
Bachelors Degree Thesis
Faculty of Technology

Comparing Spring REST api
test frameworks
- A comparison study

Author: Leopold Huber
Author: Sebastian Åkerblom
Supervisor: PhD Tobias Ohlsson
Examiner: Diego Perez
Subject: Computer Science
Term: VT2023

Abstract
This bachelor thesis presents a comparison of three Java testing frameworks - JUnit 5,
TestNG and Spock - with the purpose of evaluating their suitability in testing REST
APIs built with Spring Boot. As the demand for reliable and high-quality software
systems continues to grow, automated testing techniques are crucial in ensuring the
correct functionality of applications. Our study aims to fill the knowledge gap in the
current literature by focusing on unit tests for Java REST APIs running on the Spring
framework.

We developed a single Spring Boot application and applied tests written using the
three selected testing frameworks. We then compared the performance of the frame-
works based on execution time, memory usage and code conciseness. Additionally,
we conducted a questionnaire to gather developer preferences for the frameworks.

Our findings reveal that TestNG outperforms JUnit 5 in terms of performance, while
Spock requires fewer characters, making it more concise. However, JUnit 5 remains
the most well-known and widely used testing framework among developers. The
results of our study provide valuable insights into the performance and developer
preferences of the selected testing frameworks.

Key words
java, testing, frameworks, Spring, unit tests, JUnit 5, TestNG, Spock

Acknowledgements
We would like to thank our supervisor Tobias Ohlsson and examiner Diego Perez for
valuable feedback and cheerful comments related to our research. A special thanks
to our teacher Daniel Toll for the effort he put in guiding us to a suitable topic for this
paper. We would also like to thank all respondents of our questionnaire, providing us
with valuable results.

1

Contents
1 Introduction 5

1.1 Background . 5
1.2 Related Work . 6
1.3 Problem formulation . 7

1.3.1 Expected Results . 7
1.4 Motivation . 7
1.5 Results . 8
1.6 Scope/Limitation . 8
1.7 Testing frameworks . 10

1.7.1 JUnit 5 . 10
1.7.2 TestNG . 10
1.7.3 Spock . 11

1.8 Target group . 11
1.9 Outline . 11

2 Method 13
2.1 Research Project . 13

2.1.1 Experimental Research . 13
2.1.2 Questionnaires . 14

2.2 Research Methods . 15
2.2.1 The Application . 15

2.3 Reliability and Validity . 15
2.4 Threats to Validity . 16
2.5 Dependent and Independent variables 17
2.6 Ethical Considerations . 17
2.7 Bunges Scientific Method . 17

3 Theoretical Background 19
3.1 Functional tests and non-functional tests 19
3.2 Unit tests . 19
3.3 Integration tests . 19
3.4 System tests . 20
3.5 Acceptance tests . 20
3.6 The testing pyramid . 21
3.7 Test and Behaviour driven development 21
3.8 White and Black Box Testing . 22
3.9 Validation & Verification . 22

4 Implementation 23
4.1 JUnit 5 . 23

4.1.1 Installation of JUnit 5 . 23
4.1.2 Running tests in JUnit 5 23
4.1.3 Test structure in JUnit 5 23
4.1.4 Exception handling in JUnit 5 25
4.1.5 Conditional test execution in JUnit 5 25
4.1.6 Mocking in JUnit 5 . 26
4.1.7 Parameterized tests in JUnit 5 26

2

4.2 Spock . 27
4.2.1 Installation of Spock . 27
4.2.2 Running tests in Spock . 27
4.2.3 Test structure in Spock . 27
4.2.4 Exception handling in Spock 28
4.2.5 Conditional test execution in Spock 29
4.2.6 Mocking in Spock . 29
4.2.7 Parameterized tests in Spock 30

4.3 TestNG . 31
4.3.1 Installation of TestNG . 31
4.3.2 Running tests in TestNG 31
4.3.3 Test structure in TestNG 31
4.3.4 Exception handling in TestNG 32
4.3.5 Conditional test execution in TestNG 33
4.3.6 Mocking in TestNG . 33
4.3.7 Parameterized tests in TestNG 34

4.4 Tools . 35
4.5 Test Efficiency Score (TES) . 35

5 Results 37
5.1 Tests . 37

5.1.1 testCreate() . 37
5.1.2 testModify() . 39
5.1.3 testDelete() . 41
5.1.4 Result overview . 42

5.2 Questionnaire . 43
5.2.1 Previous experience with test frameworks 43
5.2.2 Preferred test framework 43
5.2.3 Familiarity with JUnit . 43
5.2.4 Preference for widely adopted frameworks 43
5.2.5 Important Criteria in Selecting a Test Framework 43

6 Analysis 44
6.1 Execution time . 44
6.2 Memory usage . 44
6.3 Code conciseness (characters used) 45
6.4 An example use of Test Efficiency Score (TES) 45

6.4.1 Calulation of TES . 46
6.5 Ending notes . 47

7 Discussion 49

8 Conclusion 50
8.1 Future work . 51

References 53

A Questions & Answers 56
A.1 . 56
A.2 . 57

3

A.3 . 58
A.4 . 59
A.5 . 60

B Testing frameworks not included 61
B.1 JBehave . 61
B.2 Serenity . 61
B.3 Selenium . 61
B.4 Selenide . 61
B.5 Gauge . 62
B.6 Geb . 62

C Results 63
C.1 . 63

4

1 Introduction
Creating and executing unit tests is a critical part when it comes to developing func-
tioning and maintainable software. In this 15 HEC Bachelor Thesis in Computer
science we aim at comparing 3 Java testing frameworks to find out which one to rec-
ommend when developing a REST API application built in Spring.

1.1 Background
In today’s fast-paced world our lives are more and more connected and dependent
on software systems such as web applications, mobile apps and desktop software.
Having these systems function in an expected way is therefore crucial for our society
to work as a whole.

Defects in software can cause serious effects, such as the loss of data or incorrect
responses to system queries. High-profile cases like the 2012 Knight Capital trading
glitch [1] shows the importance of robust software testing.

One way to improve the overall quality of a product while saving time otherwise
spent on manual testing is by integrating test automation into the software devel-
opment lifecycle. In order to make informed decision on what test frameworks are
suitable for the software project a developer however needs to put some energy and
thought on comparing different test frameworks. With help of a suitable test frame-
work a developer will be able to work more efficient with the testing part of a software
project, both increasing the robustness of the system while minimizing time and re-
sources spent.

Testing involves a wide range of activities, such as unit-testing, integration testing
and system testing. Automated tests can be written for both back-end and front-end
code, but to narrow down our research area and fill the knowledge gap that we have
spotted we have chosen to focus on unit tests for a Java back-end application running
on the Spring Boot framework.

As of February 2023 the Tiobe index ranks Java as the third most popular program-
ming language worldwide according to their ratings system that consists of search
queries made for different languages in different browsers. The Tiobe index is up-
dated on a monthly basis, it is maintained by Tiobe Software, a company specializing
in software quality assessment [2], [3]. While researching Java test frameworks we
have found mainly studies comparing GUI frameworks [4]. We have yet to find a
study comparing the three frameworks that we research closer in this study.

Representational State Transfer (REST) APIs have become increasingly prevalent in
software development due to their numerous benefits. The use of REST APIs in
software development is motivated by their scalability, interoperability, statelessness,
cacheability, simplicity and maintainability, making them well-suited for the dynamic
demands of modern applications [5].

In the literature review by M. A. Jamil et al. [6], the authors dive into the tech-
niques of software testing and mentions that testing is the most critical part of the
software development life-cycle. Furthermore, the authors concludes that testing is
time-consuming and requires automated testing techniques, further motivating the
need for this study that compares automated testing frameworks.

5

1.2 Related Work
In the paper An Evaluation of Testing Frameworks for Beginners in JavaScript Pro-
gramming: An evaluation of testing frameworks with beginners in mind [7] the au-
thor compares three Javascript testing frameworks. Here Jest, AVA and Node TAP are
compared based on the main criteria of simplicity, documentation and features. While
this study focused on frameworks for another language we still derived inspiration for
the methodology used, especially Bunge’s scientific method that the author follows.
One surprising finding of this study was that while Jest was the overall performer,
AVA was not very far behind. While we read this study in order to get inspiration on
the research process of a similar project we found it interesting that Jest’s and AVA’s
similar results show that smaller projects that relies on code-contributions can almost
keep up with larger projects (Meta is the company that originally developed Jest).

Another paper that is related to our work is Ramverk för enhetstestning [8], written by
Robin Dahlgren. In this paper TestNG and JUnit 5 is compared. Furthermore, the aim
of the study mentioned is to compare Java Testing Frameworks in general, in order
to find out what testing framework to use for an imaginary testing course held at a
university. We on the other hand aim to provide an answer to which testing framework
may be preferred for a Java Spring application. Ramverk för enhetstestning concludes
that JUnit 5 is the preferred framework when compared to TestNG, in line with the
hypothesis of our study.

Meiliana et al. [9] performs a similar comparison study as intended for this thesis,
however that paper focused on testing frameworks for Graphical User Interface in
Android development, namely Espresso, UI Automator, Appium and Calabash, the
conclusion of recommended framework there is therefore not applicable to this study.

We are aware that there are numerous gray literature blog posts online comparing the
frameworks we mention in this study [10]–[12]. While they provide useful insights
on what frameworks a developer may want to consider when writing tests for a Java
Spring Application they may lack the comprehensiveness, rigor and objectivity re-
quired for a scientific study. Consequently we have chosen to conduct a systematic
and in-depth analysis of the frameworks that are the focus of this study, in order to
provide a robust and reliable comparison for developers, educators and researchers.
Three of the gray literature blog posts that we found relevant are discussed below.

A surprising finding in is the applicability of the TestNG framework as mentioned
in the Browserstack article [10]. Compared to JUnit 5, TestNG offers some extra
functionality, such as arbitrary thread pools. The study here set TestNG apart from
other frameworks and points out that it is an appealing choice for various testing
scenarios.

The Enlear Academy article provides a comprehensive list of Popular Java testing
frameworks, but lacks direct comparisons of the frameworks mentioned in regards
to performance and memory consumption. Additionally, it fails to provide pros and
cons of the frameworks discussed, making it harder to chose one framework over
another [11].

While the Lambdatest article does provide an extensive overview of many popular
Java frameworks along with pros and cons it would be more informative if it included
a detailed analysis of the performance of the frameworks mentioned. This would
provide the readers with a more comprehensive understanding on how each and every

6

framework compares to each other and which one is suited for specific needs [12].

While researching similar studies using services such as IEEE Explore and Google
Scholar we did not find published research comparing JUnit 5, Spock and TestNG in
the context of a Java back-end application running on Spring Boot.

1.3 Problem formulation
Other papers have explored different Java testing frameworks aimed for other aspects
of the codebase, such as the graphical user interface (GUI) [9]. As mentioned above,
there are also gray research articles comparing Java frameworks in general, but our
literature research has not found any articles exploring testing frameworks for Spring
Boot applications where the back-end runs on Java, and that is the knowledge gap
that we aim to fill with this study [13]. The motivation to why we selected what
frameworks to research are discussed in the Chapter Scope/Limitation.

With our research we aim on answering these two research questions:

• RQ1.1 - How do Junit 5, TestNG and Spock compare when it comes to unit
testing?

• RQ1.2 - Can a single value represent the quality of a testing framework appro-
priately?

• RQ2 - Which testing framework is preferred by participants who have experi-
ence in developing Java Spring applications and why?

1.3.1 Expected Results
Since we have not previously worked with either TestNG or Spock we cannot hy-
pothesize on the performance of the frameworks compared to JUnit 5.

From our personal experience when writing Java projects we believe that JUnit 5
will be the preferred framework by most developers since it is the one we have come
across the most times in tutorials, and due to the fact that it comes pre-installed in
Spring boot. We therefore expect to answer JUnit 5 to RQ2.

1.4 Motivation
All quality applications need testing to make sure the application fulfills the demands
promised and there is a very large amount of different testing frameworks to choose
from when testing Java code.

A GitHub search for "Java Testing Frameworks" where we only included projects
with at least 100 GitHub stars already yielded over 40 results. A quick Google search
on popular frameworks also yields very many results, such as "13 Best Java Testing
Frameworks For 2023” [13].

We also feel like a comparison of only 4 frameworks, like in the study by Meiliana et
al., motivates writing a research paper on the subject, since a lot of work is involved
in deep diving into the implementations of different testing frameworks [9].

