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Abstract
The growth of distributed applications stand on a foundation of containers and their

communication and have seen the rise and fall of many implementations throughout

the years with a mix of proprietary and open sources. Today there are two

implementations widely used as a result of the popularity of the huge project

Kubernetes: CRI-O and Containerd. Both with the edge responsibility of managing

containers using similar underlying software raising the question; do they have any

implications on the containers they spawn? This thesis investigate these

implementations from a performance perspective with a custom developed tool for

direct communication to them and run a suite of benchmarks within the containers

created by each. The suite consists of tests for throughput, latency, cpu, memory,

random file read/write and sequential file read/write. Results conclude they perform

similarly in all, but the file tests which showed overall CRI-O dominating in write

speed and Containerd dominating the read speed.

Keywords: container, container engine, benchmark, CNI, CRI-O, containerd,

network, Kubernetes, performance, cloud
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1 Introduction
This is a 15 credits bachelor thesis in computer science aiming to contribute

knowledge to the rapidly growing containerization world with a primary focus of

comparing different container engines and introduce a networking perspective in

said benchmarks. Labor was split as evenly as possible, and each members

programming area reflected who wrote the different parts of the thesis. Overall,

programming of the tool focusing on communication with the container engines, log

retrieval and the first half of the report was one part of the labor and the other being

container configuration, log parsing, running the benchmarks and the second half of

the report.

1.1 Background
Since the introduction of the computer, the creation nature of the human have

inspired companies and collaborators to build programs of many different kinds

with many different areas of application to solve challenges and effectivize among

others. Software development schemes and designs have developed alongside as

programmers gained knowledge on how different application areas may require

different approaches and focus areas in their implementation, such as extendability

and modularity. Sysadmins and other users alike utilize these programs and together

with the documentation gain knowledge on its quirks and features as well as its

recommended deployment approach to serve it for any type of end user. As

programs grow in functionality and stability, so does their advancedness and the

sheer size makes tasks such as testing and compiling an ever-growing black hole

where resources disappear. A description of this phenomenon is "outgrowing the

monolithic architecture” as Chris Richardson explains it in his book Microservices

Patterns [1]. In general, a common solution to handling larger projects is dissecting

and splitting it into smaller, more manageable parts which can be handled each by

themselves. This is also the direction programmers have taken their software,

towards a loosely coupled architecture, but new challenges arise with these new

distributed fractions and their difficulty are multiplied by their quantity. The

software evolves into a set of distributed applications, each with their own smaller

stack, and one of the new challenges is the communication between them. The

previous ties of shared memory between the internal software components have

been exchanged for the IP-stack, thus emphasizing on the importance of networking.

Another challenge is a framework fit for the task of handling these scattered

components, which an emerging technology called containers appears to have a core

role in.

The containerization era is arguably still in its infancy with multiple projects and
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methods aiming to solve similar challenges in different approaches, but an

undisputed orchestrator of containers is Kubernetes and the developers of the

Kubernetes project have begun standardizing the interfaces between the multiple

components. With a huge number of adopters, it seems Kubernetes will have a core

role in future IT-infrastructure, but similarly to the orchestrator of an orchestra, it is

dependent on the performance of its musicians [2]. Kubernetes musicians are

container engines and it communicates with them through an Application

Programming Interface (API) called the Container Runtime Interface (CRI).

Container engines that speak CRI have functionality to manage images, pods,

networks and much more making them the implicit base of modern and the

foreseeable future of IT-infrastructure, thus a very important part of the

environment.

1.2 Related work
Our research area have seen an increased amount of articles with recent years, but

mostly focused on comparison between techniques rather than different

implementations within the technique. "Performance and isolation analysis of RunC,

gVisor and Kata Containers runtimes" by Wang et al. (2022) describe how a more

secure approach to containers runtimes may have performance implications [3]. The

authors conclude that both RunC and Kata have less performance overhead while

gVisor suffers from significant performance loss in I/O and system calls, but feature

better isolation. In "Performance Evaluation of Container Runtimes", Espe and

Jindal (2020) benchmark and compare the container engines containerd and CRI-O

with the different runtimes runc and gVisor from the perspective of performance

regarding running containers and container runtime operations as well as scalability.

[4]. The authors created their own tool called TouchStone to evaluate these

perspectives and concluded that CRI-O has better file system operations (read/write)

while containerd feature better CPU usage, memory latency and scalability aspects.

