
Neurocomputing 521 (2023) 99–112
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Stable and efficient resource management using deep neural network on
cloud computing
https://doi.org/10.1016/j.neucom.2022.11.089
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: qudgml6323@dgu.ac.kr (B. Jeong), tmddusdls12@dongguk.edu

(S. Baek), psh0430@dongguk.edu (S. Park), jry02107@dongguk.edu (J. Jeon),
ysjeong@dongguk.edu (Y.-S. Jeong).
Byeonghui Jeong, Seungyeon Baek, Sihyun Park, Jueun Jeon, Young-Sik Jeong ⇑
Department of Multimedia Engineering, Dongguk University, Seoul 04620, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 February 2022
Revised 17 November 2022
Accepted 27 November 2022
Available online 5 December 2022

Keywords:
Cloud computing
Resource management
Hybrid pod autoscaling
Resource usage forecasting
Attention-based Bi-LSTM
Resource management autoscaling in a cloud computing service guarantees the high availability and
extensibility of applications and services. Horizontal pod autoscaling (HPA) does not affect the executed
tasks but also has the disadvantage that it cannot provide immediate scaling. Furthermore, scale down is
not possible if excess resources are allocated, because it is difficult to identify the amount of resources
required for applications and services; thus resources are wasted. Therefore, this study proposes
Proactive Hybrid Pod Autoscaling (ProHPA), which immediately responds to irregular workloads and
reduces resource overallocation. ProHPA uses a bidirectional long short-term memory (Bi-LSTM) model
applied with an attention mechanism for forecasting future CPU and memory usage that has similar or
different patterns. Reducing excessive resource usage with vertical pod autoscaling (ReVPA) adjusts
the overallocation of resources within a pod by forecasted resource usage. Lastly, prevention overload
with HPA (PoHPA) immediately performs resource scaling by using forecasted resource usage and pod
information. When the performance of ProHPA was evaluated, CPU and memory average utilization were
improved by 23.39% and 42.52%, respectively, compared with conventional HPA when initial resources
were overallocated. In addition, ProHPA did not exhibit overload compared to conventional HPA when
resources are insufficiently allocated.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Many IT companies are adopting a cloud-native computing
paradigm that pursues a container-based microservice architec-
ture; therefore, the container has emerged as the standardized vir-
tualization technology in cloud computing [1,2]. A container has
less overhead than a hypervisor-based virtualization technology,
and guarantees efficient portability and extensibility based on its
light weight [3–6]. However, interdependence between containers
becomes complicated as the number of containers soars.

Container orchestration platforms such as Kubernetes, Docker
Swarm, and Apache Mesos provide various automated container
management functions for managing large-scale containers,
including scheduling, scaling, and failover. Specifically, Kubernetes
offers scaling for the size and number of pods that include at least
one container for utilizing resources elastically according to
whether vertical pod autoscaling (VPA) and horizontal pod
autoscaling (HPA) are available [7]. VPA adjusts the size of a pod
by computing the recommended request based on past resource
usage. However, VPA cannot guarantee the continuity of services
because existing pods are removed and then regenerated. On the
contrary, HPA adjusts the numbers of pods by duplicating and
removing pods according to resource usage, which varies. How-
ever, HPA based on a reactive control mechanism is incapable of
an immediate response due to a delay in applying the scaled
resources [8]. Therefore, an overload occurs when resource utiliza-
tion becomes too high when the workload suddenly rises. In addi-
tion, when a developer designates an excessive amount of initial
resources, HPA cannot adjust the size of the resources, thus leading
to waste [9,10].

This study, therefore, proposes Proactive Hybrid Pod Autoscal-
ing (ProHPA), which stably and efficiently autoscales pods by fore-
casting future CPU and memory usage to overcome the drawbacks
of the HPA provided by Kubernetes. ProHPA extracts workload data
through monitoring and trains an attention-based bidirectional
long short-termmemory (Bi-LSTM) model to analyze irregular pat-
terns. ProHPA also sequentially performs reducing excessive
resource usage with VPA (ReVPA) and prevention overload with
HPA (PoHPA) in order to adjust the size and number of pods based
on the forecasted future resource usage. First, ReVPA adjusts the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.11.089&domain=pdf
https://doi.org/10.1016/j.neucom.2022.11.089
mailto:qudgml6323@dgu.ac.kr
mailto:tmddusdls12@dongguk.edu
mailto:psh0430@dongguk.edu
mailto:jry02107@dongguk.edu
mailto:ysjeong@dongguk.edu
https://doi.org/10.1016/j.neucom.2022.11.089
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
amount of initial resources that have been overallocated in pods.
PoHPA calculates the number of future replicas based on the regen-
erated pods and forecasted resource usage for scaling CPU,
memory.

ProHPA adjusts the amount of initial resources that have been
insufficiently allocated to resolve the issue of resources wasted
by the HPA provided by Kubernetes. Furthermore, when resources
are overallocated in the initial pods, ProHPA immediately allocates
resources to stably manage the resources by preventing temporary
service interruption due to an overload.

The main contributions in this study are summarized as
follows:

� ProHPA, a new deep learning-based hybrid autoscaling tech-
nique is proposed.
� ProHPA accurately predicts workloads composed of various pat-
terns by considering the main patterns of each time point
related to future workloads through attention-based Bi-LSTM.
� ProHPA uses the predicted workload to improve the resource
waste and overload problem of the reactive mechanism-based
autoscaling technique caused by dynamic load.
� ProHPA has high resource utilization and low overload even in
various workload composed of different patterns.

The remainder of this paper is organized as follows: related
works on resource autoscaling are described in Section 2; the
ProHPA scheme proposed in this study is explained in Section 3,
and the overall architecture of ProHPA is presented in Section 4;
ProHPA is implemented in Section 5, and the performance of
ProHPA is evaluated in Section 6; lastly, the research findings on
ProHPA are summarized and future research directions are pro-
posed in Section 7.
2. Related works

Various studies have been conducted to efficiently manage
resources in cloud computing [11–19]. In this study, several uni-
versal methods for managing container resources using horizontal,
vertical and hybrid autoscaling techniques are described.
2.1. Horizontal autoscaling

Horizontal autoscaling provides service scalability without
affecting running services. Studies using horizontal autoscaling
are as follows:

Toka et al. [8] proposed HPA+, which reduces the number of
rejected requests by performing autoscaling based on forecasted
resource usage. HPA+ forecasts resources using various machine
learning (ML) techniques such as autoregressive (AR), hierarchi-
cal temporal memory (HTM), LSTM, and reinforcement learning
(RL). Additionally, an excess parameter for resource utilization
balance has been proposed to provide efficient resource
management.

