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Abstract—Voltage unbalance (VU) in an active distribution 

network (ADN) could result in increased network losses and even 

system instability. The additional uncertainties embedded in ADN 

might lead to serious VU problems with the proliferation of single-

phase distributed energy resources (DERs). This paper proposes a 

two-stage uncertainty quantification and unbalance mitigation 

(UQUM) framework to cope with the corresponding VU problems 

and quantify and mitigate the impacts of variable DERs on VU. In 

Stage one, the global sensitivity analysis based on the Rosenblatt 

transformation (RT-based GSA) method is proposed to quantify 

the impacts of nonlinearly correlated DERs with tail dependence 

on VU. The RT-GSA method can identify critical DERs with 

significant impacts on VU. In Stage two, the joint allocations of 

fixed and mobile energy storage devices (ESDs) are considered in 

which an optimal mitigation strategy is proposed to alleviate VU 

and effectively compensate the critical DER fluctuations 

(identified in Stage one). Based on the given DER data and the 

available ESD capacity, the effectiveness of the proposed UQUM 

framework is verified in a 123-bus three-phase unbalanced ADN 

and the corresponding results are discussed. 

Index Terms—Active distribution network, uncertainty, global 

sensitivity analysis, energy storage devices, probabilistic voltage 

unbalance mitigation. 

NOMENCLATURE 

A. Acronyms: 

VU Voltage unbalance 

DER Distributed energy resource 

ADN Active distribution network 

VUF Voltage unbalance factor 

ESD Energy storage device 

DS Dependent structure 

PDF Probability density function 

CDF Cumulative distribution function 

LCC Linear correlation coefficient 

GSA Global sensitivity analysis 

FSI First-order sensitivity index 

USI Uncorrelated sensitivity index 

CSI Correlated sensitivity index 

FESD Fixed energy storage device 

MESD Mobile energy storage device 

B. Parameters: 

( )l lf x  PDF of xl (l=1,…,n) 

n  Number of input variables in X 

, |i i jc + i  PDF of bivariate pair-copula 

, |(~ , )i r rC i  CDF of bivariate pair-copula 

YD  Variance of Y 

0g  Mean of Y 
( )k

aX  Sample satisfying joint PDF f (X) 
( )k

bX  Sample satisfying conditional PDF f (xi, x(~i)| xi) 

sN  Sample size for FSI estimation using MCS  

1 1( )F x  CDF of x1 

( )|if x
i

x  Conditional PDF of xi 

( )| |i iF x
i i

x   Conditional CDF corresponding to f (xi | xi) 

T  Terminal time index in the time window [1, T] 

c  Charging efficiency of ESD  

disc  Discharging efficiency of ESD  

minSOC  Minimal allowed State-of-charge of ESD 

maxSOC  Maximal allowed State-of-charge of ESD 
c

maxP  Maximal charging power of ESD  
disc

maxP  Maximal discharging power of ESD  

N  Number of scenes 
  Initial State-of-charge of ESD in mth scene 

C. Variables: 

V−  Negative sequence voltage component 

V+  Positive sequence voltage component 

Vab,Vbc,Vca Line to line voltages 

X  Vector of input variables with (x1,…,xn) 

i
x  Vector of input variables with (x1,…,xi-1) 

i  Vector of indices for xi with (1,…,i-1) 

,rx
i
 Arbitrary input variable selected from xi 

(~ , )r i
x  Other input variables in xi excluding xr,i 

Y  Output variable with Y=g(X) 

(~ )ix  Input variables satisfying PDF f (xi, x(~i) | xi) 

DER

,
i

m tP  
Power injection of DERi after allocating ESD 

at time t in mth scene 

D

,m tP  
Power injection of DERi before allocating ESD 

at time t in mth scene 

mP  
Mean of DERi power injection over the time 

window [1, T] in mth scene 
c

,m tP  ESD charging power at time t in mth scene 
disc

,m tP  ESD discharging power at time t in mth scene 

c

,m tu  
Binary variable standing for the charging status 

of ESD at time t in mth scene 

disc

,m tu  
Binary variable standing for the discharging 

status of ESD at time t in mth scene 

,m tSOC  State-of-charge of ESD at time t in mth scene 
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I. INTRODUCTION 

OLTAGE unbalance (VU) in distribution network are 

usually caused by unevenly distributed single-phase loads 

and asymmetrical line impedances, which would result in 

increased network losses and even system instability [1]-[4]. 

With the proliferation of distributed energy resources (DERs), 

VU in the active distribution network (ADN) will further 

deteriorate because of the single-phase integrated DERs, e.g., 

rooftop photovoltaic (PV) units [5], [6]. To guarantee the stable 

and reliable operation of distribution network, the International 

Electrotechnical Commission (IEC) suggests the voltage 

unbalance factor (VUF) should be limited within 2% [3]. Ref. 

[7] illustrates that the stipulated limit for VU in Malaysia has 

gradually become a major obstacle for promoting the 

accommodation of PVs. Therefore, it is crucial to mitigate VU 

in ADN with a high penetration of variable DERs. 

Various approaches have been proposed to mitigate VU in 

power systems. In [8], static transfer switches were utilized to 

alleviate the VU by dynamically switching of residential loads 

between different phases. In [9], an optimization approach was 

proposed to mitigate the system unbalance and reduce the 

power losses by rearranging distribution transformer phases. 

Recently, electric vehicles (EVs) were utilized to mitigate the 

VU in low voltage networks by managing charging and 

discharging of EVs [10]. In addition to the listed methods for 

mitigating the unbalance at demand-side, inverter-interfaced 

DERs have been utilized to reduce VU. In [11], PV units and 

EVs were combined to realize VU mitigation considering PV 

power generation and charging patterns of EVs. In [12]-[14], 

various control schemes for inverters were presented to 

alleviate VU by injecting negative- and zero-sequence currents. 

