: Two reference points considered in the water reservoir. 

If we apply equation (4.14) to these two selected points, the following 

expression results. 

𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2                                                          (4.15) 

The following assumptions should be noted: 

o Both points 1 and 2 are exposed to atmospheric pressure, 𝑝𝑎. Hence,  

𝑝1 = 𝑝2 = 𝑝𝑎. 

o The water at point-2 is moving much faster than the water at point-1. Hence,  

𝑣1 ≪ 𝑣2 implying that 𝑣1 ≈ 0. 

Applying these assumptions in (4.15), we rearrange and get the expression for 

the velocity of water at point 2. 

𝑔ℎ1 =
1

2
𝑣2

2 + 𝑔ℎ2 

𝑣2 = √2𝑔ℎ                                                                                                                 (4.16)  
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𝑤ℎ𝑒𝑟𝑒,  

ℎ = (ℎ1 − ℎ2) 

Therefore, substituting for the velocity, 𝑣 of water in (4.13) we get the following 

expression. 

𝑓𝑜𝑢𝑡 = 𝐴𝑝𝑣 = 𝐴𝑝√2𝑔ℎ = 𝑥𝑙√2𝑔ℎ                                                                       (4.17) 

By replacing 𝑓𝑜𝑢𝑡 in formula (3.8) for rate of change of water level above, we 

arrive at (4.18). 

ℎ̇ =
1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑙√2𝑔. 𝑥√ℎ)                                                                                      (4.18) 

Equation (4.18) above describes the dynamics of the water reservoir. It’s a non-

linear dynamic equation in terms of ℎ. At this point, we cannot proceed to take 

any Laplace transform for this kind of equation since it is a non-linear DE. 

However, we can carry out linearisation on this non-linear term by various 

methods like Taylor series expansion, Jacobian linearization that involves 

evaluating matrices of partial derivatives at the equilibrium points, among others 

[4], [21], [23]. For this model, we utilize Taylor series method.  

4.4.1 Linearization of the non-linear DE for the water reservoir 

The dynamic system equation (4.18) is clearly a non-linear equation that describes 

the reservoir outflow that depends upon the product of the valve displacement, 𝑥 

and the square root of the present water level, ℎ. If we consider three variables of 

ℎ, 𝑥  and 𝑓𝑖𝑛 changing as a function of time. It implies that ℎ(𝑡), 𝑥(𝑡)  and 𝑓𝑖𝑛(𝑡) 

is true. Therefore, by Taylor series let ℎ̇ = 𝑓(ℎ, 𝑥, 𝑓𝑖𝑛). 
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⇒   𝑓(ℎ, 𝑥, 𝑓𝑖𝑛)

= 𝑓(ℎ0, 𝑥0, 𝑓𝑖𝑛0
) +

𝜕𝑓

𝜕ℎ
(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,

ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

(ℎ − ℎ0)

+
𝜕𝑓

𝜕𝑥
(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,

ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

(𝑥 − 𝑥0)

+
𝜕𝑓

𝜕𝑓𝑖𝑛

(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,
ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

(𝑓𝑖𝑛 − 𝑓𝑖𝑛0
)                                         (4.19) 

From expression (4.18), 

ℎ̇ = 𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) =
1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑙√2𝑔. 𝑥√ℎ)                                                            (4.20) 

Then, by applying the equilibrium point conditions in (4.20), the terms in (4.19) 

can be defined explicitly as follows. 

𝑓(ℎ0, 𝑥0, 𝑓𝑖𝑛0
) =

1

𝐴𝑟
(𝑓𝑖𝑛0

− 𝑥0𝑙√2𝑔ℎ0) 

And the partial derivatives. 

𝜕𝑓

𝜕ℎ
(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,

ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

. (ℎ − ℎ0) =
−𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

(ℎ − ℎ0) 

𝜕𝑓

𝜕𝑥
(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,

ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

. (𝑥 − 𝑥0) =
−𝑙√2𝑔ℎ0

𝐴𝑟

(𝑥 − 𝑥0) 

𝜕𝑓

𝜕𝑓𝑖𝑛

(ℎ, 𝑥, 𝑓𝑖𝑛) 𝑎𝑡,
ℎ=ℎ0
𝑥=𝑥0

𝑓𝑖𝑛=𝑓𝑖𝑛0

. (𝑓𝑖𝑛 − 𝑓𝑖𝑛0
) =

1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑓𝑖𝑛0

) 

Then, replacing all these partial derivatives in (4.19) 

𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) =
1

𝐴𝑟
(𝑓𝑖𝑛0

− 𝑥0𝑙√2𝑔ℎ0) +
1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑓𝑖𝑛0

) −
𝑙√2𝑔ℎ0

𝐴𝑟

(𝑥 − 𝑥0)

−
𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

(ℎ − ℎ0)                                                                       (4.21) 
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Now, if we consider steady state conditions it implies none of the state is changing.  

∴                              ℎ̇ = 𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) = 0 

Then, by using these conditions in equations (4.21) we prove that (4.22) is true. 

0 =
1

𝐴𝑟
(𝑓𝑖𝑛0

− 𝑥0𝑙√2𝑔ℎ0) 

𝑓𝑖𝑛0
= 𝑥0𝑙√2𝑔ℎ0                                                                                                       (4.22) 

Substituting for 𝑓𝑖𝑛0
 in (4.21), we get (4.23) 

𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) =
1

𝐴𝑟
(𝑥0𝑙√2𝑔ℎ0 − 𝑥0𝑙√2𝑔ℎ0) +

1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑓𝑖𝑛0

)

−
𝑙√2𝑔ℎ0

𝐴𝑟

(𝑥 − 𝑥0) −
𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

(ℎ − ℎ0) 

𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) =
1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑓𝑖𝑛0

) −
𝑙√2𝑔ℎ0

𝐴𝑟

(𝑥 − 𝑥0)

−
𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

(ℎ − ℎ0)                                                                       (4.23) 

We can now convert equation (4.23) into deviation, 𝜕(. ) variables to reproduce 

(4.24). Thus, let  

𝜕ℎ = (ℎ − ℎ0)                  ⇒ 𝜕ℎ̇ = ℎ̇ =  𝑓(ℎ, 𝑥, 𝑓𝑖𝑛) 

𝜕𝑥 = (𝑥 − 𝑥0) 

𝜕𝑓𝑖𝑛 = (𝑓𝑖𝑛 − 𝑓𝑖𝑛0
)  

Then,  

𝜕ℎ̇ = (
1

𝐴𝑟
) 𝜕𝑓𝑖𝑛 − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝜕𝑥 − (

𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
) 𝜕ℎ                                        (4.24) 

This can be written further down as, 

𝐻̇ = (
1

𝐴𝑟
) 𝐹𝑖𝑛 − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋 − (

𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
) 𝐻 

𝐻̇ = (
1

𝐴𝑟
) (𝐹𝑖𝑛 − (𝑙√2𝑔ℎ0)𝑋 − (

𝑥0𝑙

2
√

2𝑔

ℎ0
) 𝐻)                                            (4.25) 
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It is at this stage that we have a linear dynamic equation, (4.25) describing the 

dynamics of the hydro reservoir in terms of inflow disturbance, 𝑓𝑖𝑛, displacement 

𝑥, of the outflow valve, and the final water level, ℎ. If we now apply Laplace 

transform to (4.25), the subsequent expression, (4.26) known as the transfer 

function from both 𝑋(𝑠) and 𝐹𝑖𝑛(𝑠) to 𝐻(𝑠) of the reservoir is obtained as follows. 

𝑠𝐻(𝑠) = (
1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠) − (

𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
) 𝐻(𝑠) 

𝑠𝐻(𝑠) + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠) 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠)                         (4.26) 

4.5 The system dynamic equation describing the electric power  

This can easily be derived by further defining the parameters for (𝑓𝑜𝑢𝑡)  in (3.10) 

by using the known parameters. 

