IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

4713

Image Super-Resolution via lterative Refinement
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, Tim Salimans, David J. Fleet

, and Mohammad Norouzi

Abstract—We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion
probabilistic models (Ho et al. 2020), (Sohl-Dickstein et al. 2015) to image-to-image translation, and performs super-resolution through a
stochastic iterative denoising process. Output images are initialized with pure Gaussian noise and iteratively refined using a U-Net
architecture that is trained on denoising at various noise levels, conditioned on a low-resolution inputimage. SR3 exhibits strong
performance on super-resolution tasks at different magnification factors, on faces and natural images. We conduct human evaluation on
a standard 8 x face super-resolution task on CelebA-HQ for which SR3 achieves a fool rate close to 50%, suggesting photo-realistic
outputs, while GAN baselines do not exceed a fool rate of 34%. We evaluate SR3 on a 4 x super-resolution task on ImageNet, where SR3
outperforms baselines in human evaluation and classification accuracy of a ResNet-50 classifier trained on high-resolution images. We
further show the effectiveness of SR3 in cascaded image generation, where a generative model is chained with super-resolution models
to synthesize high-resolution images with competitive FID scores on the class-conditional 256 x256 ImageNet generation challenge.

Index Terms—Image super-resolution, diffusion models, deep generative models
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1 INTRODUCTION

INGLE-IMAGE super-resolution is the process of generating a

high-resolution image that is consistent with an input low-
resolution image. It falls under the broad family of image-to-
image translation tasks, including colorization, in-painting,
and de-blurring. Like many such inverse problems, image
super-resolution is challenging because multiple output images
may be consistent with a single input image, and the condi-
tional distribution of output images given the input typically
does not conform well to simple parametric distributions, e.g.,
a multivariate Gaussian. Accordingly, while simple regression-
based methods with feedforward convolutional nets may work
for super-resolution at low magnification ratios, they often lack
the high-fidelity details needed for high magnification ratios.

Deep generative models have seen success in learning
complex empirical distributions of images (e.g., [3], [4]).
Autoregressive models [5], [6], variational autoencoders
(VAEs) [7], [8], Normalizing Flows (NFs) [9], [10], and
GANs [11], [12], [13] have shown convincing image genera-
tion results and benefited conditional tasks such as image
super-resolution [14], [15], [16], [17], [18]. However, existing
techniques often suffer from various limitations; autoregres-
sive models are prohibitively expensive for high-resolution
image generation, NFs and VAEs often yield sub-optimal
sample quality, and GANs require carefully designed regu-
larization and optimization tricks to tame optimization
instability and mode collapse [19], [20], [21], [22].

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, and
Mohammad Norouzi are with Google Research, Brain Team, Toronto, ON
Mb5HOB3, Canada. E-mail: {chitwaniit, wchan212)@gmail.com, {jonathanho,
salimans, mnorouzij@google.com.

David ]. Fleet is with Google Research, Brain Team, Toronto, ON M5HOB3,
Canada, and also with the University of Toronto, Toronto, ON M5T2S8, Can-
ada. E-mail: davidfleet@google.com.

Manuscript received 23 August 2021; revised 13 June 2022; accepted 13 July
2022. Date of publication 12 September 2022; date of current version 6 March
2023.

(Corresponding author: David ]. Fleet.)

Recommended for acceptance by C.C. Loy.

Digital Object Identifier no. 10.1109/TPAMI.2022.3204461

We propose SR3 (Super-Resolution via Repeated Refine-
ment), a new approach to conditional image generation,
inspired by recent work on Denoising Diffusion Probabilis-
tic Models (DDPM) [1], [23], and denoising score match-
ing [1], [24]. SR3 works by learning to transform a standard
normal distribution into an empirical data distribution
through a sequence of refinement steps, resembling Lange-
vin dynamics. The key is a U-Net architecture [25] that is
trained with a denoising objective to iteratively remove var-
ious levels of noise from an image. We adapt DDPMs to
image-to-image translation by proposing a simple effective
modification to the U-Net architecture. In contrast to GANSs,
which require inner-loop maximization, we minimize a
well-defined loss function. Unlike autoregressive models,
SR3 uses a constant number of inference steps regardless of
output resolution.

