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A novel LSSVM model integrated with GBO algorithm to assessment of water quality 

parameters 

Mojtaba Kadkhodazadeh1, Saeed Farzin1 

ABSTRACT 

In this study, a novel least square support vector machine (LSSVM) model integrated with 

gradient-based optimizer (GBO) algorithm is introduced for assessment of water quality 

parameters. For this purpose,  three stations including Ahvaz, Armand, and Gotvand in the Karun 

river basin have been selected to model electrical conductivity (EC), and total dissolved solids 

(TDS). First, to prove the superiority of the LSSVM-GBO algorithm, the performance is evaluated 

with three benchmark datasets (Housing, LVST, Servo). Then, the results of the new hybrid 

algorithm were compared with those of artificial neural network (ANN), adaptive neuro-fuzzy 

interface system (ANFIS), and LSSVM algorithms. Input combination for assessment of water 

quality parameters EC and TDS consists of Ca+ 2, Cl-1, Mg+ 2, Na+ 1, SO4, HCO3, sodium 

absorption ratio (SAR), sum cation (Sum.C), sum anion (Sum.A), PH, and Q. The modelling 

results based on evaluation criteria showed the significant performance of LSSVM-GBO among 

all benchmark datasets and algorithms. Other results showed that in Ahvaz station, Sum.C, 

Sum.A, and Na+1 parameters, and in Gotvand and Armand stations, Sum.C, Sum.A, and Cl-1 

parameters have the greatest impact on modelling EC and TDS parameters. In the next step, EC 

and TDS modelling  was performed based on the best input combination and the best algorithm in  
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different time delays. Based on the results, the highest accuracy of modelling EC and TDS 

parameters in Gotvand station was [0] month time delays. 

 

Keywords: Novel hybrid model, LSSVM, GBO, Water quality parameters, Benchmark datasets, 

Karun river. 

1 Introduction 

Surface water quality in a region depends on the nature and extent of human, industrial, and 

other human activities on the site. Rivers carrying water and nutrients are necessary for various 

regions of the earth and provide important resources for drinking, industrial, aquatic, recreational 

and agricultural consumption. Therefore, they require at least an acceptable level of water quality. 

In recent years due to the rapid population growth and urban extension, the increasing irregular 

water withdrawals, agriculture, economic development, and increasing industrial production, 

pollution has increased in rivers; therefore, the qualitative study of water resources is one of the 

most important challenges in most regions of the world (Ehteshami et al. 2014). 

 One of the most important ways to study the problems of water pollution is modelling and 

analysis of water quality using modern methods such as artificial intelligence. In recent years, 

many studies have been conducted about EC and TDS modelling in different regions using data 

mining methods as these methods have a lot of accuracies and, like physical and mathematical 

models, they do not need to specify a large number of parameters and reduce the cost of research 

work. Modelling TDS and EC concentration and predicting it is essential for pollution control and 

water resource management (Azad et al. 2019). 

Naddafi et al. (2007) reported that the logarithmic and the exponential models describe the 

concentration-time relationships for Gotvand and Khorramshahr station stations in Karun river 
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better. Also, Mojahedi and Attari (2009) used two water quality indices for Karun river. Results 

showed that application of these indices was satisfactory. Faruk (2010) used a hybrid neural 

network and ARIMA models for water quality time series prediction. Their results showed that the 

hybrid model provides much better accuracy by itself and ensures a better method to include 

special parameters into water quality index due to superior capabilities of fuzzy logic in dealing 

with different systems (Semiromi et al. 2011). Asadollahfardi et al. (2011) applied two ANN 

networks models to predict TDS. The results of this study showed that the Elman network has 

higher accuracy. Emamgholizadeh et al. (2014) applied multi-layer perceptron (MLP), radial basis 

network, and ANFIS models to predict biochemical oxygen demand (BOD), dissolved oxygen 

(DO), and chemical oxygen demand (COD).The results showed that MLP was better than other 

models in predicting water quality variables. In another study, the accuracy of ANN, ANFIS, 

wavelet-ANN, and wavelet-ANFIS in predicting monthly water salinity levels was assessed. Their 

results showed that the ANFIS provides much better accuracy than the ANN (Barzegar et al. 