𝑃𝑒 = 𝜂𝜌𝑔ℎ𝑓𝑜𝑢𝑡 

In the above equation, we replace 𝑓𝑜𝑢𝑡  with its definition from (4.17). The 

following is obtained. 

𝑃𝑒 = 𝜂𝜌𝑔ℎ(𝑥𝑙√2𝑔ℎ) 

∴              𝑃𝑒 = 𝜂𝜌𝑙𝑔(
3
2)

√2 (𝑥ℎ(
3
2))                                                                        (4.27) 

Expression (4.27) describes the dynamics for the expected electric power 

generated based on the natural hydro intakes. 
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5. Simulation of system dynamics using differential 

equations 

In this section, we rewrite the DEs that explains the dynamics of the subsystems 

connecting the overall model. This is achieved by use of the system dynamic 

equations developed in the previous sections. These are collectively summarized 

below.  

𝑅𝑎𝐼𝑎(𝑠) = 𝑉𝑎(𝑠) − 𝐾𝑒𝑠𝛩(𝑠)                                                                                                   (4.5) 

(𝐽𝑟𝑠2 + 𝐽𝑝𝑠2 + 𝐵𝑟s)Θ(𝑠) + 𝑟𝑝𝐹(𝑠) = 𝐾𝑡𝐼𝑎(𝑠)                                                                  (4.8) 

𝑟𝑝 𝛩(𝑠) = 𝑋(𝑠)                                                                                                                        (4.10) 

𝐹(𝑠) = (𝑀𝑔𝑠2 + 𝐵𝑔𝑠)𝑋(𝑠)                                                                                                  (4.12) 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠)                         (4.26) 

5.1 The motor subsystem 

Based on the system dynamic equations above, we derive a transfer function for 

the input voltage, 𝑣𝑎(𝑡) to the motor through angular displacement, 𝜃(𝑡) to a 

translational displacement, 𝑥(𝑡) of the outflow valve. It’s this transfer function 

that is converted back to the original DE in the time-domain. The DE is then used 

to formulate an equivalent Simulink block diagram for simulation purposes using 

zero initial conditions as follows.  

From (4.5), the expression for the armature current, 𝐼𝑎(𝑠) is obtained as below. 

𝐼𝑎(𝑠) = (
𝑉𝑎(𝑠) − 𝑠𝐾𝑒𝛩(𝑠)

𝑅𝑎
)                                                                                     (5.1) 

Then, we substitute for 𝐼𝑎(𝑠) and 𝐹(𝑠) in equation (4.8) 

(𝐽𝑟𝑠2 + 𝐽𝑝𝑠2 + 𝐵𝑟s)Θ(𝑠) + 𝑟𝑝𝐹(𝑠) = 𝐾𝑡𝐼𝑎(𝑠) 

(𝑠2𝐽𝑟 + 𝑠2𝐽𝑝 + 𝑠𝐵𝑟)𝛩(𝑠) + 𝑟𝑝{(𝑠2𝑀𝑔 + 𝑠𝐵𝑔)𝑋(𝑠)} = 𝐾𝑡 {
𝑉𝑎(𝑠) − 𝑠𝐾𝑒𝛩(𝑠)

𝑅𝑎
} 

(𝑠2𝐽𝑟 + 𝑠2𝐽𝑝 + 𝑠𝐵𝑟 +
𝑠𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝛩(𝑠) + (𝑠2𝑟𝑝𝑀𝑔 + 𝑠𝑟𝑝𝐵𝑔)𝑋(𝑠)

= (
𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠)                                                                                      (5.2) 
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From equation (4.10), we derive the expression for 𝛩(𝑠). 

𝛩(𝑠) = (
𝑋(𝑠)

𝑟𝑝 
)                                                                                                            (5.3) 

Therefore, we replace 𝛩(𝑠) in equation (5.2) and simplify the resultant expression 

to (5.4) below. 

(𝑠2𝐽𝑟 + 𝑠2𝐽𝑝 + 𝑠𝐵𝑟 +
𝑠𝐾𝑡𝐾𝑒

𝑅𝑎
) {

𝑋(𝑠)

𝑟𝑝 
} + (𝑠2𝑟𝑝𝑀𝑔 + 𝑠𝑟𝑝𝐵𝑔)𝑋(𝑠) = (

𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠) 

{(𝑠2𝐽𝑟 + 𝑠2𝐽𝑝 + 𝑠𝐵𝑟 +
𝑠𝐾𝑡𝐾𝑒

𝑅𝑎
)

1

𝑟𝑝 
+ (𝑠2𝑟𝑝𝑀𝑔 + 𝑠𝑟𝑝𝐵𝑔)} 𝑋(𝑠) = (

𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠)  

Multiply through by 𝑟𝑝, we get the following. 

{(𝑠2𝐽𝑟 + 𝑠2𝐽𝑝 + 𝑠𝐵𝑟 +
𝑠𝐾𝑡𝐾𝑒

𝑅𝑎
) + (𝑠2𝑟𝑝

2𝑀𝑔 + 𝑠𝑟𝑝
2𝐵𝑔)} 𝑋(𝑠) = (

𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠)  

Now, let’s rearrange all the constant parameters in the above expression as 

coefficients of 𝑠. This is rewritten as below. 

{(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑠2 + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑠} 𝑋(𝑠) = (

𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠)     

{(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑠2𝑋(𝑠) + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑠𝑋(𝑠)}

= (
𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠)                                                                                  (5.4) 

In the time domain, we modify the transfer function described by equation (5.4) 

to a DE in (5.5) and further down making 𝑥̈(𝑡) the subject in (5.6). 

{(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑥̈(𝑡) + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑥̇(𝑡)} = (

𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑣𝑎(𝑡) 

𝑥̈(𝑡) =
1

(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)

{(
𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑣𝑎(𝑡)

− (𝐵𝑟 + 𝑟𝑝
2𝐵𝑔 +

𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑥̇(𝑡)}                                                        (5.5) 

𝑥̈(𝑡) = (𝐾1){𝐾2𝑣𝑎(𝑡) − 𝐾3𝑥̇(𝑡)}                                                                              (5.6) 

𝑤ℎ𝑒𝑟𝑒 

𝐾1 = (
1

(𝐽𝑟+𝐽𝑝+𝑟𝑝
2𝑀𝑔)

),  𝐾2 = (
𝑟𝑝𝐾𝑡

𝑅𝑎
)  and  𝐾3 = (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 
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Considering the zero initial conditions, we use equation (5.6) to construct the 

Simulink block diagram in Figure 5.1 to reproduce the motor system dynamics for 

a unity step input voltage. 

 

Figure 5.1: Block diagram describing the motor subsystem. 

 

In reference to Section 3.1-page 162 of [4], we suppose that the DC motor has a 

torque constant, 𝐾𝑡, electrical constant, 𝐾𝑒, and armature resistance, 𝑅𝑎. The motor 

is connected to a rack and pinion gear system arrangement with effective radius, 

𝑟𝑃. The gear system is attached to a rectangular valve of horizontal length, 𝑙, 

vertical length, 𝑦, and mass, 𝑀𝑔. Table 5.1 below describes these DC motor and 

valve specifications in detail. We use them to evaluate the model transfer functions 

and run the simulation.  

Table 5.1: Motor and Valve specifications [3], [4]. 