Dang-Quang et al. [20] proposed an autoscaling technique
based on a deep learning model to improve the problems of con-
ventional HPA, which is generally carried out using a reactive
method. Autoscaling using a Bi-LSTMmodel provides scaling faster
than conventional HPA and efficiently processes a burst workload.

Yan et al. [21] proposed HANSEL, which provides autoscaling by
integrating reactive and proactive methods for elastically manag-
ing resources according to the changes in a workload. The proac-
tive HANSEL method guarantees service level agreement (SLA) of
a microservice in edge computing and improves resource utiliza-
tion using an attention-based Bi-LSTM model and RL to accurately
forecast a microservice workload.
100
However, when the amount of initially allocated resources is
inefficient, the resources are wasted or overloaded.

2.2. Vertical autoscaling

Vertical autoscaling utilizes resources elastically by adjusting
the amount of allocated resources based on past resource usage
without the expertise in applications and services. Studies using
this vertical autoscaling are as follows:

Chouliaras et al. [14] proposed a performance-aware auto-
scaler for cloud elasticity (PACE) to efficiently manage container-
ized cloud applications and ensure quality of service (QoS) require-
ments. PACE prevents application failure by performing reactive
autoscaling using threshold-based rules. In addition, after predict-
ing the workload through convolutional neural network (CNN) and
K-means, PACE managed resources elastically by utilizing proac-
tive autoscaling.

Wang et al. [22] proposed proactive vertical autoscaling for
solving various problems, such as wasted resources and service
interruptions that are caused by inaccurate resource recommenda-
tions. Proactive vertical autoscaling forecasts a future workload
using an LSTM model to more efficiently manage resources than
conventional VPA.

Buchaca et al. [23] proposed the AI4DL framework to reduce
out-of-memory error and over-provisioning caused by irregular
workloads. AI4DL encodes multi-dimensional time-series data into
feature vectors using conditional restricted Boltzmann machines
(CRBM) and a clustering technique. The generated feature vectors
are trained in a multi-layer perceptron (MLP) and LSTM model to
forecast the future workload. AI4DL reduced the over-
provisioning of a CPU by up to 38% and prevented out-of-
memory error by up to 96%.

However, vertical autoscaling performs inefficient scaling when
a pattern different from the past resource usage pattern occurs. In
addition, the service is temporarily suspended to update the
amount of the resource.

2.3. Hybrid autoscaling

Hybrid autoscaling is an effective autoscaling technique that
combines horizontal and vertical autoscaling to improve the prob-
lems of conventional autoscaling. This hybrid autoscaling tech-
nique efficiently manages resources based on the advantages of
horizontal and vertical autoscaling.

Vu et al. [17] proposed hybrid autoscaling that optimizes
resource utilization and satisfies QoS to solve the problem of single
autoscaling. The proposed hybrid autoscaling optimized hybrid
scaling execution through predictive scaling method and burst
identification after predicting workload through Bi-LSTM. The pro-
posed method managed resources more efficiently than HPA based
on reactive and proactive mechanisms.

Rossi et al. [24] proposed Elastic Docker Swarm (EDS), which
uses threshold-based heuristics to improve the elasticity of
container-based applications. EDS defines a threshold policy
through various RL techniques, and elastically handles different
workloads by performing horizontal and vertical autoscaling.

Rzadaca et al. [25] proposed autopilot to resolve performance
degradation and wasted resources caused by inefficiently provi-
sioned resources. Autopilot selects vertical and horizontal
autoscaling according to the resource limit calculated by an ML-
based recommender. Therefore, autopilot reduced the difference
between resource usage and the limit by 23% and reduced the rate
of out-of-memory error by 10-fold.

The ProHPA proposed in this study, which combines horizontal
and vertical autoscaling, improves effectively the problems of reac-
tive mechanism-based HPA. ProHPA consists of ReVPA, which

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
adjusts overallocated resources through forecasted future work-
load, and PoHPA, which responds immediately to dynamic load.
To accurately predict the workload composed of various patterns,
ProHPA utilizes the attention-based Bi-LSTM model. ProHPA man-
ages CPU and memory of the container reliably and efficiently.

Table 1 presents a comparative analysis of the proposed ProHPA
for efficiently managing resources in a container and previous
autoscaling studies. The comparison items include autoscaling
methods used to improve the performance of autoscaling provided
by Kubernetes, types of autoscaling used for efficiently managing
resources, autoscaling resource objects that indicate the scaling
subject, and time-series analysis techniques used for analyzing
workloads.

3. ProHPA scheme

This study proposes ProHPA, which computes forecasted
resource usage from the attention-based Bi-LSTM model and then
sequentially applies to ReVPA and PoHPA to stably and efficiently
manage resources. The overall scheme of ProHPA is as shown in
Fig. 1.

The container orchestration platform mainly manages CPU and
memory for creating and running applications and services. There-
fore, the autoscaling resource object of ProHPA is designated as
CPU and memory. First, the CPU and memory usage information
of a pod are extracted and then trained in the attention-based Bi-
LSTM model to forecast future CPU and memory usage. ProHPA
sequentially performs ReVPA and PoHPA in order to manage inef-
ficiently allocated CPUs and memory more stably and efficiently
than does the HPA provided by Kubernetes.

3.1. Resource usage information extraction

Kubernetes monitors various metrics, such as disk I/O, HTTPS
requests, CPU usage, and the memory usage of executing pods
through cAdvisor and Prometheus in order to provide information
on the status of resources [26]. Prometheus records the collected
metrics in a chronological order using a time-series database
(TSDB). Therefore, ProHPA extracts the CPU and memory usage
metrics of pods recorded in TSDB by using container_cpu_usage_sec
onds_total and container_memory_working_set_bytes of Prometheus
query for forecasting future CPU and memory usage. The extracted
CPU and memory usage are configured as time-series data in Java-
Script Object Notation (JSON) format.

3.2. Forecasted resource usage with attention-based Bi-LSTM model

The forecasted resource usage with attention-based Bi-LSTM
model performs time-series data pre-processing and resource
usage forecasting steps for analyzing and learning past CPU and
memory usage patterns.
Table 1
Comparison of ProHPA with previous research.

