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Abstract: One of the basic components of Industry 4.0 is the design of a flexible manufacturing
system (FMS), which involves the choice of parameters to optimize its performance. Discrete event
simulation (DES) models allow the user to understand the operation of dynamic and stochastic
system performance and to support FMS diagnostics and design. In combination with DES models,
optimization methods are often used to search for the optimal designs, which, above all, involve
more than one objective function to be optimized simultaneously. These methods are called the
multi-objective simulation–optimization (MOSO) method. Numerous MOSO methods have been
developed in the literature, which spawned many proposed MOSO methods classifications. However,
the performance of these methods is not guaranteed because there is an absence of comparative
studies. Moreover, previous classifications have been focused on general MOSO methods and rarely
related to the specific area of manufacturing design. For this reason, a new conceptual classification of
MOSO used in FMS design is proposed. After that, four MOSO methods are selected, according to this
classification, and compared through a detailed case study related to the FMS design problem. All of
these methods studied are based on Design of Experiments (DoE). Two of them are metamodel-based
approaches that integrate Goal Programming (GP) and Desirability Function (DF), respectively. The
other two methods are not metamodel-based approaches, which integrate Gray Relational Analysis
(GRA) and the VIKOR method, respectively. The comparative results show that the GP and VIKOR
methods can result in better optimization than DF and GRA methods. Thus, the use of the simulation
metamodel cannot prove its superiority in all situations.

Keywords: flexible manufacturing system; multi-objective simulation-optimization method; discrete
event simulation; design of experiments; simulation metamodel; goal programming; desirability
function; grey relations analysis; VIKOR method

1. Introduction

The fourth industrial revolution, known as industry 4.0, is considered the upcoming
significant technology development as it allows customers to receive their products based
on their expectations in terms of product varieties and quantiles [1]. Industry 4.0 can be
attributed to its broadening focus on automation, decentralization, system integration,
cyber-physical systems, etc. [2]. One of the basic components of Industry 4.0 is the Flexible
Manufacturing System (FMS), which is an advanced production system that interconnects
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machines, workstations, and logistics equipment, the entire manufacturing process be-
ing coordinated with the computer. FMS is intended for manufacturing tasks of large
typological diversity, for high complexity, for ensuring timely delivery, and for minimal
manufacturing costs, while production is unpredictable, organized in small batches, and
has frequent changes [3].

Discrete Event Simulation (DES) is a powerful tool for analyzing and optimizing
FMS for the purpose of design, modeling, and ongoing performance [4]. A simulation
of an entire manufacturing system involves the identification of organization machines,
robots, and the layout of the system, also involving multiple processes in the system. In
particular, the design of FMS involves the choice of parameters and their value to optimize
its performance. DES models allow the user to understand system performance and assist
in behavior prediction and to support FMS diagnostics and design. However, DES responds
to what-if questions as a tool for system evaluation; by itself, it cannot provide answers
to how-if questions [5]. Moreover, DES is essentially a trial-and-error approach and is,
therefore, time consuming and does not provide a method for optimization. In fact, many
researchers have attempted to combine simulation and optimization procedures to provide
a complete design solution with desired properties [6]. The problem of locating the most
preferred alternative system design by using experimental evaluations performed using a
computer DES is known as the Simulation Optimization (SO) problem.

The main classification criterion for SO approaches is the number of output perfor-
mance measures. There are two groups of SO methods [7]. The first group is named
Single-Objective Simulation Optimization (SOSO) approaches, which are focused on opti-
mizing a single performance measure. The second group, which is studied in this research,
covers Multi-Objective Simulation Optimization (MOSO) approaches. MOSO is an area
of decision making of multiple criteria that is concerned with mathematical optimization
problems that involve more than one objective function to be optimized simultaneously.

In the next section, the classifications of MOSO methods in the literature are presented,
and then the MOSO methods used in FMS design are provided. After that, a new conceptual
classification of MOSO was applied to FMS design. According to this classification, the aim
is to justify the selection of four MOSO methods that are used in the comparative study.

1.1. Literature Overview
1.1.1. General Literature Review of MOSO Methods

MOSO methods are an area of multiple-criterion decision making that optimize mul-
tiple performance measures via simulation. In MOSO literature, there are three main
classification criteria for organizing these methods.

1. According to the articulation of the preferences of the Decision Maker (DM). This first
classification criterion is proposed by Rosen et al. [8]. Four groups of methods are pos-
sible and include the following: (1) a priori MOSO methods when the DM expresses
their preferences before optimization is conducted; (2) a posteriori MOSO methods
(in these methods, the DM selects a solution at the end of the search. Although this
approach avoids the disadvantage of the a priori approach by taking into account
preference information only at the end of the optimization process, it can lead to
extremely high computational costs); (3) a progressive articulation of DM preferences
(also named Interactive MOSO Methods) (the progressive approaches repeatedly
solicit preference information from the DM to guide the optimization process). These
methods enable DM to change his preferences during the optimization process by
incorporating knowledge that only becomes available during the search. Interactive
methods may be useful when simulation runs are expensive and the DM is readily
available to provide input. Finally, the fourth group involves (4) non preference
MOSO methods that operate without regard to the preference of DM.

2. According to the research set and variables nature. This second classification criterion
is proposed by Hunter et al. [7]. Three groups of methods are possible, including
the following: (1) MOSO on finite sets, called Multi-Objective Ranking and Selection
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(MORS); (2) MOSO with integer-ordered decision variables; and (3) MOSO with
continuous decision variables. In the context of integer-ordered and continuous
decision variables, we focus on methods that provably converge to a local efficient set
under natural ordering. Furthermore, these methods of the three groups can also be
viewed two groups according to the type of the final solution: global solution versus
local solution [7]. The MORS methods provide a global solution, in which simulation
replications are usually obtained from every point in the finite feasible set, and the
estimated solution is the global estimated best. In addition, metaheuristics methods
(named also random search) such as simulated annealing, Genetic Algorithms (GA),
Tabu Search (TS), etc., also provide global solutions. Metaheuristics methods are
efficient because they appropriately control stochastic error. However, the task is
more challenging as it results in a number of solutions with different trade-offs among
criteria, also known as Pareto optimal or efficient solutions.

3. According to the use or non-use of metamodels. This third classification is proposed
implicitly in many research studies such as in Barton and Meckesheimer [9], do
Amaral et al. [10], etc. A metamodel or model of the simulation model simplifies
the SO in two ways: The metamodel response is deterministic rather than stochastic,
and the run times are generally much shorter than the original simulation. The
metamodel is used to identify and estimate the relationship between the inputs and
outputs of the simulation model, forming a mathematical function that is used to
evaluate possible solutions in the optimization process. For example, Hassannayebi
et al. [11] highlight that the adoption of metamodel-based SO in industry and service
problems has grown due to its potential to reduce the number of simulation rounds
necessary in the optimization process. Note that the MOSO methods, which are based
on the metamodel, also provide a global solution such as that discussed in the second
classification criterion.

1.1.2. FMS Design Literature Review

The study of Diaz et al. [12] presents a MOSO approach for a reconfigurable production
lines subject to scalable capacities. The production line produces two product families
and is composed of 18 workstations. The authors utilized a Non-Dominated Sorting
Genetic Algorithm II (NSGA-II), a variant of GA to address the assignment of the tasks to
workstations and buffer allocation for simultaneously maximizing the Throughput Rate
(TR) and minimizing total buffer capacity. Červeňanská et al. [13] explored an MOSO
of an FMS via a scalar simulation-based optimization method. The authors integrated
a simulation with Design of Experiment (DoE) and Weighted Sum and Product multi-
objective methods to optimize the total number of products, the Mean Flow Time (MFT),
the Machine UTILization (MUTIL), and the average costs per unit of part. The modeled
FMS produces two different products with eight workstations using parallel automated
work machines.

The paper of Hussain and Ali [14] studied the impact of four design and control
factors, control architectures, sequencing flexibility, buffer capacity, and scheduling rule
on the performance of an FMS. The studied FMS is composed of six Computer Numerical
Control (CNC) machines producing six different types of parts. The system is evaluated on
the basis of make-span, average MUTIL, and the average Waiting Time (WT) of parts at the
queue using the Taguchi–Grey multi-objective method. Apornak et al. [15] considered a
multi-objective optimization of five performance measures in FMS. The authors addressed
the optimal set of queues capacity, queues discipline, conveyor and transporter’s speed,
and operational setup times in an FMS with objectives of minimization of the average
WT of raw materials, two average Process Times (PT), as well as the transporter and
assembler product outputs. The studied FMS is composed of three work stations producing
various kinds of seats for the freight cars. Using DoE, the authors simulated and collected
the performance measure of 36 random scenarios. Regression analysis was then used to
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describe the metamodel of each performance measure. Consequently, the Response Surface
Methodology (RSM) was applied to optimize the five objective functions.