Sr. Description Name Value Units 

1 Rotor viscous friction Br 0.01 Nmrad-1s-1 

2 Rotor inertia Jr 5.00E-05 kgm2 

3 Electrical constant Ke 0.02 NmA-1 

4 Torque constant Kt 0.03 NmA-1 

5 Armature resistance Ra 10 Ohm 

6 Pinion and Track gear effective radius rp 0.1 m 

7 Outflow gate valve viscous friction Bg 0.02 Nmrad-1s-1 

8 Pinion gear inertia Jp 2.00E-10 kgm2 

9 Mass of the outflow gate valve Mg 100 kg 

 

On running the simulation, Figure 5.2 displays the motor response in terms of  𝑥(𝑡) 

to a unity step input with respect to time, 𝑡. The vertical displacement of the 

outflow gate increases from around zero towards infinity with either a constant or 

increasing step input, 𝑣(𝑡). After 100  seconds, it’s clearly shown that the motor 

shifts the valve up to 1.1 meters. 
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Figure 5.2: The motor response to the step input. 

5.2 The hydro reservoir subsystem 

The dynamics of the hydro reservoir are described from 𝑥(𝑡) to ℎ(𝑡) in two modes. 

The non-linear dynamic version and the linearized dynamic version. This section 

explains the dynamics for both categories. 

5.2.1 The non-linear hydro reservoir model 

We start with the actual scenario of the reservoir by considering expression (4.18) 

that describes the original reservoir with a non-linear term, ℎ(𝑡). Note that this is 

already in time domain and may not be transformed to the 𝑡 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚. 

ℎ̇ =
1

𝐴𝑟
(𝑓𝑖𝑛 − 𝑙√2𝑔. 𝑥√ℎ) 

ℎ̇(𝑡) = (
1

𝐴𝑟
) (𝑓𝑖𝑛(𝑡) − 𝑙√2𝑔. 𝑥(𝑡)√ℎ(𝑡))                                                            (5.7) 

Which can be expressed below as in (5.8) with constant terms reduced to 𝐾 −

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

ℎ̇(𝑡) = 𝐾4 (𝑓𝑖𝑛(𝑡) − 𝐾5. 𝑥(𝑡). √ℎ(𝑡))                                                                    (5.8) 
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𝑤ℎ𝑒𝑟𝑒, 

𝐾4 = (
1

𝐴𝑟
)  and  𝐾5 = (𝑙√2𝑔) 

For purposes of predicting the variations of the water inflows to the reservoir, a 

sinusoidal wave form with a unit amplitude is utilized as the disturbance signal. A 

𝑏𝑖𝑎𝑠 = 1 is added to the wave form to shift the curve above the 𝑥 − 𝑎𝑥𝑖𝑠. Figure 

5.3 shows the resulting signal. 

𝑓𝑖𝑛(𝑡) = 𝑆𝑖𝑛(𝜔𝑡 + 𝜑) + 𝐵𝑖𝑎𝑠                                                                                  (5.9) 

𝑤ℎ𝑒𝑟𝑒, 

𝜑 = 𝑝ℎ𝑎𝑠𝑒 and 𝜔𝑡 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

 

Figure 5.3: Disturbance signal, 𝑓𝑖𝑛(𝑡). 

 

Therefore, using equation (5.8) above, we build up the Simulink block diagram 

as shown in Figure 5.4 below. 
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Figure 5.4: Block diagram showing the non-linear water reservoir system. 

 

Table 5.2 shows the average sample values of some of the major hydropower 

plants in Sweden [9]. Using these parameters as input values to the simulation, we 

test the dynamics of the non-linear water reservoir system model above in 

Simulink software. Figure 5.5 displays the response of the reservoir to the valve 

displacement due to a unity step input voltage to the motor.  

Table 5.2: Mean values of sample data for a typical hydro reservoir. 

Sr. Description Name Value Units 

1 Reservoir base area Ab 1000 m2 

2 Acceleration due to gravity g 9.80665 ms-2 

3 Reservoir operating water level h0 100 m 

4 Outflow gate valve horizontal length l 2 m 

 

Consequently, the resultant output, ℎ(𝑡) is depicted by the following Figure 5.5. 

The plot shows a clear inverse proportionality of ℎ(𝑡) in the reservoir due to 

increasing displacement, 𝑥(𝑡) of the outflow gate. This is because as the gate 

opens widely, the water leaving the reservoir increases and so a reduction in the 

water level is achieved. It’s observed that during the first few seconds, the water 

level is stable at 100 meters because step input is zero at that time. However, as 

time increases the water level starts to reduce. After 450 𝑠 of a constant step input, 

the water level goes to zero, Figure 5.5 below. This action will continue if there is 

an input voltage to the motor that keeps the valve open by adjusting 𝑥. Hence the 

reason to explore available controllers to support in optimizing and maintaining 

the desired system state. 
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Figure 5.5: Response of the non-linear water reservoir system model to the valve 

displacement due to a step input voltage. 

5.2.2 The linearized hydro reservoir model 

Following the linearized system dynamic equation (4.26) for the hydro reservoir, 

a transformation to time domain is carried out and the relevant Simulink block 

diagram for the linearized reservoir model is constructed. This is described in the 

following derivations. Firstly, we convert the equation from 𝑠 − 𝑑𝑜𝑚𝑎𝑖𝑛 to 𝑡 −

𝑑𝑜𝑚𝑎𝑖𝑛 . It should be noted that when deriving DEs for simulation, it may be 

easier to make the highest derivative of the target variable the subject. For instance, 

in this case we are targeting the water level, ℎ(𝑡) so we make its highest derivative 

the subject. 

(𝑠 + (
𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

)) 𝐻(𝑠) = (
1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔√ℎ0

𝐴𝑟
) 𝑋(𝑠) 

𝑠𝐻(𝑠) + (
𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

) 𝐻(𝑠) = (
1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔√ℎ0

𝐴𝑟
) 𝑋(𝑠) 

𝑠𝐻(𝑠) = (
1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔√ℎ0

𝐴𝑟
) 𝑋(𝑠) − (

𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

) 𝐻(𝑠) 

ℎ̇(𝑡) = (
1

𝐴𝑟
) 𝑓𝑖𝑛(𝑡) − (

𝑙√2𝑔√ℎ0

𝐴𝑟
) 𝑥(𝑡) − (

𝑥0𝑙√2𝑔

2𝐴𝑟√ℎ0

) ℎ(𝑡) 
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ℎ̇(𝑡) = (
1

𝐴𝑟
) (𝑓𝑖𝑛(𝑡) − (𝑙√2𝑔ℎ0)𝑥(𝑡) − (

𝑥0𝑙

2
√

2𝑔

ℎ0
) ℎ(𝑡) )                       (5.10) 

Which can be expressed as in equivalence (5.11) below with 𝐾 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠: 

ℎ̇(𝑡) = 𝐾4{𝑓𝑖𝑛(𝑡) − 𝐾6𝑥(𝑡) − 𝐾7ℎ(𝑡)}                                                                 (5.11) 

𝑤ℎ𝑒𝑟𝑒 

𝐾6 = (𝑙√2𝑔ℎ0) and 𝐾7 = (
𝑥0𝑙

2
√

2𝑔

ℎ0
) 

Accordingly, (5.11) provides the basis to develop the Simulink block diagram for 

the linearized reservoir system model in Figure 5.6. 

 

Figure 5.6: Block diagram showing the linearized water reservoir system model. 

 

Again, referring to parameter values in Table 5.1 and 5.2 while maintaining the 

same disturbance input signal, the dynamic behavior of the linearized reservoir is 

explored, Figure 5.7. The plot reveals a clear inverse proportionality of the height 

of water in the reservoir with respect to increasing 𝑥(𝑡) of the outflow gate. 