Furthermore, single-phase energy storage device (ESD) is a 

viable solution to mitigate VU and improve voltage quality [7], 

[15]-[18]. The earlier VU mitigation studies were developed by 

using deterministic methods without considering uncertainties. 

The increasing penetration of variable DERs can significantly 

affect VU in ADN [19]. 

Considering ADN uncertainties, probabilistic methods 

associated with VU have attracted extensive attentions. In [19], 

probabilistic VUF estimation in distribution networks was 

offered considering variable unbalanced loads. In [20], 

probabilistic load flow and sensitivity analyses were performed 

to analyze the influences of variable loads on VU. In [21], the 

statistical VU estimation was proposed using distribution 

network state estimations. In [22], deterministic and stochastic 

methods were combined to derive VUF statistics. However, 

there are mainly three issues which are not well addressed in 

existing works, including 1) high penetration of DERs with 

correlated uncertainties [19]-[22]; 2) impacts of uncertainties 

on VU instead of only estimating VUF statistics; 3) probability 

property of correlated DERs in VU mitigation strategies. This 

paper focuses on addressing the above three issues and the 

proposed contributions are summarized as follows. 

1. A two-stage uncertainty quantification and unbalance 

mitigation (UQUM) framework is proposed to quantify and 

mitigate the impacts of variable DERs on VU in three-phase 

ADN. The critical DERs which have significant impacts on 

VU are identified in Stage one and effectively guide the 

allocation of ESDs to mitigate VU in Stage two. 

2. The global sensitivity analysis based on Rosenblatt 

transformation (RT-based GSA) method is proposed to 

quantify the impacts of variable DERs on the probabilistic 

voltage unbalance factor (PVUF). The derived GSA indices 

can identify critical DERs. Different from the studies in [23]-

[25] and our previous studies in [26]-[29], DERs with 

complex dependent structure (DS) including nonlinear 

correlations and tail dependence are considered in the 

proposed RT-based GSA. 

3. The joint allocation of fixed and mobile ESDs is proposed in 

Stage two to alleviate VU by using the optimal mitigation 

strategy, which can effectively compensate the fluctuations 

of critical DER power injections identified in Stage one. 

The rest of this paper is organized as follows: A two-stage 

UQUM framework in three-phase ADN is established in 

Section II. The uncertainty quantification with RT-based GSA 

method is developed as Stage one in Section III. The unbalance 

mitigation based on the optimal mitigation strategy with ESDs 

is presented as Stage two in Section IV. Simulation results are 

shown in Section V, followed by the conclusion in Section VI. 

II. PROBLEM FORMULATION 

In this section, PVUF represents the impacts of uncertainties 

on VU in the three-phase ADN. Then, a two-stage UQUM 

framework is proposed to quantify and mitigate the impacts of 

variable DERs on VU. 

A. PVUF 

In a three-phase ADN, VUF is a widely used index to 

evaluate the degree of VU, which is defined as:  

 VUF 100% ( , , )ab bc ca

V
V V V

V
−

+

=  =   (1) 

Considering uncertainties (e.g., intermittent DER power 

injection) injected into ADN, VUF features probabilistic 

characteristics. To investigate the impacts of uncertainties on 

VUF, uncertainty propagation is introduced to exhibit the input-

output statistical relationship between variable DERs and 

PVUF. First, DER data are collected to establish the probability 

models of DER power output, which is the process of 

uncertainty modeling for DERs. Then, variable DER power 

output is injected into the ADN as X and uncertainties in X are 

propagated to VUF. Finally, VUF statistics are derived and 

analyzed including means, variances, probability density 

functions (PDFs), and cumulative distribution functions 

(CDFs). Based on the process of uncertainty propagation, 

PVUF is stated as: 

 VUF ( ( ), ( ), ( )) ( )ab bc caV V V = =X X X X X   (2) 

For the PVUF calculation in (2), three-phase voltages are 

derived by solving a probabilistic three-phase unbalanced load 

flow in ADN [22]. 

B. Model Assumptions 

Before introducing the proposed UQUM framework, the 

assumptions of our present work are given as follows: 

1. In this paper, the proposed two-stage UQUM framework is 

applied to alleviate VU which would occur in a future time 

period considering the uncertainties of DERs. The 

identification of critical DERs in Stage one and the allocation 

of ESDs in Stage two would be completed before the studied 

time window. 

V 
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2. The amounts and locations of DERs integrated into the three-

phase ADN have been determined before the proposed 

UQUM framework is applied. Also, the probability models 

of correlated DERs are established based on the historical 

data in the studied time window. 

3. The ESDs including fixed ESDs (FESDs) and mobile ESDs 

(MESDs) are only allocated at DER buses in the studied 

three-phase ADN, which are controlled by the system 

operator. The FESD is connected to several DER buses and 

would be allocated at a certain DER bus by closing the 

corresponding switch, which is defined as the shared FESD 

in this paper. The MESDs can be flexibly allocated at any 

DER buses and the uncertainty of MESDs involved in the 

movement is ignored. Moreover, the MESDs are assumed to 

have moved to the critical DER buses in advance because the 

reserved time for MESD scheduling is enough within the 

ADN area. 

4. The capacity of FESDs and MESDs is known before 

allocating the ESDs and developing the optimal mitigation 

strategy. 