SR3 models work well across a range of magnification
factors and input resolutions (e.g., see Fig. 1), and they can
be cascaded, e.g., going from 64 x64 to 256 x 256, and then
to 1024x1024. Cascading models allows one to indepen-
dently train several small models rather than a single large
model with a high magnification factor. We find that cascaded
models enable more efficient inference, since directly generat-
ing a high-resolution image requires a larger number of costly
iterative refinement steps for the same quality. We also show
that one can cascade an unconditional generative model with
SR3 models to unconditionally generate high-fidelity images.
We conduct experiments on the general domain of natural
images, as well as the domain of face images.

Automated image quality scores like PSNR and SSIM do
not reflect human preference well when the input resolution
is low and the magnification factor is large (e.g., [14], [15],
[17], [26], [27], [28]). These quality scores often penalize syn-
thetic high-frequency details, such as hair texture, because
synthetic details do not perfectly align with the original
details. We therefore resort to human evaluation to compare
the quality of super-resolution methods. We adopt a 2-alter-
native forced-choice (2AFC) paradigm in which human sub-
jects are shown a low-resolution input and are required to
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Fig. 1. Two representative SR3 outputs: (top) 8 x face super-resolution at
16x16 — 128x 128 pixels (bottom) 4x natural image super-resolution at
64 x64— 256256 pixels.

select between a model output and a ground truth image
(cf. [29]). With that data we calculate fool rate scores that cap-
ture both image quality and the consistency of model out-
puts with low-resolution inputs.

On a standard 8 x face super-resolution task, SR3 achieves
a human fool rate close to 50%, outperforming FSRGAN [14]
and PULSE [17] with fool rates of at most 34%. On a 4x task
on natural images, SR3 outperforms a ESRGAN [30] Enhan-
ceNet [31] and SRFlow [32] on human evaluation, and a
wide range of methods on classification accuracy of a
ResNet-50 classifier trained on high-resolution images. To
demonstrate unconditional and class-conditional generation
we combine a 64 x 64 generative model with SR3 models to
progressively generate 1024 x 1024 unconditional faces in 3
stages, and 256 x 256 class-conditional ImageNet samples in
2 stages, all with competitive FID scores.

2 CONDITIONAL DENOISING DIFFUSION MODEL

We are given a dataset of input-output image pairs, denoted
D = {z;,y;},, which represent samples drawn from an
unknown distribution p(z,y). The conditional distribution
p(y|x) is a one-to-many mapping in which many target
images may be consistent with a single source image. We are
interested in learning a parametric approximation to p(y | z)
through a stochastic iterative refinement process that maps a
source image « to a target image y € R”. We approach this
problem by adapting the denoising diffusion probabilistic
(DDPM) model of [1], [23] to conditional image generation.

The conditional DDPM model generates a target image
Yo in T refinement steps. Starting with a pure noise image
yr ~ N(0,I), the model iteratively refines the output image
to attain a sequence (y;_;,Yr_s, - - - »Yo) according to learned
conditional distributions py(y,_; | y;, ) such that ultimately
yo ~ p(y| z) (see Fig. 2).

The distribution of intermediate images in the iterative
refinement chain is defined in terms of a forward diffusion
process that gradually adds Gaussian noise to the output
via a fixed Markov chain, denoted ¢(y, | y,_;). The goal of
our model is to reverse the Gaussian diffusion process by
iteratively recovering signal from noise through a reverse
Markov chain conditioned on z. We learn the reverse chain
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yo~p(y|z) Y1 Yt yr~N(0,I)

a(ye|ye)

Po(Yi-1|ye, =) 8

Fig. 2. The forward diffusion process ¢ (left to right) gradually adds
Gaussian noise to the target image. The reverse process p (right to left)
iteratively denoises the target image, conditioned on a source image z.
(Source z is not shown.).

using a neural denoising model f, that takes as input a
source image and a noisy target image and estimates the
noise. In principle, each forward process step can be condi-
tioned on z too, but we we find that a simple diffusion pro-
cess that does not depend on x works reasonably well for
super-resolution, and we leave extensions of the diffusion
framework to future work.

2.1 Gaussian Diffusion Process

Following [1], [23], we define a forward Markovian diffusion
process ¢ that gradually adds Gaussian noise to a high-reso-
lution image y, over T iterations

a(yrryo) = H; a(: |y ), o))
a(ye |y ) = Ny | Very, 1, (1 — o)), 2

where the scalar parameters «;.r are hyper-parameters, sub-
ject to 0 < a; < 1, which determine the variance of the
noise added at each iteration. Note that y,_; is attenuated by
\/o; to ensure that the variance of the random variables
remains bounded as ¢t — oo. For instance, if the variance of
y,_; is 1, then the variance of y, is also 1.