Approximately, it’s the same behavior as in the non-linearized model in Figure 5.5 

above. It’s observed that the water level starts to drop as soon as the valve opens 

and its after 340 𝑠 that the level goes zero. It will continue to decrease if the motor 

maintains the valve open. It’s noticed that the response in the linearized model is 

less accurate compared to the non-linearized version probably due to the truncated 

higher order terms during the linearization process. However, the two models 

depict the same behavior of inverse proportions of the water level in the reservoir 

with respect to variations in 𝑥 due to a step input voltage to the system model.   
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Figure 5.7: Response of the linearized hydro reservoir system model to valve 

displacement due to a step input to the system model. 

5.3 The equilibrium state for the hydro reservoir system model 

A system is stable if all its rates of change tend to zero as time tends to infinity. In 

such situations, there is no change of the system from its operating point(s) and if 

they so happen, they are negligible. Thus, a steady state condition of the hydro 

reservoir is achieved. The intention of control system design is to keep the process 

at a desired state steadily. Therefore, we need to find the equilibrium (critical) 

points that will make the rates of change go to zero. We start with the non-

linearized dynamic system model equation, (5.7). This implies setting the rates of 

change for the hydro level to zero, ℎ̇(𝑡) = 0 and obtain the operating point(s) for 

the system as follows. That is, the value(s) of 𝑥(𝑡) at which the system will be 

maintained at steady state. Thus,  

ℎ̇ = (
1

𝐴𝑟
) (𝑓𝑖𝑛 − 𝑙√2𝑔. 𝑥√ℎ) 

0 = (
1

𝐴𝑟
) (𝑓𝑖𝑛 − 𝑙√2𝑔. 𝑥√ℎ) 

𝑥 =  
𝑓𝑖𝑛

(𝑙√2𝑔)√ℎ
                                                                                                         (5.12) 
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Expression (5.12) defines the operating point(s), 𝑥 of the hydro reservoir system. 

The value(s) strongly depend on the water inflow, 𝑓𝑖𝑛 and the resultant hydro 

level, ℎ. The more the inflow into the reservoir, the more the outflow valve is 

shifted upwards to release more water out of the reservoir to the power generators. 

This is so to regain and maintain the preferred water level at the steady state.  So, 

in reference to Lule River flow data (Figure 1.3) we suppose an average inflow rate 

of  𝑓𝑖𝑛 = 200 𝑚3𝑠−1 and consider Table 5.2 parameters above, the required 

operating point(s) can be evaluated as below by using (5.12). 

𝑥 =  
200

2√2(9.80665)100
= 2.258004 𝑚 

The above value is the vertical displacement of the outflow gate for which a steady 

state of the water level is maintained at ℎ = 100 𝑚 in the reservoir given an 

average water inflow of  200 𝑚3𝑠−1. This is on the assumption that there are no 

further disturbances into the system.  

Note that at operating point(s), there is no input voltage to the motor since at this 

point, there is nothing to adjust any further.  Hence, the armature voltage, 𝑣𝑎(𝑡) 

will momentarily level to zero. This means that there is no difference between the 

desired and actual water level that can influence a change in the valve movement. 

Therefore, at 𝑡 = 0 𝑠 all initial conditions are applicable, and the following steps 

can then be executed in Simulink for both the non-linear and linearized hydro 

reservoir systems.  

o Using a constant Simulink block, we set the desired water level at ℎ = 100 𝑚. 

o In the Simulink integration blocks, we set the initial condition values for both 

the motor valve displacement, 𝑥 and the water level, ℎ. 

o Install a saturation Simulink block and set the maximum displacement to a 

minimum of twice the operating value (saturation block upper limit parameter 

is equal to at least twice the equilibrium value, 𝑥.  That is,  𝑥 = 2 × 2.258 ). Note 

that, it should not be more than the dimensions of the penstock. This will allow 

the motor to displace the valve within a good range, for instance 0 𝑡𝑜 5 𝑚. 

o Using a Simulink constant block, we set the inflow to an average flow rate of 

𝑓𝑖𝑛 = 200 𝑚3𝑠−1. 
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o A unit (negative) feedback is connected between the output and the set point. 

This is done to provide a comparison between the response and desired points.  

At equilibrium, the error between the output and the set point must level to zero. 

The resultant Figure 5.8 depicts the Simulink block diagram connections for the 

system model at steady state conditions.  

 

(A) 

 

 

(B) 

 

Figure 5.8: Simulink block diagram connections for the system model at equilibrium; 

(A) the non-linear hydro reservoir system model and (B) the linearized hydro reservoir 

system model. 

 

At this point, we will continue to work with the non-linearized system model going 

forward since it depicts the real-life scenario. Therefore, Figure 5.9 demonstrates 

the plots resulting from the above simulations of Figure 5.8(A). At an average flow 

rate of 𝑓𝑖𝑛 = 200 𝑚3𝑠−1, the valve displacement is seen at its equilibrium value 

of 𝑥(𝑡) = 2.258 𝑚, Figure 5.9. The figure includes the plots of the subsequent 

error signal, 𝑒(𝑡) = 0 𝑚 and water level that is retained at the desired level of 

ℎ(𝑡) = 100 𝑚.  
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Figure 5.9: System model response at equilibrium; the error signal, valve displacement 

and water level output respectively. 

 

Now that the system model works steadily at steady state condition. Appropriately, 

we need to maintain the water level at these chosen operating points to keep a 

smooth and continuous operation of the hydropower plant. This is because, if any 

of the operating values are altered to values other than the critical values, the 

system will become unstable. Meanwhile, there is no way we can stop the 

perturbations from happening but rather put in place control measures to regulate 

such unwanted signals into the steady process. Thus, this calls for a control 

measure that can support the engineers to keep the system at a preferred hydro 

level which can enable a smooth production for the projected hydropower units. 

This can be done by designing a standard feedback controller that measures the 

hydro level output of the reservoir, compares it with the set value and then adjusts 

the process input signal to attain the required system behavior.  

In the next sections, we determine a controller that will produce the required 

control signal to direct the motor on what action to take. The motor then decides 

the best size of the outflow passage by varying its cross-section area, 𝐴𝑃 that in 

turn influences the water level at the set point. 
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6. Selecting the controller 

In control systems, control engineers have no standard parameters set for any 

feedback controller to regulate a given plant, but rather the parameters depend on 

the process subjected to control. Thus, the engineer must first understand the 

dynamics of the system end to end and there after use the available techniques to 

ascertain the correct parameters for specific control actions based on some chosen 

performance measures. Nevertheless, we need a starting point to be able to start 

the controller design. Therefore, in reference to Figure 4.3 in Section 4 above we 

derive a simplified block diagram below in Figure 6.1 to start the design process 

of the intended controller. 

 

Figure 6.1: The hydro level control system model for a water reservoir. 

 

There are three main dynamic elements that are considered in this model, that is 

the controller, motor, and the reservoir. Thus, from definition the closed-loop unity 

feedback transfer function can be obtained as below. 

 

𝐻(𝑠)

𝑅(𝑠)
= (

𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠)

1 + 𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠)
)                                                                             (6.1) 

𝑤ℎ𝑒𝑟𝑒, 

𝐷(𝑠): 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝐺𝑚(𝑠): 𝑀𝑜𝑡𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐺𝑝(𝑠): 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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It follows that, the closed-loop characteristic polynomial is then given by the 

following expression. 

1 + 𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠) = 0                                                                                          (6.2) 

Accordingly, using Routh’s stability criterion we can examine the coefficients of 

equation (6.2). This requires one to evaluate all the transfer functions involved in 

the expression. In the next section, we define the transfer functions for each of the 

dynamic elements involved in the planned closed loop system. Soon after, stability 

will be assessed and then we decide which controller to maintain it for a smooth 

system operation.  