C. Proposed UQUM Framework 

Based on (2), the PVUF variation can be affected by the 

variable DER power injections through uncertainty propagation 

in ADN. With the proliferation of DERs, the corresponding 

uncertainties will increase the risk of exceeding the stipulated 

VUF limit (2% in this paper) in the ADN operation. In this 

paper, we focus on how to effectively reduce the impacts of 

variable DER power injections on VU in ADN, mainly 

considering the following two aspects: 

1. Identify critical DERs for VU: In ADN, only a small 

proportion of DERs have significant impacts on VU. To 

realize precise and effective allocations of devices for 

mitigating the unbalance, it is crucial to quantify any impacts 

of DERs with complex correlations on VU and identify 

critical DERs, which is overlooked in the existing literature. 

2. Mitigate VU using ESDs: The ESD operation strategy has 

significant impacts on VU when ESDs are used to 

compensate fluctuations of DER power injections [15], [16]. 

The ESD operation strategy should be optimized to mitigate 

VU in ADN, especially when available ESDs are limited. 

Accordingly, a two-stage UQUM framework is proposed to 

quantify and mitigate the impacts of variable DERs on VU as 

shown in Fig. 1. In the proposed UQUM framework, the critical 

DERs which have significant impacts on VU are identified in 

Stage one and effectively guide the allocation of ESDs to 

mitigate VU in Stage two. Specifically, in Stage one, the RT-

based GSA method is proposed to quantify the impacts of 

variable DERs on PVUF. The spatial and temporal correlations 

among DERs are captured by using complex DS. Based on the 

ranking of GSA indices, critical DERs with significant impacts 

on VU are identified. In Stage two, ESDs with optimal 

mitigation strategy are allocated at critical DER buses to 

compensate any fluctuations in DER power injections. Thus, 

the VU in ADN would be alleviated and the risk of exceeding 

VUF limit would be decreased. The integrated locations of 

ESDs in Stage two are determined by the results of uncertainty 

quantification in Stage one. Stages one and two in the proposed 

UQUM framework will be further elaborated on in Sections III 

and IV, respectively. 

 
Fig. 1.  Proposed two-stage UQUM framework in ADN. 

 

Fig. 2.  Uncertainty modeling for DERs with spatial and temporal correlations 
(fi(pi) is the PDF of DERi (i=1,…,n) power output in the time window). 

III. STAGE ONE: UNCERTAINTY QUANTIFICATION 

In this section, uncertainty modeling for spatially and 

temporally correlated DERs is presented. Then, the RT-based 

GSA method is proposed to quantify the impacts of variable 

DER power injection on VU. Utilizing the derived RT-GSA 

indices, critical DERs are identified which can guide the ESD 

allocations in Stage two. 

A. Data-based Uncertainty Modeling for Correlated DERs 

Through uncertainty modeling, we establish the probability 

models of DER power output and capture spatial and temporal 

correlations among DERs. In Fig. 2, there are n DERs and T 

time instants in a time window. Assume that δ observations of 

DER output power are collected at each time instant. Thus, the 

dataset of each DER is obtained including M=T×δ observations. 

Utilizing the data, PDFs of DER power outputs can be 

established using a non-parameter kernel density estimation. 

Then, various DSs can be used to capture spatial and temporal 

correlations among DERs as follows: 

1) Linear correlation coefficient and Gaussian copula: The 

linear correlation coefficient (LLC) and Gaussian copula are the 
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same to depict the correlations among input variables when the 

Nataf transformation is applied [30]. For n input variables 

X=(x1,…,xn), the LLC matrix ρ of X is stated as: 

 

12 1

21 2

1 2

1

1

1

n

n

n n

 

 

 

 
 
 =
 
 
 

ρ   (3) 

Let Xi
(M)=(xi

(1),…,xi
(M)) and Xj

(M)=(xj
(1),…,xj

(M)) denote M 

samples of xi and xj in a dataset, respectively. The correlation 

coefficient ρij can be estimated by: 

( ) ( ) ( ) ( )

1 1 1

2 2

( ) ( ) ( ) ( )

1 1 1 1

1 1

ˆ

1 1

M M M
m k m k

i i j j

m k k

ij
M M M M

m k m k

i i j j

m k m k

x x x x
M M

x x x x
M M


= = =

= = = =

  
− −  

  
=

   
− −   

   

  

   

 (4) 

Those two methods are applied because of their ease in high-

dimensional uncertainty modeling, but they fail to consider 

nonlinear correlations and tail dependence among DERs. 

2) Vine copula: Vine copula provides an effective method to 

model high-dimensional complex DS for DERs using pair-

copula functions. Based on the C-vine copula, the joint PDF of 

n input variables X=(x1,…,xn) is established as: 

( )
1

1 , |

1 1 1

( ,..., ) ( ) ( | ), ( | )
n n n i

n l l i i j i i j

l i j

f x x f x c F x F x
− −

+ +

= = =

=  i i i
x x   (5) 

In (5), F(xi | xi) is a conditional CDF of xi given xi as: 

 
( ), |(~ , ) (~ , ) , (~ , )

, (~ , )

( | ), ( | )
( | )

( | )

i r r i r r r

i

r r

C F x F x
F x

F x


=



i i i i

i

i i

x x
x

x
  (6) 

Vine copula can depict nonlinear correlations and tail 

dependence among spatially and temporally correlated DERs. 

For n input variables, n(n-1)/2 pair copula functions are used to 

establish the DS and derive the joint PDF [31]. The type of each 

pair copula function can be determined based on the Akaike’s 

information criterion [32], and the parameters are estimated 

using the maximum likelihood estimation method [33]. In this 

paper, LCC and vine copula are used to establish different DSs 

among DER power injections. 

