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Ensuring cyber security is a complex task that relies on domain knowledge and requires cognitive abil-
ities to determine possible threats from large amounts of network data. This study investigates how
knowledge in network operations and information security influence the detection of intrusions in a sim-
ple network. We developed a simplified Intrusion Detection System (IDS), which allows us to examine
how individuals with or without knowledge in cyber security detect malicious events and declare an
attack based on a sequence of network events. Our results indicate that more knowledge in cyber security
facilitated the correct detection of malicious events and decreased the false classification of benign events
as malicious. However, knowledge had less contribution when judging whether a sequence of events rep-
resenting a cyber-attack. While knowledge of cyber security helps in the detection of malicious events,
situated knowledge regarding a specific network at hand is needed to make accurate detection decisions.
Responses from participants that have knowledge in cyber security indicated that they were able to dis-
tinguish between different types of cyber-attacks, whereas novice participants were not sensitive to the
attack types. We explain how these findings relate to cognitive processes and we discuss their implica-
tions for improving cyber security.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cyber-attacks—the disruption of computers’ normal functioning
and the loss of sensitive information through malicious network
events—are becoming more widespread. Guarding against them
is a significant part of the Information Technology (IT) governance
done by cyber analysts, as many government agencies and private
companies have moved to distributed systems (McHugh, 2001).
The most important responsibility of a cyber-security analyst is
to protect a network from harm. Many technological advances in
information and network security have facilitated the advanced
monitoring and threat detection for the analysts, but the tasks they
perform cannot be completely automated. The analytical capabili-
ties of the human decision maker are still needed and are indis-
pensable (Cranor, 2008; Jajodia, Liu, Swarup, & Wang, 2010).
However, although analysts are capable of performing cyber secu-
rity tasks, our understanding of the cognitive processes that are
required for effective network protection is relatively limited
(Chen, Liu, Yen, & Mullen, 2012; Gonzalez, Ben-Asher, Oltramari,
& Lebiere, 2014). Furthermore, it is unclear in what ways the
analysts utilize their experience in cyber security to detect cyber-
attacks.

One tool that security analysts heavily rely on is Intrusion
Detection System (IDS). This tool can detect network intrusions
and network misuse by matching patterns of known attacks
against ongoing network activity. Once the IDS finds a match to a
known type of attack or detects abnormal network activity, it pro-
duces alerts detailing the suspicious events (Goodall, Lutters, &
Komlodi, 2009). In IDS, as in other alert systems, decreasing the
number of missed events increases the number of false alerts
(Green & Swets, 1966). Considering the amount of traffic in a
mid-size corporate network and the ever-growing number and
complexity of cyber-attacks, the number of alerts generated by
an IDS can be overwhelming to a human analyst. Such systems
can trigger thousands of alerts per day, up to 99% of which are false
alerts (Goodall, Lutters, & Komlodi, 2004). Eventually, the high vol-
ume of intrusion alerts that needs to be processed and the high
probability of false alerts make the process of accurately detecting
a cyber-attack challenging for human cognitive capabilities.

There is a growing body of work within the cyber security field
that is focused on understanding the work processes of security
analysts (D’Amico et al., 2005; Goodall et al., 2009; Thompson,
Rantanen, & Yurcik, 2006; Werlinger, Muldner, Hawkey, &
Beznosov, 2010). Previous studies infer that the general cyber
analysis work process model includes preparation, monitoring,
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detection, analysis, and response to network events. Both monitor-
ing and detection belong to a general process called triage analysis.
When conducting triage analysis, the analyst screens a large num-
ber of IDS alerts and network events, identifies false alerts, and
escalates suspicious events for further analysis, which can result
in the appropriate response (D’Amico et al., 2005). Triage analysis
is a knowledge-intensive activity in which an analyst’s expertise is
leveraged to promptly dismiss false alerts and to attend to alerts
that provide true indications of a cyber-attack.

In this study, we investigate the basic cognitive processes
involved in the detection of cyber-attacks with a specific interest
in understanding the interplay between domain knowledge and
cognitive skills. As one cannot play chess without knowing the
rules of the game, some specific knowledge is required to detect
cyber-attacks. Cyber security analysts and practitioners are
required to have a broad knowledge of network operation and
information security. They usually undergo extensive training
and certification programs. However, it is not clear whether acquir-
ing deep and detailed knowledge in cyber security is the main
determinant of performance when detecting cyber-attacks or
whatever the ability to efficiently apply general thinking strategies
is at least equally crucial to this task. Furthermore, it is still unclear
how aspects like information search and evidence accumulation,
which serve as a basis for the detection of cyber-attacks, depend
on the analyst’s domain knowledge and on a general set of cogni-
tive skills she apply (Perkins & Salomon, 1989). As the security ana-
lyst operates in a highly dynamic environment, domain knowledge
can be incomplete or become outdated relatively fast. This type of
environment highlights the dependability on thinking strategies
for problem solving, inventive thinking, decision making, and
learning. Thus, it is possible that mastering independent cognitive
skills in such a context is a main component of cyber security
expertise.

As an initial step in resolving these questions, we examine how
the knowledge gap between experts and novices in cyber security
influences their ability to detect cyber-attacks. A questionnaire
allowed us to corroborate participants’ knowledge in information
and network security. Using a simplified IDS tool, we then conduct
laboratory and online experiments with experienced individuals in
cyber security and with participants with no significant knowledge
of cyber security. We examined the intrusion detection process in
different contexts (i.e., network scenarios) by presenting several
types of cyber-attacks. For each network scenario, the intrusion
detection process had two parts: the first included classification
of network events as malicious or benign; and in the second part,
a decision was made about whether or not the whole sequence
of network events represents an ongoing cyber-attack. This
allowed us to further examine the role of experience in different
stages of the detection task. Overall, we predicted that a larger
knowledge base would lead to better performance, and that
experts would do better than novices that can only rely on their
general cognitive skills. Therefore, we hypothesized that experts
will be more accurate than novices, when judging a whole
sequence of network events, and detecting a cyber-attack. We also
expect that experts will decide more accurately whether a network
event is malicious or not. Finally, we hypothesized that when judg-
ing a sequence of network events experts will be more confident in
their decisions compared to novice. These differences, between
experts and novices, are expected to be consistent across different
network scenarios.