6.1 The system transfer functions 

By using the open-loop system approach, the system transfer functions for the 

main dynamic elements are derived from the system dynamic equations obtained 

in the previous sections. The overall system is split up into three subsystems, the 

Controller, Motor, and Hydro reservoir. Note that the transfer functions for 

standard feedback control terms were dealt with in the literature review section. 

So, in this section we evaluate the transfer function for the motor and the reservoir 

models. 

6.1.1 The motor subsystem 

By re-arranging equation (5.4), we define the open loop transfer function for the 

motor subsection further down in (6.3). 

{(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑠2𝑋(𝑠) + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑠𝑋(𝑠)} = (

𝑟𝑝𝐾𝑡

𝑅𝑎
) 𝑉𝑎(𝑠) 

𝑋(𝑠)

𝑉𝑎(𝑠)
=

(
𝑟𝑝𝐾𝑡

𝑅𝑎
)

{(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑠2 + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
) 𝑠}

 

𝑋(𝑠)

𝑉𝑎(𝑠)
=

(
𝑟𝑝𝐾𝑡

𝑅𝑎
)

𝑠 {(𝐽𝑟 + 𝐽𝑝 + 𝑟𝑝
2𝑀𝑔)𝑠 + (𝐵𝑟 + 𝑟𝑝

2𝐵𝑔 +
𝐾𝑡𝐾𝑒

𝑅𝑎
)}

                                 (6.3) 

Thus, using Table 5.1 the motor transfer function, 𝐺𝑚(𝑠) is evaluated by 

substituting parameter values in (6.3) as follows. 
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𝐺𝑚(𝑠)

=
(

0.1 ∗ 0.03
10 )

𝑠 {(5 ∗ 10−5 + 2 ∗ 10−10 + 0.12 ∗ 100)𝑠 + (0.01 + (0.12 ∗ 0.02) + (
0.03 ∗ 0.02

10 ))}

 

=
0.00031998

𝑠(𝑠 + 0.01025949)
    

∴       𝐺𝑚(𝑠) =
0.00032

𝑠(𝑠 + 0.01026)
                                                                               (6.4)  

6.1.2 The hydro reservoir subsystem 

Expression (4.26) above is used to obtain the equations relating both inputs of the 

valve displacement, 𝑥(𝑡) and the disturbance, 𝑓𝑖𝑛(𝑡) into the reservoir to the output 

water level, ℎ(𝑡). The two open loop transfer functions can be explained further 

down by equations (6.5)  and (6.7)  respectively. 

6.1.2.1 The outflow valve displacement 

If in (4.26), we assume that there are no deviations of the inflow from the 

average inflow, this suggests that (𝑓𝑖𝑛 − 𝑓𝑖𝑛0
) = 𝜕𝑓𝑖𝑛 = 0 and hence 𝐹𝑖𝑛(𝑠) = 0. 

On substitution, we get the following resultant dynamic system equation (6.5) 

illustrating the transfer of input, 𝑋(𝑠) to output, 𝐻(𝑠). 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠) 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) (0) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠) 

𝐻(𝑠)

𝑋(𝑠)
=

− (
𝑙√2𝑔ℎ0

𝐴𝑟
)

(𝑠 + (
𝑥0𝑙
2𝐴𝑟

√
2𝑔
ℎ0

))

                                                                                      (6.5) 

Hence, we refer to Table 5.2 to evaluate the actual transfer function of the water 

reservoir from the actuating input signal, 𝑋(𝑠) to the output water level, 𝐻(𝑠) by 

inserting unknown values in (6.5) as detailed below. 
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𝐺𝑝(𝑠) =
𝐻(𝑠)

𝑋(𝑠)
=

− (
2 ∗ √(2 ∗ 9.80665 ∗ 100)

1000 )

(𝑠 + (
2.258 ∗ 2
2 ∗ 1000 ∗ √2 ∗ 9.80665

100 ))

 

∴            𝐺𝑝(𝑠) =
− 0.08857

(𝑠 + 0.001)
                                                                                  (6.6)  

6.1.2.2 The river inflow 

We consider zero deviations of the valve position from its average displacement 

at the time when a disturbance arises. It indicates that (𝑥 − 𝑥0) = 𝜕𝑥 = 0 and 

hence  𝑋(𝑠) = 0. Consequently, expression (4.26) above changes to a new 

dynamic system equation given by (6.7) below describing how the water inflow 

input, 𝐹𝑖𝑛(𝑠) deviations influence the output level, 𝐻(𝑠). 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) 𝑋(𝑠) 

(𝑠 + (
𝑥0𝑙

2𝐴𝑟
√

2𝑔

ℎ0
)) 𝐻(𝑠) = (

1

𝐴𝑟
) 𝐹𝑖𝑛(𝑠) − (

𝑙√2𝑔ℎ0

𝐴𝑟
) (0) 

𝐻(𝑠)

𝐹𝑖𝑛(𝑠)
=

(
1

𝐴𝑟
)

(𝑠 + (
𝑥0𝑙
2𝐴𝑟

√
2𝑔
ℎ0

))

                                                                                  (6.7)   

Which can also be evaluated using Table 5.2 values as below. 

            
𝐻(𝑠)

𝐹𝑖𝑛(𝑠)
=

(
1

1000
)

𝑠 + (
2.258 ∗ 2
2 ∗ 1000

∗ √2 ∗ 9.80665
100

)

 

∴          
𝐻(𝑠)

𝐹𝑖𝑛(𝑠)
 =

0.001

(𝑠 + 0.001)
                                                                                  (6.8)  
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6.2 The control parameter range  

For system stability, the closed loop characteristic polynomial is ascertained and 

subjected to closed loop stability checks to determine the limits for tuning the 

parameter gains for the controller. Employing the Routh’s stability criterion, a 

range of values over which the system will be closed loop stable is obtained. By 

referring to the non-linearized model, different control terms are examined case 

by case by adding one at a time depending on the results of the preceding term.  

6.2.1 Let the controller be the proportional term  

Considering the characteristic equation in (6.2), we evaluate the equation by 

inserting the available transfer functions of expressions (2.2), (6.4) and (6.6) for 

each dynamic component as below. 

1 + 𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠) = 0 

1 + (𝑘𝑝 ∗
0.00032

𝑠(𝑠 + 0.01026)
∗

−0.08857

(𝑠 + 0.001)
) = 0 

𝑠(𝑠 + 0.01026)(𝑠 + 0.001) − 𝑘𝑝(0.00032 ∗ 0.08857) = 0 

𝑠3 + 0.01126𝑠2 + 0.00001026𝑠 − 0.0000283424𝑘𝑝 = 0                             (6.9) 

Thus, expression  (6.9) is subjected to stability test via Routh’s stability matrix 

defined as below.  

Routh’s stability matrix 

𝐶1 𝐶2 𝐶3
𝑅1 𝑠3 1 0.00001026 0
𝑅2 𝑠2 0.01126 −0.0000283424𝑘𝑝 0

𝑅3 𝑠1 𝑏1 𝑏2 𝑏3

𝑅4 𝑠0 𝑐1 𝑐2 𝑐3

 

 

𝑤ℎ𝑒𝑟𝑒 

𝑏1 = −

|
1 0.00001026

0.01126 −0.0000283424𝑘𝑝
|

0.01126
 

     =
− (−0.0000283424𝑘𝑝 − (0.01126 ∗ 0.00001026))

0.01126
 

     = 0.002517105𝑘𝑝 + 0.00001026 

For stability, 𝑏1 > 0 



 

 

 

 
50 

Hence, 

0.002517105𝑘𝑝 + 0.00001026 > 0 

0.002517105𝑘𝑝 > −0.00001026 

 

∴     𝑘𝑝 >  −0.0040761112                                                                                    (6.10) 

 

𝑏2 = −
|

1 0
0.01126 0

|

0.01126
= 0 

 

𝑐1 = −

|
0.01126 −0.0000283424𝑘𝑝

(0.002517105𝑘𝑝 + 0.00001026) 0
|

(0.002517105𝑘𝑝 + 0.00001026)
 

=
−(0 + (0.002517105𝑘𝑝 + 0.00001026)0.0000283424𝑘𝑝)

(0.002517105𝑘𝑝 + 0.00001026)
 

= −0.0000283424𝑘𝑝 

For stability, 𝑐1 > 0 

hence,  

−0.0000283424𝑘𝑝 > 0 

 

∴     𝑘𝑝 < 0                                                                                                                  (6.11) 

 

Then, the combined range over which 𝑘𝑝 parameter can be tuned to have the 

proportional controller stabilize the system is given by (6.12) below. 