B. Proposed GSA Method for DERs with Various DSs 

1) Preliminary of GSA Method: The GSA methods can quantify 

the impacts of inputs on outputs in power system uncertainty 

analyses [23]-[29]. For a scalar model response Y=g(X) with n 

inputs X=(x1,…,xn)=(xi, x(~i)), the variance of Y is decomposed 

as [27]: 

(~ ) (~ )(~ ) (~ )[ ( , | )] [ ( , | )]
i i i iY x i i i x i i iD D E g x x E D g x x   = +
   x x

x x   (7) 

Thus, the first-order sensitivity index (FSI) of xi is defined as: 

 
(~ ) (~ )[ ( , ) | ]

i ix i i i

i

Y

D E g x x
S

D

 
 

=
x x

  (8) 

Also, the integral representation of FSI is stated as [27]: 

 

 

(~ ) (~ ) (~ )

2

(~ ) (~ ) (~ ) 0

2 2

0

1
( )d ( , ) ( , )d

       ( , ) ( , )d

= ( ) ( )d

i i i i i i i i i

Y

i i i i i i

Y

S f x x g x f x x
D

g x f x x g

D g f g

 =

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 

−

 





x x x

x x x

X X X

  (9) 

Based on two groups of samples ( ) ( ) ( )

(~ )( , )k k k

a i ix=X x  and 

( ) ( ) ( )

(~ )( , )k k k

b i ix=X x  (k =1,…,Ns) The Monte Carlo simulation 

(MCS) is applied to estimate the FSI in (9) as: 
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( )
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( ) ( ) 2
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X
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  (10) 

Using FSI, GSA methods have been successfully applied to 

evaluate the impacts of input variables on small-disturbance 

stability [23], [24], distribution network power flow [25], static 

voltage stability [26] and maximum MG loadability [27]. 

However, the GSA methods in the above studies can only 

evaluate the importance of input variables which are 

uncorrelated [23], [24] or linearly correlated [25]-[27]. The 

DER power output features significant nonlinear correlations 

and tail dependence due to the spatial distribution of DERs and 

temporal continuity of power outputs. With the increasing 

penetration of DERs, GSA results would be inaccurate when 

complex correlations among DERs are ignored. Thus, the 

impacts of certain uncertainties would be underestimated which 

might dramatically affect the reliability of power systems. 

2) RT-based GSA Method: We propose an RT-based GSA 

method to quantify the impacts of inputs with complex 

correlations, which overcomes the shortcomings of existing 

GSA methods [23]-[29]. For n input variables X, the joint PDF 

of X can be decomposed as: 

 
1 2 1 3 1 2( ) ( ) ( ) ( , ) ( )nf f x f x x f x x x f x=

n
X x   (11) 

Utilizing (11), RT can transform the correlated inputs X to 

uncorrelated inputs U=(u1,…,un) that are uniformly distributed 

over n-dimensional unit hypercube [0,1]n [31]. Also, U can be 

transformed to X using inverse RT. The transformation between 

X and U is stated as: 

 

1

1

1 1 1 1 1 1

1
2 2|1 2 1 2 2|1 2 1

1
| |

:                             :  

( ) ( )

( ) ( )
                       

          

( ) ( )n n n n n n

u F x x F u

u F x x x F u x

u F x x F u

−

−

−

−

 

= =


= =
 
 
 = = n n n n

X U U X

x x

  (12) 

Through RT, the model response Y can be presented as 

Y=g(X)=h(U). Thus, FSIs of U can also be defined and 

estimated using (8) and (10). For FSIs of X and U, we have the 

following propositions. 

Proposition 1. The FSI of x1 for the model response Y is 

consistent with the FSI of u1. 

Proof. Let us denote U=(u1, u(~1)) and the corresponding input 

variables X=(x1, x(~1)) based on RT. According to the integral 

representation of FSI in (9), the FSI of u1 is stated as: 

2

1 1 1 (~1) (~1) 1 (~1) (~1) 0

1
= d ( , )d ( , )d

Y

S u h u h u h
D

    −
    

U
u u u u  (13) 

Based on RT function Γ: X U  in (12), we have 

 1 1 1 (~1) (~1) 1 (~1) 0 0d = ( )d ,   d ( )d ,   u f x x f x h g= =u x x   (14) 
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Thus, there is 

 1 (~1) (~1) 1 (~1) (~1) 1 (~1)( , )d ( , ) ( )dh u g x f x= u u x x x   (15) 

Substituting (14) and (15) into (13), the FSI of x1 is obtained 

 
1 1 1 1 (~1) 1 (~1) 1 (~1)

2

1 (~1) 1 (~1) 1 (~1) 0 1

1
( )d ( , ) ( , )d

       ( , ) ( , )d  

Y

S f x x g x f x x
D

g x f x x g S

 =


   − =
 

 



U

X

x x x

x x x

 (16) 

The proof is completed. 

Proposition 2. The FSI of (xi | xi) (i=2,…,n) for the model 

response Y is consistent with the FSI of ui (i=2,…,n). 

Proof. Let us denote xi′=(xi | xi) (i=2,…,n) and thus RT realize a 

one-to-one mapping as: 

    1 2 1 2: , , , , , ,n nx x x u u u    X U   (17) 

The inputs in X′ and U are uncorrelated so the kth samples of 

X′ and U for FSI estimation have the following relationship 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(~ ) (~ )

( ) ( ) ( ) ( ) ( ) ( )

(~ ) (~ )

, ,

, ,

k k k k k k

a i i i i a

k k k k k k

b i i i i b

u x

u x

    = =  = 

    = =  = 

U u x X

U u x X
  (18) 

Due to ( ) ( )( ) ( )k k

a ag h =X U  and ( ) ( )( ) ( )k k

b bg h =X U , the 

FSI of ui can be approximated by using (10) as: 

 ˆ ˆlim lim ,   2,...,
s s

i i i i
N N

S S S S i n
 

→ →
= = = =U U X X   (19) 

The proof is completed. 