Ahmadi et al. [16] proposed two Evolutionary Algorithms (EA): NSGA-II and NRGA
are applied and compared to simultaneously combine the improvement of the make-span
and stability of the schedule. This stability is evaluated by measuring the deviation of
start and completion times of each job between prescheduled and realized schedule. The
simulation is used to evaluate the state and condition of the machine breakdowns on a
variety of manufacturing systems. Freitag and Hildebrandt [17] used a multi-objective
simulation-based optimization to create a control strategy for an FMS by considering earli-
ness and tardiness performance measures. This paper investigates the effect of 10 different
attributes, which are the PT, the average PT of all waiting jobs, the Setup Time (ST), the
average ST of all waiting jobs, the number of remaining operations, the time in system, the
time in queue, the batch family size, the time until operational due date, and the average
time until operational due date. The authors used the GA coupled with the simulation to
solve the scheduling rule choice problem for a complex FMS.

Ammar et al. [18] investigated the size of the number of workers to be assigned to
an FMS as well as the skills that each worker must have in a multi-objective optimization
problem. The two objectives considered are minimizing the expected labor cost associated
with the manufacturing team and minimizing the expected average task TR. The proposed
multi-objective simulation optimization approach is applied to the design of teams of a
manufacturing system; using the EA NSGA-II connected to a simulation model developed
using Arena. Dengiz et al. [19] implemented a multi-objective optimization method of an
FMS based on simulation through DoE, a regression meta-model, and the Goal Program-
ming (GP) method. The authors have modeled and simulated by the ARENA simulation
software an FMS with four workstations. Then, they applied the multi-objective optimiza-
tion method to optimize the TR and MFT in the system by taking into consideration the
number of operator, the velocity of material handling, the number of tool, scheduling rules,
and the number of pallets as design and control parameters.

Using simulation results, Bouslah et al. [20] developed and solved a mathematical
model based on RSM. The main objectives of the authors were to determine the optimal
batch size, the optimal hedging level, and the economic sampling plan design, which
minimized the average total holding cost, which includes the storage of the Work In Process
(WIP) and final inventory stock, the average backlog cost, the average cost of sampling,
the average costs of 100% inspection and rectification of the rejected batches, the average
cost of transportation, and the average cost of replacement of non-conforming items sold to
the consumer. However, the authors did not mention any details on the structure of the
simulated manufacturing system. Iç et al. [21] considered a case study of simulation-based
multi-objective optimization using the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) method hybridized with the Taguchi design technique. The studied
production system is an FMS department composed of four CNC machining centers and
producing three part types. The authors based their optimization case on the cycle time,
TR, and work in queue as performance measures. In addition, they used five factors as
decision variables. These factors are the number of cutting tools, the number of operators,
the number of pallets, the velocity of transporter robots, and the pallet selection strategy.

The paper of Wang et al. [22] applies an MOSO method to a flexible shop scheduling
problem. The two investigated objective functions are the minimum of the maximum PT
and the minimum of the maximum machine load. The main considered constraints are the
production resources and the technological process. The scheduling model of an FMS is
established using simulation software and integrated to NSGA-II EA. In Zhang et al. [23],
a hybrid method based on hybrid GA and TS is used to address a multi-objective FMS
scheduling problem. Two objectives, which are the make-span and the starting time
deviations, are considered to improve schedule efficiency and stability. A case of study of
six machines FMS was studied with four different job arrivals rate and six different number
of job arrivals.
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Azadeh et al. [24] integrated simulations with the GP method and DoE technique
to address a multi-objective scheduling problem of an FMS. The proposed method was
applied on a real textile shop floor to minimize make-span and tardiness. The authors
determined the decision parameters by using the DoE technique by estimating the effects
the dyeing machine type, the temperature of the printing, the temperature and the number
of center machines, and the scheduling rules through meta-modeling. Then, they used GP
to find the optimal values of these decision variables, which are subject to a set of technical
and managerial constraints. Um et al. [25] presented the simulation based multi-objective
optimization of the design of an FMS with Automated Guided Vehicles (AGVs). Their
principal objectives were to minimize congestion and utilization and to maximize TR based
on many parameters including the number, velocity, and dispatch rule of AGV, part types,
scheduling, and buffer sizes. In this paper, the authors considered a nonlinear programming
method combined to evolution strategy. Nonlinear programming was used to determine
the design parameters of the system through multi-factorial and regression analyses, and
an evolution strategy was used to verify each parameter for simulation-based optimization.

Syberfeldt et al. [26] describe the use of Artificial Neural Networks (ANN) and EA as
MOSO methods to the manufacturing cell at Volvo Aero. The two investigated objectives
were the maximization of cell utilization and the minimization of overdue components
considering the component inter-arrival times and due date as decision criteria. Kuo
et al. [27] proposed a practical case of the Grey-based Taguchi method as a MOSO method
for a company that provides integrated circuit packaging services. The authors aimed to
optimize TR and cycle time performance for ink marking machines to avoid backlog of
orders or lost customers, and the TR of the system must be increased. They based their
methodology on five three-level control factors, which are the PT, the machine buffer size,
the time between adjustment, the ratio of the adjusted PT to original PT, and the mean time
between failures.

Oyarbide-Zubillaga et al. [28] focused on the determination of the optimal preventive
maintenance frequencies for multi-equipment systems. The authors apply simulation and
NSGA-II to the multi-objective optimization problem of preventive maintenance activities
to minimize the system’s cost and to maximize profit by considering the production speed,
the percentage of unavailability of a machine due to corrective maintenance, and the
fraction of time before and after the last maintenance as control factors. The system cost
was defined as the sum of the preventive and corrective maintenance, the production
speed lost, and the quality costs for each of the machines. Profit is the result of selling
non-defective products. Park et al. [29] presented a method for determining the design and
control parameters of an FMS with multi-objective performance via a fully factorial DoE,
regression analysis and trade-off programming. A hypothetical FMS with six workstations
was modeled and simulated. The number, speed, and dispatching rules of AGVs, in
addition to the number of pallets, the buffer sizes, and the loading, routing scheduling
rules, were considered as control parameters. These eight parameters were simultaneously
determined by compromising performance measures of TR, delay, MUTIL, and WIP that
are formulated using regression analysis.

1.2. The Proposed Conceptual Classification of MOSO for FMS Design

There are many MOSO methods applied for FMS design. According to the previous
literature review, it is better to classify them in three main groups: Group A, Group B, and
Group C, as detailed in Table 1. This classification is applicable regardless of the articulation
of DM’s preferences. It should be noted that all of the previous MOSO methods that are
applied in the design of FMS are global solutions.
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Table 1. The proposed MOSO classification for FMS design.

The Use
of DoE The Use of Metamodel Description

Group A Yes Yes
First, using designing simulation experiments. Second,
applying optimization method on metamodel. A priori DM
preferences are generally applied.

Group B Yes No
First, using designing simulation experiments. Second,
applying multi criteria optimization method on
experiments. A priori DM preferences are generally applied.

Group C No No

Iterative simulation and optimization using principally
metaheuristics for random design research such as
simulated annealing, genetic algorithms, etc. Only in this
group, the articulation of the preferences of the DM
is important.

Table 2 summarizes the methods and techniques used in the MOSO methods used
for FMS design. The presence of a cross “X” in a row and column intersection means that
the research study stated in row use the method mentioned in column. It shows that all
of the previous studies have applied a global solution method. These methods can be
classified easily according the proposed classification in three groups (A, B, and C). Group
C contains complex optimization techniques using metaheuristics, such as (GA, TS, EA,
etc.). The performance of MOSO methods is not guaranteed because there is an absence of
comparative studies. None of the previous studies has compared different MOSO methods.

Table 2. MOSO classification for FMS design (since year 2000).
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[12] NSGA II 2 2 X X X

[13] DoE, Weighted Sum,
Weighted Product 3 2 X X X X X

[14] Taguchi design, GRA 2 4 X X X

[15] DoE, Regression
metamodel, RSM 5 8 X X X X

[16] NSGA-II, NRGA 2 2 X X X

[17] Genetic Programming 2 10 X X X

[18] NSGA-II 2 2 X X X

[19] DoE, Regression
meta-model, GP 2 5 X X X X

[20] RSM 8 3 X X X X

[21] Taguchi (DoE),
TOPSIS 3 5 X X X X

[22] NSGA-II 2 2 X X X

[23] GA, TS 2 2 X X X
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[24] DoE, Regression
meta-model, GP 2 5 X X X X X

[25]
Non-Linear
Programming,
Evolution Strategy

3 6 X X X

[26] EA, ANN 2 2 X X X

[27] Taguchi, GRA 2 5 X X X X

[28] NSGA-II 2 3 X X X X

[29] DoE, regression
metamodel 4 8 X X X

1.3. The Objective of the Case Study

Our main contribution is to fill these gaps in the literature and to conduct a study of
several relatively straightforward simulation-based FMS optimization methodologies that
cover almost all categories of optimization methods classification. Our study investigates
and compares the applicability and performances of the Goal Programming (GP), the Desir-
ability Function (DF) method, the Grey Relational Analysis (GRA), and the VlseKriterijuska
Optimizacija I Komoromisno Resenje (VIKOR) method.