As Java is a popular programming language and widely used for developing rigid
back end systems, our research area focuses on Java testing frameworks that work
well together with the Spring boot framework, which is one of the most popular web
frameworks for Java.

7

A poor choice in testing framework can impact the efficiency and effectiveness of
the testing process. By comparing different testing frameworks, developers can make
informed decisions on what testing framework to choose for their projects. This will
improve quality and reduce time and resources spent.

1.5 Results
In this thesis, we present a comprehensive comparison of three popular test frame-
works for Java Spring applications: Spock, TestNG and JUnit 5. Our research yields
several types of results, providing valuable insights into the performance and devel-
oper preferences.

Through the evaluation of execution time, memory usage and code conciseness, we
propose a method for comparing test frameworks, which can be applied to other
similar comparisons in the field of software engineering.

Based on the data obtained from running the test frameworks on a Java Spring appli-
cation and the questionnaire, our study presents results that captures the relationship
between the performance metrics and junior developer preferences for the frame-
works.

By selecting well-defined result-types relevant to the subject of our study we can
validate the results of our research [14]. Furthermore, we improved the reliability
of our research methods by having our paper being peer reviewed by other students
participating in the course, as well as incorporating feedback from our supervisor.

1.6 Scope/Limitation
We did a research by searching Github for general purpose Java Frameworks and
came up with this list:

• JBehave

• JUnit 5

• Serenity

• TestNG

• Selenide

• Gauge

• Geb

• Spock

• Selenium

• Mockito

After we had the initial list we decided on a few criteria that we wanted a framework
to fulfill in order for us to evaluate it, these criteria were as follows:

• IDE Compatible: An Integrated Development Environment (IDE) can en-
hance the productivity of a developer by offering features such as autocomple-
tion, debugging tools, and more. This is the reason to why we wanted the tests
that we compare to be compatible with IDE choice of this research paper, that
is Microsoft Visual Studio Code.

8

• Open-source: With an open source project, the developer has the liberty of
understanding how it works by inspecting the source code. He/she can also
contribute to the project by making pull requests in order to patch bugs or
introduce new features. The open source community of a project can also
provide assistance or guidance related to the project.

• Able to generate test-reports: Clear and detailed test reports allow develop-
ers and quality assurance teams to easily identify failing tests and understand
causes of errors.

• Ability to configure test execution: This feature is important as it provides
the flexibility of running individual tests, a specific suite of tests, or all tests.
Also, the ability to configure the order of test execution is a key factor in setting
up complex test scenarios.

• Should be fairly well maintained (updated within the last 3 years): A
well maintained open source project indicates that bugs or issues are resolved
promptly. This is essential since we want to ensure that our testing-framework
works as intended.

• Support for unit-tests: By supporting unit-tests developers are able to catch
bugs early. Running unit tests in an iterative manner facilitates the refactoring
process and helps with providing a robust software.

• Consistency: By ensuring that the application where the tests are written is the
same for all three frameworks we can compare the frameworks fairly, without
variations in the complexity or functionality of the application.

• Efficiency: Developing multiple applications where the tests will be written
is time-consuming, and by only developing a single application we have more
resources that can be spent on doing meaningful comparisons between the three
frameworks that serves as the focus of this study.

• Reduced complexity: Comparing frameworks itself can be a daunting tasks
since there are very many criteria to evaluate. By keeping the application a
constant in our comparisons we avoid a lot of complexities that would arise if
the application would vary while the frameworks used for the tests would too.

• Relevance: Since the focus of this study is finding out what test-frameworks
would be preferable when building a Spring boot application we find little need
of developing several spring-boot applications where we apply our tests.

After narrowing down the criteria we have found that only JUnit 5, TestNG, Mockito
and Spock remained. Since Mockito is mainly used as a complement to other frame-
works in order to provide mocking support we have chosen to focus on the former
three frameworks.

Apart from the criteria above we felt that these three frameworks would be interesting
to compare since JUnit 5 appears to be the standard unit testing frameworks used for
Java development, while TestNG brands itself as an improvement of JUnit. Spock
has a rather different syntax compared to the former two, and that is why we also felt
that adding that framework would make the comparisons more interesting.

9

1.7 Testing frameworks
Below are short introductions of all the frameworks that we choose for this study. A
small calculator test case is also performed in every framework to better explain how
they may be used in practice. As previously mentioned, at an early stage we did not
research the Mockito framework further, since that framework is mainly used as a
complement to other frameworks, in order to provide mocking/stubbing support. In
Appendix B "Testing frameworks not included" the same calculator test is also shown
for test frameworks that were not included in this study.

1.7.1 JUnit 5
JUnit 5 is a Java unit-testing framework that integrates seamlessly with build tools
such as Maven and Gradle. It provides a wide range of features including annotations,
assertions, extensions, parameterized tests, nested tests and dynamic tests.

Unlike previous JUnit iterations, JUnit 5 is composed of several different modules:
JUnit Platform, JUnit Jupiter and JUnit Vintage.

JUnit platform is the foundation for launching testing frameworks in Java, it also
defines an API that is called TestEngine which is responsible for discovering and
executing tests. JUnit platform also has a console launcher that makes it possible to
execute tests from the command line.

JUnit Jupiter is an extension model for JUnit 5 and provides a more modern and flex-
ible approach for writing tests. Jupiter supports life-cycle methods, annotations for
defining tests among other features. Jupiter is designed to be more modular and cus-
tomizable compared to JUnit Vintage. The Jupiter sub-project provides a TestEngine
for running Jupiter based tests on the platform.

JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based tests on
the platform [15].

@Test
void testAddition() {

Calculator calculator = new Calculator();
int result = calculator.add(2, 3);
assertEquals(5, result);

}

1.7.2 TestNG
TestNG is a Java testing frameworks that has taken a lot of inspiration from JUnit,
especially from JUnit 4. The framework is described as follows on the official web-
site: "TestNG is a testing framework inspired from JUnit and NUnit but introducing
some new functionalities that make it more powerful and easier to use".

Many features of TestNG also exist in JUnit 5, but a few of them are only available in
TestNG, such as parallel tests. There are also slight variations in the syntax between
the two frameworks, but they fill the same purpose [16]–[18].

@Test
void testAddition() {

Calculator calculator = new Calculator();
int result = calculator.add(2, 3);
Assert.assertEquals(result, 5);

10

}

1.7.3 Spock
Spock is a testing framework for Java and Groovy that aims at combining the best
features from JUnit, TestNG and BDD frameworks like Jbehave. It provides ways
of writing both specification-style tests and traditional unit tests. It also provides
features such as built-in mocking support [19]. Specification-style Spock-test:

class CalculatorSpec extends Specification {
def "addition"() {

given:
Calculator calculator = new Calculator()

when:
int result = calculator.add(2, 3)

then:
result == 5

}
}

Unit-style Spock-test:

class CalculatorTest extends Specification {
void "test addition"() {

Calculator calculator = new Calculator()
int result = calculator.add(2, 3)
assert result == 5

}
}

The main difference between the two style of writing the tests as can see above is the
given, when and then statements.

1.8 Target group
Since the topic of this research is of technical nature the main target group is profes-
sionals in the IT-industry who may want to research what testing frameworks to use
for their existing or new Java projects.

Another target group resides in the education sector. Students may want an overview
of how the different frameworks compare since writing tests is a common require-
ment in school projects. Teachers are also included as part of our target group since
they might be interested in having an overview over testing tools to include in their
course content and to recommend to their students.

Lastly, researchers also form a target group for this article. They might be interested
in comparative analysis of testing frameworks and knowing what research has been
and not been done on the subject.

1.9 Outline
This report is organised as follows. In Chapter 2 we will discuss the methodology
used in our research, such as how comparisons are made and why. In Chapter 3 we

11

will provide a deeper theoretical background of the technologies involved, as well as
different concepts related to testing, such as white/black box testing, different types
of tests and so on. In Chapter 4 we will discuss the implementation done using our
methods of choice, and the result of the implementation will be presented in Chapter
5, before being analysed in Chapter 6. In Chapter 7 we will discuss the results. Lastly
in Chapter 8 we present the conclusion that we have made based on our discussion
and results. Here we will also present suggestions for future research to be made.

12

2 Method
In this study, we aimed to compare three test frameworks for Java Spring REST
APIs - JUnit, Spock, and TestNG - by analyzing their performance and ease of use.
To achieve this, we employed a mixed-methods approach, combining experimental
research with surveys of developers’ preferences and experiences. This approach en-
sured a comprehensive understanding of the test frameworks in question, allowing
for more accurate reliable comparisons. The mixed-methods approach is explained
in more detail in the paper "Portal of Research Methods and Methodologies for Re-
search Projects and Degree Projects" by Anne Håkansson [20]. This chapter outlines
the research project, which included the development of a simple REST API and as-
sociated unit tests, as well as the questionnaire design and distribution process.

By combining the experimental data with the questionnaire responses, we were able
to better understand the factors that influenced developers’ choices and preferences
in selecting test frameworks for Java Spring REST APIs [20].

2.1 Research Project
The research project was divided into two main components. The "Experimental
Research" component answers our first research question that is "How to Junit 5,
TestNG and Spock compare when it comes to unit testing?". The "Questionnaires"
component answers our second research question that is "Which testing framework is
preferred by participants who have experience in developing Java Spring applications
and why?".

2.1.1 Experimental Research
We developed a simple Java Spring REST API with basic functionality, which served
as a common platform for the comparison of the three test frameworks: JUnit 5,
Spock and TestNG. We created unit tests for the service layer of the REST API using
each of the selected frameworks. The service layer is an architectural layer that en-
capsulates business logic, calculations, and database operations, serving as a bridge
between the data access layer and the presentation layer. Our tests were designed to
assess the character count, speed and memory usage of the respective frameworks,
providing quantitative data for comparison.

The speed were measured by the test-reports provided by the frameworks run, and
the memory usage were taken by utilizing our PerformanceTester Class in the tests:

public class PerformanceTester {
public static long getUsedMemory() {

Runtime runtime = Runtime.getRuntime();
return runtime.totalMemory() - runtime.freeMemory();

}
}

This experimental approach allowed us to obtain objective, measurable results, which
could be used to compare the efficiency of the different test frameworks in a con-
trolled environment [20].

The tests included methods for Creating, Modifying and Deleting resources in a
CRUD application. We did not test Reading resources separately, since read oper-
ations are already performed in the create, modify and delete operations.

13

We also created tests for edge cases, more specifically operations that tried to delete
or modify resources that were not found. Since the "not found" test cases required
very little memory usage we did only test them with regards to speed and character
count.

When writing tests in the different frameworks we focused on testing the following
methods in the ProductService.java file.

public EntityModel<Product> modify(Long id, Product
product) {
Product existingProduct = repository.findById(id)

.orElseThrow(() -> new
ResourceNotFoundException(id));
existingProduct.setName(product.getName());
existingProduct.setDescription(product.getDescription());
existingProduct.setPrice(product.getPrice());
repository.save(existingProduct);
return assembler.toModel(existingProduct);

}

public EntityModel<Product> create(Product product) {
repository.save(product);
return assembler.toModel(product);

}

public ResponseEntity<?> delete(Long id) {
Product foundProduct = repository.findById(id)

.orElseThrow(() -> new
ResourceNotFoundException(id));
repository.delete(foundProduct);
return ResponseEntity.noContent().build();

}

2.1.2 Questionnaires
In addition to the experimental research, we designed and distributed a questionnaire
to gather qualitative data on developers’ preferences and experiences with the three
test frameworks. The questionnaire consisted of open-ended and close-ended ques-
tions focusing on factors such as ease of use, features, and overall satisfaction.

The results of the questionnaire provided insights into the subjective preferences of
developers and helped identify any potential strengths or weaknesses in the frame-
works that might not have been apparent from the quantitative data alone. See Ap-
pendix section A Questions & Answers.

Reasoning behind the questions of our survey
Below are the reasoning behind the questions that we included in our survey:

• "Which of the following testing frameworks have you used in your Java
Spring projects? (Multiple choice") and "Which testing framework do
you prefer using for Java Spring projects? (Multiple choice)": The two
first questions are designed in order to understand what testing frameworks the
respondents have used and which they prefer. With this information we can get

14

a broad view of the current state of the testing frameworks landscape.