"Container Hosts as Virtual Machines - A performance study" by Aspernäs and

Nensén (2016) compare container performance between virtualized and bare-metal

hosts running the operating systems CentOS, CoreOS and Photon OS [5]. Their

tests were based on the Linux, Apache, Mysql and Php (LAMP) stack with a suite of

macro-benchmarks. They concluded an overall decrease in performance for

virtualized hosts, but the type of containerized applications, which operating system

and type of operation differed between the performance gains. Manfredsson and

Nyquist (2013) presented in "Jämförelse av Hypervisor & Zoner" a comparison

between a hypervisor and a container implementation called Solaris™ Zones within

the Solaris™ operating system by running a benchmarking suite on two scenarios

[6]. The suite featured the programs Apache and Httperf which were tested on the

scenarios of a single virtual server and three virtual servers. Virtual servers is either
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a container or a virtual machine. They concluded the reduced overhead of the

container implementation performed better from a load perspective, but a restriction

with containers only being able to run the same operating system as its host could be

a limit in heterogeneous environments. In "Container-Based Cloud Virtual Machine

Benchmarking", Varghese et al. (2016) investigate the difficulties of benchmarking

virtual machines in the cloud with a primary issue of the time it consumes [7]. They

propose a technique of only benchmarking a part of the virtual machine utilizing a

custom developed tool to restrict available resources of the container which reduces

benchmarking time by up to 91 times. Results showed an accuracy of 90% and 86%

for sequential and parallel execution modes of the benchmarking program

respectively. Kozhirbayev and Sinnott (2017) compared bare-metal, Docker and

Flockport by running tests for cpu, memory, fileIO and networking [8]. Results

showed a negligible difference in cpu and memory, but the container

implementations saw curtailed performance with networking and fileIO. Notably

Docker saw a huge reduction in total amount of random seeks during the fileIO test,

about 90% lower compared to the other two targets, but retained a reasonable write

throughput nonetheless within 10% of the other targets. Kushwaha’s (2017) study

on the performance of VM-based and OS-level container runtimes such as runc, and

engines containerd and CRI-O concluded that CRI-O performs worse in comparison

to containerd due to different file system driver interface design though CRI-O has

very low container start-up latency in comparison to containerd [9].

1.3 Problem formulation
There are research closely related to our subject, but the main area either differs or

make the wrong comparisons. The rather undefined nature of this area may be at

fault such as terminology which has sparked multiple problems where researchers

ask questions, formulate problems and draw irrelevant conclusions regarding

completely different technologies. Wang et al. (2022) for example compares

container engines with a container runtime and include evaluations of networking

performance in a very similar manner to our planned testing, but does so

unintentionally [3]. Runc is a container runtime reference implementaion of the

Open Container Initiative (OCI) runtime specification which the authors compare to

the container engine Docker [10]. The OCI runtime specification does not include

networking configuration at all and since the authors utilize Docker for testing Runc,

they are actually using Containerds network setup failing to realize they compare

and draw conclusions between apples and pears [11]. Espe and Jindal (2020) does

test performance also in a similar manner to the previous article with correct

comparisons between container engines as opposed to mixed between container

runtimes/engines, but completely omits networking from their testing [4]. By doing

a proper comparison where we test the two container engines against each other, we
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get the best of both worlds where the correct engines are compared to each other and

we have the additional metric of networking performance.

We aim to answer these questions:

• How do Container Runtime Interface compliant container engines compare to

each other in relation to performance?

• What is the procedure to pick a Container Runtime Interface compliant

container engine when factoring in different workloads?

1.4 Motivation
This thesis aims to clarify and formulate a base for companies and individuals when

evaluating different container engines depending on different workloads as adapting

technologies to their greatest strengths can help from multiple perspectives such as

economical and utilize resources to their fullest.

1.5 Results
The result of this thesis will include two parts: firstly a judgement and verification

of previous research technique and results while answering the first question and

secondly extending said technique to comprise a networking perspective and tie the

bag together answering the second question.

1.6 Scope/limitation
We limit ourselves to developing for the CRI compliant engines CRI-O and

Containerd as Kubernetes is a major driver within the industry for these engines and

the OCI compliant Runc as container runtime [2].

1.7 Target Group
The target group is any user of container engines within their infrastructure, from

large companies to actors with limited resources looking to get the most out of their

hardware.