Related works Autoscaling type Autoscaling method

Toka et al. [8] Horizontal Proactive
Dang-Quang et al. [20] Horizontal Proactive
Yan et al. [21] Horizontal Reactive/Proactive

Chouliaras et al. [14] Vertical Reactive/Proactive
Wang et al. [22] Vertical Proactive
Buchaca et al. [23] Vertical Proactive
Vu et al. [17] Hybrid Proactive
Rossi et al. [24] Hybrid Proactive
Rzadca et al. [25] Hybrid Reactive
ProHPA Hybrid Proactive

101
First, in the time-series data pre-processing step, the time-
series data extracted in the resource usage information extraction
step are converted to vectors. The CPU and resource usage data
constituted with different vectors are combined into one vector
as multivariate data in order to forecast future CPU and memory
usage using the single time-series forecasting model.

In the resource usage forecasting step, resource usage is learned
using a recurrent neural network (RNN)-based deep neural net-
work to quickly and accurately forecast multivariate time-series
data. Among the RNN-based deep neural networks, Bi-LSTM
quickly analyzes sequences by bidirectionally extracting context
information, and it is used [27,28]. In addition, the last hidden state
of Bi-LSTM loses various information due to the gradient vanishing
problem. Therefore, we add an attention mechanism that refers to
all hidden states of Bi-LSTM [21].

The attention-based Bi-LSTM operating in ProHPA has an archi-
tecture as shown in Fig. 2, where vectorized CPU usage Cn and
memory usage Mn are used as inputs to a deep neural network
model. The Bi-LSTM layer analyzes the features of workload input
in both directions, whereas the attention layer computes the

importance of each element [29,30]. Here, wf
t and wb

t are the
weights assigned to the cell in LSTM, and f and b indicate forward
and backward directions, respectively. The exposure bias occurs
because the teacher forcing technique used in the attention-
based Bi-LSTMmodel, thus bias is not used to improve the stability
and forecasting accuracy of the model [31]. The LSTM cell uses the

cell state value from a previous time, cft�1 and cbt�1, as well as the

output values of a previous time, hf
t�1 and hb

t�1. To accurately ana-
lyze the patterns of CPU and memory usage, as shown in Eq. (1),
the attention score is calculated by performing matrix multiplica-
tion on the hidden state Vn of each time point of the Bi-LSTM
and the VT

n transposed hidden state. Furthermore, the attention
distribution a is calculated by applying the softmax function to
the attention score. The attention value a which reflects the
importance in the hidden state of Bi-LSTM is calculated by per-
forming matrix multiplication on a and Vn as shown in Eq. (2).
Lastly, we construct context vector which given importance by
concatenating a.

a ¼ softmax V1 � VT
1; � � � ;Vn � VT

n

h i��
ð1Þ

a ¼
Xn
i¼1

aiV i ð2Þ
3.3. Reducing excessive resource usage with vertical pod autoscaling
(ReVPA)

The amount of resources initially set by a developer for gener-
ating a pod may not be appropriate for future workloads [9,10].
Autoscaling resource object Time-series analysis technique

CPU AR, HTM, LSTM, RL
CPU Bi-LSTM
CPU, memory Attention-based Bi-LSTM

CPU, memory CNN, K-means
CPU LSTM
CPU, memory MLP, LSTM
CPU Bi-LSTM
CPU RL
CPU, memory Argmin algorithm
CPU, memory Attention-based Bi-LSTM

Fig. 1. Scheme of Proactive Hybrid Pod Autoscaling using attention-based Bi-LSTM (ProHPA).

Fig. 2. Architecture of attention-based bidirectional long short-term memory (Bi-LSTM).

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
Resources are wasted if the amount of resources allocated to a pod
exceeds the actual amount needed for future work.

Kubernetes provides VPA to adjust the size of resources in a pod
because it is difficult to improve the resource wasting issue using
conventional HPA. VPA applies a decaying histogram to past
resource usage to adjust the resource size of a pod based on a per-
centile. If the currently owned resources are less than 50%, VPA
increases the size, as it judges that the resources are insufficiently
allocated. In contrast, if the currently owned resources exceed 95%,
VPA decreases the size as it judges that the resources are overallo-
cated. The resource size is updated to a 90% value [22].

ReVPA applies the lower bound, upper bound, and target limit
of conventional VPA based on past resource usage to future
102
resource usage to reduce the overallocation of resources. Algorithm
1 reduces the overallocation of resources using the FRCPU ; FRmemory

CPU and memory usage forecasted through the attention-based
Bi-LSTM model. First, the 95th percentile Percentile FRCPU ;95ð Þ,
Percentile FRmemory;95

� �
of FRCPU ; FRmemory and the amount of

resources currently allocated to a pod are compared to examine
whether resources are overallocated. If either CPU or memory is
overallocated, the generated pod is removed and then regenerated
with the 90th percentile of forecasted resource usage to stably
manage the resources. In contrast, if the amount of initially allo-
cated resources is between the 50th and 95th percentile or less
than the 50th percentile, the case is not taken into consideration
because PoHPA can be used for resource management.

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
Algorithm 1. Reducing excess resources using with vertical pod
autoscaling

INPUT:PodrequestCPU ; Podrequestmemory; FRCPU ; FRmemory

OUTPUT: Pod scaling command

1:
 while Pod is runningð Þ & ProHPA is runningð Þ do

2:
 Update False

3:
 if PodrequestCPU > Percentile FRCPU ;95ð Þ then

4:
 PodrequestCPU Percentile FRCPU ;90ð Þ

5:
 Update True

6:
 endif

7:
 if Podrequestmemory > Percentile FRmemory;95

� �
then� �
8:
 Podrequestmemory Percentile FRmemory;90
9:
 Update True

10:
 endif

11:
 if Update ¼¼ True then� �

12:
 SendComm Scale down; PodrequestCPU ; Podrequestmemory
13:
 else

14:
 SendComm Noneð Þ

15:
 endif

16:
 endwhile
ReVPA manages resources more efficiently than the HPA of Kuber-
netes by reducing the overallocation of resources within a pod with
the resource amount that guarantees the continuity of future work.