 

(−0.0040761112 < 𝑘𝑝 <  0 )                                                                              (6.12) 

6.2.1.1 Final value of the steady state error for a proportional controller  

Next, is to find out how much errors, the steady state error, 𝑒𝑠𝑠 result from this 

control term combination during steady state and if any, the information guides us 

to determine what control term is to be added on the 𝑃 − 𝑡𝑒𝑟𝑚 to mitigate such 

errors and other performance issues like large amounts of overshoots and settling 
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time. We check this occurrence by applying the Final value theorem defined in 

equation (6.13). In this analysis, we assume a unit step reference signal, 𝑅(𝑠). 

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒(𝑡) = lim
𝑠→0

 𝑠𝐸(𝑠) = lim
𝑠→0

 𝑠 (
1

1 + 𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠)
) 𝑅(𝑠)             (6.13) 

𝑒𝑠𝑠 = lim
𝑠→0

  𝑠 ∗ (
1

1 + 𝑘𝑝 ∗
0.00032

𝑠(𝑠 + 0.01026)
∗

−0.08857
(𝑠 + 0.001)

) ∗
1

𝑠
 

𝑒𝑠𝑠 = lim
𝑠→0

  (
𝑠(𝑠 + 0.01026)(𝑠 + 0.001)

𝑠(𝑠 + 0.01026)(𝑠 + 0.001) − 0.0000283424𝑘𝑝
) 

𝑒𝑠𝑠 = 0 

The results for 𝑒𝑠𝑠 = 0 implies that there is no error (offset) at steady state. The 

system gets stable to the desired value. This means that we may not necessarily 

add the integral term to the intended controller design. Figure 6.2 below illustrates 

responses of some randomly selected tuning parameter gains from the stability 

range (6.12) above. We choose to work with an average inflow of 199.5 𝑚3𝑠−1.  

It is observed that the system gains stability after a longer time as 𝑘𝑝 magnitude is 

tuned towards either of the limits. The responses appear with either fast frequency 

oscillations or slow frequency oscillations, for instance in Figure 6.2(C) when 

𝑘𝑝 = −0.00357612 the plot shows a system with high frequency oscillations and 

stabilize after 20,000 seconds. However, as you tune the proportional gain away 

from the limits in relation to the center of the 𝑘𝑝 stability range, steadiness restores 

faster at around 10,000 seconds like in Figure 6.2(A) and (B) when  𝑘𝑝 =

−0.0002547575 and = −0.000509515 respectively. 
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(A) 

 

 

(B) 
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(C) 

 

Figure 6.2: Reservoir response due to adjustment in 𝑘𝑝. (A) 𝑘𝑝 = −0.0002547575, (B) 

𝑘𝑝 = −0.000509515,  and (C) 𝑘𝑝 = −0.00357612. 

 

In summary, the 𝑃 − 𝑜𝑛𝑙𝑦 controller works well and steadies the system to the 

desired water level after an average time of around 14,000 seconds. Though, this 

response time may be too long for a system to attain its equilibrium and may lead 

to a poor system performance. This demands us to decide on the next set of action 

to minimizes such large amounts of response time. Thus, the best control term to 

improve and speed up this transient response to acceptable rates may be the 

derivative term. The 𝐷 − 𝑡𝑒𝑟𝑚 accounts for the current rate of change of the error 

and predicts its future and in turn compensates for these rates of change in the 

shortest time way possible. In the next section, we discuss the controller design 

with the 𝐷 − 𝑡𝑒𝑟𝑚 inclusive. 

6.2.2 Let the controller be a combination of proportional-derivative terms  

Expressions (2.2) and (2.6) are combined to form the intended controller. That is, 

the transfer function for the new controller combination is determined by (6.14) 

below. 

𝐷(𝑠) = (𝑘𝑝 + 𝑘𝑑𝑠)                                                                                                   (6.14) 

Then, the characteristic equation in (6.2) becomes (6.15) below.   



 

 

 

 
54 

1 + 𝐷(𝑠)𝐺𝑚(𝑠)𝐺𝑝(𝑠) = 0 

1 + ((𝑘𝑝 + 𝑘𝑑𝑠) ∗ (
0.00032

𝑠(𝑠 + 0.01026)
) ∗ (

−0.08857

(𝑠 + 0.001)
)) = 0 

𝑠(𝑠 + 0.01026)(𝑠 + 0.001) − (𝑘𝑝 + 𝑘𝑑𝑠)(0.00032 ∗ 0.08857) = 0 

𝑠3 + 0.01126𝑠2 + 0.00001026𝑠 − 0.0000283424(𝑘𝑝 + 𝑘𝑑𝑠) = 0 

𝑠3 + 0.01126𝑠2 + (0.00001026 − 0.0000283424𝑘𝑑)𝑠 −  0.0000283424𝑘𝑝

= 0                                                                                                     (6.15) 

So, expression  (6.15) is subjected to stability test by Routh’s stability array as 

detailed below.  

Routh’s stability matrix 

𝐶1 𝐶2 𝐶3
𝑅1 𝑠3 1 (0.00001026 − 0.0000283424𝑘𝑑) 0

𝑅2 𝑠2 0.01126 −0.0000283424𝑘𝑝 0

𝑅3 𝑠1 𝑏1 𝑏2 𝑏3

𝑅4 𝑠0 𝑐1 𝑐2 𝑐3

 

 

𝑤ℎ𝑒𝑟𝑒, 

𝑏1 = −

|
1 (0.00001026 − 0.0000283424𝑘𝑑)

0.01126 −0.0000283424𝑘𝑝
|

0.01126
 

     =
− (−0.0000283424𝑘𝑝 − 0.01126(0.00001026 − 0.0000283424𝑘𝑑))

0.01126
 

= 0.00001026 + 0.002517087𝑘𝑝 − 0.0000283424𝑘𝑑 

For stability, 𝑏1 > 0 

hence,  

(0.00001026 + 0.002517087𝑘𝑝 − 0.0000283424𝑘𝑑) > 0 

(0.00001026 + 0.002517087𝑘𝑝) > 0.0000283424𝑘𝑑 

 

𝑘𝑑 < 0.3620018065 + 88.80994552𝑘𝑝                                                            (6.16) 

𝑏2 = −
|

1 0
0.01126 0

|

0.01126
= 0 = 𝑏3 
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𝑐1 = −

|
0.01126 −0.0000283424𝑘𝑝

𝑏1 0
|

𝑏1
 

     =
− (0 + 𝑏1(0.0000283424𝑘𝑝))

𝑏1
 

     = −0.0000283424𝑘𝑝 

For stability, 𝑐1 > 0 

hence,  

−0.0000283424𝑘𝑝 > 0 

𝑘𝑝 < 0                                                                                                                          (6.17) 

 

Therefore, to have the proportional-derivative controller stabilize the system the 

combined controller gains can be tuned one at a time using the range of 𝑘𝑝 first, 

(6.17) and then that of 𝑘𝑑, (6.16) until the desired response is achieved. 