2016). Salami et al. (2016) presented two mathematical and ANN methods to estimate the forecast 

river water quality. An acceptable precision was achieved, as shown in model verification results. 

Azad et al. (2018) reported that ANFIS-DE (differential evolution (DE)), ANFIS-GA (genetic 

algorithm (GA)), and ant colony optimization for continuous domains (ACOR) models performed 

well in modelling EC, SAR, and Total Hardness (TH). Khosravi et al. (2018) reported that the 

hybrid models performed better than individual models. Haghiabi et al. (2018) used ANN, SVM, 

and group method of data handling (GMDH) to estimate EC and TDS. The evaluation of the 

accuracy of the applied models according to the error indexes declared that SVM was the most 

accurate model. Kisi et al. (2019) showed that compact genetic algorithm (CGA), ACOR, DE, 

particle swarm optimization (PSO) improved the ANFIS performance in the modelling of EC and 

TH. Aryafar et al. (2019) used ANN, ANFIS, and Genetic programming (GP) to estimate the EC, 
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TDS and TH. Satisfactory performances were also produced by the ANN and ANFIS methods for 

the estimation of the intended groundwater quality parameters. Najafzadeh et al. (2019) used gene 

express programming (GEP), model tree (MT) and evolutionary polynomial regression (EPR) to 

estimate three indices including BOD, DO, and COD. The performance of the models indicated 

the relative superiority of the EPR approach to the GEP and MT models. Deterministic and 

numerical models have been applied extensively to model water quality; the counting 

convolutional neural network (CCNN) model has high accuracy for estimating the DO 

concentration (Zounemat-Kermani et al. 2019). Barzegari Banadkooki et al. (2020) used ANN, 

ANFIS, SVM to predict the TDS. Also, the moth flam optimization (MFO), cat swarm 

optimization (CSO), PSO, shark algorithm (SA), gray wolf optimization (GWO), and the 

gravitational search algorithm (GSA) were used to train the ANFIS, SVM, and ANN model. In 

this study, the ANFIS-MFO and ANFIS-CSO models showed superior performance to the other 

models. M.Melesse et al.(2020) applied two individual M5 Prime (M5P) and random forest (RF) 

and eight novel hybrid algorithms to predict EC. Results indicate that, in most cases, hybrid 

algorithms enhance predictive powers.  

In the present study, for the first time, a new model is proposed to assess water quality 

parameters. For this purpose, the hybrid of LSSVM and GBO (LSSVM-GBO) is introduced for 

modelling electrical conductivity (EC), and total dissolved solids (TDS) at three hydrometric 

stations with different kinds of climate and water quality in Karun river area (as a case study). To 

prove the superiority of the LSSVM-GBO algorithm, the performance is evaluated with 

benchmark datasets. Then, the results of LSSVM-GBO are compared with the ANN, ANFIS, and 

LSSVM algorithms to demonstrate the ability and accuracy of the proposed algorithm. Finally, EC 

and TDS modelling is performed based on the best input combination and the best algorithm in 

different time delays. 



5 

 

2 Materials and Methods 

2.1 Benchmark Datasets 

In this article, the performance of the proposed LSSVM-GBO algorithm is compared with that of 

other algorithms on 3 real-world regression problems. Benchmarks that are real world issues, are a 

good criterion to determine algorithms working. In recent years, many studies have been 

conducted to compare algorithms with real-world regression problems (Breiman 2001; Zhang and 

Yang 2015; A.Henríquez and A.Ruz 2017). Specifications of benchmark datasets are shown in 

Table 1. Also, Fig. 1 shows the process of changing target data in benchmark datasets. 

Table 1  Specification of real-world regression benchmark datasets 

Fig. 1 The process of changing target data. a) Housing, b)LVST, c) Servo 

2.2.1 Artificial Neural Network (ANN) 

ANN is an information processing system that has certain performance characteristics resembling 

biological neural networks of the human brain (Tun Lee et al. 2008). ANN is based on a collection 

of connected units or nodes called artificial neurons (Anaraki et al. 2021). Each connection can 

transmit a signal to other neurons (Acharya et al. 2019). An artificial neuron receives a signal and 

then processes it. The connections between neurons are called edges. Neurons and edges typically 

have a weight. 