2. Knowledge and cognitive challenges of cyber security

The rate and the extent to which the cyberspace can change is
extremely variable and unpredictable compared to other environ-
ments that are bound by physical constraints. The topology of the
network, the services it provides, and the users who depend on these
services are constantly changing. In parallel, new vulnerabilities that
can be exploited continuously emerge, clever attack strategies are
constantly developed and new counteracting protective measures
are deployed. These challenges result in a continuous effort by the
cyber security analyst to stay up-to-date on the knowledge needed
to successfully defend a network.

An analyst continually monitors the network, identifies threats,
and repairs each and any vulnerability; while the attacker only
needs to find a single vulnerability that can be exploited (Yurcik,
Barlow, & Rosendale, 2003). This simplified view highlights the
asymmetric relationships between a security analyst, a complex
environment, and an attacker. An analyst is constantly required
to make multiple and interdependent decisions in a dynamic envi-
ronment. Dynamic decision making is highly complex because it
requires an understanding of multiple, interrelated attributes and
the ability to anticipate the way that the environment will develop
over time. A decision maker is also required to act at the right time
to maximize the decision value (Brehmer, 1992; Edwards, 1962;
Gonzalez, 2005; Gonzalez, Vanyukov, & Martin, 2005). Given the
frequent and forcible changes in the cyber environment, an analyst
has to make real-time decisions depending on past experiences
and current knowledge.

Following Chi’s (2006) view on the characteristics of expertise
and the relative view of expertise (Chase & Simon, 1973), a cyber
security analyst may be regarded as an expert with high levels of
proficiency in information and network security when compared
to a novice who is less knowledgeable. The term novice is used
here in a generic manner, referring to a wide spectrum of individ-
uals with relatively no knowledge of cyber security. The term ‘‘nov-
ices’’ also suggests that with proper training and with enough
experience, individuals can become experts. More specifically,
the relative view of expertise postulates that an expert is not
expert due to some innate talent or cognitive ability that the novice
cannot possess. Rather, a novice can become an expert with proper
training. However, it is possible that some aspects of expertise
depend on the ability to tune general cognitive skills, like sustained
attention and information synthesis, to a specific context, provid-
ing contextualized ways to access and deploy domain specific
knowledge (Perkins & Salomon, 1989).

Asgharpour, Liu, and Camp (2007) showed how individuals with
various levels of knowledge in information security and years of
experience, may have different mental models of cyber security.
Higher proficiency in information security also suggests better per-
formance in cyber detection than lower levels of knowledge. Expe-
rienced individuals are expected to make better decisions than
inexperienced ones. An expert is expected to detect features and
meaningful patterns that a novice cannot (Shanteau, 1987). Knowl-
edge and previous experience should make an expert more sensi-
tive to cues that are overlooked by a novice. Careful attention to
these cues can foster the identification of patterns that construct
a problem and should promote the choice of the appropriate
courses of action. Such expertise appears to be domain specific,
and it is built up through experience and intensive practice
(Randel, Pugh, & Reed, 1996). However, expertise may be domain
limited and context dependent. Expertise can also make individu-
als more rigid and result in problematic adaptation in more
dynamic environments (Chi, 2006). Furthermore, depending only
on domain knowledge and neglecting general cognitive skills and
heuristics can harm the ability of experts to mitigate atypical
problems.

Goodall et al. (2009) studied cyber security analysts and the
practical aspects of intrusion detection. Their work particularly
highlights the expertise required to successfully accomplish the
intrusion detection task. It comprises of domain knowledge in
information and network security, and also local knowledge



Fig. 1. The local computer network at an online retail company.
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grounded in the analyst’s unique environment. In general, domain
knowledge is the fundamental knowledge obtained through long
and deliberate learning (Ericsson & Lehmann, 1996). It includes
theoretical knowledge that the expert acquires through formal
education, training, or certification (Chi, 2006). Domain knowledge
also includes practical knowledge learned through hands-on prac-
tice and experience with tools, methods of operation, and work-
flows. Domain knowledge acquired through formal learning
processes lays the essential foundation of requisite knowledge
for the work of the cyber security analyst. However, domain
knowledge may not be enough to detect cyber-attacks in opera-
tional environments. In addition to domain knowledge, the analyst
may need situated knowledge (Goodall et al., 2004, 2009). Situated
knowledge is implicit, hard to articulate, and organization-depen-
dent (Schmidt & Hunter, 1993). This type knowledge tends to be
dynamic and the expert acquires it through continued interactions
with a specific operating environment. In the context of informa-
tion and network security, effectively learning the nuances of a
particular network is often achieved by tuning and adjusting the
IDS so it will detect threats and meet the organization’s security
needs without standing in the way of legitimate network users.
Thus, for effective threat detection in a network, the analyst should
know how to operate an IDS in general and have experience in
using the IDS in that specific network. Given that cyber-attacks
are represented in abnormal network activity, an analyst should
be able to define normal and abnormal network activity and utilize
these definitions to detect attacks. As what can be considered nor-
mal network activity in one environment may be indicative of
malicious activity in another, intrusion detection depends on the
ability to integrate domain and situated knowledge in a dynamic
environment (Yurcik et al., 2003).