Importantly, one can characterize the distribution of y,
given y, by marginalizing out the intermediate steps as

(e 1Y) = Ny | VYo, (1 =y )I), 3)

where y, = [['_, @;. Furthermore, with some algebraic
manipulation and completing the square, one can derive
the posterior distribution of y,_; given (y,,y,) as

(Y1 190, 9) = N (91 |M702I)

_ Vi (1—a) +\/&?(1—Vt—1)
1-y 0 1-y '
02 _ (1 - ytfl)(l - at) ) (4)
-y

This posterior is helpful when parameterizing the reverse
(generative) process and formulating a variational lower
bound on the data log-likelihood of the reverse process.

2.2 Optimizing the Denoising Model

The key to inference with diffusion models (Section 2.3) is
the denoising network. In our case it is conditioned on side
information in the form of a source image . More formally,
we optimize a neural denoising model f, that takes as input
this source image z and a noisy target image y,

e~N(0,I), (5)

52\/?3/04‘ 1_)/67
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and aims to recover the noiseless target image y,. This defi-
nition of a noisy target image ¥ is compatible with the mar-
ginal distribution of noisy images at different steps of the
forward diffusion process (3).

Algorithm 1. Training a Denoising Model fj

1: repeat

22 (z,y) ~p(=,y)

3 y~p(y)

4: e~ N(0,I)

5:  Take a gradient descent step on

Vell fo(z, /7yo + V1= ve,v) —ell;

6: until converged

Algorithm 2. Inference in 7 Iterative Refinement Steps

: yINN(()?I)
fort=T1T,...
2~ N(O)ift > 1,elsez=0

1

2

3

4. =L (y — =2 ¢ V1—

: Y1 \/ay(yt mf(?(zvytv Ye)) + oz
6

,1do

: end for
: return y,

In addition to a source image x and a noisy target image y,
the denoising model fy(z,y,y) takes as input the sufficient
statistics for the variance of the noise y, and is trained to pre-
dict the noise vector e. Thus, the denoising model is aware of
the level of noise through conditioning on y, similar to [24],
[33]. The proposed objective function for training fj is

»
) (6)

p

f0($7 Wyo +

y

E(z,y)Eey 1- V€, )/) — €

where € ~ N(0,1), (z,y) is sampled from the training data-
set, p € {1,2}, and y ~ p(y). The distribution of y has a
major impact on the quality of the model and the generated
outputs. We discuss our choice of p(y) in Section 2.5.

Instead of regressing the output of fy to ¢, as in (6), one
can also regress the output of f; to y,. Given y and y, the val-
ues of € and y, can be derived from each other deterministi-
cally, but changing the regression target has an impact on
the scale of the loss function. We expect both of these var-
iants to work reasonably well if p(y) is modified to account
for the scale of the loss function. Further investigation of the
loss function for training the denoising model is an interest-
ing area for future research (e.g., see [34]).

2.3 Inference via lterative Refinement

Inference under our model is defined as a reverse Markovian
process, which goes in the reverse direction of the forward
diffusion process, starting from Gaussian noise y;

m(yo.m) =) [T, poli 1l @) @)
p(yr) = N(yr|0,I) (8)
Do (Yy—11Yy5 ) Ny | oz, y;, )’t)a"fI) C))

We define the inference process in terms of isotropic Gaussian
conditional distributions, pg(y,_;|y;, ), which are learned. If
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the noise variance of the forward process steps are set as
small as possible, i.e., a7 ~ 1, the optimal reverse process

P(Ys_1]y;, ) will be approximately Gaussian [23]. Accordingly,

our choice of Gaussian conditionals in the inference process (9)
can provide a reasonable fit to the true reverse process. Mean-
while, 1 — y should be large enough so that y; is approxi-
mately distributed according to the prior p(yr) = N (y7|0, 1),
allowing the sampling process to start at pure Gaussian noise.
Recall that the denoising model fj is trained to estimate ¢,
given any noisy image y including y,. Thus, given y,, we
approximate y, by rearranging the terms in (5) as

Y 1- Vi f@(xayt:yt))'

Yo = (10

7
——\Y¥
Vo
Following [1], we substitute our estimate , into the poste-
rior distribution of ¢(y;,_;|yy, ;) in (4) to parameterize the
mean of py(y;_ |y, ) as

M9(17yl7yl) = (11)

1 1-— oy f (m )
\/a_t Y ﬂ o\T; Yy, Vi )
and we set the variance of ps(y,_1|y;, ) to (1 — o), a default
given by the variance of the forward process [1].