3.4. Prevention overload with horizontal pod autoscaling (PoHPA)

The HPA conventionally provided by Kubernetes uses a reactive
mechanism, thus it is incapable of immediate resource scaling.
Therefore, a resource overload occurs when insufficiently allocated
resources are scaled. Service quality is degraded due to throttling
when a CPU is overloaded, and service interruption may occur
due to an out-of-memory error if the memory is overloaded.
Algorithm 2. Prevention overload with horizonta

INPUT:PodrequestCPU ; Podrequestmemory; FR
t
CPU ; FR

t
memory; Targ

OUTPUT: Pod scaling command
1: Replicat 1
2: while Pod is runningð Þ & ProHPA is runnð
3: ReUtiltþ1CPU FRtþ1

CPU= PodrequestCPU � Repli
�

4: Replicatþ1CPU d Replicat � ReUtiltþ1CPU

� �
=

5: ReUtiltþ1memory FRtþ1
memory= Podrequestmemory �

�
6: Replicatþ1memory d Replicat � ReUtiltþ1me

�
7: Replicatþ1 Max Replicatþ1CPU ;Replica

t
m

�
8: if Replicat > Replicatþ1 then
9: SendComm Scale down;Replicatþ1

� �
10: else if Replicat < Replicatþ1 then
11: SendComm Scale up;Replicatþ1

� �
12: else
13: SendComm Noneð Þ
14: endif
15: endwhile

103
To improve the overload issue, PoHPA uses the forecasted
resource usage calculated by the attention-based Bi-LSTM model
and the resource capacity of a pod. The number of future replicas
is calculated as shown in Eq. (3), where the ratio of the resource
utilization threshold to forecasted resource utilization is consid-
ered. Current replicas represents the number of current replicas,
and Target value represents the resource utilization threshold.
Forecasted resource utilization is the ratio of forecasted resource
usage to the resource capacity of a pod, where a ceiling is used
to ensure the continuity and stability of future work.

Future replicas¼
�
Current replicas�Forecasted resource utilization

Target value

�
ð3Þ

The best performance is demonstrated when resource utiliza-
tion is 80% or above, whereas the performance is degraded due
to overload when resource utilization is 90% or above [32–34].
Therefore, the resource utilization threshold for the PoHPA pro-
posed in this study is set to 80%, considering the forecasting error
of the attention-based Bi-LSTM model. A Kubernetes pod typically
executes a single instance of a specific application, where one pod
generally consists of one container; hence, ProHPA only considers a
singleton pod [35,36].

Algorithm 2 calculates the number of replicas needed for a
future point in time using the forecasted CPU and usage per time
of memory FRt

CPU ; FR
t
memory, thus demonstrating the process of

immediate scaling for the varying workloads. First, the initial num-
ber of replicas is set to 1, and the CPU and memory utilization of a
pod are calculated based on the request per resource. The number
of replicas is calculated for CPU and memory utilization separately,
and the greater value is used as the number of replicas for the
respective point in time. The number of replicas is updated when
the number of replicas at a future time differs from the number
at the present time. For example, if the replica value at t þ 1 is
smaller than the replica value at t, scale down is performed at
t þ 1, or if it is greater than the replica value at t, scale up is per-
formed at t þ 1.
l pod autoscaling

etCPU ; Targetmemory

ingÞ do
cat

�
� 100

TargetCPUe
Replicat

�
� 100

mory

�
=Targetmemorye

þ1
emory

�

Fig. 3. Overall architecture of Kubernetes cluster and ProHPA.

Table 2
Kubernetes cluster configuration.

Name Master node Worker node

CPU 4 core 2 core
Memory 12 G 8 G
Storage 100 GB
OS Linux 20.04.3 LTS
Kubernetes v1.23.1
Docker v20.10.12
Prometheus v2.32.1

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
4. Design of ProHPA

In this study, ProHPA, which uses a deep neural network model,
is added to the Kubernetes cluster to manage the resources of a
generated pod stably and efficiently. Fig. 3 shows the overall archi-
tecture of the Kubernetes cluster to which ProHPA is added.

Generally, a Kubernetes cluster consists of one master node and
several worker nodes. A master node controls clusters, as it con-
sists of control planes such as etcd, kube-scheduler, kube-
controller-manager, and kube-apiserver [7]. etcd saves all configu-
ration data to guarantee the consistency and high availability of
clusters, while kube-scheduler allocates a newly generated pod
or an unassigned pod to a node by considering specific scheduling
requirements. kube-controller-manager converts the current clus-
ter state to a desired state through the node controller, replication
controller, or endpoint controller. kube-apiserver communicates
with other configuration components using the Kubernetes cluster
API.

A worker node consists of the kube-proxy, kubelet, container
runtime, and container monitoring tools, arranges containers
within a pod, and executes according to the commands of a
master node. kube-proxy manages the operation of a virtual net-
work based on the network rules of a node. kubelet is an agent
that is executed in all nodes within a cluster, and manages con-
tainers according to the command of a kube-apiserver of a mas-
ter node. Container runtime executes containers, and Docker is
used in this study [7]. A container monitoring tool monitors
the resource usage data of containers, and cAdvisor is a well-
known monitoring agent. In this study, cAdvisor and Pro-
metheus, which provide time-series data, are used for extracting
resource usage by time.

To efficiently and stably manage resources in the Kubernetes
cluster, we configured ProHPA in the master node and connected
it with the container monitoring tool of the worker node. ProHPA
consists of ReVPA and PoHPA that operate based on forecasted
future resource usage.

First, ProHPA extracts the CPU and memory usage metrics
among the resource usage metrics collected from cAdvisor and
104
Prometheus in the worker node by performing resource usage
information extraction step. The extracted resource usage metrics
are converted into vectors through the time-series data pre-
processing step, and then used as input data for the attention-
based Bi-LSTM model. The attention-based Bi-LSTM model fore-
casts future resource usage with high accuracy by learning the pat-
terns of collected resource usage.

ReVPA regenerates pods with the forecasted resource usage for
stably adjusting the overallocated resources of pods to future
workloads as well. PoHPA performs immediate resource scaling
by pre-calculating the number of replicas required in the future
through the forecasted resource usage and pod information gener-
ated in ReVPA.
5. ProHPA implementation

To verify the effectiveness of the proposed ProHPA, which sta-
bly and efficiently manages resources in Kubernetes, a Kubernetes
cluster consisting of one master node and four worker nodes was
constructed. Each node was generated using a virtual machine
through Oracle VM VirtualBox with the specifications presented
in Table 2.

To verify whether the proposed ProHPA stably and efficiently
manages resources in Kubernetes, we used the Google cluster

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
workload traces 2019 dataset, which is a workload trace of May
2019 generated by Borg cell, the ancestor of Kubernetes. A pod of
Kubernetes has features similar to that of the alloc of a Borg cell;
thus, the workload data of a total of 35,243 allocs were used
[37]. Here, a total of 467 allocs were used to extract workloads,
excluding data with interrupted records or records of less than
30 days, to carry out training for the same period. In addition,
the workload of an alloc has recorded in five-minute periods; thus,
each workload consists of 8,972 data units. Considering that the
basic control period and scraping period of HPA is 15 s, each work-
load was reconfigured with 178,540 data units.
5.1. Forecasted resource usage with attention-based Bi-LSTM model

To train the forecasted resource usage with the attention-based
Bi-LSTM model, the training dataset used 142,832 data units,
which represented 80% of the full dataset; the validation dataset
used 17,854 data units to verify the forecasting accuracy of the
constructed model, while 17,854 data units were used as the test
dataset to test the model.