2.2.2 Multi-Layer Perceptron (MLP) 

MLP has three layers: input layer, output layer, and hidden layer. The first layer receives a set of 

data (x1, x2, …, xn). The second layer is known as hidden layer. The number of hidden layers 

displays the intricacy of the MLP because a greater number of hidden layers increase the number 

of connections in the ANN. The number of nodes in each layer and the number of the hidden layer 

is evaluated by trial and error. The third layer is the output layer. The multi-layer perceptron 
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produces an expected result y in the output layer. The MLP is trained with a training set of input 

and known output data. So far, different methods have been put forward to determine these 

weights, the most famous of which is Levenberg-Marquart method (Hadi and Tombul 2018). 

Z = f (∑ wixi + bni=1 ) (1) 

where, f: activation function, b: bias parameter, wi: the weight of connection, Z: the output of ith 

neuron, and xi: the received input from the ith neuron. Fig. 2 shows the structure of the ANN 

model. 

Fig. 2  The schematic structure of ANN model 

2.3 Adaptive Neuro-Fuzzy Interface System (ANFIS) 

ANFIS model method is a well-known artificial intelligence method that has been used currently 

in water quality parameters, predicting rainfall and hydrological variables. ANFIS modelling is a 

reach where the combination of neural networks and fuzzy argument find their strengths 

(C.S.Bisht et al. 2011). 

This model combines the advantage of both neural networks and fuzzy logic and can benefit 

from that at the same time (Kumar et al. 2019). ANFIS techniques can learn a system performance 

from enough large data sets and automatically procreate fuzzy sets to a pre-specified correctness 

level. The ANFIS model consists of five layers; input layers, rule layers, average layers, 

consequent layers, and total output layer. The main duty of the ANFIS is to the optimize values of 

the equivalent fuzzy such that the error between the target and the actual output is minimized. Two 

fuzzy “if-then” rules are used as follows (Yaseen et al. 2018): 

IF x is A1 and y is B1 THEN f1 = p1x+q1y+r1 (2)  

IF x is A2 and y is B2 THEN f2 = p2x+q2y+r2 (3) 

where, x and y are input variables, Ai and Bi are the linguistic labels characterized by convenient 

membership functions (i= 1 or 2) and pi, qi, ri: the output function parameters (i= 1or 2). 
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Many studies have been done using ANFIS algorithm. Refer to other research for more 

information on the ANFIS algorithm (Jang 1993; Ghordoyee Milan et al. 2021). Fig. 3 shows 

the structure of the ANFIS model. 

Fig. 3  The schematic structure of ANFIS model 

2.4 Least Square Support Vector Machine (LSSVM) 

LSSVM is an implementation of support vector machine for the problem of classification and 

pattern identification, regression analysis, and the problem of learning a ranking function. The 

advantages of LSSVM include high precision, mathematical tractability, and direct geometric 

commentary. The algorithm converts the nonlinear relationship between inputs and outputs to a 

linear relationship (Keshtegar et al. 2019). The LSSVM uses the following equation to show the 

relationship between input and outputs. 

M = ∑ k(xˌxi)αi + bni=1  (4) 

where, M: the output value, αi:weighting coefficient of input data, b: bias, k(x): the nonlinear 

mapping function. The LSSVM tries to minimize the difference between measured data and 

estimated data. The parameters αi and b are computed as follows (Farzin and Valikhan-Anaraki 

2021): 

[kernel 1̅T1̅ kernel + C−1I ] [b α 
] = [ 

0 M 
] (5) 

C: regulation parameter; the parameters α,M,I,1̅ are computed as follows: 

α = [α1⋮αn] ˌ 1̅ = [1⋮1]  ˌ M = [M1⋮Mn]  ˌ I = diag(1ˌ1ˌ … .1)  (6) 

The radial basis function is used as a kernel function, as follows (Ghosh  2010): 
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k(x, xi) = exp(
−‖x − xi‖22σ2 ) (7) 

Fig. 4 shows the structure of the LSSVM model. 