6.2.2.1 Final value of the steady state error for a proportional-derivative controller 

In this section, we include the derivative term on the proportional term which was 

previously tested and confirm the availability of errors during the steady state. This 

calls for another test to prove whether the offset will exist or not. We use the Final 

value theorem to check this fact. A unit step reference signal, 𝑅(𝑠) is assumed. 

𝑒𝑠𝑠 = lim
𝑠→0

  𝑠 ∗ (
1

1 + (𝑘𝑝 + 𝑘𝑑𝑠) ∗
0.00032

𝑠(𝑠 + 0.01026)
∗

−0.08857
(𝑠 + 0.001)

) ∗
1

𝑠
 

𝑒𝑠𝑠 = lim
𝑠→0

  (
𝑠(𝑠 + 0.01026)(𝑠 + 0.001)

𝑠(𝑠 + 0.01026)(𝑠 + 0.001) − (𝑘𝑝 + 𝑘𝑑𝑠)(0.00032 ∗ 0.08857)
) 

𝑒𝑠𝑠 = 0 

Thus, from the above evaluation of 𝑒𝑠𝑠 = 0 it indicates that when the PD-

controller is implemented the set value and the measured values are equal since 

the final value of the error at equilibrium is leveled to zero. This can be illustrated 

by selecting random values of  𝑘𝑝 and 𝑘𝑑 from the calculated stability range of 

(6.17) and (6.16). Figure 6.3 below shows the selected gain options. We consider 



 

 

 

 
56 

that the average inflow rate changes from equilibrium value to 199.5 𝑚3𝑠−1 and 

we would want to restore the water level back to its set value of 100 𝑚.  

 

 

(A) 

 

 

(B) 
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(C) 

 

 

(D) 

 

Figure 6.3: Reservoir response due to 𝑘𝑝 and 𝑘𝑑  adjustments. (A) 𝑘𝑝 =

−0.051547575, 𝑘𝑑 = −10.215935521, (B) 𝑘𝑝 = −0.05247575, 𝑘𝑑 =

−5.215935521, (C) 𝑘𝑝 = −0.11547575, 𝑘𝑑 = −1000.215935521, and (D) 𝑘𝑝 =

−0.05247575, 𝑘𝑑 = −4.215935521. 

 

It should be noted that the value of 𝑘𝑑 purely depends on 𝑘𝑝 as the stability range, 

(6.16) dictates. Therefore, increasing the value of 𝑘𝑝 raises the value of 𝑘𝑑 and 
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vice versa. In Figure 6.3(A) the system acquires stability at around 2,000 seconds 

for gains towards the lower limits. Figure 6.3(B) illustrates the response for gains 

towards the upper limits of the stability range. A little more oscillations are 

experienced for some seconds before the system settles to a stable value after 

5,000 seconds. Slow responses, steady state error and very fast oscillations are 

observed when you tune the gains closer to the limiting values of their stability 

ranges, see Figure 6.3(C). In Figure 6.3(D) we display a plot where 𝑘𝑑 is set 

outside the estimated range while keeping 𝑘𝑝 within its range.  

The system really becomes unstable with increasing oscillations as time pass by. 

It is seen that instability increase with increase in time. Therefore, it’s noticed that 

one good approach in tuning a PD-controller is to first set 𝑘𝑝 within the estimated 

range, keep it constant and adjust 𝑘𝑑 until system equilibrium is attained with in 

the required performance criteria. In time domain analysis, suitable performance 

measures of the system in response to a unit step input can be set by maximum % 

overshoot (𝑀𝑝), decay ration (𝐷𝑅), and settling time (𝑡𝑠). These can be 

determined by the following formulae [24]. 

𝑀𝑝 =
|(𝑦(𝑡𝑝) − 𝑦(∞))|

𝑦(∞)
× 100%                                                                          (6.18) 

𝐷𝑅 =
𝐴𝑛+1

𝐴𝑛
                                                                                                                  (6.19) 

𝑤ℎ𝑒𝑟𝑒, 

𝑦(𝑡𝑝) is the peak value of  𝑦(𝑡) at peak time, 𝑡𝑝 

𝑦(∞) denotes the final value of 𝑦(𝑡) 

𝐴𝑛 denotes the amplitude at 𝑛𝑡ℎ position. 

Generally, design values for 𝑀𝑝 and 𝐷𝑅  can range from 0% to 50% and 0.25 to 

0.5 respectively [24]. 𝑡𝑠 denotes the time required for the response to reach and 

steady about the final value within a specified error band. The tolerance bands can 

be 2% or 5% of the steady state value [4], [24]. Thus, following multiple tunings 

between different control gains along with the typical performance measures, we 

consider  𝑘𝑝 = −0.052 and 𝑘𝑑 = −16.45 as the final parameter gain selection 

and hence controller choice. Figure 6.4 below depicts both the final controller 
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design and the resultant water level plot respectively. If we assume a small 

deviation of about 0.5 𝑚3𝑠−1 less the average inflow, its noticed that in Figure 

6.4(B) the reservoir water level responds to this average inflow of 199.5 𝑚3𝑠−1 

in about 1,700 seconds back to its equilibrium value of 100 𝑚. This seems to be 

a great improvement compared to the responses of the previous design selections 

for a proportional controller only.  

 

(A) 

 

 

(B) 

Figure 6.4: (A) The final PD-controller design, and (B) The reservoir response due to 

𝑘𝑝 = −0.052 and 𝑘𝑑 = −16.45. 

Thus, Figure 6.5, presents the Simulink blocks for the final design of the water 

level control system model.  
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Figure 6.5: The detailed Simulink block diagram for the water level control model. 
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7. Results, Discussion and Comparison 

7.1 Results and Discussion 

The model is expected to reflect the behavior of the water level controlled hydro 

reservoir system based on the available ecological water inflows.  For this reason, 

the suggested PD-controller design above must enable the reservoir to respond and 

resist variations in its hydro levels caused by the varying natural water inflows. 

This is done by adjusting the cross-section area of the outflow passage to the 

turbines. In turn, the automated water level control supports the generation of 

hydro power units based on the total amount of water reaching the turbine blades 

at time, 𝑡. Hence, in reference to the power expression in (4.27), we simulate the 

expected electric power model as seen in Figure 7.1(A). In Figure 7.1(B), we 

portray an integration of both the hydro level control model and the electric power 

model,  

𝑃𝑒(𝑡) = 𝑐. 𝑥(𝑡). ℎ(
3
2)(𝑡)   

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑔𝑎𝑖𝑛 𝑐 𝑖𝑠 𝑔𝑖𝑣𝑒 𝑏𝑦  𝑐 = 𝐾8 = (𝜂𝜌𝑙𝑔(
3
2)√2) 

 

(A) 

 

(B) 

Figure 7.1: (A) Electric power model, (B) Combined hydro level control and expected 

electric power models. 
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In simple terms, the following block diagram shows the overall water level control 

system model, Figure 7.2. It also includes the expected electric power systems 

model for the hydro power plant. 

 

Figure 7.2: Hydro reservoir level control and electric power system model. 

 

Also, we observe that the performance of the model fits within the recommended 

typical values described above in Section 6.2.2.1. For instance, based on Figure 

6.4(B) and expressions (6.18) and (6.19) we evaluate some of the resultant 

performance indicators of the model as below. 