To extend the qualitative ethnographic research methods that
were used to understand the mental model and general workflows
of cyber security analysts (e.g., D’Amico & Whitley, 2008; Paul &
Whitley, 2013), there is a need for quantitative tools and measures
of performance (Chi, 2006) that can be used to evaluate and ana-
lyze the intrusion detection process. We designed an intrusion
detection task which resembles the task confronted by many cyber
security analysts. In this task, participants use a simplified version
of an IDS to detect cyber-attacks in a relatively small network. This
setting allowed us to evaluate the general human performance of
experienced analysts outside their regular environment of opera-
tion and of novice participants. Both experts and novices can per-
form the detection task in this study by applying general reasoning
process. However, experienced participants are expected synthe-
size between their large knowledge in cyber security and general
cognitive skills, to benefit from their extensive experience. As such,
we expect experts to perform better when compared to novices,
who mainly depend on their cognitive skills. An intrusion detection
task involves detecting malicious network events in a sequence
and then deciding whether the whole sequence represents a
cyber-attack. We introduced various sequences of network events,
representing different types of cyber-attacks and examined the
interplay between the detection of malicious network events, the
type of attack, and expertise. We hypnotize that experience will
allow experts to make better judgments regarding the entire
sequence of network events. Their past experience with different
cyber-attacks will support the integration of the observed network
events and evidence regarding malicious network activity when
deciding whether there is a cyber-attack or not. It is also predict
that experts will be more confident in their decisions, as they base
their decisions on a large knowledge base of past experiences.
However, it is possible that based on their past experiences,
experts will also come up with several competing explanations
to observed network behaviors. This might impair the ability to
judge network events and decrease the confidence. Similarly, we
hypnotize that experience will increase the accuracy of detection
of malicious network events, expressed as a higher hit rate and a
lower false alert rate when detecting malicious events, regardless
of the specific network scenario. When it comes to classification
of network events, our hypothesis is that experts will be able to
identify and correctly interpret the relevant attributes of network
events. Thus, we hypnotize that the experts will be consistently
perform better than novices, regardless of the type of attributes
that construct a network event.

3. The simplified intrusion detection task

In this study, participants served as security analysts of a ficti-
tious online retail company. In this role, their duty was to protect
the company’s computer network from a malicious attacker
located outside the company. Based on the network described by
Lye and Wing (2005) and as illustrated in Fig. 1, we used a simple
stereotypical computer network. This kind of network topology is
common for local corporate networks that are connected to the
Internet. Such corporate networks typically consist of a web server,
a file server, and a cluster of workstations. This network setting is
commonly used in cyber security research and training, as well as
in the operative networks of real-world mid-size corporations
(Dutt, Ahn, Ben-Asher, & Gonzalez, 2012; Lye & Wing, 2005; Xie,
Li, Ou, Liu, & Levy, 2010). Without comprehensive training, it is
unlikely that novices could interact with commercially available
IDS like Snort (http://www.snort.org/) or even with a high fidelity
IDS mockup. As such, the experimental system required some com-
promises in the representation of the cyber environment.

Detailed instructions stated that the local corporate network is
connected to the Internet through a router that routes Internet
traffic to and from the local network. The network has two zones
or sub-networks: one containing a public web server, and the other
containing a private file server (with payroll, accounting, sales,
marketing data, etc.) and a private cluster of workstation comput-
ers that company employees use for their daily work. The public
web server runs two services (httpd and ftpd) and enables shop-
pers on the Internet to buy products using the company’s website.
The fileserver stores the company’s data and runs two services
(ftpd and nfsd) that allow access to the data over the network.
The employees of the company use their workstations to access
the Internet, as well as the data stored on the fileserver. The

http://www.snort.org/
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firewall prevents unwanted Internet connections from entering the
local network, and it also checks the traffic between the different
components of the local network.

A security analyst (i.e., the participant) monitors the network by
observing a sequence of network events, as seen in Fig. 2. Each
sequence is independent and includes network events that repre-
sent a single network scenario. The order of the events within a
scenario corresponds to the order in which they occurred over
the network, and the security analyst’s goal is to decide whether
or not a network event represents an attack. At the end of each net-
work scenario, an analyst had to determine if the entire network
scenario represented a cyber-attack on the company’s network or
not.

The simplified monitoring tool, seen in Fig. 2, presents network
events one by one. Each event has an identification number which
corresponds to its presentation order in the scenario. The event can
also include an Alert, which is generated by the IDS system. This
alert provides information regarding a suspicious network activity;
for example, indicating that a service has stopped or started. An
analyst is informed that the IDS can generate false alerts and that
the IDS can also miss malicious events. The last part of the display
presents the event’s description. It provides an analyst with impor-
tant information regarding the specific component of the network
where the event occurred. The structure of the description is con-
sistent, and the description includes the network component name
(e.g., web server, file server, etc.) and the processes which are cur-
rently running on that component (e.g., httpd, ftpd, etc.). The
description informs an analyst the state of the network traffic
between a pair of network components (e.g., between the web ser-
ver and the fileserver). Following Lye and Wing’s (2005) conven-
tion, the traffic information indicates the load between two
network components and has one of the following values: 0 Mbps,
3.3 Mbps, 6.7 Mbps, and 10 Mbps. Where 3.3 Mbps is the normal
traffic condition, 0 Mbps indicates that there is no traffic between
two components, and 10 Mbps indicates maximal capacity. Addi-
tional information included in the description indicates whether
or not an operation was executed on this network component.
The simplified information for each network event resembled the
presentation of events’ signature in IDS, with simplifications allow-
ing participants without experience with IDS to comprehend it.

An analyst can classify each event as malicious or not by check-
ing or un-checking the corresponding ‘‘Is threat’’ box for each
event, and it was possible to go back and check/uncheck any pre-
viously presented event before the network scenario had ended.
At the end of each network scenario, an analyst had to decide
whether the current scenario represents a cyber-attack or not
and report their level of confidence about this decision. Upon
Fig. 2. Network events with descri
completing a network scenario, a message informing analysts that
a new network scenario is about to start appears.
3.1. Network scenarios

An attacker outside the corporation may try to gain access to the
corporate network in order to obtain confidential information or to
compromise an essential service. For this, the attacker can follow an
attack called ‘‘island-hopping’’ attack (Jajodia et al., 2010), where
the web server is compromised first, and then it is used to originate
attacks on the file server or on the company workstations.