Following this parameterization, each iteration of itera-
tive refinement under our model takes the form,

1 ( 11—« t f ( )

R — = fo(z,y,
Yi @ Y Ty, o\, Yps Vi
where ¢, ~ N (0,I). This resembles one step of Langevin

dynamics with f, providing an estimate of the gradient of
the data log-density.

) + /1 =o€,

2.4 Justification of the Training Objective

Following Ho et al. [1], we justify the choice of the training
objective in (6) for the probabilistic model outlined in (9)
from a variational lower bound perspective. If the forward
diffusion process is viewed as a fixed approximate posterior
to the inference process, one can derive the following varia-
tional lower bound on the marginal log-likelihood

B @y 108 po (Yo |T) > Eaz gy gy, riyo) [Ing(yT)

+ZIO Po(Yi_1|y, T )]

(12)
t>1 q(yly:-1)

Given the particular parameterization of the inference
process outlined above, one can show [1] that the negative
variational lower bound can be expressed as the following
simplified loss, up to a constant weighting of each term for
each time step

T

. 1
Eoge T

t=1

2
; (13)

2

) \/y_tyO + 1- V+€E,s yt)

€— ez

where € ~ N (0, I). Note that this objective function corre-
sponds to L, norm in (6), and a characterization of p(y) in
terms of a uniform distribution over {y;,...,yr}.

Our approach is also linked to denoising score match-
ing [35], [36], [37], [38] for training unnormalized energy
functions for density estimation. These methods learn a
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Fig. 3. Depiction of U-Net architecture of SR3. The low resolution input
image z is up-sampled to the target resolution using bicubic interpola-
tion, and concatenated with the noisy high resolution output image y,.
We show the activation dimensions for a 16x16 — 128x 128 super reso-
lution model. We perform self-attention on 16x 16 feature maps.

parametric score function to approximate the gradient of the
empirical data log-density. To make sure the gradient of the
data log-density is well-defined, one often replaces each
data point with a Gaussian distribution with a small vari-
ance. Song and Ermon [39] advocate the use of a Multi-scale
Guassian mixture as the target density, where each data
point is perturbed with different amounts of Gaussian
noise, so that Langevin dynamics starting from pure noise
can still yield reasonable samples.

One can view our approach as a variant of denoising
score matching in which the target density is given by a
mixture of q(ylyy,y) =N (¥ |7y, 1 — v) for different val-
ues of y, and y. Accordingly, the gradient of data log-den-
sity is given by

dlog ¢(y| o, ) _ _ﬂ—ﬁy() N

i -y - © 4

which is used as the regression target of our model.

2.5 SR3 Model Architecture and Noise Schedules
The SR3 architecture is similar to the U-Net in DDPM [1],
with self-attention and modifications adapted from [40]; i.e.,
we replace the original DDPM residual blocks with residual
blocks from BigGAN [41], and we re-scale skip connections
by L. We increase the number of residual blocks, and the
channel multipliers at different resolutions.

To condition the model on the input z, we up-sample the
low-resolution image to the target resolution using bicubic
interpolation. The result is concatenated with y, along the
channel dimension. We experimented with more sophisti-
cated methods of conditioning, including FILM [42], but
found that the simple concatenation yielded similar genera-
tion quality.

For our training noise schedule, we follow [33], and use a
piece-wise distribution for y, p(y) = Zthl +U(¥i_1,7:)- Spe-
cifically, during training, we first uniformly sample a time
step t ~{0,...,T} followed by sampling y ~ U(y,_1,v:)-
For all experiments we set T'= 2000, and the y, are uni-
formly spaced. Larger values of T' generally yield better
models, but model performance is relatively insensitive to
the exact values of these parameters, so we do no hyper-
parameter search during SR3 training.
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TABLE 1
Task Specific U-Net Architecture Parameters
Channel Depth ResNet
Task dim multipliers blocks #Params
162 — 1282 128 {1,2,4,8,8} 3 550M
642 — 2562 128 {1,2,4,4,8,8)} 3 625M
642 — 5122 64 {1,2,4,8,8, 16,16} 3 625M
2562 — 10242 16 {1,2,4,8,16,32,32,32} 2 150M

Channel dim is the dimension of the first layer, while the depth multipliers
apply to the subsequent resolutions.