All these methods are based on the DoE technique. They must be preceded by a design
of experiments to program and sometimes analyze the simulation results. Moreover, these
four multi-objective optimization methods have in common the type of preferences of DM;
indeed, they are all based on an a priori decision of the DM for the choice of the objectives.
On the other hand, the two methods GP and DF use the simulation-based metamodel
technique and combine continuous and integer decision variables to solve the multi-
objective optimization problem, while the two other methods, GRA and VIKOR, are based
on the RS technique and use exclusively integer decision variables. The solutions reached
by the GP and DF methods are then global and those reached by the GRA and VIKOR
methods are local. In this study, we are interested in four multi-objective optimization
methods in the context of FMS. An application on an FMS system will be used as a basis
to compare the performances of these methods. It is mainly a matter of comparing the
deviations between their results and the expected target values.

2. Materials and Methods

Figure 1 describes in detail the adopted MOSO methodologies applied to FMS. These
methodologies are essentially made up of three stages. Each of these stages consists
of various steps. In the first stage, the primary step starts with FMS factors levels and
performance measures selection and definition. Consequently, DoE is constructed, and the
corresponding simulation models are developed using ARENA 14 discrete event simulation
software. In the final step of this first stage, simulations are run to collect data for every
studied performance measure. These simulation results are then analyzed in the second
phase by one of the four adopted multi-objective optimization methods. The steps of this
phase are discussed in detail in the following paragraphs. Finally, the optimum factors
levels are adopted in the last stage of the multi-objective optimization method.
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2.1. Simulation of Possible FMS Designs according to the DoE
2.1.1. The Case Study

The FMS investigated in this study is inspired by Pitchuka et al. [30]. An FMS is a
manufacturing system characterized by a certain flexibility that allows the system to react
in the case of changes. This flexibility is considered to fall into two categories. The first one,
called routing flexibility, generally covers the system’s ability to be changed to produce
new product types. The second category is called machine flexibility, which consists of the
ability to use various machines to perform the same manufacturing operation on a part.

• To capture the FMS flexibility effect on its performance, this research adopts different
machine LAYOUT (LAYOUT) for the studied FMS. Indeed, Functional Layout (FL)
and Cellular Layout (CL) are the two most used machine layouts in FMSs. In FL,
functionally similar machines are grouped into departments, and all machines of every
department can perform production operations for any incoming part [31]. However,
CL is made up of independent manufacturing cells. Each of these cells is made up
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of different machine types dedicated to the treatment of similar parts grouped into
families. In addition, this work aimed also to measure the effect of part Batch Size (BS),
part Inter-Arrival Time (IAT), and scheduling RULEs (RULE) on FMS performances
(Table 3). The IAT, defined as the difference between the arrival times to the FMS
of two consecutive parts, is generally generated by common probabilistic laws. In
addition, parts are grouped into batches to reduce the machine’s setup repetitions and
transport times between work stations [31]. Furthermore, parts arriving at any work
station are made to wait in a queue until the required machine becomes available.
Once this required machine is idle, parts must be selected from the waiting queue
based on scheduling rules [32–34]. As shown in Table 3, each of the considered FMS
factors considered is studied with 2 levels.

Table 3. Studied factors and levels for the FMS case study.

Factor
Levels

1 2

LAYOUT FL CL
IAT (Minutes/part) 5 25
BS (parts) 5 10
RULE FCFS SPT

FL: functional layout; CL: cellular layout; IAT: inter-arrival time; BS: batch size; Rule: dispatching rule; FCFS: first
come first served; SPT: short processing time.

• The FMS considered is composed of 8 machines grouped into 3 departments in FL and
2 cells in CL. The two departments “M” and “L” are composed of 3 machines each,
while department “M” comprises only 2 machines. This MS is also characterized by
two-part families composed of each of 2 part types. Each type of part requires 2 to 5
manufacturing operations (Table 4).

Table 4. Part routing used for the FMS case study.

Part Functional Layout Cellular Layout

Type Family Routing Departments Cell Routing Machines

P1 F2 “L”→ “M”→“D” C2 “L2”→ “M2”→ “D2”
P2 F1 “L”→“D”→“M” C1 “L1”→ “D1”→ “M1”
P3 F1 “L”→“M” C1 “L1”→ “M1”

P4 F2 “L”→“M”→ “D”→
“L”→ “M” C2 “L2”→ “M2”→ “D2”→

“L3”→ “M3”

• The setup and processing times for each type of part are provided in Table 5. Setup
times on every machine can be reduced or cancelled by the setup factor (δ) depending
on the similarity of the successive parts family or type. Indeed, if successive parts
belong to the same family, the subsequent part setup time must be reduced by a factor
of δ = 0.5. On the other hand, if these successive parts have the same type, no machine
setup is needed and the subsequent part setup time must be cancelled by a factor of
δ = 0. Transfer times in the two layouts follow a statistical uniform law between 10
and 16 min.
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Table 5. Parts’ setup and processing time used for the FMS case study.

L M D L M

P1
ST T (39, 44, 49) U (49, 69) N (65, 15)
PT T (15, 18, 21) U (9, 13) N (29, 5)

P2
ST T (90, 101, 110) U (64, 84) N (107, 35)
PT T (17, 21, 25) U (20, 28) N (14, 5)

P3
ST T (80, 84, 88) U (72, 92)
PT T (23, 28, 32) U (14, 18)

P4
ST T (62, 66, 70) U (50, 58) N (101, 10) T (33, 38, 45) U (78, 98)
PT T (18, 20, 22) U (25, 33) N (12, 5) T (20, 23, 26) U (15, 23)

ST: setup time; PT: processing time; N: normal distribution; U: uniform distribution; T: triangular distribution; all
the times are in minutes.

• To characterize the fluidity of parts flow in FMS, different optimization studies used
WIP and MFT as major performance measures [31]. WIP has mainly been measured
as the number of parts in the system, and MFT is simply obtained by averaging
all durations between every part exit times and entry times in FMS. The TR of the
production was adopted as the third performance measure. To evaluate TR, it is normal
to measure the number of processed parts per unit of time. The maximization of such
a measure of performance reflects the best use of material and human resources. To
enhance the efficiency of FMS piloting, various optimization studies used the waiting
and transfer times (WT and TT) as performance indicators, and they essentially aimed
to minimize these two indicators.

2.1.2. The Simulation Model

FMS simulation models were built using Arena 14.0 software. The FL and CL models
are composed of three parts: “Parts arriving”, “Departments” or “Cells”, and “System exit”:

• Parts enter to the system through a “Create” module named “Parts Arrival” in which
the BS and IAT times are specified. Then, they are grouped into batches by a “Batch”
module, named “Arrival Parts Grouping”, to assign them their corresponding types
through an “Assign” module named “Part Type”. Due to the stochastic nature of their
PT and ST, these batches are separated into unit products through a “Separate” module
called “Parts Separation” to assign them each of their execution times through one of
the four “Assign” modules named “Attribute Part i”. However, a preliminary step
must be performed through a “Decide” module called “Parts Sorting” to direct each
type of product to the corresponding “Assign” module. The products then proceed
through a “Batch” module named “Parts Grouping” before proceeding through the
“Route” module named “Transfer to System” (Figure 2).
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• As soon as one products batch arrives in one of the departments, it is separated into
unit products and put on hold in the department queue via the “Hold” module named
“Waiting Queue Department i”. This queue is governed by a “Queue” module in
which the scheduling rule must be specified. Once one of the department machines
becomes free, the selected waiting product is released from the “Hold” module. It
then passes through a test, represented by the module “Decide” named “Machine
Selection”, which affects it toward this free machine. The processed products of the
machines are grouped again in batches by the “Batch” module named “Grouping of
Processed Parts Department i”, which succeeds these machines. Finally, each batch of
products is transferred to the next step in its production sequence through the module
called “Route Department i” (Figure 3).
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In the case of the CL simulation model, as soon as a batch of products arrives in one of
the cells, it is directed to the first machine in its production sequence. This batch is then
separated into unit products by a “Separate” module called “Separation Parts Machine i”.
These products are then placed on hold in the queue of the machine via a “Hold” module
named “Waiting Queue Machine i” until this machine becomes available. The choice of
products from the machine queue is made according to the priority rule defined in the
“Queue” module corresponding to this “Hold” module. The processed products by one
of the machines are grouped into batches via the “Batch” module called “Grouping Parts
Machine i”. This batch is transferred to the next machine in its production sequence via
the “Intracellular Route Cell i” module. By using this module, the transfer is performed in
the cells, and the transfer time in this case is equal to zero. Each product with a completed
production sequence must be evacuated to the system’s output section. Hence, the “Cell i
Output Route” module is used with a non-zero transfer time (Figure 4).
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• In the two FL and CL simulation models, the machines are modeled by “Process”
modules. In these modules, the transformation times are defined, which are function
of PT and ST weighted by factor δ. Thus, Transformation time = PT + δxST. The value
of factor δ depends on the similarity of the types of products entering and leaving the
machine. In fact, a module called “Selection Delta Value Machine Selection i” applies
a test on all incoming products to the machine to look for the value of this factor. For
this, it compares two variables named “Part Type” and “Part Family” defined in the
two “Assign” modules, named “Part Type in Machine i” and “Part Type Out Machine
i”. If the two variables “Part Type” are identical, the module “Delta value machine
selection i” directs the incoming product to the module “Assign” named “Delta Equal
0 Machine i” corresponding to the value of factor δ = 0. If the two variables “Part Type”
are different but the two variables “Part Family” are identical, the module “Delta
Value Machine i” directs the incoming product to the module “Assign” named “Delta
Equal 0.5 Machine i” corresponding to the value of factor δ = 0.5. Otherwise, module
“Selection Delta Value Selection Machine i” directs the incoming product to the module
“Assign” named “Delta Equal 1 Machine i”, corresponding to the value of factor δ = 1
(Figure 5).
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• The leaving products batch proceeds through an “Assig” module, called “Output
Performance Measures”, for computing and updating all variables defined as perfor-
mance measures. The acquired data are then stored in an Excel file using a “Readwrite”
module for further treatment and analysis. Finally, the batches of products are evac-
uated from the simulation model via the “Dispose” module named “System Exit”
(Figure 6).
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2.2. Design of Experiments (DoE)