• "How familiar are you with JUnit / Spock / TestNG?" (Multiple choice)
With these 3 questions we can gauge the respondent’s familiarity with the
aforementioned frameworks. The "not familar" to "very familar" scale allows
up to capture varying levels of experience with each framework. With this in-
formation we can not only understand the distribution of knowledge among the
respondents, but also contextualizes other answers they might give about their
preferences and experiences.

• "I find it easy to write tests using my preferred testing framework", "The
documentation for my preferred testing framework is clear and helpful",
"My preferred testing framework has good integration with Java Spring
projects." These questions are aimed at understanding what factors that con-
tribute to selecting a specific framework.

• "I prefer using a testing framework that is widely adopted by the indus-
try." This question was designed in order to better understand the importance
of industry adoption when choosing a specific framework. This can indicate
the importance of factors such as future proofing ones skill set, or community
support by an open source project.

• "Which criteria is the most important when selecting a testing framework
for Java Spring projects?" The answers from this question will help us better
understand what factors developers prioritize when making their choice of test
framework. This will give us an idea of what factors developers prioritize
when making their choice and help us in comparing the frameworks from these
different perspectives.

With multiple-choice questions we ensure comparability of responses and ease of
data analysis. The open ended "Other" answer helped with ensuring that unantici-
pated answers could be captured.

2.2 Research Methods
2.2.1 The Application
For our study we have built a simple REST API in Java using the Spring framework.
The application aims to be a foundation for all areas which we aim to test. It is built
as a layered Spring application using controller, service and repository layers which
isolates most logic in the service layer. The application uses a PostgreSQL database
and both the application and database are run using docker compose.

For each testing framework we have made copies of our initial application to ensure
that the application and testing remains the same, we are only comparing the testing
frameworks. The copies referred to are different branches in a Github repository.

2.3 Reliability and Validity
The methods of both questionnaire and experimental studies are used within the field
of computer science, which enhanced the reliability and validity of our research [20].
We designed our research questions to concentrate specifically on the performance
and characteristics of the testing frameworks. This focus justified our decision to
use a single REST API as the test application, ensuring that the only variable altered
between tests was the testing framework itself.

15

https://github.com/CoderSeb/school-2dv50e-project

To further safeguard the validity of our study, we adopted a consistent approach in
which all performance metrics were collected from tests run on the same system. This
approach mitigated the risk of extraneous variables that could potentially influence
the results. In this way, we established a controlled environment that allowed us to
directly attribute any observed differences in performance to the testing frameworks
being evaluated.

Moreover, by making our study design transparent and replicable, including a clear
definition of our research questions, a detailed description of our experimental setup,
and an explanation of our method for collecting performance metrics, we have en-
hanced the reliability of our findings. Any future researchers can thus follow our
methodology to reproduce our experiments and verify our results.

In addressing RQ2, we sought to understand the testing framework preferences of
participants with experience in developing Java Spring applications. We used a ques-
tionnaire to capture both the choice and the reasoning behind it. By using a consistent
rating scale for responses and administering the questionnaire uniformly to all partic-
ipants, we assured the reliability of our findings. The questionnaire is also replicable,
facilitating future verification of our study.

By adopting these measures, we have made every effort to ensure that our study
provides accurate, reliable and valid insights into the efficacy of different testing
frameworks for Java Spring REST APIs.

2.4 Threats to Validity
When conducting our research on comparing Java testing frameworks for the Spring
Boot Application that we have built we have identified several threats to the validity
of our findings. These threats are listed below:

• Internal validity: Our previous experience of the different Java frameworks
that we compare may introduce bias in the comparisons we do in this study.
Our previous experiences working with these frameworks may affect what tests
cases are implemented, and how they are implemented.

• Generalizability: Our study focuses on what test framework to chose when
developing a Spring Boot Application in Java. This decision will limit the gen-
eralizability of our findings to other types of Java applications or programming
languages.

• Statistical power and accuracy: The statistical power and accuracy of our
findings is affected by the limited test-cases that we write, and the fact that we
only have a single application that the tests are written on. Furthermore, it will
also be limited by how many people respond to our questionnaire.

• Bias in the questionnaire: Previous experiences of different testing frame-
works among the developers who will take part in our questionnaire may influ-
ence the answers they provide.

• Not knowing enough about the respondents in the questionnaire: We ac-
knowledge that our methodology may not exclusively capture the opinions of
experienced developers. However, it should be noted that this was not the pri-
mary intention. Our goal was to gather responses from individuals with Java
Spring development experience in a broad sense, which could include both

16

students and more senior developers. Given the nature of the school’s Slack
channel, we anticipate that the majority of the responses would come from
current students, who form the majority of the channel’s active members. Nev-
ertheless, we value the input from the more experienced developers in this
space. While we expect these individuals to constitute a smaller proportion of
the respondents, their experience and insights will provide a valuable perspec-
tive on the testing frameworks in use today. Therefore, we maintain that our
questionnaire, despite potential threats to validity, remains a meaningful tool
for achieving our research goals.

2.5 Dependent and Independent variables
Independent variables are variables that we can evaluate and manipulate in our study,
in the context of this study the independent variables would be the testing frameworks
themselves that we are comparing. Each of the above frameworks has its own syntax,
features and approaches to testing, which can influence the dependent variables that
we observe.

The dependent variables are the factors that we analyze and measure in order to com-
pare the performance and suitability of the three testing frameworks. These variables
includes:

• Test writing efficiency: The amount of time and effort required to write tests
in every framework.

• Test execution speed: How well the frameworks performs when executing
tests.

• Memory consumption: Memory usage of the frameworks while executing
tests.

2.6 Ethical Considerations
As our study only focus on factual results from our experiments we do not have any
ethical considerations regarding to the results of our study or risk of harm, however,
since we are doing a survey we have some considerations in regard to the participants
of the study.

In order to maintain confidentiality for the questionnaire that we decided to not collect
email addresses, or any information but the answers from the participants, in order
to make the questionnaire and its participants anonymous. Since the questionnaire
was posted on the slack-channel of our school the results will most likely be biased,
since there are mostly students who read the messages there. Furthermore, as part of
the questionnaire we inform the participants that the answers there will be part of our
Bachelor thesis.

2.7 Bunges Scientific Method
To conduct our research in a structural and scientific way we have chosen to work
after Bunge’s Scientific Method that divides the research process into stages to trans-
form the hypothesis of the work into a scientific article [21], [22].

Bunge’s Scientific Method is an interpretation of the research process outlined in
the book "Epistemology and Methodology I: Exploring the World, Vol 5’" by Mario

17

Bunge [22]. We have taken a great deal of inspiration from this interpretation, but
cannot say that we have followed it exactly as intended.

All steps below belong to either research, experimentation/application or evaluation.
They are an translation of the steps outlined in the interpretation of the method, out-
lined in the paper "Vetenskaplighet - Utvärdering av tre implementeringsprojekt inom
IT Bygg & Fastighet 2002" by Niclas Andersson and Anders Ekholm [21].

1. Identify a problem in an area of research.

2. Describe the problem in clear words.

3. Map the existing information and methods to gather the existing knowledge of
the area.

4. Explain a solution based on the background knowledge described in step 3. If
the background knowledge is not enough to do this, then go to step 5, otherwise
skip step 5.

5. Suggest new theories, ideas or techniques and generate new empirical data for
a solution to the problem.

6. Submit an exact or approximate solution to the problem.

7. Extract the consequences of the presented solution.

8. Test the proposed solution.

9. Correct the solution proposal after analyzing the results form step 8 (if needed).

10. Examine the solution with the existing knowledge from step 3 in mind and
identify new issues.

18

3 Theoretical Background
In this chapter we will discuss the tools used as part of this study, as well as the
theoretical background when it comes to different methods of testing software. We
will discuss different ways of testing, namely unit tests, integration tests, functional
tests, system tests as well as acceptance tests.

We will also briefly discuss the testing pyramid that helps us visualise roughly the
amount of tests required of different types of tests. We will also discuss the frame-
works we have chosen, as well as similar frameworks that were not included in the
study.

To finish of this chapter we will also discuss some general concepts that apply for
software testing such as Test Driven Development (TDD), Behaviour Driven Devel-
opment (BDD), as well as White and Black-box testing.

3.1 Functional tests and non-functional tests
Functional tests involves testing the behaviour of the system and ensuring that it
meets the requirements specified for the software. For example, functional tests in-
clude integration tests to ensure that the software works as expected when multiple
component are integrated as a single unit. Another type of functional test is regres-
sion testing, where tests are performed after doing a update to the system, to ensure
that it still works according to the business or user requirements.

Non-functional tests involves measuring quality metrics of a system such as perfor-
mance, security and reliability. These aspects can be measured by for example set-
ting the system under heavy traffic-loads and measure the response-time and check
whether the system crashes or not.

Usability testing is also a non-functional test where the interface is tested for its
ease of use. Security aspects, such as testing authorization and authentication is also
classified as non-functional tests.

In summary, functional testing are performed to ensure that the system meets the
business and user requirements, while non-functional testing is performed to mea-
sure other aspects of the system that is not part of the functional testing, such as
performance, security and usability [23], [24].

3.2 Unit tests
Unit tests are tests performed in isolation from the rest of the system. What isolation
means here is that the code is tested without any dependencies to other parts of the
system, such as databases or web-services. To achieve this, dependencies are usually
mocked or stubbed out which means that they are replaced with test doubles that
mimic the behavior of the real dependencies but in a controlled way.

By isolating the code that is being tested from other part of the system we can ensure
that a test fails due to problems in the actual code and not because of problems in any
dependencies of the code [25].

3.3 Integration tests
Software systems today are built up of several modules that needs to work together.
While unit testing is the practice of testing these modules in isolation integration

19

testing is the practice of testing the interfaces between the modules and how they
work together as a group.

While all unit tests of modules may pass we may still have integration tests failing
due to for example mismatching communication protocols or data formats.

Integration tests can be performed on different scales, such as subsystem integration
where groups of related components are tested together, or system integration where
the entire system is tested as part of a System test [26].

3.4 System tests
System tests is the process of testing an entire system as a whole. It involves func-
tional, as well as non-functional testing to for example measure the performance or
security of the complete system.

There are also a few more types of system tests, such as:

• Functional testing - Compares actual and computed inputs.

• Non-functional testing - Evaluates quality attributes of the system, such as se-
curity, usability, reliability and performance.

• Usability testing - Focus on the ease of use of the system from the perspective
of an actual user.

• Load testing - How the system as a whole performs under real-life loads.

• Regression testing - Makes sure that changes to the system has not introduced
new bugs, or re-introduced bugs that were existing in previous iterations of the
system.

• Recovery testing - Tests that the system can recover in the event of a failure.

• Migration testing - Ensures that the system can be migrated between systems
without issues.

There are more than 50 types of system testing, but the above are types that a large
software development would typically use [27], [28].

3.5 Acceptance tests
Acceptance testing is the process of analysing whether the system conforms to the
requirement specification. It is performed after System tests has been done. At this
stage it is decided whether the system will be released to end-users, or if changes
still has to be made. Usually black-box testing is performed as part of the acceptance
tests. Acceptance tests can be categorized as either internal or external.

Internal acceptance testing, also known as alpha testing is performed by internal
members of the organization that developed the system but were not directly involved
in the development or testing of the software. These members could include sales or
customer support.

External acceptance testing, also known as beta testing is on the other hand performed
by users that are not part of the organization that developed the software. External
acceptance testing can also be divided in two categories where Customer Acceptance
Testing (CAT) are performed by the customer who asked for the software to be de-
veloped (the customer can also refer to the company itself, if the software is meant

20

for internal use). The other category is User Acceptance Testing (UAT), also known
as Beta Testing. Here the testing is performed by existing or potential end users of
the software [29].

3.6 The testing pyramid

The concept of the testing pyramid is a visual metaphor telling you to think about
tests in 3 horizontal layers, where the widest section at the bottom is compromised
of unit-tests, and where the middle consist of API tests, which depend on a back-end
data-store, and finally UI-tests at the top.

The testing pyramid emphasizes the need of a strong foundation of unit tests, that are
typically fast and reliable and can catch defects early on in the development process.
API tests at the middle are generally also quite fast, but not as fast as unit-tests, and
not as reliable, so they should therefore be used in less quantities. Finally, at the
top of the pyramid the UI tests are placed. They should be used in lesser quantities
compared to the other tests since they are less stable and takes more time to execute
due to their multiple dependencies [30], [31].