In the time-series data pre-processing step, the CPU and mem-
ory usage vectors were converted to one vector with respect to the
timestamp, and labeling was performed using a sliding window
technique with the window size of 1. Furthermore, the min–max
normalization technique was applied to minimize the errors dur-
ing data learning and improve the forecasting accuracy.

In the resource usage forecasting step, the attention-based Bi-
LSTM model used CPU and memory usage as an input, and the
sequence length was set to 20 to identify the patterns in five-
minute periods. The hidden size of the LSTM cell was set to 128,
and the mean squared error (MSE), which is a widely used regres-
sion analysis method, was applied as the loss function to extract
the sequence features. Furthermore, Adam, which combines the
RMSProp and momentum methods, was used as an optimizer for
using the weight of the forecasting model; a deep neural network
model applied early stopping with respect to the validation loss
value to save the state before overfitting occurred. The average
R2 scores for the validation and testing of the attention-based Bi-
LSTM model were 0.9573 and 0.9771, respectively.
5.2. Reducing excess resource usage with vertical pod autoscaling

ReVPA regenerated a pod with a size that could accommodate
90% of the future workload in order to stably and efficiently man-
age resources that were overallocated in a pod. To examine
whether resources were overallocated in a pod, ReVPA first
arranged the forecasted resource usage calculated from the
Fig. 4. Alloc-19519340051

105
attention-based Bi-LSTM model in an ascending order, and used
the 50th, 90th, and 95th percentile values as thresholds. When
the resource amount was greater than the 95th percentile value,
it was deemed as overallocated and a pod having the 90th per-
centile value was regenerated. Stability was thus secured by main-
taining service availability in the future at 90%. In contrast, it was
deemed insufficiently allocated if the resource amount was less
than the 50th percentile value, but scale up was feasible through
PoHPA.

When the pod with overallocated resources is reconfigured
through ReVPA and PoHPA is applied, the average CPU and mem-
ory utilization were improved by up to 23.39% and 42.52%, respec-
tively, compared with the conventional HPA provided by
Kubernetes.

5.3. Prevention overload with horizontal pod autoscaling

To immediately perform resource scaling, PoHPA calculates the
number of replicas needed in the future from the resource alloca-
tion of the current pod and the forecasted resource usage. By
applying the replica customized for the future workload, PoHPA
stably and efficiently manages resources by improving the
resource waste problem caused by the cooldown technique and
the resource scaling delay problem that occurs in the HPA of
Kubernetes. In particular, PoHPA provides immediate scaling for
a workload that changes suddenly, thus guaranteeing stability by
preventing an overload in a pod that has insufficiently allocated
resources.

When the number of overloads in a pod with insufficient
resources allocated from PoHPA was measured, CPU and memory
overload occurred two or zero times, respectively, which is fewer
than with the conventional HPA, which had up to eight and four
overloads in CPU and memory, respectively.

6. Performance evaluation

To evaluate the forecasting accuracy of the attention-based Bi-
LSTM model within the proposed ProHPA, the MSE, root mean
squared error (RMSE), mean absolute error (MAE), and R2 were

employed as evaluation indices. Here, Yi is an actual value, bYi is

a forecasted value, and Yi

�
is the average value of Yi.

MSE is measured as the mean square of errors between actual
values and forecasted values, as shown in Eq. (4) and is sensitive
to outliers because the values are squared.

MSE ¼ 1
n

Xn
i¼1

Yi � bYi

� �2
ð4Þ
workload composition.

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
RMSE, which is the root of MSE, is measured by applying a pen-
alty to a large error value, as shown in Eq. (5).

RMSE ¼
ffi
1
n

Xn
i¼1

Yi � bYi

� �2

vuut ð5Þ

MAE, which is defined as the mean absolute value of errors, is
less sensitive to outliers than is MSE, and it is calculated as shown
in Eq. (6).

MAE ¼ 1
n

Xn
i¼1

Yi � bYi

			 			� �
ð6Þ
Fig. 5. Training performance of LSTM, GRU, Bi-LSTM

Fig. 6. Validation performance of LSTM, GRU, Bi-LSTM

106
The R2 is an index for measuring forecasting accuracy by calcu-

lating the variance ratio of Yi and bY i. Unlike other indices, a value
closer to 1 indicates that a model has good performance. The R2 is
calculated as shown in Eq. (7).

R2 ¼ 1�
Pn

i¼1 Yi � bYi

� �2

Pn
i¼1 Yi � Yi

�� �2 ð7Þ

A comparison between the LSTM model, GRU model, Bi-LSTM
model, and Bi-GRU model was performed to verify the forecasting
accuracy for future workloads, which is calculated from the
, Bi-GRU, and attention-based Bi-LSTM models.

, Bi-GRU, and attention-based Bi-LSTM models.

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
attention-based Bi-LSTM model within ProHPA. The ARIMA model,
which is a conventional time-series analysis technique, was not
considered because it cannot perform immediate autoscaling due
to its slow forecasting speed [20,38]. To compare the performance
between deep neural network models, we used the workload of
alloc-19519340051 in the Google cluster workload traces 2019.
As shown in Fig. 4(a) and 4(b), the workload data consists of CPU
and memory usage in 15-second period. Here, the CPU and mem-
ory usage records have a similar pattern for specific period.

Figs. 5 and 6 illustrate the results of performing training and
validation for the LSTM model, GRU model, Bi-LSTM model, Bi-
GRU model, and attention-based Bi-LSTM model for 100 epochs.
Fig. 5(a) and 6(a) show that the models are trained adequately,
as the training and validation loss of deep neural network models
decreases as the number of epochs increases. Fig. 5(b), 5(c), 5(d), 6
Fig. 7. Alloc-19519340051 forecasting results of LSTM, GRU,

Table 3
Test results of LSTM, GRU, Bi-LSTM, Bi-GRU, and attention-based Bi-LSTM models.

Deep neural network model MSE

LSTM 0.00079
GRU 0.00088
Bi-LSTM 0.00077
Bi-GRU 0.00078
Attention-based Bi-LSTM 0.00011

107
(b), 6(c), and 6(d) show the MSE, RMSE, and MAE of each model
according to the changes in epochs, where the attention-based
Bi-LSTM model has the lowest MSE, RMSE, and MAE among the
deep neural network models. In addition, Fig. 5(e) and 6(e) show
that the attention-based Bi-LSTM model had an R2 score closer to
1 than do the other models.