In this phase, we determine the number of distinct model settings to be run and the
specific values of the factors for each of these simulation runs. There are many strategies
for selecting the number of runs and the factor settings for each run include the following:
random designs, combinatorial designs, sequential designs, factorial designs, etc.

Factorial designs are based on a grid, with each factor tested in combination with
every level of every other factor. Factorial designs are attractive for three reasons: (i) The
number of levels that are required for each factor is one greater than the highest-order
power of that variable in the model, and the resulting design permits the estimation of
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coefficients for all cross-product terms; (ii) they are probably the most commonly used class
of designs; and (iii) the resulting set of run conditions are easy to visualize graphically for
as many as nine factors [35].

The case study is about an FMS design with four factors, and each factor has two
levels, as mentioned in the Table 3. Therefore, a 24 full factorial design was used to collect
simulation results.

2.3. Multi-Objective Optimization Methods
2.3.1. The GP Method

The GP is an optimization technique to solve problems with variety of objectives,
which are generally incommensurable and often conflict each other in a decision-making
horizon. The standard version of GP was first introduced by Charnes and Coper [31].
The GP model is based on an objective function formulated to find the most satisfactory
solution that minimizes the total sum of positive and negative deviations from the level
of attainment of the objectives levels (goals) set by the decision maker. This objective
function is subject to physical and operating constraints of the system. The first type of
constraints represents operating physical limits of the studied system. As for the second
constraints, they are generally described by mathematical connections between the FMS
factors and interactions and the performance measures to optimize. Hence, the principal
purpose of the second stage of two first steps of the DoE-GP hybridization method is to
build mathematical connections between FMS factors and responses. Statistical analyses are
applied on the obtained simulation results to identify significant factors and interactions,
and the relationships between the identified significant factors and interactions and the
performance measures are translated to mathematical models by using the regression
technique. In the third step of this stage, the GP model is developed setting the performance
measures as goals and including other FMS constraints. Finally, this model is resolved
using resolved using LINGO 18.0 software. The aim of this GP model is to find the most
suitable levels of FMS factors that lower the total deviation of each performance measure
from their respective target levels obtained in DoE.

The GP model takes the following form.

Minimise Z = ∑p
i=1 δ

+
i + δ−i , (1)

Moreover, it is subject to the following:

∑n
j=1 aijxj − δ+i + δ−i = gi (i = 1 . . . p), (2)

ρx ≤ C (the operating physical constrain of the system) (3)

xj ≥ 0 (j = 1 . . . n), (4)

δ+i andδ−i ≥ 0 (i = 1 . . . p), (5)

where the following is the case:

1. gi: The goal set for the ith objective for (i =1 . . . p) (the objectives here are the
performance measures);

2. xj: The jth decision variable for (j = 1 . . . n) (the decision variables here are the
significant FMS factors and interactions);

3. aij: The technological parameters (these parameters are the coefficients of the devel-
oped mathematical models relating the performance measures to significant FMS
factors and interactions);

4. ρ: The matrix of coefficients related to the physical FMS constraints;
5. C: The vector of available physical FMS resources;
6. δ+i , δ−i : The positive and negative deviations from the goals values.
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2.3.2. The DF Method

The DF method is based on two steps. The first defines a desirability function by
assigning values to responses that reflect their desirability. This involves transforming
each value of the performance measure ‘j’ of experiment ‘i’, yij, into a partial dimensionless
desirability function di, where 0 ≤ di ≤ 1. This function includes the choices of the decision
maker when constructing the optimization procedure.

A one-sided desirability transformation arises when the goal is to maximize or mini-
mize the response, and two values A and B must be specified as the lower and upper limits.
Equations (6) and (7) present the one-sided transformation equations that will be used for
minimization and maximization goals, respectively.

di =


1 A ≥ yij(

yij−A
B−A

)ωj

A ≤ yij ≤ B

0 yij ≥ B

, (6)

di =


1 yij ≥ B(

yij−A
B−A

)ωj

A ≤ yij ≤ B

0 A ≥ yij

, (7)

The parameterωj can be described as a power value or weight allocated according to
the researcher subjective impression about the role of the response in the total desirability
of the product.

A value of ωj equal to 1 implies that a linear desirability function is applied. If the
value ofωj is less than 1, the obtained desirability function means that performance does
not have to be close to the lower or upper limit, depending on the optimization goal, to
have a higher desirability value. In contrast, if the valueωj is greater than 1, the desirability
function implying that the performance has to be closest to the lower or upper limit,
depending on the optimization goal, to have a higher desirability value.

To simultaneously optimize multiple performance sets, the individual desirability is
combined using a geometric mean in the composite desirability.

DF =
(

∏n
i=1 di

) 1
n , (8)

A value of DF different from zero implies that all performances are in a desirable range
simultaneously. In addition, a value of DF close to 1 means that the combination of the
different criteria is globally optimal and the performances values are near the target values.

2.3.3. The GRA Method

Units of performance measurement are often different, so the influence of some of
them may be neglected. This can also happen if some performance measures have a
very wide range compared to others. In addition, if the expected optimization goals
are contradictory, this will result in incorrect results in the analysis [36]. It is, therefore,
necessary to normalize all performance values for each experiment in the first step of the
multi-objective GRA-based optimization method’s second stage.

In the developed DoE, for each of the “m” simulation experiments, “n” performance
measures are measured. The ith experiment trial can be expressed as Yi = (yi1, yi2, . . . ,
yij, . . . , yin). Here, yij is the value of the performance measure “j” of experiment “i”. The
term Yi can be translated into the comparability sequence Xi = (xi1,xi2, . . . ,xij, . . . , xin)
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using one of Equations (9) and (10), which are, respectively, used for larger-the-better and
smaller-the-better objective values:

xij =
yij − yj

yj − yj
i = 1, 2, . . . , mj = 1, 2, . . . , n, (9)

xij =
yj − yij

yj − yj
i = 1, 2, . . . , mj = 1, 2, . . . , n, (10)

where the following is the case.

yj = Max
{

yij, i = 1, 2, . . . , m
}

, (11)

yj = Min
{

yij, i = 1, 2, . . . , m
}

, (12)

After the normalization procedure, all xij values, relative to the performance measures,
will be scaled in [0, 1]. The Grey Relational Coefficient (GRC) is then computed to determine
how close xij is to x0j = Max{xij, i = 1, 2, . . . , m}. The larger the grey relational coefficient,
the closer xij and x0j are. The grey relational coefficient can be calculated in the second step
by the following:

γ
(
x0j, xij

)
=

∆min + ζ∆max

∆ij + ζ∆max
i = 1, 2, . . . , mj = 1, 2, . . . , n, (13)

where the following is the case.
∆ij =

∣∣x0j − xij
∣∣, (14)

∆min = Min
{

∆ij, i = 1, 2, . . . , m; j = 1, 2, . . . , n
}

, (15)

∆max = Max
{

∆ij, i = 1, 2, . . . , m; j = 1, 2, . . . , n
}

, (16)

Note that ζ is the distinguishing coefficient, ζ ∈ [0, 1]. The purpose of this coefficient
is to expand or compress the range of the grey relational coefficient; usually, it is set equal
to 0.5.

Once the entire GRC is computed, the Grey Relational Grade (GRG) is calculated in
the third step based on the comparability and the reference sequence Xi = (xi1, xi2, . . . , xij,
. . . , xin) and X0 = (x01, x02, . . . , x0j, . . . , x0n) using the following:

Γ(X0, Xi) =∑n
j=1ωjγ

(
x0j, xij

)
; i = 1, 2, . . . , m, (17)

whereωj is the weight for the jth response, chosen by the decision makers. Of course, the
sum ofωj is equal to 1.

In the final step of the GRA method, the GRG values are ranked in decreasing order.
The optimal trial corresponds to the GRG maximum value.