3.7 Test and Behaviour driven development
Both Test Driven Development (TDD) and Behaviour Driven Development (BDD)
are agile ways of developing software [32][33]. Agile development takes an iterative

21

approach to the development process where the system is developed in incremental
stages with frequent meetings between the developers and other stakeholders, such
as the customer [32].

In contrast, the waterfall approach development is done in a linear manner with much
more upfront planning. With this approach each stage serves as a prerequisite for the
next stage, and once the next stage has started it may be hard doing changes to the
one before [34].

With test driven development the developer writes failing tests, and only after this
writes the code to make them pass. The code here is written to satisfy the tests and
in that way provides a good code coverage for the tests in the system. Behaviour
driven development is an extension of test driven development where the focus in on
making sure that the written tests reflect the way the system is expected to behave.
To find out the expected behaviour of the code, meetings between stakeholders, such
as developers, testers and the customer are needed with frequent intervals. Once the
behaviour is settled, the code to implement is written in a test driven manner [33],
[35].

Both test driven development and behaviour driven development emphasize the need
for frequent iterations. When it comes to test driven development the iterations may
be frequent changes in code to make the tests pass, and when it comes to behaviour
driven development the iterations may be to collect feedback from the customer and
make necessary changes to the expectations on the behaviour of the software [36].

3.8 White and Black Box Testing
Black box testing is the technique of performing tests on a system without knowing
about its internals, such as architecture or source code. Black box testing is usually
conducted by a tester providing input to a system using its user-interface and examine
the output with no knowledge on how the input were operated on.

White box tests on the other hand is done by a tester with knowledge of the systems
source code and architecture. The tester typically analyzes the source code and writes
tests with it in mind, in order to make the tests cover the as much code as possible. By
having knowledge of the source code the tester can write tests with proper boundary
conditions [37].

3.9 Validation & Verification
The two important areas of software development, while verification is about building
the product right (conformance to specifications), validation is about building the
right product (satisfaction of user needs). Together, verification and validation help
to build robust, reliable and efficient software. For this thesis it is important to know
what validation is since this is the field of testing while verification involves code och
requirement reviews [38].

22

4 Implementation
In this chapter we will discuss the actual implementation of the comparison between
the testing frameworks. Areas that we will cover include installation, writing and
running tests. We will also briefly cover the tools used in this study.

When writing the tests we will compare aspects of them such as the test structure,
exception handling, conditional test execution, mocking and parameterized tests.

At the end of this chapter we will also outline a TES metric that we have implemented
in order to answer RQ1.2.

4.1 JUnit 5
4.1.1 Installation of JUnit 5
The package spring-boot-starter-test is the preferred way of many developers to get
started with JUnit 5 in Spring Boot Applications. It is a "starter" kit that includes
everything needed to get started with running tests. It includes the packages below.
The list is cited from the official Spring Boot documentation [39].

• JUnit - The de-facto standard for unit testing Java applications.

• Spring Test and Spring Boot Test - Utilities and integration test support for
Spring Boot applications.

• AssertJ - A fluent assertion library.

• Hamcrest - A library of matcher objects (also known as constraints or predi-
cates).

• Mockito - A Java mocking framework.

• JSONassert - An assertion library for JSON.

• JsonPath - XPath for JSON.

We installed the spring-boot-starter-test framework by including it as a dependency
in our build.gradle file. Also notice the automatically generated tasks section where
JUnitPlatform is specified.

dependencies {
testImplementation
’org.springframework.boot:spring-boot-starter-test’

}

tasks.named(’test’) {
useJUnitPlatform()

}

4.1.2 Running tests in JUnit 5
Running the tests in our environment can be done from the command terminal with
a simple "gradle test" command.

4.1.3 Test structure in JUnit 5
We will focus on a unit test we will later use to test the frameworks. This test ensures
correct functionality of the modify() method in our ProductService class and a com-

23

plete setup is shown in the Results chapter. The file- and test structure for both JUnit
5 as well as TestNG are the same and should look something like this:

If we were to auto-generate a test it would look like this code below which is a decent
start but contains no actual test thus simply providing the basic setup.

package lnu.exam.ProductApi.services;

import org.junit.jupiter.api.Test;

public class ProductServiceTest {
@Test
public void modify() {

}
}

When writing a unit test, we want to test only a specific "unit" of code. This means
that we will likely need to "mock" any dependencies that the unit relies on. To do
this, we can use Mockito, which is a popular framework in Spring applications for
creating mock objects. It is common to use Mockito together with JUnit 5, which is
why they are both included in the spring-boot-starter-test package [39].

For now we will cover a basic test structure and not think about mocking, take note of
the code below and notice our comments arrange, act and assert. In the arrange block
we create the objects needed for the test, in the act block we call the actual method
and save the result and lastly in the assert block we compare our expected result with
the actual in an assertion method, in this case assertEquals methods.

package lnu.exam.ProductApi.services;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;

public class ProductServiceTest {

@Test
public void create() {

// arrange
Product product = new Product("Test Product", 10.0);

24

ProductService service = new ProductService();

// act
Product result = service.create(product);

// assert
assertEquals(product.getName(), result.getName());
assertEquals(product.getPrice(), result.getPrice(),

0.001);
}

}

4.1.4 Exception handling in JUnit 5
One of the key features of JUnit 5 when it comes to exception handling is the assert-
Throws() method. With this method we can make tests fail if they are not throwing
the expected exception. Here is a sample code snippet:

@Test
void testDivideByZero() {

assertThrows(ArithmeticException.class, () -> {
int result = 5 / 0;

});
}

In the snippet above we are testing the behaviour when we are dividing a value by
zero and expect a ArithmeticException to be thrown. In the case no error of the type
is thrown the error will fail.

Other features related to exception handling in JUnit 5 includes assertDoesNotThrow()
that test that no exceptions are thrown and expectThrows(), which works in a similar
manner as assertThrows(), but returns the thrown exception so that additional tests
can be performed on it [40].

4.1.5 Conditional test execution in JUnit 5
With help of annotations JUnit 5 can run, or not run tests based on different condi-
tions. One such condition may be the operating system that the test is running on.
We could for example specify that a test should only be executed when running on a
Mac operating system. For all other systems the test will be skipped.

@EnabledOnOs(OS.MAC)
public class MyConditionalTest {

@Test
public void testSomething() {

// your test code here
}

}

Other similar conditions that decide whether to run or skip tests include @EnabledIf-
SystemProperty (that enables tests based on the value of a system property), or @En-
abledIfEnvironmentVariable that decides whether to run a test based on the value of
an environment variable. Examples of how these can be used are found below:

25

@EnabledIfEnvironmentVariable(named =
"NUMBER_OF_PROCESSORS", matches = "8")

@EnabledIfSystemProperty(named = "run.import.tests", matches
= "true")

4.1.6 Mocking in JUnit 5
As previously stated, when working with mocking in JUnit 5, developers usually
install a separate package, Mockito, in order to work with mocks. Here is an example
how one may implement mocking in JUnit 5 with help och Mockito:

public class MockTest {
class ClassToMock {

public String someMethod() {
return "original result";

}
}

@Test
public void shouldReturnMockedResult() {

// Create a mock object of the class to mock
ClassToMock mockObj = mock(ClassToMock.class);
when(mockObj.someMethod()).thenReturn("mocked result");

// Call the method being tested
String result = mockObj.someMethod();

// Verify that the method called the mock object as
expected
verify(mockObj).someMethod();

// Assert the result
assertEquals("mocked result", result);

}
}

In the example above we have ClassToMock that always returns "original result". We
then mock it to always return "mocked result" by calling when(mockObj.someMethod()).thenReturn("mocked
result"). In the test "mocked result" will now be returned, leading to a successful as-
sert.

4.1.7 Parameterized tests in JUnit 5
Parameterized tests were one of the main features earlier on that JUnit lacked. With
JUnit 5 parameterized tests however are supported out of the box. When using pa-
rameterized tests in JUnit 5 you need to provide the @ParameterizedTest notation,
instead of the usual @Test notation, and you also need to specify a source for the test
parameters.

One way to specify this would be to use the @ValueSource parameter like in this
example:

@ParameterizedTest
@ValueSource(strings = { "foo", "bar", "baz" })

26

void testStringLength(String input) {
assertEquals(3, input.length());

}

In the example above the @ValueSource is specifying a list of input values as strings,
and the test will be executed one time for every string, so in this case for a total of 3
times.

4.2 Spock
4.2.1 Installation of Spock
Apart from Spock’s ’core’ and ’spring’ packages the installation of Spock also re-
quires "groovy" which is the language used when writing tests in the Spock frame-
work.

plugins {
// Other plugins...
id ’groovy’

}

dependencies {
// Other dependencies...
testImplementation
’org.spockframework:spock-core:2.2-groovy-3.0’
testImplementation
’org.spockframework:spock-spring:2.2-groovy-3.0’
testImplementation ’org.codehaus.groovy:groovy-all:3.0.15’

}

4.2.2 Running tests in Spock
Similarly to JUnit 5, texts can be executed by a simple gradle test command.

4.2.3 Test structure in Spock
Apart from differences in code Spock also prefers a slightly different file structure,
notice the switch from .java to .groovy which is the language used in Spock.

import spock.lang.Specification

class ProductServiceSpec extends Specification {
def "create method should return a product with the same
name and price"() {

given:
def product = new Product(name: "Test Product",

price: 10.0)
def service = new ProductService()

27

when:
def result = service.create(product)

then:
result.name == product.name
result.price == product.price

}
}

There are a few ways to structure code in Spock, you’ll probably notice the keywords
given, when, then. These keywords are are the most common and has a logical ex-
planation.

• given - variables and objects are created.

• when - logic to be tested are called and saved in result variables.

• then - results are compared to expected outcomes.

4.2.4 Exception handling in Spock
With Spock the @FailsWith annotation can be used to indicate that a declared excep-
tion should be thrown. Another way of checking for failing exceptions in Spock is
to use the thrown(Class) method to assert a thrown exception. Below is a test imple-
menting both the @FailsWith annotation and thrown() method:

class ExpectedFailTest extends Specification {
@Subject def obj = new MyClass()

@FailsWith(NullPointerException)
def "throws exception if method called on null object"()
{

given:
def obj = null

when:
obj.someMethod()

then:
// Exception should be thrown

}

def "throws exception if method called on null object
and assert message"() {

given:
def obj = null

when:
obj.someMethod()

then:
def t = thrown(NullPointerException)
t.message == ’Object is null’

}
}

28

class MyClass {
def someMethod() {

throw new NullPointerException("Object is null")
}

}

4.2.5 Conditional test execution in Spock
Conditional test support for Spock is provided out if the box with help of the @Re-
quires and @IgnoreIf annotations. Out of the box Spock can check for JVM version,
operating system, system properties and environment variables.

The test below will only execute if the system is Java 8 compatible and is not running
in a production environment:

def jvm = System.getProperties()
def sys = System.getenv()

@IgnoreIf({ !jvm.java8Compatible })
def "addition in Java 8+"() {
given:
ConditionalCalculator calculator = new

ConditionalCalculator()

when:
int result = calculator.add(2, 3)

then:
result == 5
}

@Requires({ sys["targetEnvironment"] != "prod" })
def "addition in non production environment"() {
given:
ConditionalCalculator calculator = new

ConditionalCalculator()

when:
int result = calculator.add(5, 5)

then:
result == 10
}

4.2.6 Mocking in Spock
One of the key areas that sets Spock apart from JUnit 5 and TestNG is mocking
support. While both JUnit and TestNG can be used together with Mockito to enable
mocking in tests Spock contains a built-in mocking subsystem.

In Spock you can create a mock object with help of the Mock() method, and then
define its behaviour with help of the "»" operator. A simple mock-test can be found
below:

class MockTest extends Specification {

29

def "should return mocked result"() {
given:
def mockObj = Mock(ClassToMock)
mockObj.someMethod() >> "mocked result"

when:
def result = mockObj.someMethod()

then:
result == "mocked result"

}
}

class ClassToMock {
def someMethod() {

// implementation
}

}

In the example above we are mocking "ClassToMock" using the "Mock(ClassToMock)"
method to instantiate the mockObj object. we are defining the behaviour of mockObj
with the ’»’ operator in the "given" block.

In the "when" block we are calling mockObj, and in the "then" block we assert that
"mocked result" was returned from the call.