For sample generation (or inference), early diffusion mod-
els [1], [40] required 1-2 K diffusion steps, making generation
slow, especially for high resolution images. For more effi-
cient generation we instead adapt recent techniques [33]. In
particular, by conditioning on y directly (versus ¢ in [1]), we
have some flexibility in choosing number of diffusion steps
and the noise schedule during sample generation. This
worked well for speech synthesis [33], but has not been
explored for images. In more detail, we set the maximum
generation budget (to 100 diffusion steps unless stated other-
wise), and assume a linear noise schedule, performing
hyper-parameter search over the start and end noise levels.
FID on held out data is used during the search to choose the
best noise schedule, as we found PSNR did not correlate well
with image quality. We also emphasize that this search is
inexpensive as it does not require model retraining [33].

Fig. 3 depicts the architecture used for both SR3 and our
regression baselines. This denoising U-Net takes as input a
noisy high resolution image and a low-resolution condition-
ing image that has been interpolatd and up-sampled to the
target resolution. Task dependent parameters are summa-
rized in Table 1. These architectures have more parameters
than many existing networks for image super-resolution,
motivated in part by other domains where performance
scales with model capacity and dataset size. As shown in
Section 4.5, even a simple Regression model with a large
architecture can perform surprisingly well.

3 RELATED WORK

SR3 is inspired by recent work on deep generative models
and recent learning-based approaches to super-resolution.

Generative Models. Autoregressive models (ARs) [43], [44]
can model exact data log likelihood, capturing rich distribu-
tions. However, their sequential generation of pixels is
expensive, limiting application to low-resolution images.
Normalizing flows [9], [10], [45] improve on sampling speed
while modelling the exact data likelihood, but the need for
invertible parameterized transformations with a tractable
Jacobian determinant limits their expressiveness. VAEs [7],
[46] offer fast sampling, but tend to underperform GANs
and ARs in image quality [8]. Generative Adversarial Net-
works (GANSs) [11] are popular for class conditional image
generation and super-resolution. Nevertheless, the inner-
outer loop optimization often requires tricks to stabilize
training [19], [20], and conditional tasks like super-resolu-
tion usually require an auxiliary consistency-based loss to
avoid mode collapse [16]. Cascades of GAN models have
been used to generate higher resolution images [47].



SAHARIA ETAL.: IMAGE SUPER-RESOLUTION VIA ITERATIVE REFINEMENT

Score matching [35] models the gradient of the data log-
density with respect to the image. Score matching on noisy
data, called denoising score matching [36], is equivalent to
training a denoising autoencoder, and to DDPMs [1].
Denoising score matching over multiple noise scales with
Langevin dynamics sampling from the learned score func-
tions has recently been shown to be effective for high qual-
ity unconditional image generation [1], [24]. These models
have also been generalized to continuous time [40]. Denois-
ing score matching and diffusion models have also found
success in shape generation [48], and speech synthesis [33].
We extend this method to super-resolution, with a simple
learning objective, a constant number of inference genera-
tion steps, and high quality generation.

Super-Resolution. Numerous super-resolution methods
have been proposed [16], [30], [31], [32], [49], [50], [51], [52],
[53]. Much of the early work on super-resolution is regres-
sion based and trained with an MSE loss [49], [52], [54], [55],
[56]. As such, they effectively estimate the posterior mean,
yielding blurry images when the posterior is multi-
modal [16], [17], [31]. Our regression baseline defined below
is also a one-step regression model trained with MSE (cf.
[52], [56]), but with a large U-Net architecture. SR3, by com-
parison, relies on a series of iterative refinement steps, each
of which is trained with a regression loss. This difference
permits our iterative approach to capture richer distribu-
tions. Further, rather than estimating the posterior mean,
SR3 generates samples from the target posterior.

Autoregressive models have been used successfully for
super-resolution and cascaded up-sampling [15], [18], [57],
[58]. Nevertheless, the expensive of inference limits their
applicability to low-resolution images. SR3 can generate
high-resolution images, e.g., 1024 x 1024, but with a constant
number of refinement steps (often no more than 100).