Algorithm 1 Calculate the FSI of xi by RT-based GSA 

1: Initialization: Collect the data of input variables X 

(i.e., DER power output) and determine the model 

response Y=g(X) (i.e., PVUF); 

2: Establish the probability models of X with spatial and 

temporal correlations based on the uncertainty 

modeling in Section III-A; 

3: for i = 1 to n do 

4:  Set the ith permutation X(i)=(xi,xi+1,…,xn,x1,…,xi-1); 

5:  if LCC matrix is used to depict the DS in X(i) then 

6:   Derive the conditional CDFs for RT in (12) by 

using Nataf transformation as detailed in [30]; 

7:  end if 

8:  if vine copula is used to depict the DS in X(i) then 

9:   Derive the conditional CDFs for RT in (12) by 

using (6); 

10:  end if 

11:  Build the relationship between X(i) and U through 

RT and obtain the model response Y=g(X(i))=h(U); 

12:  Generate two groups of uncorrelated samples of U 

which are denoted as ( ) ( ) ( )

1 (~1)( , )k k k

a u=U u  and 

( ) ( ) ( )

1 (~1)( , )k k k

b u=U u  (k=1,…,Ns) by utilizing Uniform 

distribution; 

13:  Obtain the corresponding two groups of samples of 

Y denoted as h(Ua
(k)) and h(Ub

(k)) (k=1,…,Ns) by 

using Y=g(X(i))=h(U) in step 11; 

14:  Substitute the samples h(Ua
(k)) and h(Ub

(k)) 

(k=1,…,Ns) into (10) to calculate the FSI of u1 

which is the FSI of xi; 

15: end for 

16: Results: FSIs of x1,…,xn 

The FSI of u1 is unconditional which is equal to the FSI of x1. 

Thus, the FSI of u1 can be directly used to evaluate the impacts 

of x1 and the correlations of x1 with other inputs (x2,…,xn) on 

the variation of Y. The FSI of ui (i=2,…,n) is conditional, which 

does not consider the impacts of correlations of xi and xi on the 

variation of Y. The corresponding relationship of FSIs in 

Propositions 1 and 2 is related to the permutation of inputs in 

X. There are n! permutations of inputs in X and we can obtain 

various FSIs by changing the order of inputs. Considering n 

DERs as inputs X in ADN, Algorithm 1 presents the process of 

calculating FSIs of x1,…,xn using n permutations of X. Also, 

two other RT-GSA indices are defined to represent the impacts 

of X on Y as follows: 

1. Uncorrelated sensitivity index (USI): USI of xi is defined as 

the FSI of un which corresponds to the FSI of (xi | x(~i)). The 

USI quantifies the single impacts of xi on the variation of Y 

without considering the impacts of correlations of xi with 

other inputs x(~i). The USI of xi can be stated as: 

 
U,i nS S=X U   (20) 

2. Correlated sensitivity index (CSI): CSI is used to quantify the 

impacts of correlations among xi and x(~i) on the variation of 

Y, which is defined as: 

 
C, U,i i iS S S= −X X X   (21) 

The USI of xi can be obtained by calculating the FSI of un 

with the permutation X(i+1)=(xi+1,xi+2,…,xn,x1,…,xi). The 

calculation of FSI for un is similar to the calculation of FSI for 

u1 in Algorithm 1. Thus, the CSI of xi can be derived using the 

FSI and USI of xi as (21). In this paper, FSI, USI, and CSI are 

combined to evaluate the impacts of variable DER power 

injection with complex correlations on PVUF. The conditional 

CDFs in RT is vital for applying the RT-based GSA method. 

Considering the probability models of inputs, LLC and vine 

copula can be both handled to derive the conditional CDFs 

using the RT-based GSA method as shown in Algorithm 1. 

Thus, compared with the GSA methods in [23]-[29], the 

proposed RT-based GSA method is applicable to quantify the 

impacts of DERs with various DSs on VU. 

IV. STAGE TWO: UNBALANCE MITIGATION 

In this section, an optimal mitigation strategy for DER power 

injection is proposed by allocating a limited number of ESDs. 

Thus, the risk of exceeding VUF limit can be decreased by 

using ESDs to compensate the fluctuations in identified critical 

DER power injections. 

A. Determining the Allocation of ESDs 

In a time window, ESDs can be used to mitigate VU by 

reducing the fluctuation in DER power injection as shown in 

Fig. 3. After allocating ESDs, the variation range of DER power 

injection is diminished so that the risk of exceeding VUF limit 

is decreased. However, in practical power systems, the 

available ESDs might be limited [34] or the ESDs are 

unavailable due to the geographical distribution of DERs. In 

this paper, we consider two kinds of ESDs: shared fixed ESDs 

(FESDs) and mobile ESDs (MESDs) [35]. The FESD is shared 

among several DERs. By closing the corresponding switch, the 

shared FESD is allocated at a certain DER bus to compensate 

the fluctuation in DER power injection. Compared with the 

FESDs, the MESDs are more flexible which can be allocated at 

Authorized licensed use limited to: University of Wollongong. Downloaded on May 30,2020 at 06:56:46 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2020.2992960, IEEE
Transactions on Sustainable Energy

 6 

any DER buses to compensate the fluctuation in DER power 

injection while the operation costs of MESDs would be higher. 

In this paper, FESDs and MESDs are considered to mitigate 

VU in ADN by reducing the fluctuation in DER power injection. 

In Stage one, the proposed RT-based GSA method quantifies 

the impacts of variable DERs on PVUF and derives a priority 

ranking (PR) of DERs based on the RT-GSA indices. Then, the 

ESDs are allocated at the critical DER buses according to the 

PR of DERs. As shown in Fig. 4, DER2, DER3, and DER4 are 

identified as critical DERs which have significant impacts on 

VU. Thus, the shared FESD1 between DER1 and DER2 is 

preferentially integrated into ADN at the DER2 bus by closing 

the switch S2. Also, MESD1 and MESD2 are allocated at the 

buses of DER3 and DER4, respectively. For DER1 and DER5, 

their impacts on VU are insignificant so ESDs are not allocated. 