Fig. 4  The schematic structure of LSSVM model 

2.5 Optimization Algorithms 

2.5.1 GBO Algorithm 

In this article, a novel meta-heuristic optimization algorithm, GBO, is used. The GBO uses two 

main operators: gradient search rule (GSR) and local escaping operator (LEO) and a set of vectors 

to explore the search space. GSR uses the slope-based method to reach better positions in the 

search space. In these algorithms, the search engine implements two stages of exploration and 

exploitation (Olorunda and P. Engelbrecht 2008). Simultaneous operation of two stages causes the 

optimal performance of this algorithm. Therefore, creating a suitable balance between these two 

processes is crucial (Patel and Savsani 2015). In recent years, many studies have been conducted 

to make performance of basic algorithms better by creating a suitable balance between two stages 

of exploration and exploitation or hybridization of optimization algorithms (Draa et al. 2015).  

The GBO was a proposed as a meta-heuristic optimization algorithm by Ahmadianfar et al. 

(2020). They evaluated the performance of the GBO algorithm using 28 mathematical functions. 

Also, they observed that the GBO provided more optimal results than the other algorithms and 

was able to optimize the real-world problems with challenging and unknown search domains. 

They showed that this algorithm has a more promising operation capability than other 

optimization algorithms. The GBO algorithm uses a search engine based on the Newton method to 

find the optimal answer in the following. The GBO algorithm has a special feature in that it results 

from the combination of GSR and LEO (Hassan et al. 2021). 

 

https://ieeexplore.ieee.org/author/37276400500
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2.5.2 Gradient Search Rule (GSR) 

GSR is the core of the GBO algorithm. The duty of GSR is to find better opportunities and 

increase convergence rate acceleration (DM) in the search space. Therefore, the equation to update 

the current vector position is (xnm) : 

X1nm = xnm − randn × ρ1 × 2Δx × xnm(ypnm − yqnm + ε) + rand × ρ2 × (xbest − xnm) (8) 

Where, randn is a normally distributed random number, ε: a small number within the range of [0, 

0.10], rand is a random number in [0, 1], and xbest is the best solution. ρ1 is an important 

parameter in the GBO  to balance between two stages of exploration and exploitation, Δ𝑥 is 

determined based on the difference between the best solution (xbest) and a randomly selected 

position (xr1m ) and ρ2 is a random parameter, which causes the vector to have a different step size.  

By replacing the position of the best vector (xbest) with the current vector (xnm) in Eq. (8), the 

new vector (X2nm) ia obtained as follows: 

X2nm = xbest − randn × ρ1 × 2Δx × xnm(ypnm − yqnm + ε) + rand × ρ2 × (xr1m − xr2m) (9) 

Due to the positions X1nm, X2nm, Xnm, the new solution at the next iteration (xnm+1) can be defined 

as: 

xnm+1 = ra × (rb × X1nm + (1 − rb) × X2nm) + (1 − ra) × X3nm (10) 

X3nm = Xnm − ρ1 × (X2nm − X1nm) (11) 

ra and rb are two random numbers in [0, 1]. Fig. 5 shows the structure of the GBO model. 

Fig. 5  The schematic structure of GBO algorithm 
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2.5.3 Local Escaping Operator (LEO) 

The LEO effectively avoids being trapped in local optima and improves the convergence speed of 

the GBO algorithm. The LEO is capable of solving complex problems in the GBO algorithm. By 

using several solutions (the solutions X1nm and X2nm, the best position (xbest) and the solutions X1nm 

and X2nm), the LEO generates a solution with a superior performance (XLEOm ). The solution XLEOm  is 

produced as follows: 

where, f1: uniform random number in the range of [-1,1], f2: a random number from a normal 

distribution with mean of 0 and standard deviation of 1, pr: the probability, while u1, u2, and u3: 

are three random numbers. 

For more details, see Ahmadianfar et al. (2020). 