1.8 Outline
This report is structured in the following way: Chapter 2 explains and discusses

methodologies used, Chapter 3 describes the technical and theoretical knowledge,

and Chapter 4 includes the objectives and their specific implementations. In Chapter

5 the results are shown and analysis of them, discussions are conducted in Chapter 6

and finally conclusions and future work in Chapter 7.
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2 Method
The method of this thesis builds on the lack of benchmark categories from Espe and

Jindal (2020) as the original developers of the container engine testing tool [4]. The

tool is developed for directly communicating with container engines and running

controlled benchmarks, called Touchstone.

2.1 Research Project
For starters, information needs to be gathered through a document study regarding

the current state of how Touchstone uses the CRI, relevant programs, standards and

interfaces. A stocktaking of sorts, as new developments since Espe and Jindal

(2020) published their research may result in entirely different outcome compared to

their older versions, thus needing to be highlighted.

Secondly, continued development of Touchstone will be conducted with the design

science method [12]. The exploratory nature of the method will be beneficial when

creating the extended functionality. Early identification of problems with

Touchstone is it is currently a single container oriented tool, so there may be a need

for large restructuring when testing with two containers, as configuration set at

runtime for the first container may be needed in the second. For example, the

Internet Protocol (IP) address of the second container for testing network

communication, but this depends entirely on the findings in the previous paragraph.

Another problem is the complete lack of testing any kind of networking.

Lastly, an experiment will be used to conduct the tests and compare with previous

research. There are lots of variables to consider when comparing benchmarks

between vastly different computers, so our primary target is looking for similar

patterns in our tests and drawing conclusions from those patterns. Testing programs

are picked based on previous research and personal familiarity.

2.2 Research methods
The gathering of initial information have but one relevant method; the document

study. Experimenting to gather relevant knowledge is generally a valid approach,

but in this case would be very time-consuming, so a much more effective method is

using the respective projects documentation as it also provides otherwise missed

in-depth knowledge. The Interview method could also be a viable option, but have

similar flaws to experiments. Other common methods are ill fit for this goal. The

information will be presented in chapter 3.

Design science is well fit for research producing artifacts and also for our particular

challenge. The artifact will be the extended functionality of Touchstone and with the

intention of reusability for future CRI compatible container engines. Considering
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design science is a big part of the experimenting section of this thesis, other methods

that do not produce a tool for testing are not applicable. A more interesting

perspective is the necessity of including this step at all or rather why the use of

Touchstone, as this method is specifically derived from the lack of functionality in

the tool. Benchmarking computers have a long history of different solutions and

programs, but none of them, as <far as the authors know, target the CRI specifically.

This step could have been replaced by a series of scripts or automation tools since

both projects have their own Commandline Interface (CLI) applications to interact

with the engine, but a large part of the rationale of a custom tool is the future

reusability since the CRI is standardized.

The experiment will act as a base to validate and draw conclusions about the

differences of the container engines. For each benchmark, the dependent variable is

the benchmark itself and independent variables are the container engines and the

amount of threads. The first part of the Research Project may influence the

independent variables when mimicking previous tests.

2.3 Reliability and Validity
Reliability regarding benchmarks in computer systems is an everlasting threat with

few mitigations. The combinations of different software, software versions and

hardware is enough to uniquely define a system, thus also making it hard to exactly

replicate benchmarks. An example of this is using HTML5s canvas element to

reliably fingerprint systems without any type of cookie or tracker because the

underlying system is unique enough that the pixels in the resulting render mirrors

the systems unique properties [13]. As such, we will not directly take any measures

to reduce the impact of the underlying system, but run the tests multiple times on

multiple machines and inside and outside of a virtual machine to generate a broad

view of how these engines behave and look for similar patterns. Essentially looking

at the relative numbers of the benchmarks between the engines rather than absolute

numbers. For example the disk read and write speed of an Secure Digital (SD) card

in a Raspberry Pi is not comparable to an Non-Volatile Memory Express (NVMe)

Solid State Drive (SSD) in a desktop computer in terms of raw numbers, but there

may be a similar pattern where one engine performs 10% better or worse compared

to the other in both of these environments, creating a base to draw conclusions from

indicated by their relativeness rather than absoluteness. Version pinning relevant

software also contributes to the reliability.

The validity of the thesis is increased by a collection of actions. Previously

mentioned randomness of hardware contributes to the validity by reducing selection

bias. Furthermore the results were compared primarily with the results of Espe and

Jindal (2020), the previous developers of Touchstone, representing a control group.
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The extended functionality however have a unique stance in the research community

with extremely few results to compare with. Wang et al. (2022) provided

networking benchmarks in their research and since they used Docker, more

specifically Containerd, they were used as a second control group to provide a

broader picture of how the engines should perform.