The results of Stage one determine the allocation of ESDs to 

furthest mitigate VU by using the limited number of ESDs. 

 
Fig. 3.  Mitigating the unbalance using ESDs. 

 
Fig. 4.  Allocation of FESDs and MESDs in ADN. 

B. Mitigation Strategy for Variable DER Power Injection 

After allocating ESDs at critical DERs buses, the optimal 

mitigation strategy is proposed to compensate the fluctuations 

of DER power injections by charging and discharging of ESDs. 

The corresponding optimal mitigation problem is formulated in 

(22.1)-(22.10). Here, the utilized ESDs can be fixed or mobile. 

Based on the probability models of DERs in Section III-A, N 

scenes for the power injection of DERi with spatial and 

temporal correlations are generated in a time window with T 

time instants. 

 ( )
2

DER

,

1 1

min   i

N T

m t m

m t

P P
= =

−   (22.1) 

Subject to: 
DER

,

1

1
,  i

T

m m t

t

P P m
T =

=    (22.2) 

 
DERmin max

, , , ,  ,i

m t m t m tP P P m t      (22.3) 

 
DER D c disc

, , , , ,  ,i

m t m t m t m tP P P P m t= − +     (22.4) 

 c disc

, , 1 c , disc , ,  ,m t m t m t m tSOC SOC P P m t −= +  −      (22.5) 

 
min , max ,  ,m tSOC SOC SOC m t      (22.6) 

 c disc

, , 1,  ,m t m tu u m t+      (22.7) 

 c c c

, , max0 ,  ,m t m tP u P m t        (22.8) 

 disc disc disc

, , max0 ,  ,m t m tP u P m t        (22.9) 

 
,0 ,  mSOC m=    (22.10) 

In the above model, the objective (22.1) is to minimize the 

variance of DERi power injection after allocating the ESD. 

Constraint (22.2) represents the mean of DERi power injection 

within the time window [1, T] in the mth scene. Constraint (22.3) 

describes the limit of DERi power injection after allocating the 

ESD. Constraint (22.4) represents the power balance after 

charging or discharging of ESD. Constraints (22.5)-(22.6) 

represent the ESD capacity balance and limit, respectively. 

Constraint (22.7) ensures that the ESD would not charge and 

discharge simultaneously. Constraints (22.8)-(22.9) limit the 

charging and discharging power, respectively. Constraint 

(22.10) depicts the initial state-of-charge of ESD in each scene. 

V. CASE STUDY 

A. ADN System Description 

The effectiveness of the proposed two-stage UQUM method 

is verified using a 123-bus three-phase unbalanced ADN 

system. There are six renewable DERs integrated into the 123-

bus ADN system, including three PV cells (DER2, DER3, DER6) 

and three wind turbines (DER1, DER4, DER5). DER1-DER6 are 

integrated into the ADN at buses 19 (Phase A), 73 (Phase C), 

99 (Phase B), 32 (Phase C), 66 (Phase C), 107 (Phase B), 

respectively. The original data of DER power output is 

extracted from NREL Solar and Wind Integration datasets and 

we increase the DER power outputs proportionally. Four 

uncorrelated Normal distribution functions with 10% standard 

deviation are used to depict load uncertainties within four sub-

regions of ADN. The variable DER power injections and loads 

are concerned as input variables in the studied ADN.  

 
Fig. 5.  A 123-bus three-phase unbalanced ADN system. 

In Stage one, the proposed RT-GSA method is applied to 

quantify the impacts of correlated DERs on VU and identify 

critical DERs. MCS with 10,000 samples is used to calculate 

the RT-GSA indices of DERs and loads. The applicability of 
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RT-based GSA for DERs with various DSs (LCC and vine 

copula) is demonstrated and the impacts of complex 

correlations on VU are studied. In Stage two, the optimal 

mitigation strategy is adopted to mitigate VU by allocating 

FESDs and MESDs at critical DER buses. The locations of 

ESDs and DERs in the studied 123-bus three-phase unbalanced 

ADN system are shown in Fig. 5. The programs are performed 

with Matlab 2018a on a PC with Intel Core i5-8500 3.00GHz 

CPU and 8GB of RAM. The optimal model in Stage two is 

solved by GUROBI 8.1.1. 

B. Stage One of UQUM 

1) Applicability of RT-based GSA for DERs with Various DSs: 

We select a dataset of six DERs in a time window with 48 time 

instants from 8:00 to 12:00 A.M. The corresponding 

distributions and LLC matrix ρ of six DERs are presented in 

Fig. 6, where orange subfigures represent PDFs of power 

outputs of participating DERs, and blue subfigures represent 

nonlinear correlations and the strong tail dependence among 

participating DERs. 

In this part, two DSs including LCC and vine copula are 

applied to describe the correlation of DER power outputs. As 

discussed in Section II, LCC which is usually used to describe 

the linear correlation and vine copula is superior in depicting 

nonlinear correlations and tail dependences. With the two DSs, 

the probability models of DERs are established and uncertainty 

is propagated through the ADN system. Bus 83 with severe VU 

is selected as an observation point and GSA method is 

performed to quantify the impacts of variable DERs on the 

PVUF at bus 83. The FSIs of inputs with different DSs are given 

in Table I based on the GSA methods [25]-[27] and the RT-

based GSA method, respectively. Load1-4 stands for a group of 

four uncorrelated Normal inputs which depict load uncertainties 

within the four sub-regions of ADN. 