Fig. 7 and Table 3 present the test results of three trained deep
neural network models. Fig. 7 shows that the workload forecasted
by the attention-based Bi-LSTMmodel is more similar to the actual
workload compared with other four models.

The attention-based Bi-LSTM model had MSE, RMSE, and MAE
values closer to 0 than did the other models, as shown in Table 3,
where the highest R2 value was measured at 0.9947. Therefore, it is
advisable to use the attention-based Bi-LSTM model in ProHPA to
accurately forecast the future resource usage.
Bi-LSTM, Bi-GRU, and attention-based Bi-LSTM models.

RMSE MAE R2

0.0281 0.0172 0.9401
0.0309 0.0193 0.9298
0.0277 0.0176 0.9537
0.0279 0.0171 0.9429
0.0108 0.0066 0.9947

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
To provide an optimized scaling technique for workloads with
various patterns, we performed additional performance evaluation
on the attention-based Bi-LSTMmodel in ProHPA using alloc work-
load data. We used two workload data which were randomly
extracted from Google cluster workload traces 2019. Fig. 8 shows
alloc-31881920623 workload data with similar CPU and memory
usage patterns, and alloc-131695484619 workload data with dif-
ferent CPU and memory usage patterns.

Figs. 9 and 10 show the test results of the deep neural network
model constructed by learning workload data with epoch 100. In
Fig. 9, the attention-based Bi-LSTM model forecasted the actual
workload pattern and peak value more closely than the LSTM
model, GRU model, Bi-LSTMmodel, and Bi-GRU model. In addition,
in Fig. 10, the other four models showed a large error between the
forecasted value and the actual value. In contrast, the attention-
based Bi-LSTM model accurately forecasted the actual value.

Table 4 shows the benchmark test results of the LSTM model,
GRU model, Bi-LSTM model, Bi-GRU model, and attention-based
Bi-LSTM model in terms of performance indices. The R2 score of
the attention-based Bi-LSTM model is approximately 0.96, and
the MSE, RMSE, and MAE values are close to 0, thus demonstrating
higher forecasting accuracy than other models. Therefore, the
attention-based Bi-LSTM model within ProHPA forecasts with high
accuracy CPU and memory usage showing various patterns.

The workload of Google cluster workload traces 2019 was sim-
ulated to verify the performance of ProHPA in an environment sim-
ilar to that of an actual container-based cluster. A resource
consumption image provided by Kubernetes was utilized to gener-
ate a load on the CPU and memory.

Table 5 presents the workload data configuration of alloc-
19519340051. It was assumed that a user allocates the same CPU
Fig. 8. Two types of alloc workloa

108
and memory request because it is difficult to judge the resource
usage required in the future, and the maximum request was allo-
cated as 2000 (m/MB) while the minimum request was allocated
as 30 (m/MB) [7,8]. No limits were specified so that the number
of overloads occurring for the workload could be measured.

Table 6 presents a comparison of average resource utilization
calculated from ProHPA and the conventional HPA of Kubernetes
when CPU and memory requests are overallocated in a pod.

When HPA requests were each 400 (m/MB) and were overallo-
cated to one resource, memory was reduced to 90 MB, which was
at the 90th percentile of forecasted memory usage through ReVPA,
and then PoHPA was performed. Because CPU and memory usage
patterns varied, the average CPU utilization was reduced by around
10%, but the average memory utilization was increased by 30%.

When both CPU and memory requests were overallocated at
1,000, 1,500, and 2,000 (m/MB), each resource was reduced to
416 m and 90 MB, or the 90th percentile of forecasted resource
usage, through ReVPA, and then autoscaling was performed by
PoHPA. As the allocation of resources increased, autoscaling
became impossible with conventional HPA, and thus the average
resource utilization gradually decreased. To the contrary, the pro-
posed ProHPA reduced the resource amount to stably carry out
future workloads, and then performed proactive HPA to more sta-
bly and efficiently manage resources than conventional HPA.

Table 7 presents a comparison of maximum resource utilization
and number of overloads between HPA and ProHPA when CPU and
memory are insufficiently allocated.

When the CPU and memory of a pod are insufficiently allocated,
HPA has very high maximum resource utilization due to reactive
scaling, which indicates that an overload has occurred. In contrast,
ProHPA guarantees stable resource usage by providing proactive
d data for a benchmark test.

Fig. 9. Alloc-31881920623 forecasting results of LSTM, GRU, Bi-LSTM, Bi-GRU, and attention-based Bi-LSTM models.

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
scaling by forecasted resource usage through PoHPA. ProHPA
experiences an overload in certain resources due to errors between
predicted resource usage and actual resource usage, but signifi-
cantly fewer overloads occur compared with HPA, because the
attention-based Bi-LSTM model is used.
7. Conclusions

To manage resources more efficiently and stably than conven-
tional HPA, which operates with a reactive method in Kubernetes,
this study proposed ProHPA, which sequentially performs ReVPA
and PoHPA. The attention-based Bi-LSTM model with built-in
ProHPA performed hybrid autoscaling for resources in a pod by
forecasting the future workload from a past workload having irreg-
ular patterns. When the performance of ProHPA was evaluated, the
average utilization of CPU and memory was found to have
improved by 23.39% and 42.52%, respectively, compared with con-
ventional HPA when initial resources were overallocated. When
initial resources were insufficiently allocated, overloads in CPU
and memory rarely occurred in ProHPA compared with HPA pro-
vided by Kubernetes.

If HPA is performed when the usage patterns differ between
autoscaling resource objects, or when errors are significant,
specific resources may be wasted due to unnecessary scaling.
Furthermore, it is challenging to elastically manage resources
109
with conventional HPA because scaling is provided based on
the threshold designated by a developer. Therefore, further
research will be conducted to analyze techniques for elastically
adjusting thresholds considering the changes in resource state
and to add techniques that elastically provide resources to
ProHPA.

CRediT authorship contribution statement

Byeonghui Jeong: Conceptualization, Methodology, Software,
Validation, Writing – original draft, Writing – review & editing.
Seungyeon Baek: Software, Validation. Sihyun Park: Validation,
Investigation. Jueun Jeon: Methodology, Validation, Writing –
review & editing, Supervision. Young-Sik Jeong: Writing – review
& editing, Supervision, Project administration.

Data availability

The authors do not have permission to share data.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Table 5
CPU and memory usage configuration of the simulation workload data.