2.4 Ethical Considerations
There are no ethical concerns with this thesis since no personal or private data is

used.

7



3 Technical Background
This chapter intends to give a description of the technologies used in this thesis

project. It aims to create theoretical background for the technologies and subject

which are addressed in this report. The purpose it to give the reader a understanding

of the technologies, tools and concepts the thesis uses to answer the research

questions. The new technologies we chose to work was from previous positive

experience and some technologies was used since they were used in the previous

research.

3.1 Containers and pods
The container concept have multiple implementations, but a core concept of

utilizing a single kernel with functionality for grouping runtime properties such as

filesystem and process cputime allocation to create a tailored sandboxed

environment for the specific process(es). The lower overhead by using this method

allows for close to native performance compared to virtualization, another type of

sandboxing, where virtual interfaces are created to be consumed by another kernel

on top. Containers can be grouped together by sharing one or multiple runtime

properties creating a pod. A pod depends on the grouped runtime properties

provided by the kernel, thus cannot be ran on two machines at the same time by, for

example creating a container on each and joining them. Communication between

pods are done over a network which is usually setup automatically by the tools

utilizing these concept such as Docker [14].

An implementation of these concepts are namespaces in Linux. It features the

isolation of runtime properties: network, mounts, process ids and user to mention a

few [15]. A process have lots of properties and configuration and in relation to

namespaces, ids for each of the namespaces it belongs to. For example two

processes can have network namespace id two, thus sharing the network stack with

the same interfaces for ip communication. They may also have different user

namespaces where one of the processes is ran as user 1000 outside the namespace,

but the user inside the namespace is 0, the root user, tricking forked processes inside

that they are ran as root. Processes inside the namespace cannot access any

resources requiring privileged access, even if they are shared a file from the mounts

namespace since it is a "fake root" only existing inside the namespace. Outside, and

the user actually trying to access the privileged resource is user 1000, which may or

may not have access. This is a feature of the user namespace by creating a mapping

scheme for user and group ids outside and inside the namespaces.
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3.2 Container Runtime Interface
The Container Runtime Interface (CRI) is a specification created by the Kubernetes

project as an Application Programming Interface (API) over gRPC [16]. gRPC is a

"A high performance, open source universal RPC framework" over Remote

Procedure Call (RPC) which the specification is both defined as and have a

reference implementation in Golang [17]. The specification features structured

protocol to among others a create pods, containers and pull images that can be

understood by the receiving container engines.

3.3 Open Container Initiative specification
The Open Container Initiative (OCI) is an "open governance structure for the

express purpose of creating open industry standards around container formats and

runtimes." with members such as Facebook, Google, Microsoft, AWS, Oracle and

Redhat to name a few [18]. It was established in 2015 by Docker, CoreOS and other

leaders in the container industry and is responsible for three specifications: the

Image specification, Runtime specification and Distribution specification. OCI

describes a sample workflow as "At a high-level an OCI implementation would

download an OCI Image then unpack that image into an OCI Runtime filesystem

bundle. At this point the OCI Runtime Bundle would be run by an OCI Runtime."

[18]. We work mainly with the image spec and runtime spec in this thesis.

3.4 Container Runtime
The container runtime is the lowest level of the components making up a container

stack. It talks directly to the kernels sandboxing features.

3.4.1 Runc
Runc is a lowlevel commandline tool for running images according to the OCI

specification. A relation to the Linux namespaces can be viewed when running a

process manually with Runc as it creates a new namespace for each of the available

properties.

3.5 Container Engines
Container engines act as a middle-man with default drivers for networking and

storage and in our case using Runc as runtime. Their responsibility include among

others container life cycle management and pulling images.

3.5.1 CRI-O
CRI-O is specifically designed as the path between the Kubelet and OCI conformant

runtimes by following the CRI closely and also sharing the scope [19]. One could

say it is a complete reference implementation of the CRI to provide a simple engine

9



and focus on picking a OCI compliant runtime.

3.5.2 Containerd
Containerd was historically a part of Docker as its container engine, but was donated

to Cloud Native Computing Foundation (CNCF) [20]. It is still in use by Docker

today and provides its own library in Golang to interact with it. The CRI compliance

is achieved through an official plugin and is easily enabled in the configuration

file.