𝑀𝑝 =
|(99.974 − 100)|

100
× 100% = 0.026% 

𝐷𝑅 =
0.01

0.032
= 0.3125 

It should be noted that for each deviation in the water inflow from its average 

operating value, 200 𝑚3𝑠−1, the PD-controller actively measures the current 

output water level, compares it with the set value, 100 𝑚  and provides a 

corresponding control action to the motor to adjust the outflow passage cross-

section until the reservoir settles to the desired water level.  Accordingly, the 

electricity power for such variations in the water inflows can then be determined. 

We assume a system efficiency, 𝜂 = 0.95 and a density of water 𝜌 =

1000 𝑘𝑔/𝑚3. This can further be visualized on the plots of Figure 7.3 below. The 

reservoir is set to operate at 100 𝑚 of water level. We assume random inflow 

deviations from the average inflow, for instance  200.5 𝑚3𝑠−1, 199.5 𝑚3𝑠−1 and 

198.5 𝑚3𝑠−1. The corresponding valve displacements, water levels and electrical 

power generated are also plotted respectively as shown in Figure 7.3 below. As 
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earlier indicated in section 3.1, the electricity power generated is directly 

proportional to the instantaneous volumes of water moving out of the reservoir 

and the present water level. In this model, it’s noticed that an increase in the water 

inflow causes a high volume of water to be pushed out of the reservoir and vice 

versa. This is so because the controller would want to bring the raising water level 

back to the desired value.  

 

Figure 7.3: Electric power production at various river inflow rates; 𝑓𝑖𝑛(𝑡) =

200 𝑚3𝑠−1, 𝑓𝑖𝑛(𝑡) = 200.5 𝑚3𝑠−1, 𝑓𝑖𝑛(𝑡) = 199.5 𝑚3𝑠−1, and  𝑓𝑖𝑛(𝑡) =

198.5 𝑚3𝑠−1 respectively. 

 

It’s obvious that one would ask whether the designed model is only sensitive to 

small changes or not. The answer to this question is, no! The system can as well 

be relevant to a little more variations in the inflow rates and the set points from 

their average operating values, but of course any system should have operating 

limits. In this model, several variations in the inflow rates were tested and possible 

changes of up to as far as 180 𝑚3𝑠−1 were realised. For instance, Figure 7.4 

displays some larger inflow deviations from the average inflow examined at a 

desired water level of 100 𝑚. The corresponding outflow valve adjustments and 

generated 𝑃𝑒 are also depicted. It should be noted that the larger the variation of 
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the inflow rate away from the operating point, the longer the system settling time. 

Lower values of stream flow rates may cause the electric generation to shut down 

for some time. This is evidenced in Figure 7.4 where the inflow rate exponentially 

falls from 200 𝑚3𝑠−1 to 20 𝑚3𝑠−1 at around 𝑐 and then rises to 380 𝑚3𝑠−1 after 

7300 𝑠. Initially, the water level falls below the operating value to around 90 𝑚. 

This causes the controller to act and reduce the valve displacement significantly 

for the reservoir to regain its operating level of 100 𝑚. Following this action, the 

plant temporarily stops the power generation for around 800 𝑠. Stability is 

resumed after 1800 𝑠. The electric power generation settles at a lower 𝑃𝑒 of around 

18.5 𝑀𝑊. For higher deviation values of inflow rates like 380 𝑚3𝑠−1 the 

controller stabilises the plant after 1200 𝑠.  More hydro power of 355 𝑀𝑊 is 

generated. 

 

Figure 7.4: Large deviations of water inflows and their corresponding 𝑃𝑒  at 100 𝑚 of 

reservoir water level; 𝑓𝑖𝑛(𝑡) = 200 𝑚3𝑠−1, 𝑓𝑖𝑛(𝑡) = 20 𝑚3𝑠−1 and  𝑓𝑖𝑛(𝑡) =

380 𝑚3𝑠−1 respectively. 

 

In summary, and as earlier indicated in chapter 2 (Figure 1.1) some average 

monthly flow data was highlighted with reference to Lule River. Based on this, 

the average monthly power production pattern is derived in comparison with the 
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average flow rate, Figure 7.5 below. The PD-controller maintains the desired water 

level at 100 𝑚 regardless of the inflow disturbances. It is noticed that as the flow 

rates increase during the wet seasons, the electric power generation increases 

accordingly and it’s the opposite when the flow rates decrease. For instance, in the 

month of April the average flow rate increases to 399 𝑚3𝑠−1 and hence the 

electric power raise to 180 𝑀𝑊 . The average inflow rates went low to 105 𝑚3𝑠−1 

during July and so the electric power generation to as low as 100.1 𝑀𝑊. This 

pattern where production is following the ecological behaviour of river inflows is 

what we term as Sustainable compared to the conventional way where water must 

always be drawn from the stream to ensure constant production levels throughout 

all seasons.  

 

 

Figure 7.5: The sustainable production pattern for hydropower units. 

7.2 Comparison with current control strategies 

In most water level control methods, emphasis is put on regulating the inflow rate 

other than the outflow rate. This is done either by manual or automatic control. 

For this reason, all the control actions of a PID controller may be required in the 
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design to account for the system errors. The approach used in this thesis looks at 

the outflow manipulations. With this, a detailed mathematical analysis of the 

process (the reservoir) under control is attained. This comes with a reduction in 

the amount of electricity generated but with a lifelong ecosystem of the streams 

and their environs. The resultant control model eliminates the steady state error, 

hence ignoring the integral action from the conventional PID-controller. The PD-

controller achieved here can stabilize the system without steady state errors all 

through.  Further, the Simulink results for this model show that the designed PD-

controller can adapt to large inflow deviations of ∓150 𝑚3𝑠−1 and regulates the 

water level to the desired values accordingly. This may be because of a more 

detailed description of the controlled process that was carried out. 
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8. Conclusions and Future work 

8.1 Conclusions 

The model is developed to control the water level of a hydropower plant water 

reservoir and attain a sustainable generation pattern for hydroelectric power based 

on environmental stream flow variations. For instance, on Lule River we have 

several power stations installed at different altitudes. This difference in altitudes 

along the stream combined with weather changes and other environmental factors 

decide the varying flow rates of the stream.  

Despite the low data resolution used, the mean monthly data samples instead of 

hourly samples, the model clearly describes how well the water level in the 

reservoir can be controlled to maintain a desired value in situations when inflow 

rates deviate from the average rate. This in turn results into a corresponding 

electric power production pattern that follows the nature of water flow trends. 

Further, the model responds and adapts to quite a wide range of deviations in terms 

of inflows and desired water levels. Moreover, the inflow data was collected from 

Porjus power station, one of the largest hydropower stations in Sweden. However, 

for better performance the design is preferably suitable for small and medium 

scaled hydropower stations.  

It’s observed that if stocking the water reservoir is based on the natural behavior 

of the stream flow, an environmentally friendly electric power production pattern 

is realized. A trend that follows natural water flow rates without extracting more 

(or less) water than what naturally flows into the reservoir. When the rates go high, 

and the water level is maintained to the desired operating point, the generated 

electric power is also expected to rise and vice versa. Moreover, the model will be 

vital in controlling floods around the dams. 

8.2 Future work 

The model assumes a rectangular cross-section area of the penstock mouth. Thus, 

the dynamics of a round cross-section opening should further be examined. 

Moreover, the study can be extended to modelling of hydropower plants and 
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automation by estimating models for other system elements like the penstock 

passage, turbines, power generators as well as transformers among others.  

The model simulations and tests were conducted and working fine. However, 

before the model can be used a more advanced controller tuning algorithm should 

be adopted for better system performance. For instance, one can integrate adaptive 

tuning methods into this PD-controller design for water level regulations 

accordingly. This may help in achieving the correct tuning gains more quickly for 

each operation. In addition to the disturbance rejection methodology used here, a 

feed-forward control approach can be explored to enhance controller performance.  
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