Spock provides a different syntax compared to Mockito. Notice the absence of the
given/thenReturn/thenAnswer/ structure in the Spock test above, as apposed to the
Mockito one below:

// Mockito
MyClass myMockObj = mock(MyClass.class);
given(myMockObj.someOtherMethod()).willReturn("mocked

result");
assertEquals("mocked result", myMockObj.someOtherMethod());

While some may say that the given/thenReturn/thenAnswer constructs helps with
readability some other may say that the Spock syntax provides better separation be-
tween the blocks with no need of chaining methods together.

4.2.7 Parameterized tests in Spock
Parameterized tests is another area where Spock has some major differences when
compared to Junit 5 and TestNG. Spock provides a table-like formatting of input data
to make it look natural and easy to read. The @Unroll annotation is used to generate
multiple test cases based on the data in the where block.

@Unroll
def "should divide two integers (#x / #y =

#expectedResult)"() {
when:
int result = calculator.divide(x, y)

then:

30

result == expectedResult

where:
x | y | expectedResult
3 | 3 | 1
4 | 2 | 2
1 | 1 | 1

}

The table like syntax can also be used together with the expect block where methods
or constructors are needed to be called like the example below:

@Unroll("Discounted price for item #item should be
#expectedDiscountedPrice")

def "should calculate discounted price for item"() {
expect:

item.calculateDiscountedPrice() ==
expectedDiscountedPrice
where:

item || expectedDiscountedPrice
regularItem(100) || 90
expensiveItem(1000) || 900
discountItem(100, 20) || 80

}

In the above example the test will verify that the calculated discounted price of an
item matches the expected discounted price.

4.3 TestNG
4.3.1 Installation of TestNG
Similar to JUnit the tasks section in build.gradle is needed but with useTestNG() as
stated below. TestNG do not come preconfigured with Spring and because of that we
also need the testng package.

dependencies {
// Other imports...
testImplementation ’org.testng:testng:7.7.0’

}
tasks.named(’test’) {

useTestNG() {
useDefaultListeners = true

}
}

4.3.2 Running tests in TestNG
Similarly as with JUnit 5 and Spock, the tests can be run by doing a gradle test
command.

4.3.3 Test structure in TestNG
Structure and code are identical to JUnit 5 apart from a few minor naming differences
and of course the imported methods from the testing framework. The Test annotation

31

is imported from testng instead of junit in the example in the next section.

4.3.4 Exception handling in TestNG
TestNG supports exception handling with the expectedExceptions attribute to handle
exceptions. One advantage of this attribute is that it makes it easy to specify multiple
exceptions that could be thrown.

One example of this can be seen below:

import org.testng.annotations.Test;

@Test(expectedExceptions = {NullPointerException.class,
ArrayIndexOutOfBoundsException.class})

public void testMultipleExceptions() {
String str = null;
int[] arr = new int[5];
arr[10] = 5;
str.toLowerCase();

}

In the example above we specify that a NullPointerException or ArrayIndexOutOf-
BoundsException can be thrown, and as long as one of the exceptions are thrown the
test will pass.

@Test(expectedExceptions = {NullPointerException.class,
ArrayIndexOutOfBoundsException.class})

public void testMultipleExceptionsUnexpectedFirst() {
int result = 5/0; // this line will throw an unexpected
ArithmeticException, making the test fail.
String str = null;
int[] arr = new int[5];
arr[10] = 5;
str.toLowerCase();

}

In the example above NullPointerException and ArrayIndexOutOfBoundsException
is thrown, as expected, but also ArithmeticException, which is not expected, resulting
in a failed test.

One interesting thing is that the test will not fail if NullPointerException or ArrayIn-
dexOutOfBoundsException has already been thrown, as can be seen from the example
below, where ArithmeticException is placed further down in the test:

@Test(expectedExceptions = {NullPointerException.class,
ArrayIndexOutOfBoundsException.class})

public void testMultipleExceptionsUnexpectedSecond() {
String str = null;
int[] arr = new int[5];
arr[10] = 5;
int result = 5/0; // this line will throw an unexpected
ArithmeticException, but the test will pass anyways,
since ArrayIndexOutOfBoundsException was already thrown.
str.toLowerCase();

}

32

The test will also pass if we throw both NullPointerException and ArrayIndexOutOf-
BoundsException before the unexpected ArithmeticException is thrown:

@Test(expectedExceptions = {NullPointerException.class,
ArrayIndexOutOfBoundsException.class})

public void testMultipleExceptionsUnexpectedThird() {
String str = null;
int[] arr = new int[5];
arr[10] = 5;
str.toLowerCase();
int result = 5/0; // this line will throw an unexpected
ArithmeticException, but the test will pass anyways,
since ArrayIndexOutOfBoundsException and
NullPointerException was already thrown.

}

4.3.5 Conditional test execution in TestNG
With TestNG conditional test execution can be achieved with help of the "enabled"
attribute of the @Test annotation.

If enabled is set to true the test will run, otherwise not. We can also use the "depend-
sOnMethods" attribute to enable or ignore a test depending on the result of a method:

@Test(enabled = true, dependsOnMethods = "myTest")
public void dependentTest() {

// Test code here
}

@Test
public void myTest() {

if (myFunction() != true) {
throw new Error("myTest not passed");

}
}

private boolean myFunction() {
// Return true or false based on some condition
return true;

}

In the above example above the dependentTest() method will only run if myTest()
passes without throwing any error. We can make myTest() throw or not throw errors
depending on the results of myFunction(). We could therefore use myFunction() to
for example return false or true depending on system properties or similar in order to
control what tests are run or not. This logic could also be put directly in myTest() to
make the snippet shorter.

4.3.6 Mocking in TestNG
Similarly to JUnit 5, Mockito can be used to provide mocking support to TestNG.
Mockito provides utility classes for easy integration with TestNG by providing the
"mockito-testng" package on Github.

With the package above installed mocking can be implemented by adding @Listener

33

annotations like below [41]:

import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.testng.MockitoTestNGListener;
import org.testng.annotations.Listeners;
import org.testng.annotations.Test;

import java.util.Map;

@Listeners(MockitoTestNGListener.class)
public class MyTest {

@Mock
Map map;

@InjectMocks
SomeType someType;

@Test
void test() {

// ...
}

}

The MockitoTestNGListener will initialize all fields annotated with Mockito annota-
tions. The "mockito-testng" package was originally part of Mockitos core repository
but was moved to this specific package in summer 2018.

4.3.7 Parameterized tests in TestNG
TestNG supports Parameterized tests out of the box, allowing developers to run the
same tests over and over using different values. One example of a parameterized test
implemented in TestNG can be seen below:

public class ParameterTest {

// Define a data provider that returns a set of test data
@DataProvider(name = "testData")
public Object[][] testData() {

return new Object[][] {
{ 2, 3, 5 },
{ -1, 5, 4 },
{ 0, 0, 0 },
{ 100, -50, 50 }

};
}

// Define a test method that accepts parameters from the
data provider
@Test(dataProvider = "testData")
public void testAdd(int a, int b, int expected) {

// Call the method being tested with the given
arguments

int result = MyClass.add(a, b);

34

// Assert that the result matches the expected value
assertEquals(result, expected);

}
}

// A simple class with a method to be tested
class MyClass {

public static int add(int a, int b) {
return a + b;

}
}

In the above example the testData() method returns a two dimensional array of 4
rows. Each row contains 3 values where the first and second values are the input
values for the testAdd() method, and the third is the value that is expected of the
testAdd() method to return.

With the test code above testAdd() will run for a total of 4 times, each time with dif-
ferent input, and with different expectations on the output. With help of the solution
above we can run the testAdd() method very many times with different input without
having to write a separate test method for each test case.

4.4 Tools
The tool used in this study is Visual Studio Code (often abbreviated as VS Code),
which is a free and open-source code editor developed and maintained by Microsoft.
It has a wide range of extensions and plugins available to enhance its functionality.

To perform the tests in this study we installed the "Extension Pack for Java" from Mi-
crosoft that provides support for Java IntelliSense, debugging, testing, Maven/Gradle
and more [42].

4.5 Test Efficiency Score (TES)
In order to answer RQ 1.2 we have developed our own formula that we have called
Test Efficiency Score (TES). The formula is as follows:

TES = w1 · C + w2 · T + w3 ·M

Where:

1. w1: Weight assigned to C, between 0 and 1.

2. C: Number of characters in the test suite. Normalized between 0 and 1.

3. w2: Weight assigned T, between 0 and 1.

4. T: Time needed for a framework to execute all tests of the test suite, normalized
between 0 and 1.

5. w3: Weight assigned to M, between 0 and 1.

6. M: Memory needed for a framework to execute all tests of the test suite, nor-
malized between 0 and 1.

35

A developer can write similar test cases across all three frameworks, and then mea-
sure the number of characters (C), execution time (T) and memory consumption (M)
for every test suite, and normalize these values between 0 and 1. He/She can then
apply the weights (w1, w2 and w3) based on the importance that are assigned to each
factor to get the final score.

A lower TES indicates a more efficient testing framework, and by applying this for-
mula to each framework it will be possible to measure and compare efficiency of the
frameworks in a standardized, objective and consistent manner.

The weightings could for example be as follows: w1 = 0.4, w2 = 0.4, w3 = 0.2. The
weightings are not empirically validated as they can be set according to the prefer-
ences of the developer.

The normalization of the values are done by dividing each value by the maximum
value of each category. An example of this is outlined in Chapter 6, Analysis.

36

5 Results
5.1 Tests
All tests have the same setup, the Product objects that are needed are created in
a separate setup()/init() method that runs before all tests. For the memory usage
metric we use the Java Runtime object. Memory is recorded before the test runs
and once again after the test, in a tearDown()/cleanup() method, to measure memory
consumption.

This shows the full setup and and cleanup of the Spock test class:

class ProductServiceSpec extends Specification {
@Shared ProductService productService
@Shared ProductRepository productRepository
@Shared ProductModelAssembler productAssembler
@Shared Long productId = 1L
@Shared Product productOne
@Shared Product productTwo
@Shared Long memoryBefore;
@Shared Long memoryAfter;

def setup() {
productRepository = Mock(ProductRepository)
productAssembler = Mock(ProductModelAssembler)
productService = new

ProductService(productRepository, productAssembler)

productOne = new Product()
productOne.setId(productId)
productOne.setName("New product")
productOne.setDescription("New description")
productOne.setPrice(100.0)

productTwo = new Product()
productTwo.setId(productId)
productTwo.setName("Updated product")
productTwo.setDescription("Updated description")
productTwo.setPrice(200.0)
memoryBefore = PerformanceTests.getMemoryUsage()

}

def cleanup() throws MissingMethodException {
memoryAfter = PerformanceTests.getMemoryUsage()
println "Memory used: " + (memoryAfter -

memoryBefore) + " bytes"
}

}

5.1.1 testCreate()
For detailed results, see 5.1.4 Result overview.

Test code JUnit 5:

@Test

37

@Order(1)
public void testCreate() {

// Prepare test data
Product newProduct = productOne;

// Prepare saved product (usually this would be
created by the repository)

Product savedProduct = productTwo;

// Create expected result
EntityModel<Product> expected =

EntityModel.of(savedProduct);

// Set up mock behavior
when(productRepository.save(any(Product.class)))

.thenAnswer(invocation -> {
Product productToSave =

invocation.getArgument(0);
// Set ID to simulate DB generated ID
productToSave.setId(savedProduct.getId());
return productToSave;

});
when(productAssembler.toModel(any(Product.class)))

.thenReturn(expected);

// Call the service method
EntityModel<Product> actual =

productService.create(newProduct);

// Verify the result
assertEquals(expected, actual);

// Verify mock interactions
verify(productRepository).save(any(Product.class));
verify(productAssembler).toModel(any(Product.class));

}

Test code TestNG:

@Test(priority = 3)
public void testCreate() {

// Prepare test data
Product newProduct = new Product();
newProduct.setName(productOne.getName());

newProduct.setDescription(productOne.getDescription());
newProduct.setPrice(productOne.getPrice());

// Prepare saved product (usually this would be
created by the repository)

Product savedProduct = productOne;

// Create expected result
EntityModel<Product> expected =

EntityModel.of(savedProduct);

38

// Set up mock behavior
when(productRepository.save(any(Product.class)))

.thenAnswer(invocation -> {
Product productToSave =

invocation.getArgument(0);
// Set ID to simulate DB generated ID
productToSave.setId(savedProduct.getId());
return productToSave;

});
when(productAssembler.toModel(any(Product.class)))

.thenReturn(expected);

// Call the service method
EntityModel<Product> actual =

productService.create(newProduct);
// Verify the result
assertEquals(expected, actual);

// Verify mock interactions
verify(productRepository).save(any(Product.class));
verify(productAssembler).toModel(any(Product.class));

}

Test code Spock:

def "testCreate()"() {
given:
EntityModel<Product> expected =

EntityModel.of(productOne)

when:
productService.create(productOne)

then:
1 * productRepository.save(_) >> productOne
1 * productAssembler.toModel(_) >> expected

}

5.1.2 testModify()
For detailed results, see 5.1.4 Result overview.