Resource 50th percentile 90th percentile 95th percentile Maximum usage Minimum usage Average usage

CPU
(m)

358 416 425 446 174 327

Memory
(MB)

87 90 92 109 35 84

Fig. 10. Alloc-131695484619 forecasting results of LSTM, GRU, Bi-LSTM, Bi-GRU, and attention-based Bi-LSTM models.

Table 4
Benchmark test results of LSTM, GRU, Bi-LSTM, Bi-GRU, and attention-based Bi-LSTM models.

Alloc ID Deep neural network model MSE RMSE MAE R2

31881920623 LSTM 0.00041 0.02031 0.0115 0.9386
GRU 0.00044 0.02103 0.0136 0.9305
Bi-LSTM 0.00037 0.01928 0.0102 0.9458
Bi-GRU 0.00035 0.01894 0.0108 0.9506
Attention-based Bi-LSTM 0.00029 0.01718 0.0069 0.9678

131695484619 LSTM 0.00011 0.01063 0.00794 0.9235
GRU 0.00012 0.01077 0.00816 0.9195
Bi-LSTM 0.00009 0.00969 0.00751 0.9387
Bi-GRU 0.00004 0.00657 0.00377 0.9473
Attention-based Bi-LSTM 0.00002 0.00502 0.00156 0.9687

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112

110

Table 7
Performance comparison between ProHPA and conventional HPA of Kubernetes when insufficient resources are allocated.

HPA & ProHPA request HPA maximum resource
utilization

ProHPA maximum
resource utilization

Number of overloads in
HPA

Number of overloads in
ProHPA

CPU

(m)

Memory

(MB)

CPU

(%)

Memory

(%)

CPU

(%)

Memory

(%)

CPU Memory CPU Memory

300 80 79.20 115.09 63.81 67.57 0 4 0 0
150 40 184.81 230.18 81.34 85.55 4 4 0 0
50 50 554.43 184.14 93.43 34.77 8 4 2 0
30 30 924.06 306.91 88.23 36.22 8 4 0 0

Table 6
Comparison of average resource utilization between HPA of Kubernetes and ProHPA when resources are overallocated.

HPA request ProHPA request HPA average resource
utilization

ProHPA average resource
utilization

CPU

(m)

Memory
(MB)

CPU
(m)

Memory
(MB)

CPU
(%)

Memory
(%)

CPU
(%)

Memory
(%)

400 400 400 90 52.14 14.57 41.27 46.69
1000 1000 416 90 32.65 8.35 39.71 46.69
1500 1500 416 90 21.77 5.56 39.71 46.69
2000 2000 416 90 16.32 4.17 39.71 46.69

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
Acknowledgements

This work was partly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2022-0-00047, Devel-
opment of microservices development/operation platform technol-
ogy that supports application service operation intelligence) and
National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1A2C1088383).
References

[1] J. Soldani, D.A. Tamburri, W.J. Van Den Heuvel, The pains and gains of
microservices: A systematic grey literature review, J. Syst. Softw. 146 (2018)
215–232.

[2] P. Jamshidi, C. Pahl, N.C. Mendonca, J. Lewis, S. Tilkov, Microservices: The
journey so far and challenges ahead, IEEE Softw. 35 (2018) 24–35.

[3] A.M. Potdar, D.G. Narayan, S. Kengond, M.M. Mulla, Performance evaluation of
docker container and virtual machine, Procedia Comput. Sci. 171 (2020) 1419–
1428.

[4] K.T. Seo, H.S. Hwang, I.Y. Moon, O.Y. Kwon, B.J. Kim, Performance comparison
analysis of Linux container and virtual machine for building cloud, Adv. Sci.
Technol. Lett. 66 (2014) 105–111.

[5] J.P. Martin, A. Kandasamy, K. Chandrasekaran, Exploring the support for high
performance applications in the container runtime environment, Hum. -
centric Comput. Inf. Sci. 8 (2018) 1–15.

[6] C. Yong, G.W. Lee, E.N. Huh, Proposal of container-based HPC structures and
performance analysis, J. Inf. Process. Syst. 14 (2018) 1398–1404.

[7] Kubernetes, www.kubernetes.io/, (accessed 12 November 2021).
[8] L. Toka, G. Dobreff, B. Fodor, B. Sonkoly, Machine learning-based scaling

management for Kubernetes edge clusters, IEEE Trans. Netw. Service Manag.
18 (2021) 958–972.

[9] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, in: Proceedings of the 3rd
ACM Symposium on Cloud Computing (2012) 1-13.

[10] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, C. Li, Rose: Cluster
resource scheduling via speculative over-subscription, in: Proceedings of the
IEEE 38th International Conference on Distributed Computing Systems (2018)
949-960.

[11] H.W. Kim, J.H. Park, Y.S. Jeong, Human-intelligence workflow management for
the big data of augmented reality on cloud infrastructure, Neurocomputing
279 (2018) 19–26.

[12] P. Sahu, S. Raghavan, K. Chandrasekaran, Ensemble deep neural network based
quality of service prediction for cloud service recommendation,
Neurocomputing 465 (2021) 476–489.
111
[13] J. Jeon, J.H. Park, Y.S. Jeong, Resource utilization scheme of idle virtual
machines for multiple large-scale jobs based on OpenStack, Appl. Sci. (Basel) 9
(2019) 1–16.

[14] S. Chouliaras, S. Sotiriadis, Auto-scaling containerized cloud applications: A
workload-driven approach, Simul. Model. Pract. Theory 121 (2022) 1–13.

[15] H.W. Kim, G. Yi, J.H. Park, Y.S. Jeong, Adaptive resource management using
many-core processing for fault tolerance based on cyber–physical cloud
systems, Future Gener. Comput. Syst. 105 (2020) 884–893.

[16] D. Saxena, A.K. Singh, A proactive autoscaling and energy-efficient VM
allocation framework using online multi-resource neural network for cloud
data center, Neurocomputing 426 (2021) 248–264.

[17] D.D. Vu, M.N. Tran, Y. Kim, Predictive hybrid autoscaling for containerized
applications, IEEE Access 10 (2022) 109768–109778.

[18] J. Bi, S. Li, H. Yuan, M.C. Zhou, Integrated deep learning method for workload
and resource prediction in cloud systems, Neurocomputing 424 (2022) 35–48.

[19] Y.S. Jeong, J.H. Park, Security, privacy, and efficiency of sustainable computing
for future smart cities, J. Inf. Process. Syst. 16 (2020) 1–5.

[20] N.M. Dang-Quang, M. Yoo, Deep learning-based autoscaling using bidirectional
long short-term memory for Kubernetes, Appl. Sci. (Basel) 11 (2021) 1–25.