TABLE I 

FSIS OF INPUTS WITH VARIOUS DSS BY TWO GSA METHODS 

Input 

variable 

GSA methods in [25]-[27] RT-based GSA method 

LCC Vine copula LCC Vine copula 

DER1 0.003 — 0.003 0.002 
DER2 0.881 — 0.881 0.901 

DER3 0.617 — 0.617 0.580 

DER4 0.032 — 0.032 0.022 
DER5 0.004 — 0.004 0.008 

DER6 0.755 — 0.755 0.788 

Load1-4 0.004 — 0.004 0.003 

 
Fig. 6.  Distributions of power outputs (kW) of correlated DERs. 

In Table I, for the inputs with LCC-based DS, the results 

obtained by GSA methods in [25]-[27] and RT-based GSA 

method are the same, which verifies the effectiveness of the 

proposed method. For the inputs with vine copula-based DS, 

the GSA method results are unavailable in [25]-[27] while the 

RT-based GSA method derives the FSIs to quantify the impacts 

of inputs on PVUF at bus 83. Compared with the existing GSA 

methods in [25]-[27], the proposed RT-based GSA method is 

more general in practical applications due to its applicability for 

various DSs. The identified critical DERs (DER2, DER3, and 

DER6) are the same considering the inputs with LCC-based DS 

or vine copula-based DS. It implies that the impacts of 

nonlinear correlations and tail dependence among inputs for 

identifying critical inputs are insignificant in this example. 

Furthermore, we select a dataset of these six DERs in a time 

window with 48 time instants from 3:00 to 7:00 P.M. For the 

inputs with LCC-based DS, the GSA methods in [25]-[27] are 

unavailable because the LCC matrix of inputs is not positive 

definite after using Nataf transformation. For the inputs with 

vine copula-based DS, the proposed RT-based GSA method can 

be applied to quantify the impacts of DERs and obtain the 

critical DERs. Based on the proposed RT-based GSA method, 

the FSIs and PR of DERs are derived as presented in Table II. 

It can be seen that DER2 has the most significant impacts on 

PVUF at 83 and the impacts of Load1-4 are negligible. 

TABLE II 

FSIS AND PR OF INPUTS BASED ON THE RT-GSA METHOD 
 DER1 DER2 DER3 DER4 DER5 DER6 Load1-4 

FSI 0.259 0.501 0.398 0.483 0.457 0.191 0.002 

PR 5th 1st 4th 2nd 3rd 6th 8th 

 
Fig. 7.  Quantifying the impacts of correlations of DER2 and other DERs. 

 
Fig. 8.  Comparisons of (a) correlations of different DERs and (b) impacts of 

those correlations on PVUF at bus 83. 

2) Impacts of DER Correlations on VU: According to the FSIs 

of inputs with vine copula-based DS, the DER2 has the largest 

impacts on the PVUF at bus 83 while the impacts of DER1 are 

most insignificant. DER2, DER3, and DER6 are identified as 

critical inputs because their FSIs are much larger than the FSIs 

of others. Further, the UFIs and CSIs defined in Section III-B 
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are utilized to quantify the impacts of correlated DERs on VU. 

It should be noted that Load1-4 is uncorrelated with other inputs. 

Fig. 7 shows the proportion of FSIs of the inputs and quantifies 

the impacts of correlations of DER2 and other DERs on the 

PVUF at bus 83. Meanwhile, S1-S7 stand for the FSIs of inputs 

(DER1-DER6, Load1-4). USI2 and CSI2 represent the single 

impacts of DER2 and the impacts of correlations of DER2 and 

other DERs on the PVUF at bus 83, respectively. The 

proportion of USI2 is 14.3%, which indicates that the single 

impacts of DER2 are less than the impacts of correlations of 

DER2 and other DERs. 

Fig. 8 presents the correlations of two different DERs and the 

impacts of those correlations on PVUF. Strong correlations 

exist in several groups of bivariate (such as DER1 and DER3, 

DER1 and DER4, DER2 and DER6). However, only the impacts 

of correlations of DER2 and DER6 and of DER3 and DER6 are 

significant. The results indicate that the impacts of correlations 

on the PVUF variation might be minor though the correlations 

are strong.  

C. Stage Two of UQUM 

In this part, we design two scenarios for VU mitigation by 

allocating ESDs as introduced in Section IV. In scenario one, 

only three shared FESDs (FESD1 shared between DER1 and 

DER2; FESD2 shared between DER3 and DER4; FESD3 shared 

between DER5 and DER6) are considered for VU mitigation. In 

scenario two, two additional DERs (DER7 and DER8) are 

integrated into the ADN at buses 80 (Phase B) and 92 (Phase 

C). Besides the three FESDs, MESDs can be used to alleviate 

VU in scenario two. In Table III, seven cases are conducted to 

illustrate the effects of unbalance mitigation by allocating ESDs. 

TABLE III 

MITIGATING THE UNBALANCE USING FESDS AND MESDS 

Scenario Case Allocation of ESDs 

Scenario one 

(only considering 

FESDs) 

Case 1 Without allocating any FESDs. 

Case 2 
FESD1, FESD2, and FESD3 are allocated 
at DER1, DER4, and DER5, respectively. 

Case 3 
FESD1, FESD2, and FESD3 are allocated 

at DER2, DER3, and DER6, respectively. 

Scenario two 

(considering both 

FESDs and 

MESDs) 

Case 4 Without allocating any ESDs. 

Case 5 
FESD1, FESD2, and FESD3 are allocated 

at DER2, DER3, and DER6, respectively. 

Case 6 MESD1 is allocated at DER7. 

Case 7 
MESD1 and FESD3 are allocated at 

DER7 and DER6, respectively. 

 
Fig. 9.  PDFs of DER power injection (kW) before and after allocating the 
FESDs in (a) Case 2 and (b) Case 3. 