Test code JUnit 5:

@Test
@Order(2)
public void testModify() {

// Prepare test data
Product currentProduct = productOne;
Product updatedProduct = productTwo;

// Create expected result
EntityModel<Product> expected =

EntityModel.of(updatedProduct);

39

// Set up mock behavior
when(productRepository.findById(productId))

.thenReturn(Optional.of(currentProduct));
when(productRepository.save(any(Product.class)))

.thenAnswer(invocation -> {
Product productToSave =

invocation.getArgument(0);
productToSave.setId(productId);
return productToSave;

});

when(productAssembler.toModel(any(Product.class))).thenReturn(expected);

// Call the service method
EntityModel<Product> actual = productService

.modify(productId, updatedProduct);

// Verify the result
assertEquals(actual, expected);

// Verify mock interactions
verify(productRepository).findById(productId);
verify(productRepository).save(any(Product.class));
verify(productAssembler).toModel(any(Product.class));

}

Test code TestNG:

@Test(priority = 4)
public void testModify() {

// Prepare test data
Long productId = 1L;
Product currentProduct = productOne;
Product updatedProduct = productTwo;

// Create expected result
EntityModel<Product> expected =

EntityModel.of(updatedProduct);

// Set up mock behavior
when(productRepository.findById(productId))

.thenReturn(Optional.of(currentProduct));
when(productRepository.save(any(Product.class)))

.thenAnswer(invocation -> {
Product productToSave =

invocation.getArgument(0);
productToSave.setId(productId);
return productToSave;

});
when(productAssembler.toModel(any(Product.class)))

.thenReturn(expected);

// Call the service method
EntityModel<Product> actual =

productService.modify(productId, updatedProduct);

40

// Verify the result
assertEquals(actual, expected);

// Verify mock interactions
verify(productRepository).findById(productId);
verify(productRepository).save(any(Product.class));
verify(productAssembler).toModel(any(Product.class));

}

Test code Spock:

def "testModify()"() {
given:
EntityModel<Product> expected =

EntityModel.of(productTwo)

when:
productService.modify(productId, productTwo)

then:
1 * productRepository.findById(productId) >>

Optional.of(productOne)
1 * productRepository.save(_) >> productTwo
1 * productAssembler.toModel(_) >> expected

}

5.1.3 testDelete()
For detailed results, see 5.1.4 Result overview.

Test code JUnit 5:

@Test
@Order(3)
public void testDelete() {

// Prepare test data
Product existingProduct = productOne;

// Set up mock behavior
when(productRepository.findById(productId))

.thenReturn(Optional.of(existingProduct));

doNothing().when(productRepository).delete(existingProduct);

// Call the service method
ResponseEntity<?> responseEntity =

productService.delete(productId);

// Verify the result - expect no content
assertEquals(HttpStatus.NO_CONTENT,

responseEntity.getStatusCode());

// Verify mock interactions
verify(productRepository).findById(productId);
verify(productRepository).delete(existingProduct);

41

}

Test code TestNG:

@Test(priority = 5)
public void testDelete() {

// Prepare test data
Product existingProduct = productOne;

// Set up mock behavior
when(productRepository.findById(productId))

.thenReturn(Optional.of(existingProduct));

doNothing().when(productRepository).delete(existingProduct);

// Call the service method
ResponseEntity<?> responseEntity =

productService.delete(productId);

// Verify the result - expect no content
assertEquals(HttpStatus.NO_CONTENT,

responseEntity.getStatusCode());

// Verify mock interactions
verify(productRepository).findById(productId);
verify(productRepository).delete(existingProduct);

}

Test code Spock:

def "testDelete()"() {
when:
def responseEntity = productService.delete(productId)

then:
1 * productRepository.findById(productId) >>

Optional.of(productOne)
1 * productRepository.delete(_)
responseEntity.getStatusCode() ==

HttpStatus.NO_CONTENT
}

5.1.4 Result overview
We found that memory tests using Runtime resulted in 0 bytes for the exception tests
which are testModify_NotFound() and testCreate_NotFound(), these tests are there-
fore not presented as part of our memory usage nor time results, they are however
part of the total characters used for all frameworks.

testCreate(), testModify() and testDelete() are run 10 times, for each turn both mem-
ory usage and time is recorded. The average value for each test is then calculated.
The total number of characters for each test suite is recorded, including whitespaces.
For all test results, see table in Appendix C.1.

42

5.2 Questionnaire
The questionnaire was sent out as a message in Linnaeus University Slack general
channel with 6058 members combined with current students, teachers and graduated
developers. A total of 14 respondents participated in the questionnaire, providing
valuable feedback and insights into their experiences with our selected Java Spring
test frameworks. The respondents were asked about their familiarity and preferences
regarding Spock, TestNG and JUnit.

5.2.1 Previous experience with test frameworks
Out of the 14 respondents, 13 (92.9%) reported having previous experience with
JUnit, making it the most familiar framework among the participants. This is not
surprising given JUnit is popularity in the Java community. In contrast, only two
respondents reported some familiarity with Spock and TestNG, suggesting that these
frameworks may be less commonly used or known. See Appendix A.1.

5.2.2 Preferred test framework
When asked about their preferred test framework, 85.7% of respondents indicated
a preference for JUnit over the other two frameworks. This preference could be
attributed to the respondents’ familiarity with JUnit, as well as its wide adoption
within the industry. It is important to note that the questionnaire results may not be
representative of the overall developer community, as the sample size is small and
might not reflect the preferences of a larger, more diverse group of developers. See
Appendix A.1.

5.2.3 Familiarity with JUnit
Considering that we can assume that the majority of questionnaire respondents were
students or junior developers, it is not surprising that only one respondent reported
being "Very familiar" with JUnit. While JUnit is widely recognized and utilized,
students may still be in the early stages of their learning and thus may not have gained
in-depth knowledge or extensive experience with the framework. As these students
progress in their education and professional careers, their familiarity with JUnit and
other test frameworks is likely to increase, potentially influencing their preferences
and opinions on the most suitable frameworks. See Appendix A.2.

5.2.4 Preference for widely adopted frameworks
All respondents expressed a preference for a testing framework that is widely adopted
by the industry. This preference could be driven by the perception that a popular
framework has a larger community, more available resources, and better support.
Additionally, using a widely adopted framework can potentially facilitate collabora-
tion and improve maintainability, as more developers are likely to be familiar with it.
See Appendix A.5.

5.2.5 Important Criteria in Selecting a Test Framework
When asked about the most important criteria for selecting a testing framework for
Java Spring projects, 42.9% of respondents prioritized ease of use, 28.6% chose fea-
tures, and 14.3% considered documentation as the most important factor. This sug-
gests that junior developers value a test framework that is user-friendly, feature-rich
and well-documented. It is essential to take these criteria into account when selecting
a test framework for Java Spring applications, as they can significantly impact the ef-
ficiency and effectiveness of the testing process. See Appendix A.5.

43

6 Analysis
To increase readability of our test results, presented in Chapter 5.1.4 Result overview,
we decided to add the average results together for each framework and then created
visual diagrams as seen below in sections 6.1-6.3.

6.1 Execution time
JUnit 5 is delivered with a new Sping project but the results still shows TestNG as
being the framework with the quickest execution time with Spock as a close runner
up.

6.2 Memory usage
Surprisingly JUnit 5 continues with the worst results even here, even TestNG shows a
considerable amount of memory usage while Spock shows the best results with only
0.49MB of memory usage compared to JUnit 5 and its 7.7MB.

44

6.3 Code conciseness (characters used)
Our code conciseness metric does not exactly compare the three frameworks but does
compare Java and Groovy as programming languages. Groovy is proven to be more
descriptive and our test confirms this with our Spock test suite requiring less than half
of the characters needed in comparison with JUnit 5 and TestNG.

6.4 An example use of Test Efficiency Score (TES)
Below is an example for how TES may be used in practice. We will here define
the weights ourselves and provide reasoning to why we set certain weights in this
example. It is important to note that the weights here are not empirically validated,
they are just set in order to demonstrate how TES may be used in practice. The
numbers produced in this example are a product of the data we have gathered during
our performance and code conciseness tests.

45

For our TES example we have chosen to weight character count and test execution
speed equally. The reasoning behind this is that quick test execution is vital to encour-
age a developer of writing many tests that are run often, especially if the developer
follows a TDD style of developing the software. On the other hand, concise tests also
helps with readability, and having short and clean testing code will be of equal im-
portance of motivating the developer with implementing robust test cases throughout
the application.

When it comes to memory usage, we see it as less important than the other metrics
mentioned above, however, it is still worth measuring and can play a vital role when
the tests suite grows large. With this in mind, we have decided on weighting memory
usage to half of test execution time and character count of the tests.

The TES for our three frameworks are as follows (lower indicates a more efficient
framework):

JUnit 5: 0.9988 TestNG: 0.5789 Spock: 0.6507

6.4.1 Calulation of TES
Below are the calculations used to get the TES results mentioned above.

In order to calculate the TES we follow the given formula:

TES = w1 · C + w2 · T + w3 ·M

Since Characters and Time should be equally weighted and twice the weight of Mem-
ory usage, we have the following weights:

w1(weight for characters) = w2(weight for time) = 2 · w3(weight for memory)

Since w1 + w2 + w3 = 1, we can calculate the weight for memory:

w3 =
1

(2 + 2 + 1)
=

1

5
= 0.2

Thus, the weights for characters and time are:

w1 = w2 = 2 · w3 = 2 · 0.2 = 0.4

Now we need to normalize the values of the test, namely Characters (C), Time (T)
and Memory usage (M) to a value that is between 0 and 1. we will do this by dividing
each value by the maximum value of each category:

Normalized Characters (C):

JUnit 5:
7171

7171
= 1

TestNG:
7112

7171
= 0.9917

Spock:
3377

7171
= 0.4709

46

Normalized Time (T):

JUnit 5:
0.425

0.425
= 1

TestNG:
0.068

0.425
= 0, 1600

Spock:
0.158

0.425
= 0, 3717

Normalized Memory usage (M):

JUnit 5:
7713428

7713428
= 1

TestNG:
3203817

7713428
= 0.4153

Spock:
487938

7713428
= 0.0632

With the values above we can now calculate the TES for each framework:

JUnit 5:
TES = 0.4 · 1 + 0.4 · 1 + 0.2 · 1 = 0.4 + 0.4 + 0.2 = 1

TestNG:

TES = 0.4·0.9917+0.4·0, 1600+0.2·0.4153 = 0, 3966+0, 0640+0, 0830 = 0, 5436

Spock:

TES = 0.4·0.4709+0.4·0, 3717+0.2·0.0632 = 0, 1883+0, 1486+0, 0126 = 0, 3495

6.5 Ending notes
Using our data from our performance tests and character conciseness tests we can
state that TestNG performs best in terms of execution time, Spock is the most memory-
efficient and produces the most concise code, while JUnit 5 is the slowest and uses
the most memory. Depending on the priorities and requirements of the project, dif-
ferent aspects might be more important than others, and that will influence the test
efficiency score. For instance, if execution time is crucial, TestNG might be the best
choice, while if memory efficiency and code conciseness are prioritized, Spock could
be the preferred framework. The analysis above is also reflected in the TES, where
TestNG and Spock shares similar values, and JUnit has a much higher TES (indicat-
ing that it is more inefficient overall than the former two). we have not developed
TES in order to provide us with a metric to determine what the most efficient frame-
work is, instead we have developed it to be a tool among other tools that can be used
by an developer in order to get a complete picture on what framework to choose for
a specific project with specific priorities.