[21] M. Yan, X.M. Liang, Z.H. Lu, J. Wu, W. Zhang, HANSEL: Adaptive horizontal
scaling of microservices using Bi-LSTM, Appl. Soft Comput. 105 (2021) 1–12.

[22] T. Wang, S. Ferlin, M. Chiesa, Predicting CPU usage for proactive autoscaling,
in: Proceedings of the 1st Workshop on Machine Learning and Systems (2021)
31-38.

[23] D. Buchaca, J.L. Berral, C. Wang, A. Youssef, Proactive container auto-scaling for
cloud native machine learning services, in: Proceedings of the IEEE 13th
International Conference on Cloud Computing (2020) 475-479.

[24] F. Rossi, M. Nardelli, V. Cardellini, Horizontal and vertical scaling of container-
based applications using reinforcement learning, in: Proceedings of the IEEE
12th International Conference on Cloud Computing (2019) 329–338.

[25] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek, P. Nowak,
B. Strack, P. Witusowski, S. Hand, J. Wilkes, Autopilot: workload autoscaling at
Google, in: Proceedings of the 15th European Conference on Computer
Systems (2020) 1–16.

[26] T.T. Nguyen, Y.J. Yeom, T. Kim, D.H. Park, S. Kim, Horizontal pod autoscaling in
Kubernetes for elastic container orchestration, Sensors 20 (2020) 1–18.

[27] K. Om, S. Boukoros, A. Nugaliyadde, T. McGill, M. Dixon, P. Koutsakis, K.W.
Wong, Modelling email traffic workloads with RNN and LSTM models, Hum. -
centric Comput. Inf. Sci. 10 (2020) 1–16.

[28] D.H. Kwon, J.B. Kim, J.S. Heo, C.M. Kim, Y.H. Han, Time series classification of
cryptocurrency price trend based on a recurrent LSTM neural network, J. Inf.
Process. Syst. 15 (2019) 694–706.

[29] J. Jeon, B. Jeong, S. Baek, Y.S. Jeong, Hybrid malware detection based on Bi-
LSTM and SPP-net for smart IoT, IEEE Trans. Industr. Inform. 18 (2022) 4830–
4837.

[30] S. Baek, J. Jeon, B. Jeong, Y.S. Jeong, Two-stage hybrid malware detection using
deep learning, Hum. -centric Comput. Inf. Sci. 11 (2021) 1–15.

[31] S. Lee, D.B. Lee, S.J. Hwang, Contrastive learning with adversarial perturbations
for conditional text generation, arXiv preprint arXiv:2012.07280 (2020).

http://refhub.elsevier.com/S0925-2312(22)01485-0/h0005
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0005
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0005
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0030
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0030
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0040
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0040
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0040
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0055
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0055
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0055
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0065
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0065
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0065
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0070
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0070
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0080
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0080
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0080
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0090
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0090
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0095
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0095
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0100
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0100
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0105
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0105
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0130
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0130
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0135
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0135
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0135
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0145
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0145
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0145
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0150
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0150

B. Jeong, S. Baek, S. Park et al. Neurocomputing 521 (2023) 99–112
[32] S. Taherizadeh, M. Grobelnik, Key influencing factors of the Kubernetes auto-
scaler for computing-intensive microservice-native cloud-based applications,
Adv. Eng. Softw. 140 (2020) 1–11.

[33] M.A.H. Monil, R.M. Rahman, Implementation of modified overload detection
technique with VM selection strategies based on heuristics and migration
control, in: Proceedings of the IEEE/ACIS 14th International Conference on
Computer and Information Science (2015) 223–227.

[34] F. Al-Haidari, M. Sqalli, K. Salah, Impact of CPU utilization thresholds and
scaling size on autoscaling cloud resources, in: Proceedings of the IEEE 5th
International Conference on Cloud Computing Technology and Science (2013)
256–261.

[35] Z. Zhong, R. Buyya, A cost-efficient container orchestration strategy in
Kubernetes-based cloud computing infrastructures with heterogeneous
resources, ACM Trans. Internet Technol. 20 (2020) 1–24.

[36] F. Rossi, V. Cardellini, F.L. Presti, Hierarchical scaling of microservices in
Kubernetes, in: Proceedings of the IEEE 1st International Conference on
Autonomic Computing and Self-Organizing Systems (2020) 28-37.

[37] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: Proceedings of the 10th
European Conference on Computer Systems (2015) 1–17.

[38] M. Imdoukh, I. Ahmad, M.G. Alfailakawi, Machine learning-based auto-scaling
for containerized applications, Neural Comput. Appl. 32 (2020) 9745–9760.

Byeonghui Jeong received his B.S. degree in computer
science and engineering from Kongju National Univer-
sity in Cheonan, Korea in 2021. He is an M.S. student of
the department of multimedia engineering at Dongguk
University, Korea. His current research interests include
cloud computing and information security for cloud
computing.
Seungyeon Baek received his B.S. degree in multimedia
engineering from Dongguk University in Seoul, Korea in
2021. He is an M.S. student of the department of mul-
timedia engineering at Dongguk University, Korea. His
current research interests include information security
for IoT devices and malware detection using deep
learning.
112
Sihyun Park received his B.S. degree in multimedia
engineering from Dongguk University in Seoul, Korea in
2022. He is an M.S. student of the Department of Mul-
timedia Engineering, Dongguk University, Korea. His
current research interests include cloud computing, the
Internet of Things, edge computing.
Jueun Jeon received her B.S. and M.S. degrees in mul-
timedia engineering from Dongguk University in Seoul,
Korea in 2018 and 2020. She is a Ph.D. student of the
department of multimedia engineering at Dongguk
University, Korea. Her current research interests include
information security for cloud computing and the
Internet of Things.
Young-Sik Jeong received his B.S. degree in mathe-
matics and his M.S. and Ph.D. degrees in computer sci-
ence and engineering from Korea University in Seoul,
Korea in 1987, 1989, and 1993, respectively. He was a
Professor in the Department of Computer Engineering at
Wonkwang University, Korea from 1993 to 2012. He
worked and conducted research at Michigan State
University and Wayne State University as a Visiting
Professor in 1997 and 2004. He currently works in the
Department of Multimedia Engineering at Dongguk
University, Korea. His research interests include multi-
media cloud computing, information security for cloud
computing, and the Internet of Things.

http://refhub.elsevier.com/S0925-2312(22)01485-0/h0160
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0160
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0160
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0175
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0175
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0175
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0190
http://refhub.elsevier.com/S0925-2312(22)01485-0/h0190