2.3.4. The VIKOR Method

As in the case of the GRA method, which is based on GRG ranking, the VIKOR method
is based on the computation of the VIKOR index and its ranking. In the first step of the
VIKOR method, the ideal solution (A*) and the negative-ideal solution (A−) are to be
determinate. A* and A− represent, respectively, the maximum and minimum performance
measure values of every experimental trial, and they are described as follows.

A∗ = Max
{

yij, i = 1, 2, . . . , m
}
=
{

y∗1 , y∗2 , . . . , y∗j , . . . , y∗n
}

, (18)

A− = Min
{

yij, i = 1, 2, . . . , m
}
=
{

y−1 , y−2 , . . . , y−j , . . . , y−n
}

, (19)
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In the two following steps of the VIKOR method application the utility and the regret
measures for the ith experimental trial, Si and Ri respectively, are computed as follows:

Si = ∑n
j=1ωj

(
y∗j − yij

)
/
(

y∗j − y−j
)

, (20)

Ri = Maxi

[
ωj

(
y∗j − yij

)
/
(

y∗j − y−j
)]

, (21)

whereωj is the weight for the jth response, chosen by the decision makers. Of course, the
sum ofωj is equal to 1.

In the fourth step, the VIKOR index of the ith experimental trial is computed as follows:

Qi = v
[

Si − S−

S∗ − S−

]
+ (1− v)

[
Ri − R−

R∗ − R−

]
, (22)

where the following is the case.
S− = MinSi, (23)

S∗ = MaxSi, (24)

R− = MinRi, (25)

R∗ = MaxRi, (26)

Note that ν is the weight of the maximum group’s utility. It is usually set to 0.5.
In the final step of the VIKOR method application, the VIKOR index values are ranked

in decreasing order, and the optimal trials correspond to the maximum value.

3. Results
3.1. Simulation Results

The case study is about an FMS design with four factors, each factor has two levels, as
mentioned in Table 3. Therefore, a 24 full factorial design was used to collect simulation
results. Each of the 16 simulation experiments was replicated 10 times. Simulation results
show that a warm-up period of 10,000 min is needed, and models can then be run for
90,000 min. All final simulation results are provided in Appendix A. MFT simulation results
are stated in Table A1, WIP simulation results are in Table A2, TR simulation results are in
Table A3, WT simulation results are in Table A4, and TT simulation results are in Table A5.

3.2. Multi-Objective Optimization Methods
3.2.1. The GP Method

The use of GP as an MOSO method contains mainly four phases. The first phase is
about the selection of the significant coefficient of the metamodel using Student’s t-test.
The second phase provides the final metamodel of each performance measure. The third
and fourth phases concern the application of GP optimization.

1. Determination of statistically significant FMS parameters: The main effects of the
studied factors and interactions were analyzed in α = 0.05 of significance levels
using the MINITAB statistical package (Table 6). Significant factors and interactions
(p ≤ 0.05) are shown in bold.
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Table 6. Estimated coefficients of the simulation metamodel.

MFT WIP TR WT TT

Term Coef T P Coef T P Coef T P Coef T P Coef T P

Constant 2034.8 80.78 0.000 51.541 85.46 0.000 34.7833 647.60 0.000 12,804 51.20 0.000 243.865 1955.65 0.000
BS −883.4 −35.07 0.000 −32.921 −54.59 0.000 −8.6261 −160.60 0.000 −2499 −9.99 0.000 81.199 651.16 0.000
IAT −1452.7 −57.67 0.000 −45.593 −75.60 0.000 −13.4205 −249.86 0.000 −9222 −36.87 0.000 −0.175 −1.40 0.163
RULE −977.3 −38.80 0.000 2.231 3.70 0.000 0.1465 2.73 0.007 −4889 −19.55 0.000 0.243 1.95 0.054
LAYOUT −1237.8 −49.14 0.000 −39.896 −66.15 0.000 5.1784 96.41 0.000 −7200 −28.79 0.000 −48.646 −390.11 0.000
BS*IAT 967.3 38.40 0.000 33.700 55.88 0.000 1.5064 28.05 0.000 4323 17.29 0.000 0.015 0.12 0.903
BS*RULE 828.1 32.87 0.000 −3.119 −5.17 0.000 −0.0592 −1.10 0.273 3444 13.77 0.000 0.065 0.52 0.603
BS*LAYOUT 1032.5 40.99 0.000 34.680 57.50 0.000 −4.7818 −89.03 0.000 5362 21.44 0.000 −15.899 −127.50 0.000
IAT*RULE 977.6 38.81 0.000 −2.155 −3.57 0.000 −0.1495 −2.78 0.006 4887 19.54 0.000 −0.111 −0.89 0.376
IAT*LAYOUT 1258.3 49.95 0.000 40.047 66.40 0.000 −5.1661 −96.18 0.000 7831 31.31 0.000 0.026 0.21 0.836
RULE*LAYOUT 954 37.87 0.000 −2.313 −3.83 0.000 −0.1110 −2.07 0.041 4762 19.04 0.000 −0.191 −1.53 0.128
BS*IAT*RULE −829 −32.91 0.000 3.065 5.08 0.000 0.0650 1.21 0.228 −3447 −13.78 0.000 0.024 0.19 0.850
BS*IAT*LAYOUT −941.1 −37.36 0.000 −33.724 −55.92 0.000 4.7214 87.90 0.000 −4624 −18.49 0.000 −0.066 −0.53 0.600
BS*RULE*LAYOUT −808.6 −32.10 0.000 3.316 5.50 0.000 0.0375 0.70 0.486 −3366 −13.46 0.000 0.070 0.56 0.577
IAT*RULE*LAYOUT −954.0 −37.87 0.000 2.269 3.76 0.000 0.1120 2.08 0.039 −4766 −19.06 0.000 0.027 0.21 0.831
BS*IAT*RULE*LAYOUT 809.1 32.12 0.000 −3.273 −5.43 0.000 −0.0413 −0.77 0.444 3359 13.43 0.000 −0.126 −1.01 0.314

A*B: interaction between factor A and factor B (For example, BS*IAT means interaction between factor BS and factor IAT.
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2. Development of mathematical models: Based on the simulation results, mathematical
models were computed. Regression Equations (27)–(31) with identified significant
factors been derived for MFT, WIP, TT, and WT.

MFT = 144.633 − 13633 × BS − 5742.6 × IAT − 68028 × RULE − 71627 × LAYOUT +
542.4 × BS × IAT + 6511 × BS × RULE + 6809 × BS × LAYOUT + 2721.8 × IAT × RULE
+ 2845.2 × IAT × LAYOUT + 33807 × RULE × LAYOUT − 260.52 × BS × IAT × RULE −
269.48 × BS × IAT × LAYOUT − 3235.7 × BS × RULE × LAYOUT − 1352.5 × IAT ×
RULE × LAYOUT + 129.46 × BS × IAT × RULE × LAYOUT

(27)

With R2 = 99.41% and R2(adj) = 99.34%,

WIP = 1078.3 − 96.84 × BS − 42.75 × IAT + 239.6 × RULE − 529.2 × LAYOUT + 3.849 ×
BS × IAT − 25.91 × BS × RULE + 48.47 × BS × LAYOUT − 9.52 × IAT × RULE + 20.99
× IAT × LAYOUT − 121.6 × RULE × LAYOUT + 1.031 × BS × IAT × RULE − 1.912 ×
BS × IAT × LAYOUT + 13.16 × BS × RULE × LAYOUT + 4.835 × IAT × RULE ×
LAYOUT − 0.5237 × BS × IAT × RULE × LAYOUT

(28)

With R2 = 99.47% and R2(adj) = 99.42%,

TP = −61.61 + 9.883 × BS + 4.1508 × IAT + 2.415 × RULE + 98.713 × LAYOUT − 0.50632
× BS × IAT − 9.4912 × BS × LAYOUT − 0.0971 × IAT × RULE − 3.9333 × IAT ×
LAYOUT − 1.116 × RULE × LAYOUT + 0.37771 × BS × IAT × LAYOUT + 0.0448 × IAT
× RULE × LAYOUT

(29)

With R2 = 99.88% and R2(adj) = 99.87%,

TT = 3.12 + 51.558 × BS − 1.898 × LAYOUT − 12.7192 × BS × LAYOUT
(30)

With R2 = 99.97% and R2(adj) = 99.97%,
WT = 669,420 − 58944 × BS − 26657 × IAT − 298872 × RULE − 334431 × LAYOUT +
2351 × BS × IAT + 27062 × BS × RULE + 30009 × BS × LAYOUT + 11951 × IAT × RULE
+ 13247 × IAT × LAYOUT + 148498 × RULE × LAYOUT − 1081.9 × BS × IAT × RULE
− 1176.1 × BS × IAT × LAYOUT − 13447 × BS × RULE × LAYOUT − 5937 × IAT ×
RULE × LAYOUT + 537.4 × BS × IAT × RULE × LAYOUT

(31)

With R2 = 97.86% and R2(adj) = 97.64%,

Every constant in each of these equations corresponds to the average responses for
each performance measure, and the coefficients assigned to the factors and interactions
correspond to their respective effects.