 

 

1: if rand < pr 

if rand < 0.5 

2: XLEOm = Xnm+1 + f1 × (u1 × xbest − u2 × xkm) + f2 × ρ1 × (u3 × (X2nm − X1nm) + u2 ×(xr1m − xr2m))/2 

3: Xnm+1 = XLEOm  

4: Else 

5: XLEOm = xbest + f1 × (u1 × xbest − u2 × xkm) + f2 × ρ1 × (u3 × (X2nm − X1nm) + u2 ×(xr1m − xr2m))/2 

6: Xnm+1 = XLEOm  

7:         End 

8: End 

(12)                                  
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2.6 Hybrid of LSSVM and GBO  

The proposed LSSVM-GBO aims to reduce the probability to be trapped into local optima as well 

as accelerate the solution process. The parameters C and σ have a significant effect on the 

accuracy of the LSSVM model. In this study, the optimization algorithm GBO was used to find 

the optimal value of the LSSVM parameters. In the hybrid algorithm of LSSVM and GBO, the 

values of the LSSVM parameters are considered as decision variables. Also, the pseudo code of 

LSSVM-GBO is illustrated in Fig. 6. The steps of the LSSVM-GBO algorithm are described as 

follows: 

1- Test and training data are randomly selected from the available data. 

2- The initial parameters of the optimization algorithms GBO (The number of iterations and the 

population size) are randomly determined. 

3- The LSSVM parameters (initial population) are initialized, and the GBO algorithm finds the 

optimal solution (values of parameters C and σ) in the search space. 

4- After obtaining the optimal answer of the LSSVM parameters, training data and test data are 

used to obtain the LSSVM optimization model and to evaluate the predictive ability of the 

LSSSVM optimization model. 

Fig. 6  Pseudo code of the proposed LSSVM-GBO algorithm 

2.7 Data Collected 

In this research, eleven input combinations including Ca+ 2, Cl-1, Mg+ 2, Na+ 1, SO4, HCO3, SAR, 

Sum.C, Sum.A, PH, Q were used to model the quality parameters of EC and TDS. Table 2 shows 

statistical specifications of input and output data. 

Table 2  Statistical specifications of input and output data 
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2.8 Evaluation Criteria 

To evaluate the accuracy of the model performances, four statistical criteria, mean absolute error 

(MAE), relative root mean square error (RRMSE), and correlation coefficient (R) and R2 were 

calculated in their testing phases. Expressions for these measures are given as follows (Ehteram et 

al. 2018) : 

where, N: the number of data, O: observed values, P: predicted values. Other information on 

evaluation criteria is shown in Table 3 (Valikhan-Anaraki et al. 2019): 

Table 3  Information on evaluation criteria 

2.9 Study Area 

The Karun river is situated in the south west of Iran and with a basin area of 67257 km2 and with a 

length of 95 miles is the longest and most important river of Iran which collects the runoff of 

extensive areas and conveys it to the Persian Gulf. Karun river originates from Zagros mountain 

ranges which are stretched from northwest to southeast. Ahvaz metropolis due to having the 

largest and increasing population enters pollution into the river more than other cities in that 

MAE = 1N∑ |Oi − Pi|Ni=1  (13) 

RRMSE = (√∑ (Oi − Pi)2Ni=1 N )/SD(P) (14) 

R = ∑ (Pi − P̅)(Oi − O̅)Ni=1√∑ (Pi − P̅)∑ (Oi − O̅)Ni=1Ni=1  (15) 

R2 = [  
 ∑ (Pi − P̅)(Oi − O̅)Ni=1√∑ (Pi − P̅)∑ (Oi − O̅)Ni=1Ni=1 ]  

 2
 (16) 

  



13 

 

almost half of the incoming pollution is from Ahvaz metropolis, including domestic, urban, and 

hospital sewage. Karun river is the only navigable river in Iran. The average annual precipitation 

in Karun is 620 mm. The climate of the Karun domain is hot with dry summers and mild winters. 