 
Fig. 10.  PDFs of PVUF at bus 83 in scenario one. 

In scenario one, we compare the effects of mitigating the 

unbalance at bus 83 by allocating FESDs at different DER 

buses. In Table I, the results of Stage one indicate that the 

impacts of DER1, DER4, and DER5 on the variation of PVUF at 

bus 83 are insignificant and DER2, DER3, and DER6 are the 

critical DERs. Accordingly, in Case 2, the FESDs are allocated 

to buses with less critical DERs (DER1, DER4, and DER5). In 

Case 3, the FESDs are allocated to buses of critical DERs 

(DER2, DER3, and DER6). Fig. 9 presents the PDFs of DER 

power injections before and after allocating FESDs. Fig. 10 

presents the PDFs of PVUF at bus 83 in scenario one. 

In Fig. 9, after allocating FESDs, the variation of each DER 

power injection is reduced and the DER power injection is 

mainly distributed around certain values in both Cases 2 and 3. 

However, the effects of VU mitigation by allocating FESDs are 

greatly different in Cases 2 and 3 as shown in Fig. 10. In Case 

2, fluctuations in DER1, DER4, and DER5 are reduced while the 

PDF of PVUF at bus 83 is almost the same as that in Case 1 

where the PVUF exceeds the VUF limit (2%) with a 24.61% 

probability. In Case 3, the effects of VU mitigation are 

significant in which the PVUF variation is regulated within a 

safe range by allocating the FESDs at critical DERs. The 

comparison of Cases 2 and 3 verifies the effectiveness of the 

RT-based GSA method on identifying the critical DERs. 

In scenario two, two additional DERs (i.e., DER7 and DER8) 

are integrated into the ADN. Here, we choose bus 160 with 

severe VU as the observation point and the data of eight DERs 

includes 48 time instants from 1:00 to 4:00 P.M. In Stage one, 

the RT-based GSA method is performed to quantify the impacts 

of DERs with vine copula-based DS on the PVUF at bus 160. 

Also, the GSA methods in [25]-[27] is applied considering the 

DERs with LCC-based DS. The FSIs of DERs are obtained in 

Stage one and the PR of DERs are given in Table IV, where 

DER7, DER6, DER3, and DER2 are identified as the critical 

DERs with the PR 1st-4th.  

Four cases (Cases 4-7) in Table III are conducted to illustrate 

the effects of mitigating the unbalance. The power injection of 

DER7 is the most critical factor for the variation of PVUF. Fig. 

11 presents the PDFs of PVUF at bus 160 for the four cases. In 

Case 5, only three FESDs are used to compensate the 

fluctuation in DER6, DER3, and DER2, which are the critical 

DERs with the PR 2nd-4th. Compared with the PDF in Case 4, 

the variance of PVUF in Case 5 is decreased after allocating 

three FESDs while the PVUF at bus 160 still exceeds the VUF 

limit with a 4.76% probability. In Case 6, MESDs is flexible to 

be integrated at the DER7 bus with the most critical factor. In 

Fig. 11, the variation range of PVUF at bus 160 only exceeds 

the VUF limit with a lower probability of 1.05% as compared 

with that in Cases 4 and 5. In Case 7, MESD1 and FESD3 are 
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allocated at DER7 and DER6 with the PR 1st and 2nd, 

respectively. Compared with Case 6, VU in Case 7 is further 

alleviated and the corresponding PVUF is regulated within a 

safe range. Thus, the MESDs and FESDs can be coordinated to 

reduce the impacts of variable DER power injections on VU. 

The PR of DERs obtained in Stage one is used to guide the 

allocation of MESDs and FESDs in VU mitigation. 

TABLE IV 

FSIS AND PR OF DERS 
 DER1 DER2 DER3 DER4 DER5 DER6 DER7 DER8 

FSI1 0.001 0.094 0.127 0.049 0.003 0.256 0.395 0.002 

PR 8th 4th 3rd 5th 6th 2nd 1st 7th 

FSI2 0.016 0.090 0.168 0.035 0.011 0.251 0.413 0.001 

PR 6th 4th 3rd 5th 7th 2nd 1st 8th 

*FSI1 represents the FSIs obtained by RT-GSA method with vine copula-based DS; 

FSI2 represents the FSIs obtained by GSA methods in [25]-[27] with LCC-based DS. 

 
Fig. 11.  PDFs of PVUF at bus 160 in scenario two. 

VI. CONCLUSION 

This paper proposes a two-stage UQUM framework to 

quantify the impacts of variable DERs on VU in ADN and 

mitigate the corresponding impacts by dispatching available 

ESDs. In Stage one, the RT-based GSA method is proposed to 

quantify the impacts of correlated DERs on PVUF and identify 

critical DERs with significant impacts on VU. In Stage two, the 

joint allocation of available FESDs and MESDs is proposed to 

compensate the fluctuations of identified critical DERs for 

alleviating VU with enhanced efficiency. 

The proposed two-stage UQUM framework presents the 

following salient features:  

1. Compared with the existing GSA methods presented in [25]-

[27], the proposed RT-based GSA method is capable of 

handling the DERs with complex DS established by vine 

copula and identifying the critical DERs. In practical 

applications, the proposed RT-based GSA method is more 

general to quantify the impacts of input variables with 

various DSs.  

2. The effectiveness of the proposed UQUM framework for 

mitigating VU is verified by allocating the available ESDs at 

the critical DER buses and developing the optimal mitigation 

strategy.  

3. The joint allocation of FESDs and MESDs provides more 

flexible approaches to effectively alleviate the impacts of 

variable DER power injections on VU in ADN.  

Our future work will focus on the application of uncertainty 

quantification methods in the scheduling of MESDs and EVs to 

improve the resilience and reliability of power systems. 
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