3. GP model formulation and resolution: We propose a GP model in which the selected
performance measures are considered. The optimal configuration of decision variables
minimizes the sum of penalties (dj). The parameter dj are deviations from the desired
levels of the goals that are subject to series constraints. With the regression equations
presented previously, the above-mentioned goal programming model can be stated as
shown in Equations (32)–(40):

Min Z = d+
MFT + d+

WIP + d−TR + d+
WT + d+

TT, (32)

which are subject to the following.
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144633− 13633 × BS− 5742.6 × IAT− 68028 × RULE− 71627 × LAYOUT + 542.4 × BS ×
IAT + 6511 × BS × RULE + 6809 × BS × LAYOUT + 2721.8 × IAT × RULE + 2845.2 ×
IAT × LAYOUT + 33807 × RULE × LAYOUT− 260.52 × BS × IAT × RULE− 269.48 ×
BS × IAT × LAYOUT− 3235.7 × BS × RULE × LAYOUT− 1352.5 × IAT × RULE ×
LAYOUT + 129.46 × BS × IAT × RULE × LAYOUT + d−MFT−d+

MFT = GMFT,

(33)

1078.3− 96.84 × BS− 42.75 × IAT + 239.6 × RULE− 529.2 × LAYOUT + 3.849 × BS ×
IAT− 25.91 × BS × RULE + 48.47 × BS × LAYOUT− 9.52 × IAT × RULE + 20.99 × IAT ×
LAYOUT− 121.6 × RULE × LAYOUT + 1.031 × BS × IAT × RULE− 1.912 × BS × IAT ×
LAYOUT + 13.16 × BS × RULE × LAYOUT + 4.835 × IAT × RULE × LAYOUT− 0.5237 ×
BS × IAT × RULE × LAYOUT + d−WIP − d+

WIP = GWIP,

(34)

−61.61 + 9.883 × BS + 4.1508 × IAT + 2.415 × RULE + 98.713 × LAYOUT− 0.50632 × BS ×
IAT− 9.4912 × BS × LAYOUT− 0.0971 × IAT × RULE− 3.9333 × IAT × LAYOUT−
1.116 × RULE × LAYOUT + 0.37771 × BS × IAT × LAYOUT + 0.0448 × IAT × RULE ×
LAYOUT + d−TR − d+

TR = GTR,

(35)

3.12 + 51.558 × BS− 1.898 × LAYOUT− 12.7192 × BS × LAYOUT + d−TT − d+
TT = GTT, (36)

669420− 58944 × BS− 26657 × IAT− 298872 × RULE− 334431 × LAYOUT + 2351 × BS ×
IAT + 27062 × BS × RULE + 30009 × BS × LAYOUT + 11951 × IAT × RULE + 13247 × IAT ×
LAYOUT + 148498 × RULE × LAYOUT− 1081.9 × BS × IAT × RULE− 1176.1 × BS × IAT ×
LAYOUT− 13447 × BS × RULE × LAYOUT− 5937 × IAT × RULE × LAYOUT + 537.4 × BS ×
IAT × RULE × LAYOUT + d−WT − d+

WT = GWT,

(37)

LAYOUT and RULE are binary (1 or 2), (38)

5 ≤ IAT ≤ 25, (39)

5 ≤ BS ≤ 10, (40)

The objective GMFT, GWIP, GTR, GTT, and GWT goal values were fixed basing on the
experimental design results.

4. The GP model was solved using the mathematical software LINGO 18.0. The best
value of the objective function was found to be equal to 136.99 and was obtained for
the following levels of the studied factors: LAYOUT = CL, RULE = FCFS, IAT = 25,
and BS = 5.

3.2.2. The DF Method

Applying Equations (6) and (7) for the studied performance measures, the individual
desirability functions ‘d’ are very close to 1.0, as shown in Figure 7. Furthermore, Figure 7
illustrates the effect of each factor (columns) on the FMSs’ performance measures and the
desirability of the composite (rows). The red vertical lines and the corresponding numbers
in red indicate the levels of optimal factors. The blue horizontal lines and the corresponding
numbers in blue represent the values of the performance measures corresponding to
the levels of optimal factors. Each of the performance measures is accompanied by the
corresponding desirability function values ‘di’. In addition, the first row provides the value
of the composite desirability ‘DF’, as presented in Equation (8), corresponding to the levels
of the optimal factors. The obtained DF is equal to 0.984, which represents an ideal case
of optimization. To obtain this desirability, the factors’ levels must be set to the values
shown below the global solution in Figure 7. That is, BS = 5, IAT = 5, LAYOUT = CL, and
RULE = SPT.

3.2.3. The GRA Method

Based on Equations (9)–(17), the simulation results were normalized, and the GRC
and GRG were calculated (Table 7). Once GRG was ranked, it appears that the optimum
performance measures were obtained for the factor levels LAYOUT = CL, RULE = SPT,
IAT = 5, and BS = 5. The row in bold in Table 7 indicate the optimal solution obtained using
the GRA method, which has a rank equal to 1.



Machines 2022, 10, 247 20 of 27Machines 2022, 10, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 7. Desirability optimization results. 

4. Discussion 

The application of the four optimization methods in the context of FMS shows good 

results for four of the five performances in the case of the two methods GP and VIKOR, 

and only two performance measures for DF and GRA methods (Table 9). 

Table 9. MOSO results. 

Performance Measure MFT WIP TR TT WT 

Goal value  426.596 4.323 78.303 129.757 1647.683 

GP 

Optimized value  433.000 4.425 28.557 129.922 1704.500 

Deviation value +6.404 +0.102 −49.746 +0.165 +56.817 

Deviation in %  +1.501% +2.359% −63.530% +0.127% +3.448% 

DF 

Optimized value  781.921 14.806 78.257 129.971 3416.917 

Deviation value +355.325 +10.483 −0.046 +0.214 +1769.234 

Deviation in %  +83.293% +242.494% −0.059% +0.165% +107.377% 

GRA Optimized value  781.921 14.806 78.303 129.917 3416.917 

Figure 7. Desirability optimization results.

3.2.4. The VIKOR Method

Based on Equations (18)–(26), the utility and the regret measures as well as the VIKOR
index were computed (Table 8). Once the VIKOR index was ranked, it appears that the op-
timum performance measures were obtained for factor levels LAYOUT = CL, RULE = SPT,
IAT = 25, and BS = 5. The row in bold in Table 8 indicates the optimal solution obtained
using VIKOR method, which has a rank equal to 1.
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Table 7. GRA results.

Exp
Normalization GRC

GRG Rank
MFT WIP TR TT WT MFT WIP TR TT WT

1 0.000 0.132 0.368 0.750 0.000 0.333 0.365 0.442 0.666 0.333 0.428 16
2 0.860 0.874 0.354 0.003 0.715 0.781 0.799 0.436 0.334 0.637 0.597 14
3 0.991 0.996 0.222 0.750 0.997 0.983 0.991 0.391 0.666 0.995 0.805 5
4 0.992 0.996 0.001 0.004 0.972 0.985 0.992 0.334 0.334 0.947 0.718 11
5 0.864 0.000 0.390 0.744 0.773 0.786 0.333 0.451 0.661 0.688 0.584 15
6 0.931 0.897 0.364 0.000 0.848 0.878 0.829 0.440 0.333 0.767 0.650 13
7 0.991 0.994 0.222 0.748 0.997 0.983 0.989 0.391 0.665 0.995 0.805 6
8 0.992 0.996 0.002 0.001 0.972 0.985 0.992 0.334 0.334 0.947 0.718 12
9 0.968 0.965 0.996 0.999 0.970 0.940 0.934 0.993 0.997 0.943 0.961 2

10 0.958 0.956 0.385 0.498 0.899 0.922 0.919 0.448 0.499 0.832 0.724 10
11 1.000 1.000 0.224 1.000 1.000 1.000 1.000 0.392 0.999 1.000 0.878 4
12 0.979 0.989 0.000 0.499 0.940 0.959 0.979 0.333 0.499 0.892 0.733 8
13 0.978 0.968 1.000 0.999 0.979 0.959 0.940 1.000 0.999 0.960 0.972 1
14 0.959 0.955 0.386 0.496 0.901 0.924 0.917 0.449 0.498 0.835 0.725 9
15 1.000 1.000 0.224 1.000 1.000 1.000 0.999 0.392 1.000 1.000 0.878 3
16 0.979 0.989 0.000 0.499 0.940 0.959 0.979 0.333 0.499 0.893 0.733 7

Table 8. VIKOR results.