3.6 Kubernetes
Kubernetes was originally developed internally at Google, but released under an

open source license in 2014 for the rest of the world to use [21]. It is defined as an

orchestrator i.e it does not run any containers itself, but instructs the container

engine(s) what configuration to run the pods and containers with. This is an

interesting piece of the puzzle when distributing programs across multiple hosts,

hosts running container engines. For example deploying a database; we tell

Kubernetes to always keep three replicas of the database container up at all times,

they should not run on hosts with "loadbalancer" in the hostname and they should

use fast storage. Kubernetes brings up three replicas, ignores hosts with

"loadbalancer" in the name and use a storageclass called fast which we have

predefined. Kubernetes notices if a host goes offline and tells a container engine on

another host to create a database container with the same specification as the failed

one. In its essence, Kubernetes is just a couple of programs also running as

containers on one or multiple hosts interacting with a specific agent on each host

called kubelet [22].

3.7 Touchstone
Touchstone is the target for our continued development efforts. It acts as a simple

middle hand between the user and the container engine with a declarative

configuration for what and how a benchmark should run. Its architecture is outlined

by Espe and Jindal (2020) and consists of six modules called benchmark, runtime,

visual, suites, cmd and config [4]. The benchmark module acts as the controller in

the Model, View and Controller (MVC) design pattern and communicate with

runtime which wraps the gRPC client. Visual is the report output after benchmark

runs and cmd provides the CLI frontend. Last but not least are the benchmarks

themselves which creates in suites with configurations from config.

3.8 Testing software
Testing software are the programs running inside the containers. The networking

tools were chosen because of previous familiarity while Sysbench was used in
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previous research. Ping is a common networking tool for sending Internet Control

Message Protocol (ICMP) request packets and waiting for an ICMP response

packet. Ping have many implementations, but we will use the default command in

the Alpine Linux container image which is contained in the Busybox binary [23].

iPerf3 is a bandwidth testing tool over IP networks with lots of options for tuning

parameters. It features UDP, TCP over either IPv4 and IPv6 to mention a few. The

original iPerf was developed by a joint effort including in selection representatives

from National Laboratory for Applied Network Research (NLANR), Internet2 and

University of Nebraska-Lincoln (UNL) [24]. The latest iteration, which we will be

using, is also a joint effort, but this time with representatives from Energy Sciences

Network (ESnet) and Lawrence Berkeley National Laboratory [24]. Sysbench is a

popular multi-purpose benchmarking tool that is commonly used to evaluate the

performance of various system components, including the CPU, memory, fileIO, and

database systems. It provides a standardized and extensible framework for running

different types of benchmark tests and generating performance metrics [25].
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4 Research project –
Implementation
4.1 Touchstone(2)
After careful evaluation of Touchstone, we decided to redesign the application from

the ground up, as we feared would be required when we established the method.

Creating the second container, a functionality that was not present in the original

version of touchstone, required waiting for the first container to be in a running or

sleeping state before retrieving of its configuration, halting the execution till that

point. The request and response method of communicating with the engine does not

have an event feature, making waiting for containers changing state require sending

multiple requests until state changes or a timeout. The underlying abstractions did

not intend for this functionality requiring a large rewrite of those parts. Furthermore,

which tests to run were specified in external YAML files making the tool harder to

distribute to multiple systems. Thus we decided to create a new tool we call

Touchstone2. The objectives for our tool in relation to the design science method

and close remark to software requirements specification (SRS):

1. Extensible for different workloads/testing programs.

2. Run multiple containers at the same time with configuration dependencies

between them.

3. Single binary for easy distribution.

4. Results are written in a general format such as JSON or YAML.

Solving an extensible approach with our new tool required a common interface all

benchmarking programs utilize; the standard output (stdout). Starting a program or a

program inside a container attaches a file descriptor to the process’s stdout where log

and common print functions usually write their output unless configured otherwise.

Capturing output in Touchstone2 is thus an important part for extensibility and can

be done in multiple ways. One way is to start the container process with the CLI

applications for the respective engines, but that would contradict the point of

utilizing the CRI and require specific reimplementation with new engines as their

CLI applications does not necessarily conform to any standard with arguments and

order of arguments etc. A feature of the CRI is specifying a log path where stdout of

the container is written which solved the issue as long as the container attaches to

the stdout of the benchmarking process which can be specified in the image.

Running multiple containers at the same time is simply done by issuing multiple

requests to the engine, however the challenge arises when there are dependencies on
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one of the containers resulting in halting the request queue for the following

containers. There is no way to reliably wait for the first container, as mentioned, as

lack of an event interface is a general limitation of the request-response method. A

webhook is a common solution among webapplications, but no such functionality is

implemented in the container engines. Thus a simple wait loop is required to request

the config of the created container.