One interesting thing to note about TES is that it promotes short tests. This may
increase readability, but if developers put too much weight on lowering the TES they
may produce less readable tests by using less descriptive variable names, as well as
not writing enough white spaces in the tests.

47

Another interesting thing is that the TES mentioned above points out JUnit 5 as the
clear looser, while it is still the preferred framework according to the questionnaire.
Perhaps this may be due to execution speed and memory usage not being very im-
portant factors to students who work on smaller projects. For them it is perhaps of
larger importance that the test framework of use comes pre-installed with Spring. On
larger projects blindly sticking to JUnit could however become a problem. We see it
as a risk if students become too used to only using JUnit while not considering the
options. Students should be well prepared for real-world scenarios, and there might
be cases where JUnit is the inferior choice there.

48

7 Discussion
Our study has some limitations that we would like to point out. First, we only tested
a few methods from the service layer in our Spring Boot application, testing more
methods from different layers and components may yield different results. Our sam-
ple application is also quite small, a bigger system may show strengths and weak-
nesses that our study can’t show. Second, our TES didn’t account for other factors
that may influence developers preferences for a framework, such as community sup-
port, learning curve or ease of use.

Bias is also an important factor for our questionnaire as none of our respondents
showed any significant knowledge in either TestNG nor Spock which makes their
choice in JUnit predictable. JUnit also comes preconfigured in Spring which in-
creases its bias when developers and especially junior developers and students start
out in Spring projects.

As mentioned in the article by lambdatest Spock is a good choice due to its readability
[12]. We believe that this is due to Spock’s easy to understand syntax that is more
like plain English more than the other frameworks, however, we also believe that the
overall shorter syntax is to thank for the increased readability. None of the research
we have read points at speed or memory performance as pros or cons of the three
frameworks we have compared, suggesting that the main focus of people comparing
these frameworks are aspects such as features and syntax.

While it would not mitigate the risks of malicious users answering our questionnaire
we could have added a question that verifies that the respondent is a developer or
student with experience in Java Spring. Another question that might add value to the
results would be a question that indicates the level of the studies the potential student
are participating in. We assume students in for example their last term may respond
in other way to students in the first or second term.

In conclusion, or study sheds some light on the performance of JUnit 5, TestNG
and Spock for tests that are part of a Spring Boot application, as well as developers
views on these frameworks. The most suitable frameworks to choose depends on the
project in question, and which aspects of a framework that developers value the most.
Future research could include more metrics to evaluate these frameworks, including
learning curve, ease of use, community support. The generalizability of our findings
could also be explored by putting them into different applications and contexts.

49

8 Conclusion
Below are our research questions for this project again:

• RQ1.1 - How do Junit 5, TestNG and Spock compare when it comes to unit
testing?

• RQ1.2 - Can a single value represent the quality of a testing framework appro-
priately?

• RQ2 - Which testing framework is preferred by participants who have experi-
ence in developing Java Spring applications and why?

When measuring the frameworks we found that TestNG has the best performance
when it comes to execution time, while Spock is the most memory-efficient. Both
frameworks shared a similar TES score, suggesting that TestNG may be preferred
when execution speed is a priority, and Spock may be preferred by developers who
appreciate concise code and a lower memory consumption. JUnit 5 on the other hand
were a lot slower than both Spock and TestNG and also has higher memory usage.
JUnit 5 has a lot higher TES score than the other frameworks, indicating that JUnit
5 is less efficient than the other frameworks by a rather larger margin. Despite this
our questionnaire indicates that JUnit 5 is the clear leader when it comes to preferred
testing-frameworks for Java Spring applications. We believe that this may be due
to Junit 5 being pre-installed in Spring Boot, while the other two frameworks are
not. It may also be due to junior developers and students being more familar with
JUnit 5 compared to the other two frameworks, perhaps because of it being the test
framework taught to them as part of their course content.

With the above in mind we would answer RQ1.1 with that TestNG may be preferred
when test execution speed is a priority, and that Spock can be preferred when concise
tests and low memory consumption is a priority.

In response to RQ1.1, it appears that TestNG may be preferred when speed is a prior-
ity, while Spock may be favored for its conciseness and lower memory consumption.
For RQ1.2, we propose the TES score as a possible single value representing the
quality of a testing framework. However, it is important to acknowledge that this
score provides only a partial representation of the quality. The TES score aggre-
gates metrics of execution speed, code conciseness, and memory requirements, but
other factors such as ease of use, features, and documentation, as highlighted by our
questionnaire respondents, also play crucial roles in the assessment of a framework’s
quality.

Compared to previous work in this area our study, such as "Ramverk för enhetstest-
ning - För en eventuell kurs på Mittuniversitetet" by Robin Dahlgren [8] where JUnit
5 was the recommended test framework when compared to TestNG, our research pro-
vides further detailed differences between JUnit 5 and TestNG while also including
Spock. Our questionnaire clearly answers the research question "Which test frame-
work do developers prefer for Java Spring applications and why?". JUnit 5 is the
favoured testing framework because of its ease of use, features and documentation.

The analysis of the three test frameworks Spock, TestNG, and JUnit 5 demonstrated
that each framework has its advantages. TestNG outperformed the others in terms
of execution time, while Spock excelled in memory efficiency and code conciseness.

50

However, the questionnaire results revealed that the majority of respondents preferred
JUnit, possibly due to its widespread industry adoption and their familiarity with the
framework.

Additionally, the respondents emphasized the importance of ease of use, features,
and documentation when selecting a test framework for Java Spring projects. These
criteria should be carefully considered when making a decision on the most suitable
testing framework, as they can significantly impact the efficiency and effectiveness
of the testing process.

While JUnit is popularity and familiarity among developers may make it a more
practical choice for some teams, it is important to weigh its benefits against those
of other frameworks based on the specific requirements and goals of a project. The
best test framework for a particular Java Spring application will depend on various
factors, including the team’s experience, the desired features, and the ease of use of
the framework.

In conclusion, developers should take into account both the objective measures of
testing frameworks and their own preferences and experiences when selecting a test-
ing framework for Java Spring applications. By doing so, they can choose the most
appropriate framework that meets their project’s needs and maximizes the efficiency
and effectiveness of their testing processes.

8.1 Future work
While this study provided valuable insights into the performance and preferences of
different testing frameworks for Java Spring applications, there are several areas for
future research and exploration to further enhance our understanding and improve the
decision-making process.

• Larger and more diverse sample: This study relied on a small sample size,
mostly compromised of students and junior developers. Future research could
include a larger and more diverse sample of developers from various profes-
sional backgrounds, levels of experience and industries to provide a more
comprehensive understanding of the preferences and experiences within the
broader developer community.

• Additional test frameworks: This study compared three popular testing frame-
works for Java Spring applications. However, there may be other emerging or
less well-known testing frameworks that warrant investigation. Future work
could include a comparison of additional frameworks, potentially revealing
new insights and alternatives for Java testing.

• In-depth performance analysis: The current study focused on execution time,
memory usage, and code conciseness. Future research could investigate other
performance metrics, such as code coverage, scalability, and ease of integration
with other tools and libraries, providing a more comprehensive evaluation of
testing frameworks.

• Real-world case studies: To better understand the practical implications of
using different testing frameworks, future work could involve real-world case
studies, where various testing frameworks are applied to actual Java Spring
projects. This would provide insights into the challenges and benefits encoun-
tered during the implementation and maintenance of tests in diverse, real-world

51

contexts.

• Longitudinal studies: As the software development landscape continues to
evolve, it is important to track the changes and improvements in testing frame-
works over time. Longitudinal studies could monitor the progress and devel-
opment of various testing frameworks, offering valuable information for devel-
opers and teams when selecting a testing framework for their projects.

By addressing these areas in future research, we can further deepen our understanding
of testing frameworks for Java Spring applications and provide development teams
with more comprehensive and accurate information to make informed decisions on
the best framework for their specific needs and projects.

52

References
[1] N. POPPER. “Knight capital’s $440 million trading glitch.” (2012), [Online].

Available: https://archive.nytimes.com/dealbook.nytimes.
com/2012/08/02/knight-capital-says-trading-mishap-
cost-it-440-million/ (visited on 05/22/2023).

[2] TIOBE. “Tiobe index.” (), [Online]. Available: https://www.tiobe.
com/tiobe-index.

[3] TIOBE. “Tiobe rating.” (), [Online]. Available: https://www.tiobe.
com/tiobe-index/programminglanguages_definition/.

[4] M. Kropp and P. Morales, “Automated gui testing on the android platform,” in
On Testing Software and Systems: Short Papers, 2010, p. 67.

[5] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and
principles,” IEEE Internet computing, vol. 9, no. 1, pp. 75–81, 2005.

[6] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing
techniques: A literature review,” in 2016 6th International Conference on In-
formation and Communication Technology for The Muslim World (ICT4M),
Jakarta, Indonesia, 2016, pp. 177–182. DOI: 10.1109/ICT4M.2016.045.

[7] G. Aroush, An evaluation of testing frameworks for beginners injavascript pro-
gramming : An evaluation of testing frameworks with beginners in mind, 2022.

[8] R. Dahlgren, Ramverk för enhetstestning : För en eventuell kurs på mittuni-
versitetet, 2022.

[9] Meiliana, I. Septian, R. S. Alianto, and Daniel, “Comparison analysis of an-
droid gui testing frameworks by using an experimental study,” Procedia Com-
puter Science, vol. 35, pp. 736–748, 2018. DOI: https://doi.org/10.
1016/j.procs.2018.08.211.

[10] BrowserStack, Top java testing frameworks every developer must know, Ac-
cessed: 2023-04-03, 2021. [Online]. Available: https://www.browserstack.
com/guide/top-java-testing-frameworks.

[11] E. Academy, Top 10 java testing frameworks every developer should know,
Accessed: 2023-04-03, 2021. [Online]. Available: https : / / enlear .
academy/top-10-java-testing-frameworks-every-developer-
should-know-ef818457b08.

[12] LambdaTest, Top 10 java testing frameworks for 2021, Accessed: 2023-04-03,
2021. [Online]. Available: https://www.lambdatest.com/blog/
top-10-java-testing-frameworks/.

[13] S. Khan, 13 best java testing frameworks for 2023, https://www.lambdatest.
com/blog/best-java-testing-frameworks/, Accessed on Febru-
ary 14, 2023, Jan. 2023.

[14] M. Shaw, “What makes good research in software engineering?” International
Journal on Software Tools for Technology Transfer, vol. 4, pp. 1–7, 2002.

[15] JUnit. “Junit 5 user guide.” (2022), [Online]. Available: https://junit.
org/junit5/docs/current/user-guide/#overview-what-
is-junit-5 (visited on 02/23/2023).

[16] TestNG Contributors, TestNG Documentation, https://testng.org/
doc/, Accessed: February 22, 2023.

[17] TutorialsPoint, TestNG Overview, https://www.tutorialspoint.
com/testng/testng_overview.htm, Accessed: February 22, 2023.

53

https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index/programminglanguages_definition/
https://www.tiobe.com/tiobe-index/programminglanguages_definition/
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/https://doi.org/10.1016/j.procs.2018.08.211
https://doi.org/https://doi.org/10.1016/j.procs.2018.08.211
https://www.browserstack.com/guide/top-java-testing-frameworks
https://www.browserstack.com/guide/top-java-testing-frameworks
https://enlear.academy/top-10-java-testing-frameworks-every-developer-should-know-ef818457b08
https://enlear.academy/top-10-java-testing-frameworks-every-developer-should-know-ef818457b08
https://enlear.academy/top-10-java-testing-frameworks-every-developer-should-know-ef818457b08
https://www.lambdatest.com/blog/top-10-java-testing-frameworks/
https://www.lambdatest.com/blog/top-10-java-testing-frameworks/
https://www.lambdatest.com/blog/best-java-testing-frameworks/
https://www.lambdatest.com/blog/best-java-testing-frameworks/
https://junit.org/junit5/docs/current/user-guide/#overview-what-is-junit-5
https://junit.org/junit5/docs/current/user-guide/#overview-what-is-junit-5
https://junit.org/junit5/docs/current/user-guide/#overview-what-is-junit-5
https://testng.org/doc/
https://testng.org/doc/
https://www.tutorialspoint.com/testng/testng_overview.htm
https://www.tutorialspoint.com/testng/testng_overview.htm

[18] Software Testing Help, JUnit vs TestNG Comparison: Which is Better? https:
//www.softwaretestinghelp.com/junit-vs-testng/#Conclusion,
Accessed: February 22, 2023.