Exp. The Utility Measure (Si) The Regret Measure (Ri) The VIKOR Index (Qi) Rank

1 0.305 0.150 0.000 16
2 0.646 0.175 0.493 14
3 0.947 0.200 0.959 3
4 0.715 0.199 0.787 7
5 0.603 0.173 0.443 15
6 0.691 0.186 0.639 13
7 0.946 0.200 0.958 4
8 0.593 0.199 0.699 12
9 0.903 0.200 0.928 6
10 0.818 0.192 0.785 9
11 1.000 0.200 1.000 2
12 0.681 0.198 0.749 10
13 0.908 0.200 0.932 5
14 0.817 0.192 0.786 8
15 1.000 0.200 1.000 1
16 0.681 0.198 0.749 11

4. Discussion

The application of the four optimization methods in the context of FMS shows good
results for four of the five performances in the case of the two methods GP and VIKOR,
and only two performance measures for DF and GRA methods (Table 9).

The results show that the MFT, WIP, TT, and WT performance measures met their
targets for GP and VIKOR methods. Indeed, they all show relatively minor deviations from
their target values. Only the deviation of RT reaches, respectively, −63.53% and −81.87%
in the case of these two methods. On the other hand, in the case of DF and GRA methods,
only the optimal values of TT and TR were close to their corresponding targets, while
the deviations between the achieved values and the objective values in the case of WIP,
WT, and MFT can reach +242.529%, +107.377%, and +83.293% respectively. Hence, the
optimization results can be considered satisfactory in the case of GP and VIKOR methods.
Meanwhile, it was not the case for the optimization results of the DF and GRA methods.
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Table 9. MOSO results.

Performance Measure MFT WIP TR TT WT

Goal value 426.596 4.323 78.303 129.757 1647.683

GP
Optimized value 433.000 4.425 28.557 129.922 1704.500
Deviation value +6.404 +0.102 −49.746 +0.165 +56.817
Deviation in % +1.501% +2.359% −63.530% +0.127% +3.448%

DF
Optimized value 781.921 14.806 78.257 129.971 3416.917
Deviation value +355.325 +10.483 −0.046 +0.214 +1769.234
Deviation in % +83.293% +242.494% −0.059% +0.165% +107.377%

GRA
Optimized value 781.921 14.806 78.303 129.917 3416.917
Deviation value +355.325 +10.484 0 +0.160 +1769.234
Deviation in % +83.293% +242.529% 0% +0.124% +107.377%

VIKOR
Optimized value 428.164 4.409 14.195 129.757 1655.257
Deviation value +1.568 +0.086 −64.108 0 +7.574
Deviation in % +0.368% +1.982% −81.872% 0% +0.460%

The two methods GP and DF require a higher level of analysis effort than the two
methods of GRA and VIKOR. Indeed, in addition to the modeling and development of the
simulation models, which is a common point to the four compared optimization methods,
as well as the planning of experiments with the DoE method, the two methods GP and DF
require relatively higher levels of expertise in the use of the analysis software MINITAB
and LINGO. On the opposite side, the two methods GRA and VIKOR only need the
development of the equations on Excel, which is within the reach of the majority of DMs.
This has an impact on the applicability of the MOSO method.

Table 10 summarizes the performance of the four MSOSO methods being compared
in this study. Signs ‘+’ and “−” are assigned to the optimization methods based on their
achieved optimization results and their applicability. A ‘+’ is assigned to each method
resulting in a good optimization result, which is expressed by reasonable or small deviations.
On the other hand, a “−” is assigned to each method that leads to an optimization result
characterized by high deviations. For applicability, a “−” is assigned to each method that
requires a high level of analysis and expertise. In the opposite case, a ‘+’ is assigned to this
optimization method. These methods are then classified according to assigned signs. Any
method obtaining two “+” signs will be considered the most efficient. On the other hand, if
it obtains two “−” signs, it will be considered as the most mediocre one. In the case where
the optimization method obtains both signs “+” and “−”, the classification gives priority to
the obtained optimization result. The best method is VIKOR, which belongs to group B in
the proposed classification. It is followed by the GP method, from group A, since it reaches
good optimization results, although it requires a considerable analysis effort. The GRA
method, from group B, comes in third rank and the DF method, from the group A, closes
the classification at the last rank. This classification shows that the use of optimization
methods based on a metamodel does not always produce the best results.

Table 10. MOSO performances.

MOSO Group Optimization Result Applicability Rank

GP A + − 2
DF A − − 4
GRA B − + 3
VIKOR B + + 1
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5. Conclusions

Various MOSO methods have been presented, developed, and used in the literature.
These methods have been the subject of numerous classifications. However, the perfor-
mance of these methods is not guaranteed due to the lack of comparative studies. Moreover,
these classifications have been very diverse and are rarely related to the specific domain of
manufacturing systems.

The objective of this research is two-fold. First, we proposed a new conceptual
classification of MOSO methods applied to the context of MFS design. Second, four MOSO
methods are selected according to this classification and compared through a case study
related to the FMS design problem inspired by the literature. This comparison is based
on the quality of the optimal solutions obtained by these methods as well as the degree
of difficulty of their applicability through the necessary analysis effort and the degree of
expertise of the user of these methods. All these studied methods are based on DoE. Two
of them are metamodel-based approaches that incorporate the GP and the DF, respectively.
The other two methods are not metamodel-based approaches and incorporate GRA and
VIKOR, respectively. The comparative results show that the VIKOR method can result in a
better optimization than GP, GRA, and DF methods in that order. It is clear, thus, that the
use of MOSOs based on meta-models does not produce the best solution in all situations.

This research compares four MOSO methods applied in the context of FMS design.
Some future research perspectives should be addressed:

• In this study, four MOSO methods are compared. Two methods belong to group A of
the proposed new classification, while the other two belong to group B. The extension
of the current comparison to other MOSO methods belonging to group C is the first
objective of our interesting perspectives.

• The studied MOSO methods have been applied on a model of an FMS inspired from
the literature. This model has six machines grouped in two cells in the CL and three
departments in FL. In addition, this FMS processes only four products grouped into
two families. Extending the comparison performed in this study to real and more
complex FMSs to evaluate the reliability of MOSO methods is the second objective of
our interesting perspectives.

• The experimental design developed in this comparison study and which is the basis
for the simulation results used in the analysis and generation of optimization solutions
is based on four factors: IAT, BS, RULE, and LAYOUT. These four factors are explored
on the basis of two levels each. This number of factors and levels remains relatively
limited and generates a limited number of experiments. The comparison of MOSO
Methods in Manufacturing Systems characterized by a large number of factors and
levels is the third objective of our interesting perspectives.

• The application of the compared MOSO methods proceeds through different steps to
generate optimization solutions. These steps usually require the intervention of a user
to transfer the results from one step to another. The integration of these analysis and
optimization steps into the simulation software, as in the case of the OptQuest tool in
several simulation tools, would be a very interesting perspective.
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Appendix A

Table A1. MFT simulation results according to DoE.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

1 1 1 5 5 16,334.1 16,645.9 16,612.2 16,866.2 17,446.5 16,523.3 16,778.2 16,601.8 17,529.3 18,119.7
2 1 1 5 10 2312.8 1636.8 2435.7 3132.7 2374.0 3222.1 3128.3 1968.7 4831.2 2432.0
3 1 1 25 5 597.0 549.5 559.6 528.5 614.4 540.6 583.7 577.4 552.6 569.8
4 1 1 25 10 538.0 565.0 560.4 577.7 559.5 581.1 546.9 538.7 538.2 547.6
5 1 2 5 5 2574.7 3339.8 2014.4 2735.9 2348.5 2484.6 2698.9 1959.8 2784.8 3760.3
6 1 2 5 10 1881.7 1261.2 1463.6 1614.9 1166.6 1919.4 1276.1 1449.3 1662.2 2019.3
7 1 2 25 5 547.0 570.4 567.4 564.8 552.6 559.2 599.0 565.1 606.4 577.2
8 1 2 25 10 546.7 544.0 545.1 561.6 544.9 565.4 543.0 558.3 559.2 562.0
9 2 1 5 5 1460.9 1149.0 1314.0 711.9 825.9 699.7 848.5 846.1 832.2 859.4

10 2 1 5 10 1087.7 1052.0 1305.7 993.0 1214.9 1155.9 1038.4 1132.8 1153.9 1085.4
11 2 1 25 5 434.5 431.8 423.1 422.7 419.7 427.9 423.9 423.9 424.8 433.5
12 2 1 25 10 773.0 769.2 796.1 783.9 771.2 768.1 772.8 769.6 791.4 783.7
13 2 2 5 5 690.2 717.1 752.2 721.7 1260.2 741.1 721.4 748.1 690.2 777.0
14 2 2 5 10 1159.5 1053.5 1133.9 1121.7 1080.1 1187.4 1071.3 1085.1 1080.9 1094.4
15 2 2 25 5 438.0 427.5 421.1 422.6 428.0 425.6 423.8 426.3 436.3 432.3
16 2 2 25 10 773.0 769.0 796.1 783.9 771.0 768.1 772.8 769.6 791.4 783.4

LAYOUT: 1 = FL, 2 = C; RULE: 1 = FCFS, 2 = SPT.