Based on the network structure illustrated in Fig. 1, we defined
five network scenarios; each represents a different network behav-
ior. Four of the networks scenarios represent the progress and
escalation of a cyber-attack in the corporate network, and one net-
work scenario represents normal network operation (Lye & Wing,
2005). The ability to analyze different types of cyber-attacks is
important. It increases the ecological validity of the experimental
systems, so that it resembles the diversity of real-world cyber-
attacks. Furthermore, cyber-attacks differed in the severity of their
outcomes: we introduced disastrous cyber-attacks where the net-
work stops functioning by the end of the scenario and it is clear
that this is not a normal behavior; we also introduced network sce-
narios that represent severe cyber-attack but without such appar-
ent outcomes. For the latter type of cyber-attack, the decision of
whether or not a network scenario represents a cyber-attack might
prove more challenging to the decision maker and more crucial to
the organization.

To maintain fine-grain control over the network events and
attacks introduced to the participants, we used the same ground
truth rule when constructing the network events for all the network
scenarios in this study. An event is malicious if there is an alert and
if the description of the event indicates irregular network traffic or
an operation was executed on one of the network components (or
both). Thus, a network event is malicious if the information regard-
ing the event follows this rule: Alert \ ðOperation [Network LoadÞ.
This indicates that the IDS is relatively reliable and does not miss
malicious network events. However, the IDS could generate false
alerts. Meaning that the event included an alert, but its description
did not include any suspicious network activity (i.e., not operation
nor network load). The IDS system in this study generated three
false alerts in each of the following network scenarios. This rule is
consistent with the idea that hardening the sensitivity of an IDS sys-
tem allows it to correctly generate alerts for all malicious events
(i.e., no missed events), while the strict set of rules generates some
false alerts at the same time (D’Amico & Whitley, 2008).
ption and alerts from the IDS.
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3.1.1. Deface website
A common target for cyber-attacks is the public web server that

connects the corporate network with the Internet. The web server
typically runs httpd and ftpd services, and the attacker gains con-
trol over the server by exploiting vulnerabilities in these services.
Gaining control over the web server (i.e., root shell) allows the
attacker to deface the corporate web site, which is changing the
web site’s content and then leaving. Usually, defacing a website
has temporal and limited effect on its content. However, this kind
of attack is challenging, as an analyst might mistakenly assume
that there is a legitimate maintenance activity on the web server
rather than a cyber-attack. Also, gaining control over the web ser-
ver is a preliminary stage in more sophisticated and venturesome
attacks. Thus, some of the malicious network events that appear
in this scenario appear in other scenarios as well.

3.1.2. Sniffer detected
Once the attacker gains control over the web server in this sce-

nario, he installs a sniffer and a backdoor program. The sniffer will
sniff out passwords from the users as they access the file server or
web server. Later, the attacker comes back through the backdoor
program and collects the password list from the sniffer. If the
attacker’s action go unnoticed, the consequences of the attack
can be disastrous. The attacker may have access to valuable infor-
mation and can also sabotage the network services. In this sce-
nario, the sniffer is detected before the attacker manages to
sabotage the network services. The detection of the sniffer indi-
cates that the network is under attack, as some of the network ser-
vices were compromised and the attacker might have gained
access to user accounts.

3.1.3. Denial-of-service (DoS)
Another course of action that an attacker can take after gaining

control of the web server is to launch a DoS attack from inside the
network. In this scenario, the attacker installs a virus that gradually
increases the traffic load within the network. Once the traffic load
is beyond the network’s full capacity, the network grinds to a halt
and nothing productive takes place over it.

3.1.4. Stealing confidential data
This scenario represents the progression of a cyber-attack, start-

ing from normal network operation and ending after the attacker
attained confidential information and obstructed the normal oper-
ation of the network. Here, the attacker gains access to the web
server by compromising one of the services it runs. Once the
attacker has hacked into the web server, he installs a sniffer and
a backdoor program. The sniffer collects passwords from the net-
work and the attacker uses the passwords to steal confidential
information stored on the file server or the workstations. To cause
more damage to the network, the attacker shuts the network down
using the obtained privileges at the end of this scenario.

3.1.5. No attack scenario
Unlike the above network scenario, this scenario included

events that are part of a normal network operation.

4. Methods

4.1. Participants

We recruited 55 participants from the university participant
pool and invited them to a computer laboratory at Carnegie Mellon
University. As these participants were recruited from the general
student population, they are considered novices in cyber security
as none of them were part of the cyber security workforce.
Participants were compensated with $10 as base payment and
could earn additional monetary incentive based on task perfor-
mance. Participants earned 1 cent for classifying each network
event as attack and no-attack correctly, and lost 1 cent for each
incorrect classification.

In parallel, we recruited 20 security professionals from techni-
cal communities, such as the Computer Emergency Response Team
(CERT), professionally oriented social network (e.g., LinkedIn), and
mailing lists. Expert participants performed the task online, and
earned 1 point for each attack and no-attack correctly classified
and lost 1 point for each attack and no-attack incorrectly classified.
Each point earned was worth one ticket for a raffle with a prize of
one $50 Amazon.com gift card that occurred after completing the
data collection.
4.2. Expertise questionnaire

Although numerous studies examined the work of the cyber
security analyst with a specific interest in intrusion detection
and the use of IDS, there are no tools to evaluate expertise in this
field. To measure or determine expertise, previous studies mainly
used interviews (Botta et al., 2007; D’Amico et al., 2005; Goodall
et al., 2004, 2009). Other studies combined interviews with partic-
ipatory observation (Werlinger, Hawkey, Muldner, Jaferian, &
Beznosov, 2008) or a card sorting task (Paul & Whitley, 2013).
These studies required meeting an analyst in person and relied
on job titles as a verification of expertise level.