In the present study, three stations including Ahvaz, Armand, and Gotvand in the Karun river have 

been selected to model water quality. Ahvaz and Gotvand stations are located in Khuzestan 

province, and Armand station is located in Chaharmahal Bakhtiari province. The choice of stations 

has been such that all climates are examined Gotvand has an arid and semi-arid climate, Ahvaz 

has a dry and extremely dry climate, and Armand has a humid and Mediterranean climate. Fig. 7 

shows the location of the investigated stations in the Karun basin. 

Fig. 7  Study area and hydrometric station 

2.10 Assessment of  Water Quality Parameters 

Fig. 8 depicts the general framework for the assessment of  water quality parameters. The steps of 

water quality modelling  are described as follows: 

1- Comparison of the performance of algorithms with 3 bench marks. 

2- 70 % of the data is considered for the training data and 30 % for the test data. 

3- Water quality is modelled based on the training data and the test data with the mentioned 

algorithms. 

4-According to the evaluation criteria, the best algorithm and the best input combination are 

determined. 

5- Creating time delays in the best algorithm and best input combination. 

6-Calculating evaluation criteria in time delays and select the best time delay. 

7-Time series calculation of EC and TDS. 

Fig. 8  Flowchart for modelling water quality parameter 
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3 Results and Discussion 

Tables 4, 5, and 6 show the correlation between water quality parameters in three stations of 

Ahvaz, Armand, and Gotvand. Based on the results of the correlation matrix, the highest amount 

of correlation of EC and TDS parameters with input parameters related to Sum.A and Sum.C at 

three stations. The correlation between EC and inputs is greater. The higher the correlation 

between inputs and outputs, the higher the modelling  accuracy. 

Table 4  Correlation matrix water quality parameters in Ahvaz station 

Table 5  Correlation matrix water quality parameters in Armand station 

Table 6  Correlation matrix water quality parameters in Gotvand station 

According to Tables 7, the performance of the LSSVR-GBO algorithm is compared with that of 

other algorithms on 3 real-world regression problems. Results showed that the hybrid model 

provides much better accuracy than the ANN, ANFIS, and LSSVM model. Values of MAE, 

RRMSE, R in Housing dataset were 5.30, 0.91, 0.44, respectively. Also, in LVST dataset they 

were 99.94, 0.20, 0.98, respectively, and in Servo dataset were 0.46, 0.41, 0.91, respectively. In 

Fig. 9, the modelling accuracy for the LSSVM-GBO algorithm and benchmark dataset have been 

shown. 

Table 7 Evaluation criteria for measuring precision in benchmarks modelling 

Fig. 9 Comparison of scatter plots by LSSVM-GBO algorithm. a) Housing-train, b) Housing-test , 

c) LVST-train, d) LVST-test, e) Servo-train, f) Servo-test 

In Table 8 the results of the algorithms are listed to the EC modelling of the Ahvaz station. Based 

on the results of Table 8, the LSSVM-GBO algorithm has the highest accuracy. The modelling 

results showed that Sum.C parameter has the most impact in modelling EC. In the optimal hybrid 

model, values of MAE, RRMSE, and R were 74.30, 0.14, 0.99, respectively. In Table 9, the 
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evaluation criteria of the listed to the EC modelling of the Armand station. Sum.C parameter has 

the most impact in modelling EC in this station. Also, the value of MAE is equal to 19.67, 

RRMSE equal to 0.22, R equal to 0.98. Also, the LSSVM-GBO algorithm has the highest 

accuracy. In Table 10, the results of the EC calculated by different algorithms and the combination 

of different inputs in the Gotvand station are compared. The modelling results showed that the 

LSSVM-GBO algorithm has the highest accuracy. Also, Sum.C parameter has the greatest impact 

in modelling EC in Gotvand station. Values of MAE, RRMSE, R were 57.12, 0.16, 0.99, 

respectively. 

Table 8  Results of the algorithms to the EC modelling of the Ahvaz station 

Table 9  Results of the algorithms to the EC modelling of the Armand station 

Table 10  Results of the algorithms to the EC modelling of the Gotvand station 

The results of TDS modelling in Ahvaz station by ANN, ANFIS, LSSVM, LSSVM-GBO 

algorithms are shown in Table 11. Sum.C parameter has the most significant impact in modelling 

TDS and the LSSVM-GBO algorithm has the highest accuracy. Values of MAE, RRMSE, R were 

74.89, 0.43, 0.90, respectively. The results of TDS modelling in the Armand station are shown in 

Table 12. Based on the results of Table 12 the LSSVM-GBO algorithm has the highest accuracy. 