Single binary and results written in a general format are both experiences we bring

from the original Touchstone. To contribute to the reliability of our thesis, simple

distribution is a cornerstone for our new tool where we minimize external

dependencies. Similarly we also restrict internal dependencies on libraries as these

would require pulling from multiple repositories when building the tool.

4.2 Systems

CPU Intel I7 10700k @5.0 GHz

MEMORY DDR4 32 GB 3600 MHz

STORAGE 256 GB SSD

DISTRIBUTION Fedora 36

KERNEL 5.17

TABLE 4.1: System 1, x86

CPU AMD 5700G

MEMORY DDR4 32 GB 3200 MHz

STORAGE 2x 1000GB NVME SSD PCIe 3.0 with BTRFS RAID1

DISTRIBUTION Arch

KERNEL 6.3

TABLE 4.2: System 2, x86

CPU Broadcom BCM2711

MEMORY LPDDR4 4 GB 3200 MHz

STORAGE MicroSD C10 32GB

DISTRIBUTION Debian 11

KERNEL 5.10

TABLE 4.3: System 3, a Raspberry Pi 4 B rev. 1.1
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4.3 Environment
Each x86 system ran the tests baremetal and in a VM of size 4 cpu and 8GB ram

allocated with Debian 11 as operating system while the tests were only ran

baremetal on system 3. Setting up the environments and installing software were

automated using Ansible.

Application Version

CRI-O 1.27

Containerd 1.6

Runc 1.1

CNI 1.1

Sysbench 1.0

Ping 1.361

iPerf3 3.13

TABLE 4.4: General version table
1Version of the Busybox binary

The patch version in 4.4 is intentionally excluded as the specific version at the time

of benchmarking should be insignificant since projects following the Semantic

Versioning Specification, where the last number is specified as "Patch version Z

(x.y.Z | x > 0) MUST be incremented if only backward compatible bug fixes are

introduced." should not have any implications on the test results [26].

A rough outline of how our testings were ran in each environment:

1. Run Ansible on target environment. Optional if correct software was already

installed as per 4.4.

2. Build Touchstone2 for intended tests and architecture.

3. Run Touchstone2. Results are saved in a JSON file.

14



5 Results And Analysis
In this section, the result of our experiment with our tool presented and analyzed.

information will be given in for each graph. The graphs present the results, and

surrounding text presents an analysis. The results shown were run on a virtual

machine on system 1. We saw similar results across the other systems and virtual

machines, so we decided to only include results from one environment in the

report.

5.1 CPU
The Results seen in 5.1 showed the computational performance of CRI-O and

containerd. It is to be expected that the difference between CRI-O and containerd is

minimal since containerization generally introduces a minimal amount of overhead

compared to bare metal environments. Both CRI-O and containerd share

architecture and are built on similar underlying technologies. They share common

design principles such as lightweight container isolation, minimal overhead and

efficient resource utilization. This contributes to similar CPU performance. And the

results show that is the case for computational performance. The results are

evaluated with sysbench. The benchmark is configured to calculate 20,000 prime

numbers with four threads and report the number of events executed per second as

the performance metric. The test was run ten times. The figure shows that

containerd computational performance is almost 0.1% faster the CRI-O which is

equivalent to zero different in performance.

FIGURE 5.1: CPU computational performance (More is better)
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5.2 Memory
The result seen in 5.2 showed the total operations per second using RAM of CRI-O

and containerd. The test was performed with a tool called sysbench. The benchmark

will allocate a memory buffer and then read or write from it until the buffer size has

been from or written to. These results are from the benchmark using four threads

and default memory buffer size 102400M. The results show that containerd did let

operations per second then CRI-O. The CRI-O is about 1% faster the containerd.

The total time average it took to run these benchmark are almost identical which

vary from the results that the original touchstone developers got [4]. Running the

exact same benchmark as they did, in these results they are closely matched,

however they recorded a more noticeable difference. They got a difference of 3

seconds between containerd and CRI-O. The explanation could be a more

optimization for the container engine. even running The same docker image as they

did. Same results.

FIGURE 5.2: Total operations per second (More is better)
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5.3 Storage
5.3.1 Random Read/write
The results seen in figure 5.3 showed the metrics from running sysbench FileIO test.