In this study, we wanted to distinguish between experts with
profound understanding in cyber security and novices who cur-
rently have little to no expertise in cyber security. For that, we
developed a short questionnaire that aims at differentiating
between these two populations. Goodall et al. (2009) identified
several types of expertise that are required by a security analyst
to detect threats, and the ways in which expertise may be devel-
oped. The first is domain knowledge and the other is situated
knowledge. Given that our goal was a comparison of detection per-
formance according to their type of knowledge in cyber security,
our questionnaire assesses only domain knowledge through ques-
tions on network and information security. It evaluates the partic-
ipants’ domain knowledge in two independent dimensions. The
first dimension is theoretical knowledge and the second is practical
knowledge. Theoretical knowledge refers to participants’ familiar-
ity with the correct meaning of different technical terms, types of
cyber-attacks, and the use of network security tools. For example,
participants had to state what are the differences between passive
and reactive IDS. In another question participants had to explain
what is the consequence of blocking port 80 on a web server, with-
out any other changes in its default configuration. The second
dimension is practical knowledge, and it evaluates working experi-
ence in information and network security, specific training, sec-
ondary education, certifications, time spent on resolving
information and network security, and daily usage of security
tools. Here participants had to state how many years of working
experience they have in network operation and security area, with
the possible answers of: None (1), A few months (less than a
year)(2), 1–5 years (3), 5–10 years (4) and 10+ years (5). Another
question evaluated more specifically the interaction with an IDS
with the possible responses: None (1), About once every month
(2), About once every week (3), Once every day (4), Many times
every day (5). As for the network scenarios, we designed and vali-
dated the questionnaire based on discussions with cyber security
professionals, including a practitioner in the office of information
and network security at the university and a faculty member in
the department of Computer Science who studies intrusion
detection.
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4.3. Design and procedures

Based on the network structure illustrated in Fig. 1 and the
attack scenarios described above, we defined specific sequences
of network events that represent the progress and escalation of
cyber-attacks. Each scenario was composed of 20 network events.
The base-rate of the malicious events in all these scenarios was the
same with the value of .35. Meaning that out of 20 network events,
7 events were malicious. We followed Lye and Wing’s (2005) def-
initions for the potential state space of the network and the possi-
ble transitions in the network state and accordingly generated 10
network scenarios. The network scenario differed in the type of
attack, how the type of service that the attacker compromised first
to gain control over the web server (i.e., ftpd or httpd), and where
the sensitive data was stored (i.e., file server or on one of the work-
stations). In addition to the attack scenarios, we also constructed
one scenario that represented normal network operation. In gen-
eral, these network scenarios are relatively short compared to
monitoring ongoing traffic in a network. In addition, the proportion
of false alerts in the network scenarios is relatively low, compared
to the high proportion of false alert IDS usually generate. Due to
these simplifications, the experimental environment carries some
differences from the actual task performed by security profession-
als. However, these simplifications were carefully considered to
accommodate novices in this task, and we expected that experts
would benefit from the simplified environment as well.

The scenarios were presented using the IDS-tool (see in Fig. 2),
and a new event appeared on the screen every 10 s. As network
events appeared, participants classified each as an attack or no-
attack. At the end of the scenario, participants had to determine
if the entire network scenario represented a cyber-attack or not,
and then state their confidence in this decision. Participants in
the novices group saw the 10 scenarios in a random order, and
then completed the expertise questionnaire. Participants in the
experts group performed the experiment using an online version
of the IDS-Tool and saw only 3 randomly selected scenarios of
the original 10 and then completed the expertise questionnaire.
The online version of the IDS-Tool allowed analysts to complete
the task remotely and increased our participants pool. Also, keep-
ing the task relatively short increased the experts’ willingness to
participate in the experiment and the task completion rate. Alto-
gether, novices completed the experiment in about 60 min,
whereas experts completed the experiment in about 25 min.
Fig. 3. Practical and theoretical knowledge in network security of experts and
novices.
5. Results

Analyses of the expertise questionnaire indicate a clear distinc-
tion between the two groups of participants. Most of the partici-
pants in the experts group (80%) had 1 or more years of
experience in network operation and information security, and
35% of them had more than 10 years of practical experience. In
contrast, 93% of the participants in the novices group stated that
they have no experience in network operation and information
security. Similarly, 80% of the experts reported dealing with at least
one cyber security incident each day and 60% of them spent one or
more hours a day handling issues related to network operation and
security, whereas 60% of the novices reported dealing with cyber
security once a year or less and 96% do not spend any time han-
dling issues related to network operation and security on a day-
to-day basis. Regarding IDS usage, 60% of the experts used an IDS
at least once a month, whereas 93% of the novices never used an
IDS.

When evaluating theoretical knowledge in information secu-
rity, 100% of the experts knew the right definition for a DoS attack,
compared to only 36% of the novices. All of the experts knew the
right definition for phishing attacks, and a relatively high propor-
tion of novices (85%) also knew the right definition for phishing
attacks. Phishing attacks can target any end-users, whereas DoS
attacks target a network: this can explain the smaller difference
found between experts and novices when comparing the responses
to the phishing and DoS attack questions. Most of the experts (90%)
knew what differentiates between a reactive IDS to a passive IDS
compared to only 27% of the novices.

We integrated the responses regarding theoretical and practical
knowledge separately, by calculating the individuals’ theoretical
and practical knowledge scores on a scale between 0 and 1. Results
indicated that theoretical and practical knowledge are two inde-
pendent dimensions of expertise for experts (Cronbach’s a < .01)
and novices (Cronbach’s a = .463). Furthermore, it seems that the
disassociation between theoretical and practical knowledge was
higher for experts compared to novices. As illustrated in Fig. 3,
the two groups of participants have distinct characteristics. Both
the theoretical and practical knowledge of experts were signifi-
cantly higher than the theoretical and practical knowledge of nov-
ices, t(73) = 13.206, p < .001; t(73) = 14.179, p < .001, respectively.

These findings indicate that even when members of the experts
group are not constantly engaged in IDS monitoring task, they had
advanced knowledge and experience in network operation and
cyber security, especially when compared to the novice group. Fur-
thermore, most of the experts achieved optimal or near optimal
score in the theoretical knowledge questions and the variability
between experts was mainly found in the practice dimension. Nov-
ices had limited practical knowledge with limited variability and
higher variability in their theoretical knowledge. These findings
suggest that the questionnaire can be used to identify groups with
different knowledge levels. For experts, however, it does not pro-
vide a fine-grain classification of different levels of expertise like
journeyman, expert, and master (Chi, 2006).