The modelling results showed that the Sum.C parameter has the most significant impact on 

modelling TDS. Values of MAE, RRMSE, R were 16.99, 0.26, 0.97, respectively. In Table 13, the 

results of the TDS calculated by different algorithms and the combination of different inputs in the 

Gotvand station are compared. Sum.C parameter has the most significant impact on modelling  

TDS in Gotvand station. Values of MAE, RRMSE, R were 37.18, 0.17, 0.99, respectively. The 

modelling  results showed that the LSSVM-GBO algorithm has the highest accuracy. 

Table 11  Results of the algorithms to the TDS modelling of the Ahvaz station 
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Table 12 Results of the algorithms to the TDS modelling of the Armand station 

Table 13  Results of the algorithms to the TDS  modelling of the Gotvand station 

After detecting the best algorithm (LSSVM-GBO) and best input combination (in Ahvaz station, 

Sum.C, Sum.A, Na+1, and Q parameters, and in Gotvand and Armand stations, Sum.C, Sum.A, Cl-

1, and Q parameters), in Tables 14-19, the effect of time delay on EC and TDS modelling results is 

investigated. According to Tables 14-16, the results of the EC in Ahvaz station, Armand stations, 

and Gotvand station the effect of different time delays are shown. The best results are related to 

the time delay of [0] months. 

Table 14  Time delays in the modelling of the EC in the Ahvaz station by the best algorithm 

Table 15  Time delays in the modelling of the EC in the Armand station by the best algorithm 

Table16 Time delays in the modelling of the EC in the Gotvand station by the best algorithm 

In Fig. 10, the modelling accuracy for the LSSVM-GBO algorithm and the EC parameter in 

Ahvaz, Armand, and Gotvand stations has been shown. According to Fig. 10, in the test and 

training period, the highest and lowest accuracy is related to Gotvand (MAE=49.86, 

RRMSE=0.14, R=0.99), and Armand stations (MAE=26.26, RRMSE=0.31, R=0.95), respectively. 

Fig. 10  Comparison of scatter plots by LSSVM-GBO algorithm. a)Ahvaz-train, b)Ahvaz-test, 

c)Armand-train, d)Armand-test, e)Gotvand-train, f)Gotvand-test 

Also, according to Tables 17, 18, and 19, for the TDS parameter in Ahvaz station, Armand 

stations, and Gotvand station, the best results are related to the time delay of [0] months. 

Table 17 Time delays in the modelling of the TDS in the Ahvaz station by the best algorithm 

Table 18  Time delays in the modelling of the TDS in the Armand station by the best algorithm 
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Table 19  Time delays in the modelling of the TDS in the Gotvand station by the best 

algorithm 

In Fig. 11, the modelling accuracy for the LSSVM-GBO algorithm and the TDS parameter in 

three stations has been shown. According to Fig. 11, in the training period, the highest and lowest 

accuracy is related to Gotvand (MAE=35.41, RRMSE=0.26, R=0.96) and Armand stations 

(MAE=17.91, RRMSE=0.38, R=0.92), respectively, and in the test period, the highest and lowest 

accuracy is related to Gotvand (MAE=33.86, RRMSE=0.16, R=0.99) and Ahvaz stations 

(MAE=74.81, RRMSE=0.43, R=0.90), respectively. 

Fig. 11 Comparison of scatter plots by LSSVM-GBO algorithm. a)Ahvaz-train, b)Ahvaz-test, 

c)Armand-train, d)Armand-test, e)Gotvand-train, f)Gotvand-test 

In Fig. 12, the results of the EC and TDS time series model based on best input combination, best 

time delay, and best algorithm (LSSVM-GBO) are compared in three stations. According to these 

figures, the amount of EC and TDS fluctuations is well modelled by LSSVM-GBO algorithm, 

which indicates the high accuracy of this algorithm. 