Table A2. WIP simulation results according to DoE.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

1 1 1 5 5 276.4 285.9 287.2 288.6 296.7 286.0 286.4 288.0 299.9 308.5
2 1 1 5 10 38.5 27.3 41.1 52.3 39.8 53.7 52.1 33.1 80.0 40.6
3 1 1 25 5 6.1 5.6 5.7 5.4 6.2 5.5 5.9 5.9 5.6 5.8
4 1 1 25 10 5.4 5.7 5.6 5.8 5.6 5.9 5.5 5.4 5.4 5.5
5 1 2 5 5 325.0 345.3 302.0 349.1 318.0 322.5 332.9 329.0 371.0 343.7
6 1 2 5 10 58.2 23.5 38.3 29.4 22.4 65.8 22.7 35.2 48.4 38.5
7 1 2 25 5 5.9 6.2 6.2 6.1 6.0 6.0 6.5 6.1 6.6 6.3
8 1 2 25 10 5.6 5.6 5.6 5.7 5.6 5.8 5.5 5.7 5.7 5.7
9 2 1 5 5 24.4 19.2 22.0 12.0 13.9 11.7 14.2 14.2 14.0 14.4

10 2 1 5 10 18.2 17.6 21.9 16.6 20.3 19.3 17.4 18.9 19.3 18.1
11 2 1 25 5 4.4 4.4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.4
12 2 1 25 10 7.8 7.7 8.0 7.9 7.7 7.7 7.8 7.7 8.0 7.9
13 2 2 5 5 14.4 13.1 14.2 13.2 24.0 13.6 16.3 13.7 12.5 13.0
14 2 2 5 10 20.1 18.1 19.7 19.4 18.6 20.6 19.1 18.7 18.7 18.8
15 2 2 25 5 4.5 4.4 4.3 4.3 4.4 4.4 4.4 4.4 4.5 4.5
16 2 2 25 10 7.8 7.8 8.0 7.9 7.8 7.8 7.8 7.8 8.0 7.9

LAYOUT: 1 = FL, 2 = C; RULE: 1 = FCFS, 2 = SPT.
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Table A3. TR simulation results according to DoE.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

1 1 1 5 5 39.54 38.37 37.72 38.23 37.29 37.99 38.23 37.76 36.74 35.8
2 1 1 5 10 37.84 38.59 36.66 36.33 38.07 35.98 35.96 37.22 34.69 37.81
3 1 1 25 5 28.52 28.46 28.31 28.48 28.4 28.36 28.42 28.37 28.46 28.45
4 1 1 25 10 14.31 14.31 14.31 14.26 14.31 14.26 14.31 14.28 14.24 14.27
5 1 2 5 5 39.7 39.05 41.83 37.92 40.49 40.27 39.34 39.88 35.48 38.14
6 1 2 5 10 36.3 38.67 37.49 38.27 38.46 35.59 39.18 37.21 36.57 37.71
7 1 2 25 5 28.52 28.48 28.35 28.36 28.41 28.45 28.37 28.41 28.33 28.28
8 1 2 25 10 14.27 14.31 14.27 14.3 14.27 14.34 14.31 14.35 14.27 14.27
9 2 1 5 5 76.95 77.61 77.27 78.35 78.27 78.71 78.5 78.53 78.23 78.24
10 2 1 5 10 38.79 38.88 38.56 39.05 38.91 38.88 38.89 38.91 38.87 39.12
11 2 1 25 5 28.54 28.5 28.58 28.54 28.58 28.5 28.62 28.54 28.58 28.62
12 2 1 25 10 14.19 14.19 14.15 14.23 14.22 14.16 14.18 14.23 14.18 14.22
13 2 2 5 5 78.5 78.52 78.24 78.47 77.5 78.6 77.39 78.63 78.72 78.46
14 2 2 5 10 38.92 39.06 38.73 39.03 38.92 38.97 38.77 39.03 38.93 39.05
15 2 2 25 5 28.53 28.5 28.58 28.5 28.54 28.55 28.62 28.54 28.57 28.58
16 2 2 25 10 14.19 14.19 14.15 14.23 14.22 14.16 14.18 14.23 14.18 14.22

LAYOUT: 1 = FL, 2 = C; RULE: 1 = FCFS, 2 = SPT.

Table A4. WT simulation results according to DoE.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

1 1 1 5 5 82,836.8 85,752.2 86,140.3 86,578.0 89,250.2 84,996.3 85,347.6 85,214.9 89,138.4 92,596.2
2 1 1 5 10 21,801.7 15,089.4 22,715.8 29,844.8 22,789.5 30,417.2 29,423.0 18,018.8 46,237.5 23,032.6
3 1 1 25 5 1927.4 1838.2 1837.4 1681.1 2073.2 1759.2 1939.3 1923.3 1779.0 1920.5
4 1 1 25 10 3938.8 4089.8 4115.0 4115.8 4030.9 4087.6 3949.3 3991.3 4038.8 3955.6
5 1 2 5 5 26,779.8 25,064.3 14,124.1 24,226.4 13,939.3 19,553.4 21,059.2 12,639.7 14,090.3 37,979.1
6 1 2 5 10 17,439.0 11,361.6 13,119.9 15,247.0 10,391.8 19,065.1 11,499.0 13,196.1 15,287.0 19,011.7
7 1 2 25 5 1776.7 1854.7 1843.8 1829.6 1754.0 1829.4 1942.5 1837.2 2073.1 1883.9
8 1 2 25 10 4019.1 4010.4 4017.5 4086.7 4034.9 4129.1 3973.3 4076.8 4030.6 4063.8
9 2 1 5 5 6628.1 5230.5 5937.7 3069.7 3627.5 3008.1 3746.4 3740.8 3663.6 3781.3

10 2 1 5 10 10,025.4 9574.9 12,052.1 8981.6 11,220.2 10,425.2 9458.4 10,387.8 10,438.4 9835.0
11 2 1 25 5 1664.4 1655.0 1637.7 1637.6 1634.2 1676.7 1646.6 1630.7 1640.7 1653.1
12 2 1 25 10 6773.5 6798.3 6731.1 6853.6 6657.2 6739.5 6990.0 6786.5 6747.4 6830.7
13 2 2 5 5 3367.2 3093.6 3233.1 3102.4 5799.1 3205.1 3084.3 3216.5 3006.0 3062.0
14 2 2 5 10 10,596.6 9474.9 10,320.7 10,257.9 9831.7 10,804.9 9753.2 9931.9 9828.1 9990.0
15 2 2 25 5 1671.3 1631.5 1636.3 1632.5 1646.6 1654.3 1646.3 1651.4 1693.2 1689.2
16 2 2 25 10 6772.9 6796.7 6730.7 6853.6 6654.9 6739.5 6707.0 6786.5 6747.4 6827.4

LAYOUT: 1 = FL, 2 = C; RULE: 1 = FCFS, 2 = SPT.

Table A5. TT simulation results according to DoE.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

1 1 1 5 5 194.0 194.6 195.2 195.2 196.3 194.5 195.0 195.2 195.6 194.2
2 1 1 5 10 389.9 389.1 390.2 389.2 387.4 389.8 389.4 389.2 390.6 388.4
3 1 1 25 5 194.7 195.4 195.0 194.7 195.7 195.5 195.4 194.9 194.7 194.1
4 1 1 25 10 388.3 389.2 388.9 390.1 389.0 389.7 390.0 389.6 386.9 388.8
5 1 2 5 5 195.7 195.2 194.6 197.1 193.3 193.9 195.2 210.8 194.0 194.4
6 1 2 5 10 392.3 387.7 390.0 388.1 390.3 392.1 389.9 390.8 390.7 389.5
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Table A5. Cont.

EXP
Factor Levels Replication

LAYOUT RULE IAT BS 1 2 3 4 5 6 7 8 9 10

7 1 2 25 5 195.5 194.8 195.1 195.9 195.2 195.4 194.9 195.3 195.3 195.5
8 1 2 25 10 391.7 388.7 390.9 389.4 389.7 390.2 388.3 387.6 392.7 390.1
9 2 1 5 5 130.0 130.1 130.3 130.4 129.9 129.9 129.7 130.7 129.7 130.3
10 2 1 5 10 262.1 259.5 261.0 260.6 260.6 259.9 258.8 261.0 260.5 259.6
11 2 1 25 5 130.2 129.0 130.2 130.5 129.4 130.1 129.2 130.3 129.6 130.4
12 2 1 25 10 258.4 258.8 261.2 259.6 261.2 260.4 261.0 259.3 262.8 260.4
13 2 2 5 5 129.4 129.7 129.8 129.9 129.8 130.4 130.1 129.9 130.3 129.9
14 2 2 5 10 262.6 260.9 259.8 261.4 260.5 261.7 260.1 260.8 262.4 260.7
15 2 2 25 5 130.0 128.9 130.0 130.2 130.0 129.9 129.2 129.9 129.4 130.2
16 2 2 25 10 258.4 258.8 261.2 259.6 261.2 260.4 261.0 259.3 262.8 260.4

LAYOUT: 1 = FL, 2 = C; RULE: 1 = FCFS, 2 = SPT.
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