5.1. Detection of attack scenarios

The overarching goal of the security expert is to protect the net-
work from attacks. However, we find no difference in performance
between the expert and novice groups. Participants in the experts
group correctly detected 67% of the attack scenarios with only 12%
of false detections (d0 = 1.60); while participants in the novices
group detected 68% of the attack scenarios with 14% of false detec-
tions (d0 = 1.52).

After classifying a network scenario as an attack scenario or not,
participants provided a short explanation of their decision and sta-
ted their confidence in the decision on a Likert scale ranging from
‘Highly Unconfident’ (1) to ‘Highly Confident’ (5). On average,
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experts (3.35) and novices (3.12) had a similar confidence in their
responses, t(608) = 1.647, p = ns. However, experts were more con-
fident in their decision that a sequence of network events repre-
sented an attack (mean = 3.58, SD = .91) than they were in their
decision that it does not represent an attack (mean = 3, SD = .78),
t(58) = 2.578, p = .012. While participants in the novices group
had similar levels of confidence for decisions in the attack scenar-
ios (mean = 3.15, SD = 1.02) and in the no attack scenario
(mean = 3.05, SD = 1.12), t(548) = 1.080, p = ns. The difference
between experts and novices suggests that experts’ confidence
was sensitive to the decision (i.e., attack or no attack scenario),
and they were more careful and less confident when deciding that
a network scenario does not represent an attack.

To better understand how experts and novices performed in the
task and to evaluate whether the type of cyber-attack influenced
each group differently, we examined detection in each of the net-
work scenarios separately (see Fig. 4). Analysis indicated that for
the Deface Website attack, expert performance was about chance
level (42%), and novices performed significantly below chance level
(33%), v2(1,N = 12) = .333, p = ns. and v(1,N = 110) = 6.564, p = .005,
respectively. Participants in both groups were better at detecting
DoS attacks (Experts = 70%, Novices = 76%) and performed signifi-
cantly above chance level, v(1,N = 10) = 4.8, p = .028 and
v(1,N = 110) = 30.582, p < .001, respectively. For experts (59%) and
novices (62%) alike, classifying the Sniffer Detected network sce-
nario correctly was not trivial and detection rates for it did not differ
significantly from chance level, v(1,N = 8) = 1.5, p = ns. and
v(1,N = 110) = 3.636, p = ns., respectively. Finally, experts (82%)
and novices (77%) were more successful in classifying Stealing Con-
fidential Data network scenarios correctly, and both groups per-
formed significantly above chance level, v(1,N = 22) = 8.909,
p = .003 and v(1,N = 220) = 63.291, p < .001, respectively.

We used a logistic regression model to examine the relationship
between the decision whether a sequence of network events repre-
sented a cyber-attack or not, and the classification of network
event as malicious. The model included the binary decision, Attack
or No Attack as a dependent variable with the participant’s group
and the number of network events that the participant classified
as malicious as the independent variables. The analysis indicated
a significant main effect of the number of detected events,
(z = 9.152, p < .001). Each event that the participant considered as
a threat increased their likelihood of declaring a cyber-attack.
The model also yielded a significant interaction between the par-
ticipant’s group and the number of events considered as malicious,
as seen in Fig. 5. This finding indicates that after classifying a rela-
tively small number of events as malicious, novice participants
Fig. 4. Experts and novice attack detection rates for the four cyber-attack network
scenarios.
were more likely than experts to decide that there was a cyber-
attack (z = �3.816, p < .001). However, once a relatively larger
number of events was classified as malicious, experts were more
likely to decide that there was a cyber-attack. Also, classifying an
additional event as a threat had more influence on the experts’
decisions than on the novices’ decisions.

Examining the connection between the number of events cor-
rectly classified as malicious and the decision that a network sce-
nario represented a cyber-attack revealed a similar gap in the
performance of experts and novice. A logistic regression model
with the number of correctly detected threats and the participant’s
group as independent variable and the decision regarding the
whole scenario as the dependent variable indicated that as the
number of detected malicious events increase, the likelihood of
both experts and novices deciding that there was a cyber-attack
increased significantly (z = 8.194, p < .001). However, as seen in
Fig. 6 and as indicated by the significant interaction between the
number of detected threats and the participants’ group, novices
were more likely to decide that a sequence of network events rep-
resented a cyber-attack after detecting a small number of actual
threats. In contrast, experts were less likely than novices to decide
that there is a cyber-attack when detecting a small number of
threats (z = �2.070, p = .038). When most of the threats were
detected, however, both experts and novices were likely to decide
that there was a cyber-attack.

5.2. Detection of malicious network events

Participants classified each of the 20 network events in each sce-
nario as malicious or not. In general, there were 1200 network
events for experts and 11,000 network events for novices (partici-
pants � number of Scenarios � number of events in a scenario).
Experts classified a significantly larger proportion of the malicious
network events as threats and a significantly lower proportion of
benign events as threats compared to novices, v(1,N = 3829) =
15.651, p < .001 and v(1,N = 8371) = 15.068, p = .024, respectively.
As seen in Fig. 7, cyber security professionals correctly detected
55% of the malicious events with 15% of false detection (d0 = 1.18),
and novices detected 44% of the malicious network events with
18% of false detection (d0 = .78).

Next, we calculated the proportion of correct (i.e., hits) and
incorrect (i.e., false alerts) threat classification for each combina-
tion of participant and network scenario (see Fig. 8). Using a linear
regression model, we analyzed the detection rates of malicious
events with scenario and participants’ group as independent vari-
able. The results indicated that detection rate varied significantly
across the different network scenarios, F(3,539) = 6.767, p < .001.
Detection rates of malicious network events in the Sniffer Detected
Fig. 5. The probability of experts and novices to declare a cyber-attack depending
on the number of events classified as malicious.



Fig. 6. The probability of experts and novices to declare a cyber-attack depending
on the number of correctly detected threats.