Fig. 12  The results of the EC and TDS time series model. a)Ahvaz-EC, b)Armand-EC, 

c)Gotvand-EC, d)Ahvaz-TDS, e)Armand-TDS, f)Gotvand-TDS 

4 Conclusion 

River water pollution is increasing due to various activities. Therefore, it is necessary to know the 

water quality of rivers. Machine learning algorithms are a good and efficient approach for the 

prediction of river qualitative parameters. In this research, a novel LSSVM model integrated with 

GBO algorithm was used to estimate EC and TDS values in the Karun river in three hydrometric 

stations of Gotvand, Ahvaz, and Armand. In the first step, the performance of the proposed 

LSSVM-GBO algorithm is compared with that of other algorithms on 3 real-world regression 
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problems(Housing, LVST, Servo). The modelling results showed that LSSVM-GBO indicate the 

highest accuracy on 3 regression problems. Values of MAE, RRMSE, R in Housing dataset were 

5.30, 0.91, 0.44, respectively. Also, in LVST dataset were 99.94, 0.20, 0.98, respectively, and in 

Servo dataset were 0.46, 0.41, 0.91, respectively. Eleven input combinations including Ca+ 2, Cl-1, 

Mg+ 2, Na+ 1, SO4, HCO3, SAR, Sum.C, Sum.A, PH, Q was used to model the quality parameters 

of EC and TDS. The modelling results based on evaluation criteria showed the most significant 

performance of LSSVM-GBO among all algorithms. The modelling results showed that Sum.C, 

Sum.A, Na+ 1, and Cl-1 parameters have the most noticeable impact on modelling EC and TDS 

parameters. Based on the results, the highest accuracy of modelling EC and TDS parameter in 

Gotvand station was [0] month time delays. Values of MAE, RRMSE, R in modelling EC were 

49.86, 0.14, 0.99, respectively, and in modelling TDS were 33.86, 0.16, 0.99, respectively. 

Examination of EC and TDS time series modeled by LSSVM-GBO and observational time series 

showed high correlation between modelling and observational results. Armand station with an 

average TDS of 345 Mg/lit has a high water quality, and at Ahvaz station, the average TDS is 

equal to 1034 Mg/lit, which indicates that polluting effluents enter the river at this station. The 

LSSVM-GBO algorithm has various advantages, such as high estimation accuracy, balance 

between exploration and exploitation, and fast convergence, ability to find a global solution, and 

easy implementation. The GBO does not fall into the trap of local optima due to the use of a local 

escaping operator. Also, the GBO uses the direction of movement term to move towards the 

solution. According to the results of this study, and due to the many advantages of the proposed 

algorithm, the LSSVM-GBO is a good candidate to analyze other engineering problems. 
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Figures

Figure 1

The process of changing target data. a) Housing, b)LVST, c) Servo



Figure 2

The schematic structure of ANN model

Figure 3

The schematic structure of ANFIS model



Figure 4

The schematic structure of LSSVM model



Figure 5

The schematic structure of GBO algorithm



Figure 6

Pseudo code of the proposed LSSVM-GBO algorithm



Figure 7

Study area and hydrometric station



Figure 8

Flowchart for modelling water quality parameter



Figure 9

Comparison of scatter plots by LSSVM-GBO algorithm. a) Housing-train, b) Housing-test , c) LVST-train, d)
LVST-test, e) Servo-train, f) Servo-test



Figure 10

Comparison of scatter plots by LSSVM-GBO algorithm. a)Ahvaz-train, b)Ahvaz-test, c)Armand-train,
d)Armand-test, e)Gotvand-train, f)Gotvand-test



Figure 11

Comparison of scatter plots by LSSVM-GBO algorithm. a)Ahvaz-train, b)Ahvaz-test, c)Armand-train,
d)Armand-test, e)Gotvand-train, f)Gotvand-test



Figure 12

The results of the EC and TDS time series model. a)Ahvaz-EC, b)Armand-EC, c)Gotvand-EC, d)Ahvaz-TDS,
e)Armand-TDS, f)Gotvand-TDS
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