[19] Spock Framework Contributors, Spock Framework Documentation, https:
//spockframework.org/, Accessed: February 24, 2023.

[20] A. Håkansson, “Portal of research methods and methodologies for research
projects and degree projects,” in The 2013 World Congress in Computer Sci-
ence, Computer Engineering, and Applied Computing WORLDCOMP 2013;
Las Vegas, Nevada, USA, 22-25 July, CSREA Press USA, 2013, pp. 67–73.
[Online]. Available: https://www.diva-portal.org/smash/get/
diva2:677684/FULLTEXT02.

[21] N. Andersson and A. Ekholm, Vetenskaplighet - Utvärdering av tre imple-
menteringsprojekt inom IT Bygg & Fastighet 2002, svenska. Institutionen för
Byggande och Arkitektur, Lunds Universitet, 2002.

[22] M. Bunge, Epistemology & Methodology I:: Exploring the World. Springer
Science & Business Media, 2012, vol. 5.

[23] ISO/IEC/IEEE, “Ieee/iso/iec international standard - software and systems engineering–
software testing–part 4: Test techniques,” ISO/IEC/IEEE 29119-4:2021(E),
pp. 1–148, 2021. DOI: 10.1109/IEEESTD.2021.9591574.

[24] SoftwareTestingHelp. “Functional testing vs non-functional testing: What’s
the difference?” (2018), [Online]. Available: https://www.softwaretestinghelp.
com/functional-testing-vs-non-functional-testing/
(visited on 02/22/2023).

[25] K. Naik and P. Tripathy, Software Testing and Quality Assurance: Theory and
Practice. John Wiley Sons Inc., 2008, p. 5.

[26] Integration testing, https://www.techtarget.com/searchsoftwarequality/definition/integration-
testing, (Accessed on 2022-05-21).

[27] Guru99. “System testing.” (n.d.), [Online]. Available: https://www.guru99.
com/system-testing.html (visited on 02/22/2023).

[28] Guru99. “Types of software testing.” (n.d.), [Online]. Available: https://
www.guru99.com/types-of-software-testing.html (visited
on 02/22/2023).

[29] S. T. Fundamentals. “Acceptance testing.” (n.d.), [Online]. Available: https:
//softwaretestingfundamentals.com/acceptance-testing/
(visited on 02/22/2023).

[30] K. Jackvony. “An introduction to the automation test wheel.” (Sep. 2019), [On-
line]. Available: https://www.ministryoftesting.com/articles/
3250eb6c (visited on 02/23/2023).

[31] M. Cohn, Succeeding with Agile: Software Development Using Scrum (A Mike
Cohen signature book). Addison-Wesley, 2010, ISBN: 9780321579362. [On-
line]. Available: https://books.google.com.ar/books?id=
IdT6AgAAQBAJ.

[32] Agile Alliance. “What is Agile Software Development?” (2022), [Online].
Available: https://www.agilealliance.org/agile101 (visited
on 02/25/2023).

[33] M. Rouse, Behavior-driven development (bdd), https://www.techtarget.
com/searchsoftwarequality/definition/Behavior-driven-
development-BDD, Accessed: March 1, 2023.

54

https://www.softwaretestinghelp.com/junit-vs-testng/#Conclusion
https://www.softwaretestinghelp.com/junit-vs-testng/#Conclusion
https://spockframework.org/
https://spockframework.org/
https://www.diva-portal.org/smash/get/diva2:677684/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:677684/FULLTEXT02
https://doi.org/10.1109/IEEESTD.2021.9591574
https://www.softwaretestinghelp.com/functional-testing-vs-non-functional-testing/
https://www.softwaretestinghelp.com/functional-testing-vs-non-functional-testing/
https://www.guru99.com/system-testing.html
https://www.guru99.com/system-testing.html
https://www.guru99.com/types-of-software-testing.html
https://www.guru99.com/types-of-software-testing.html
https://softwaretestingfundamentals.com/acceptance-testing/
https://softwaretestingfundamentals.com/acceptance-testing/
https://www.ministryoftesting.com/articles/3250eb6c
https://www.ministryoftesting.com/articles/3250eb6c
https://books.google.com.ar/books?id=IdT6AgAAQBAJ
https://books.google.com.ar/books?id=IdT6AgAAQBAJ
https://www.agilealliance.org/agile101
https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-development-BDD
https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-development-BDD
https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-development-BDD

[34] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale de-
velopment,” in Proceedings of the 3rd ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, 2009, pp. 386–388.
[Online]. Available: https://www.diva- portal.org/smash/
record.jsf?pid=diva2:835760 (visited on 02/25/2023).

[35] S. W. Ambler, Test driven development (tdd), http://www.agiledata.
org/essays/tdd.html, Accessed on March 10, 2023, 2005.

[36] Agile Alliance. “Test-Driven Development (TDD).” (2022), [Online]. Avail-
able: https://www.agilealliance.org/glossary/tdd (visited
on 03/01/2023).

[37] A. Tarlinder, Developer Testing: Building Quality Into Software (A Mike Cohn
signature book). Addison-Wesley, 2016, ISBN: 9780134291062. [Online]. Avail-
able: https://books.google.se/books?id=bmDFjgEACAAJ.

[38] I. Sommerville, Software Engineering, 10th ed. Pearson, 2016.
[39] S. B. Contributors. “Testing - spring boot reference guide,” Spring Boot. (Jun.

2017), [Online]. Available: https://docs.spring.io/spring-
boot/docs/1.5.7.RELEASE/reference/html/boot-features-
testing.html (visited on 02/28/2023).

[40] JUnit 5 Contributors, Junit jupiter api assertions, https://junit.org/
junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.
html, Accessed: February 28, 2023, 2017.

[41] Mockito, Mockito-testng, https://github.com/mockito/mockito-
testng, accessed 2023.

[42] Visual studio code java pack, Available online: https://marketplace.
visualstudio.com/items?itemName=vscjava.vscode-java-
pack.

[43] JBehave Contributors, JBehave Documentation, https://jbehave.org/,
Accessed: February 23, 2023.

[44] Serenity BDD Contributors, Serenity BDD Documentation, https://serenity-
bdd.info/docs/serenity/, Accessed: February 23, 2023.

[45] Selenium Contributors, Selenium, https://www.selenium.dev/, Ac-
cessed 10 May 2023.

[46] Selenide Contributors, Selenide Documentation, https://selenide.
org/, Accessed: February 23, 2023.

[47] Microsoft Contributors, Gauge with End-to-End Testing, https://microsoft.
github.io/code-with-engineering-playbook/automated-
testing/e2e-testing/recipes/gauge-framework/, Accessed:
February 23, 2023.

[48] Geb Contributors, Geb Documentation, https://www.gebish.org/,
Accessed: February 23, 2023.

55

https://www.diva-portal.org/smash/record.jsf?pid=diva2:835760
https://www.diva-portal.org/smash/record.jsf?pid=diva2:835760
http://www.agiledata.org/essays/tdd.html
http://www.agiledata.org/essays/tdd.html
https://www.agilealliance.org/glossary/tdd
https://books.google.se/books?id=bmDFjgEACAAJ
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/reference/html/boot-features-testing.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://github.com/mockito/mockito-testng
https://github.com/mockito/mockito-testng
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://jbehave.org/
https://serenity-bdd.info/docs/serenity/
https://serenity-bdd.info/docs/serenity/
https://www.selenium.dev/
https://selenide.org/
https://selenide.org/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/e2e-testing/recipes/gauge-framework/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/e2e-testing/recipes/gauge-framework/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/e2e-testing/recipes/gauge-framework/
https://www.gebish.org/

A Questions & Answers
A.1

56

A.2

57

A.3

58

A.4

59

A.5

60

B Testing frameworks not
included
B.1 JBehave
JBehave is a framework used for behaviour-driven development (BDD) that provides
a way of writing tests in a way that non-technical stakeholders find it easier under-
standing. It shifts the vocabulary from test-based to behaviour-based [43].

Scenario: Addition
Given a calculator
When I add 2 and 3
Then the result should be 5

B.2 Serenity
Serenity is a open source framework built on top of JUnit that helps with automating
acceptance tests, this is often done by automating UI actions such as clicks and scrolls
on a website. It also helps generating BDD-style living documentation [44].

@Step
void testAddition() {

Calculator calculator = new Calculator();
int result = calculator.add(2, 3);
assertThat(result).isEqualTo(5);

}

B.3 Selenium
Selenium is a test-automating framework that is focused on bringing a clear and in-
tuitive API for creating reliable tests. It features robust selectors and straightforward
setup, as well as features such as implicit waiting and support for managing asyn-
chronous operations [45].

void testAddition() {
WebDriver driver = new ChromeDriver();
driver.get("https://example.com/calculator");

CalculatorPage calculatorPage = new
CalculatorPage(driver);
calculatorPage.add(2, 3);
calculatorPage.assertResult("5");

driver.quit();
}

B.4 Selenide
Selenide is a test-automation framework powered by Selenium WebDriver that aims
on bringing a concise and expressive API for writing stable tests. It includes pow-
erful selectors and simple configuration and aims to simplify the process of writing
selenium tests. It includes features such as automatic waiting and built in support of

61

handling asynchronous operations [46].

void testAddition() {
CalculatorPage calculatorPage =
open("https://example.com/calculator",
CalculatorPage.class);
calculatorPage.add(2, 3);
calculatorPage.assertResult("5");

}

B.5 Gauge
Gauge is a framework for writing and running end to end (E2E) tests. A few of
the key features of gauge include simple, flexible and rich syntax that is based on
markdown. The framework provides consistent cross-platform/language support and
is based on a modular architecture with plugin support [47].

Addition

* Calculator.add(2, 3) -> 5

B.6 Geb
Geb is a browser automation library that aims at providing a more expressive and con-
cise API than Selenium. The framework includes features such as automatic waiting,
page objects and built in support for handling Ajax requests. The following snippet
is taken from the official website of Geb: "It brings together the power of WebDriver,
the elegance of jQuery content selection, the robustness of Page Object modelling
and the expressiveness of the Groovy language." [48].

void testAddition() {
CalculatorPage calculatorPage = to CalculatorPage
calculatorPage.add(2, 3)
assert calculatorPage.result.text() == "5"

}

62

C Results
C.1

63

	Introduction
	Background
	Related Work
	Problem formulation
	Expected Results

	Motivation
	Results
	Scope/Limitation
	Testing frameworks
	JUnit 5
	TestNG
	Spock

	Target group
	Outline

	Method
	Research Project
	Experimental Research
	Questionnaires

	Research Methods
	The Application

	Reliability and Validity
	Threats to Validity
	Dependent and Independent variables
	Ethical Considerations
	Bunges Scientific Method

	Theoretical Background
	Functional tests and non-functional tests
	Unit tests
	Integration tests
	System tests
	Acceptance tests
	The testing pyramid
	Test and Behaviour driven development
	White and Black Box Testing
	Validation & Verification

	Implementation
	JUnit 5
	Installation of JUnit 5
	Running tests in JUnit 5
	Test structure in JUnit 5
	Exception handling in JUnit 5
	Conditional test execution in JUnit 5
	Mocking in JUnit 5
	Parameterized tests in JUnit 5

	Spock
	Installation of Spock
	Running tests in Spock
	Test structure in Spock
	Exception handling in Spock
	Conditional test execution in Spock
	Mocking in Spock
	Parameterized tests in Spock

	TestNG
	Installation of TestNG
	Running tests in TestNG
	Test structure in TestNG
	Exception handling in TestNG
	Conditional test execution in TestNG
	Mocking in TestNG
	Parameterized tests in TestNG

	Tools
	Test Efficiency Score (TES)

	Results
	Tests
	testCreate()
	testModify()
	testDelete()
	Result overview

	Questionnaire
	Previous experience with test frameworks
	Preferred test framework
	Familiarity with JUnit
	Preference for widely adopted frameworks
	Important Criteria in Selecting a Test Framework

	Analysis
	Execution time
	Memory usage
	Code conciseness (characters used)
	An example use of Test Efficiency Score (TES)
	Calulation of TES

	Ending notes

	Discussion
	Conclusion
	Future work

	References
	Questions & Answers
	
	
	
	
	

	Testing frameworks not included
	JBehave
	Serenity
	Selenium
	Selenide
	Gauge
	Geb

	Results
	