Fig. 7. Overall hit and false alerts rates for experts and novices when detecting
malicious network events.

Fig. 8. Expert and novice detection rates of malicious network events for different
types of cyber-attacks.
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scenario (mean = 54%, SD = 28%) were significantly higher than the
detection rates in the DoS (mean = 45%, SD = 28%) and the Deface
Website (mean = 41%, SD = 30%) scenarios, t(236) = 2.666, p = .008
and t(183) = 2.906, p = .004. A significant two-way interaction
was found between the participants’ group and the scenario type,
F(3,539) = 2.715, p = .044. This finding suggests that the cyber
security experience influenced detection rates in the Stealing Con-
fidential Data and Sniffer Detected scenarios, t(240) = 4.105,
p < .001 and t(116) = 1.948, p = .054, respectively. Thus, experts
performed better than novices in these scenarios, while there were
no differences between the two groups in the other scenarios.

Analyses of the proportion of false alerts for each combination
of participant and network scenario revealed that the type of net-
work scenario also had a significant effect on the false classification
of benign network events as malicious, F(4,600) = 5.429, p < .001.
The false alert rate in the DoS scenario (mean = 23%, SD = 19%)
was significantly higher than in the Stealing Confidential Data
(mean = 18%, SD = 16%), the Deface Website (mean = 14%,
SD = 15%), and the No-Attack (mean = 12%, SD = 14%) scenarios,
t(360) = 2.410, p = .016, t(185) = 3.109, p = .002 and t(181) = 4.018,
p < .001, respectively.

5.3. Attributes to network events

When constructing the networks scenarios and the events that
they are composed of, we used a relatively simple ground truth
rule to generate malicious events. A network event was malicious
if the description of the event followed this rule:

Alert \ ðOperation [Network LoadÞ

Thus, the description of malicious events always had an alert on it,
and it could also indicate irregular network traffic or an operation
that was executed on one of the network components (or both).
Events of the form Alert, Network Load, and Operation included all
the indications that they are malicious and were similarly detected
by participants in the expert (74%) and novice (64%) groups,
v(1,N = 545) = 1.904, p = ns. Also, participants in the expert (57%)
and novice (49%) groups correctly detected a relatively similar pro-
portion of malicious events in the form of Alert and Network Load,
v(1,N = 1578) = 3.670, p = .055. However, malicious events in the
form of Alert and Operation were more likely to be detected by
experts (47%) than by novices (33%), v(1,N = 1706) = 13.158,
p < .001. This suggests that both experts and novices were sensitive
to the network load. However, experienced cyber professionals
were more aware of the relevancy of operations combined with
an alert than were novices.

Analyses of the network events that participants falsely classified
as malicious (i.e., false alerts) support the claim that cyber security
experience influences how participants make connections between
the attributes that constructed a network event. When the descrip-
tion of the event included only one possible indicator for a malicious
event (i.e., Alert or Network Load or Operation), we find no differences
between experts and novices participants. Events in the form of Alert
were equally misclassified as malicious by experts (29%) and novices
(26%), v(1,N = 1830) = .761, p < ns. Events in the form of Load were
equally misclassified as malicious by experts (19%) and novices
(21%), v(1,N = 2078) = .341, p < ns. Likewise, events in the form of
Operation were equally misclassified as malicious by experts (7%)
and novices (10%) alike, v(1,N = 1218) = 1.519, p < ns. However,
novice (30%) participants were more likely to generate false alerts
by classifying benign Network Load and Operation events as mali-
cious, compared to experts (15%), v(1,N = 1299) = 14.500, p < .001.
Thus, experts were aware that the operation can be the cause of
the load and that load combined with an operation can be a benign
network activity that does not represent an attack. This suggests that
experts evaluated the network load in the context of the network
status and integrated several attributes in the event’s description
together.
6. Discussion

There is increasing awareness of the importance of human deci-
sion making for the safety and security of IT systems (Ben-Asher,
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Meyer, Möller, & Englert, 2009; Möller, Ben-Asher, Engelbrecht,
Englert, & Meyer, 2011). Effective and efficient design of informa-
tion security systems that support the work of the security analyst,
like an IDS, may benefit from a better understanding of the capabil-
ities and limitations of the human decision maker who uses them
(Kaufman, Perlman, & Speciner, 2002). In particular, it is important
to understand how past experiences and knowledge influence
decision making in a highly dynamic environment like the cyber
world.

In this study, we contribute toward a better understanding of
the human decision making process in the detection of cyber-
attacks. We developed an expertise questionnaire that helps to dis-
criminate between domain experts and novices. Participants that
were cyber security professionals had extensive experience and
significant knowledge in information and network security. Even
though not all of them were qualified security experts that oper-
ated an IDS on a daily basis, comparing them to participants in
the novices group yielded distinctions in their approach to network
security tasks. The most substantial difference in performance
between expert and novices was found in the detection of mali-
cious events within a sequence of network events, while only
minor differences were found with respect to the decision of
whether or not the entire sequence represented a cyber-attack.
Knowledge of information and network security contributed more
to the detection of malicious events than to the detection of a
cyber-attack.

An explanation for experts’ superior detection of malicious
events is that their knowledge allowed them to interpret the
description of a network event, to understand the connections
between the different attributes that compose an event, and to
judge the event within the context of the specific network and net-
work activity. Previous experience allowed experts to understand
the connection between an IDS alert, the load in the network,
and what operations are executed in the network. This resulted
in an overall higher hit rate and lower false alarm rate compare
to the novices. The ability of domain experts to detect features
and meaningful patterns that a novice cannot is in-line with
Shanteau (1987) and Randel et al. (1996).