The test consist of a prepare stage and a run stage. At the prepare stage, Sysbench

creates a specified number of files with a specified total size. Sysbench performs

checksums validation on all data read from the disk. On each write operation the

block is filled with random values, then the checksum is calculated and stored in the

block along with the offset of this block within a file. On each read operation, the

block is validated by comparing the stored offset with the real offset, and the stored

checksum with the real calculated checksum [25]. This random read and write is

single threaded. The results show that CRI-O is superior when the operations are

random read and write. Containerd crumbles when needed to perform both random

reads and random writes at the same time. The expected difference is the underlying

file system that these container engine uses.

FIGURE 5.3: Random FileIO Read/write performance (Threads = 1, More is better)
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The results in figure 5.4 is the same benchmark as the one above, however this time

it uses four threads instead of just one. The results show that both CRI-O and

Containerd uses multi threading in their underlying file system, nonetheless it

doesn’t help containerd. The difference between CRI-O and containerd is still there.

FIGURE 5.4: Random FileIO Read/write performance (Threads = 4, More is better)
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5.3.2 Random Read and write
The results seen in figure 5.5 showed the metrics from running sysbench. The test

consist of the same prepare and run stage. This result consist of running random

read and random write individually and not simultaneously. The results show a huge

increase in containerd random read performance. Containerd random read

performance is nearly 10 times the performance of CRI-O. The results also show a

huge loss for containerd when it comes to random writes performance. It almost

looks like there is nothing, however the results show that it wrote about 50 writes/s.

FIGURE 5.5: Random FileIO Read and write performance (Threads = 1, More is better)
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The results shown in figure 5.6, is the same tests presented in figure 5.5. The only

difference here is that the benchmark used four threads instead of one. The results

showed an increase in performance, however the relative performance stayed the

same.

FIGURE 5.6: Random FileIO Read and write performance (Threads = 4, More is better)
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5.3.3 Sequential Read and write
The results shown in figure 5.7 displays the metrics from running benchmark

sysbench. This test consist of prepare and run stage. This result consist of running

sequential reads and writes on a specific number of files using only one thread. The

results show that containerd is superior in reads comparing to CRI-O. However,

when comparing writes it is a clear win for CRI-O, it outperforms containerd by

quite a margin. A possible explanation is the storage driver that containerd idealizes

is especially optimized for fast read but slow writes [20].

FIGURE 5.7: Sequential FileIO Read and write performance (Threads = 1, More is better)
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The results shown in figure 5.8 is the same running benchmark as in figure 5.7,

however it utilizes four threads instead of one. The results present an increase in for

both containerd and CRI-O in reads department. Containerd and CRI-O are closely

matched in the reads department, which means CRI-O really utilizes all four

threads. However, at the same time the writes for both the container engines display

a almost identical performance.

FIGURE 5.8: Sequential FileIO Read and write performance (Threads = 4, More is better)
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5.3.4 Sequential Rewrite
The results shown in figure 5.9 displays the metrics from running benchmark

sysbench. This test consist of prepare and run stage. This result consist of running

sequential rewrites on a specific number of files using only one thread. CRI-O is a

dominant container engine when it comes to write speed. The results show that

compared to containerd, CRI-O is around 400% faster when it comes to writes.

FIGURE 5.9: Sequential FileIO rewrite performance (Threads = 1, More is better)
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The results shown in figure 5.10 is the same running benchmark as in figure 5.9,

however it utilizes four threads instead of one. It shows a small decrease in

performance for CRI-O engine, however containerd stayed the same. Nonetheless,

CRI-O is relatively much faster in the writes department.

FIGURE 5.10: Sequential FileIO rewrite performance (Threads = 4, More is better)
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5.4 Throughput
The results shown in figure 5.11 is the throughput from running a benchmark called

iperf3. iPerf3 is a popular open-source tool for measuring network performance by

generating TCP and UDP data streams between two endpoints. It helps to assess the

bandwidth, throughput, and various other parameters of a network connection. The

result is from a connection between two containers, one is a server and one is a

client connected to see server. The results displayed is the throughput of data that is

transferred between the two containers. The results show that the throughput

between two containerd engines and two CRI-O engines is closely matched and can

almost be said as the same performance.

FIGURE 5.11: Throughput performance (More is better)
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5.5 Network Latency
The results shown in figure 5.12 is the latency or how fast a data signal travels from

one place to another, it determines round trip time. RTT is a measure of how long it

took to receive a response. Measured in milliseconds (ms), the process starts when

containerA in our case sends a request to containerB and is completed when a

response from the containerB is received. RTT is a key performance metric. The

result show a similar RTT for CRI-O and containerd. The average RTT for CRI-O is

around 6% lower then containerd. For the max RTT recorded we measure a almost

50% increase in RTT for containerd compared to CRI-O.