However, the performance of experts and novices was relatively
similar when detecting cyber-attacks. Specific types of cyber-
attacks that were challenging for the novices were also challenging
for the experts, and those that were relatively simple for the
experts were also relatively simple for the novices. Shanteau
(1992) suggest that experts will do well in tasks where the stimu-
lus is static compared to dynamic stimulus; and better when deci-
sion relates to one judgment rather than a process or behavior.
Although this may explain the relatively low performance of
experts, it is also possible that some aspect of the environment hin-
dered the experts and obstructed them from taking full advantage
of their past experience and knowledge. Experts were taken away
from their own familiar environment of operation and thus may
have lacked situated knowledge. This finding quantitatively con-
firms the importance of situated knowledge as proposed by previ-
ous qualitative studies (Botta et al., 2007; Goodall et al., 2004,
2009). Losing a substantial amount of the situated knowledge
and having to rely on domain knowledge impaired experts’ ability
to correctly judge a sequence of network events. Some verbal
explanations may illustrate how a lack of situated knowledge influ-
enced the intrusion detection processes. For example, expert (P02)
did not classify the Deface web site scenario as a cyber-attack and
explained:

‘‘I think that the user is updating the website. The sequence of shut-
down events and transactions, and the lack of transfer between the
webserver and the file server seem to indicate that nothing too sus-
picious is going on. Unless the attacker is being slow about it.’’
This expert considered two alternative explanations for the net-
work behavior, one corresponding to an attack and the other to legit-
imate maintenance of the web server. Here, the expert could have
benefited from having situated knowledge to disambiguate the sta-
tus of the network. Some explanations provided by experts included
explicit requests for additional situated information like IP logs that
would help them make a more correct or confident decision.

It is also possible that when detecting cyber-attacks, novices
benefited from highly indicative events that appeared toward the
end of some network scenarios (e.g., DoS and Stealing Confidential
Data scenarios). As seen in the results, novices were more likely
than experts to judge a network scenario based on a limited
amount of evidence (i.e., number of malicious events). Because
the cyber-attack decision was made after observing all network
events, it is possible that differences between experts and novices
cannot be observed. However, we may expect that experts would
detect the cyber-attacks earlier than novices and would be able
to prevent damage by stopping the propagation of the attack
through the network. This is illustrated by the explanations expert
provided below. They seemed sensitive to the order in which the
events appeared within a scenario. For example, an expert (P01)
provided the following explanation for classifying a DoS network
scenario as a cyber-attack:

‘‘Based on the order of connections, it seems that an attacker com-
promised a user workstation through the webserver, and then used
the workstation to access the fileserver and install some sort of
backdoor on the webserver.’’

Interestingly, this expert refers to a possible course of action
that the attacker took and does not refer to specific attributes of
network events like load. This is in contrast to the common expla-
nations novices provided which were mostly concerned with the
attributes of network events (e.g., network load and alerts). For
example, a novice (P10) provided the following explanation to a
cyber-attack decision:

‘‘There were many alerts, traffic was high at a lot of points, and the
traffic went down to 0 at the end.’’

The similar confidence levels experts of novices seem to be in
contrast to the idea that experts tend to be overly confident (Chi,
2006). There are two possible explanations for this. First, it is pos-
sible that experts’ situated knowledge is a major contributor to
their overconfidence. Alternatively, it is possible that like other
domains experts (e.g., weather forecasting), cyber security experts
have the tendency to be cautious and conservative (Chi, 2006). The
cautious behavior of experts can be also associated with a more
accurate understanding of the severe consequence of a wrong deci-
sion in cyber security. As demonstrated by an explanation expert
(P03) gave for classifying Deface Web Site scenario as an attack
scenario and assigning the decision with the lowest confidence
score:

‘‘It’s safer than saying no.’’

The higher levels of confidence that experts exhibited when
deciding that there is an attack compared to their lower levels of
confidence when concluding that there is no attack also support
the notion that cyber security analysts adopt cautious behaviors
when monitoring a network.

7. Conclusion

In summary, expertise and practical knowledge play an impor-
tant role in triage analysis: the task of classifying a network event
as a threat or not and the connections between these small deci-
sions and the overall attack decisions based on a sequence of
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network events. It is likely that in cyber security, the accumulation
of information regarding network events drives the decision pro-
cess regarding the whole sequence of events (Dutt et al., 2012).
In this study, we treat all network events in a similar manner,
meaning we do not consider the possibility that some events pro-
vide more diagnostic information than others. It is likely that
expertise support the identification of such critical events and
attending to them can bias the decision maker. Furthermore, in
the current experiment the network scenarios contained a rela-
tively small number of events, compared to real-world network
traffic. This can provide an advantage to the experts, especially if
they detect correctly the most informative events. To address this
limitation in our future work, we plan to focus on experts and to
use more complex and long network scenarios. Also, further
research is required to specifically evaluate the information
accumulation process before making a conclusions, and how the
decision regarding multiple events is synthesized. This line of
research will also consider the possibility that the each network
event has a different weights or contribution to the final judgment
of a network scenario. In this context, evidence accumulation
models proposed by Busemeyer and Townsend (1993) or Ratcliff
and Smith (2004) should be considered. However, information
integration models that use automatic-intuitive processes of
memory and perception and dynamically weight the contribution
of each event to the final decision might be more suitable for
modeling experts’ decisions (Raab & Johnson, 2007).

A security analyst needs situated and domain knowledge to ben-
efit from all available data sources and visualizations. Furthermore,
situated knowledge should be considered in an analysts’ training
process. In addition to theoretical knowledge and practical experi-
ence, analysts should also be trained to quickly learn and adapt to
novel and dynamic environments. An analyst should constantly
update and expand her situated knowledge regarding the opera-
tional environment. Such information regarding the importance
and function of servers in the network is rarely systematically col-
lected into a repository and even when collected, it is static and
becomes outdated rather quickly as the network constantly changes
with new equipment being added and the existing equipment being
modified, upgraded, or retired. Such situated knowledge is a pre-
requisite for more comprehensive and mission-oriented situation
awareness. Finally, considering the increasing number of personal
networks that end-users deploy by themselves (e.g., home net-
work), the growing number and variety of devices connected to
these networks (e.g., computers, smartphones, tablets, media
smart-TV, etc.) and their complexity, intrusion detection can
become a concern of many end-users without extensive domain
knowledge in information and network security.
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