FIGURE 5.12: Latency performance (Less is better)
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6 Discussion
What is the procedure to pick a Container Runtime Interface compliant container

engine when factoring in different workloads?

Our research is a continuation of previous performance findings, and we use the

current benchmarks presented in these research articles and extend them to cover not

only performance of CPU, fileIO, memory, additionally include networking

performance.

The purpose of this study was to answer the following research questions: 1) How

do CRI compliant container engines compare to each other in relation to

performance? In this study it was between containerd and CRIO 2) What is the

procedure to pick a CRI (Container runtime interface) compliant container engine

when factoring in different workloads?

The answers to these research questions were found through a multi-method

scientific process. The process consisted of a document study to gain knowledge

about the current state of how Touchstone uses CRI, relevant programs, standard and

interfaces. The multi-method scientific process also contained the design science

method. With this multi-method approach, we were able to adopt Touchstone from

previous research that was used to evaluate a container engines performance [4]. We

decided to use this tool as a foundation and to then further develop it to be able to

create multiple containers in the same runtime. This functionality was necessary for

the reason that we needed two containers to be able to talk to each other for our

performance benchmarks to take place. With this tool developed, we were able to

independently test the different container engines to ensure our results would not be

influenced by other variables. In this study it was between containerd and

CRIO

The last part was to conduct an experiment to compare to previous research to see if

there were differences in the performance. The experiments target was to collect

relative performance since using absolute numbers would be useless since there are

a lot of variables that affect the results. These variables range from computer to

computer. The experiments results show some moderately different results from

what we were expecting. When comparing our results to the results, [4] got using

the same benchmarks. The two most notables differences we measured were

memory and fileIO performance. They measured a three-second difference between

CRI-O and containerd. However, we saw a very little difference of just 0.01

seconds, which is so close it’s almost a tie and definitely something you can’t notice

unless you put them side to side. We used different variables to evaluate how the

container engines fileIO performance compares. They used total time to compare
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the container engines. However, we decided to use a set time of ten seconds to

compare how they perform under the same time interval and read the reads and

writes instead. If we compare their results to ours, containerd and CRI-O has

completely different upsides. We saw a dominance from containerd in almost every

read only benchmark, compared to CRI-O. The results also show a dominance for

CRI-O when having to write or needing to read and write at the same time. In real

world examples, you would have a database that has to do a lot of reads, you would

containerize that database with the containerd container engine.

With all these results, we could show the difference in performance between CRI-O

and containerd, and see their differences. These results are an indication that there is

a point to choosing a container based on the workload that is expected to be

executed. This work also displays ways to test these container engines

performance.
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7 Conclusion
In this study, we examined the relative performance of running different container

engines. This was done using a developed tool to run these benchmarks for us and

log the benchmark results.

Our conclusion is that the two different engines we used to benchmark performance

have their own workloads where they are superior to each other. Depending on the

workload, it does make sense to look into the benchmarks to pick an engine that

benefits the workload. We found that the network, CPU, and memory performance

is nearly identical. However, when it comes to fileIO we found that containerd

possess great read speed when it comes to random reads or sequential reads.

However, from the writes and random reads and writes benchmark, the results show

a relative noticeable performance difference. CRI-O possesses a great performance

increase compared to containerd in this area. These benchmark show that read

heavy scenarios benefit containerd and writes benefit CRI-O.

In conclusion, to answer the first research question. Our study and results show that

comparing the container engines in relation to performance, there is indeed a

difference in performance. And to answer the second research question, the

procedure to pick a CRI compliant container based on workload. It totally depends

on what the specific task the container in going to perform. Real world examples

where the different container engine makes sense. For example Real-time Data

Processing, if you have a high-frequency data steams coming in and need to process

them containerd would be the preferred container engine. Another example would

be a database that has to do a lot of transactions processing, which requires fast read

and write speeds to serve data to applications and ensure data consistency.
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7.1 Future work
Future work for this research area could be to conduct more test for other container

engines, like LXC. It would also be interesting if more individual tools to test the

performance like sysbench and iperf3 would be developed. To further collect

metrics on which container engines are superior. Further metrics on how long it

takes to create a container and destroy it would also be a important benchmark to

run, one example could be to create a container, run some test or application then

destroy it, and take the total time it took. Additionally, another variable to consider

is to consider using more container runtimes instead of only using runc. A further

area to explore is the security for these container engines.
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