GAN-based super-resolution methods have also found
considerable success [12], [16], [17], [30], [31], [32], [59].
FSRGAN [14] and PULSE [17] in particular have demon-
strated high quality face super-resolution results. However,
many such GAN based methods are generally difficult to
optimize, and often require auxiliary objective functions to
ensure consistency with the low resolution inputs.

Normalizing flows have been used for super-resolution
with a multi-scale approach [32], [60]. They are competitive
with GAN models, and are capable of generating 1024 x1024
images due in part to their efficient inference process. SR3
uses a series of reverse diffusion steps to transform a Gauss-
ian distribution to an image distribution while flows require
a deep and invertible network.

4 EXPERIMENTS

We assess the effectiveness of SR3 in super-resolution on
faces, natural images, and synthetic images obtained from a
low-resolution generative model. The latter enables high-
resolution image synthesis using cascaded model.

4.1 Datasets

We follow previous work [17], training face super-resolution
models on Flickr-Faces-HQ (FFHQ) [61] and evaluating on
CelebA-HQ [12]. For natural image super-resolution, we train
on ImageNet 1K [62] and use the dev split for evaluation. We
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train unconditional face and class-conditional ImageNet gen-
erative models using DDPM on the same datasets discussed
above. For training and testing, we use low-resolution images
that are down-sampled using bicubic interpolation with anti-
aliasing enabled. For ImageNet, we discard images where the
shorter side is less than the target resolution. We use the larg-
est central crop like [41], which is then resized to the target res-
olution using area resampling as our high resolution image.

4.2 Training Details

We train SR3 and regression models for 1 M training steps,
with a batch size of 256; this typically takes about four days
on 64 TPUv3 chips. Given the large model capacity and
large datsets, the models often continue to improve well
beyond 1 M steps. We choose a checkpoint for the regres-
sion baseline based on peak-PSNR on the held out set. We
do not perform any checkpoint selection on SR3 models and
simply select the latest checkpoint. Consistent with [1], we
use the Adam optimizer with a linear warmup schedule
over 10 K training steps, followed by a fixed learning rate of
le-4 for SR3 models and 1e-5 for regression models. We use
a dropout rate of 0.2 for 16x16 — 128x128 models super-
resolution, but otherwise, we do not use dropout. We note
that the baseline regression models are trained with the
same architecture (see Section 2.5), and as shown below,
provide a strong baseline for comparison.

4.3 Evaluation
We evaluate SR3 models on face and natural images:

e Face super-resolution at 16 x 16— 128 x 128 and 64 x
64— 512x512 trained on FFHQ and evaluated on
CelebA-HQ.

e Natural image super-resolution at 64 x 64 — 256 x 256
and 56 x 56 — 224 x 224 pixels on ImageNet [62].

e Unconditional 1024x1024 face generation by a cas-
cade of 3 models, and class-conditional 256 x 256
ImageNet image generation by a cascade of 2 models.

We compare SR3 with EnhanceNet [31], ESRGAN [30],

SRFlow [32], FSRGAN [14] and PULSE [17]. We also com-
pare to a Regression baseline that shares the same architec-
ture and model capacity as SR3. Importantly, this enables
one to directly assess the advantages of iterative refinement
over a single step regression model, ablating the effects of
model size, architecture, and training data. Performance is
assessed qualitatively and quantitatively, using human eval-
uation, FID scores and the classification accuracy of a pre-
trained model on super-resolution outputs.

4.4 Qualitative Results

Fig. 4 compares SR3 and our Regression baseline for a 64 x 64
— 256x256 super-resolution task on a few ImageNet test
images. As both models share the same architecture, this pro-
vides an indication of the difference between diffusion mod-
els and MSE regresion. In particular, as is common with
regression models, the outputs are relatively blurry and lack
fine-grained structure. The differences are most apparent in
the enlarged patches in rows 2 and 4. In Fig. 5 we also show
the diversity of SR3 outputs on the task of 16x16 — 256 x256
super-resolution on two ImageNet test images. SR3 generates
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Bicubic (input)

Regression

Fig. 4. Super-resolution results (64x64 — 256x256) for SR3 and
Regression on ImageNet test images. Both models use the same archi-
tecture and training data. We display the full image and an enlarged
patch to show fine-grained details.

diverse looking high-resolution outputs for the given low-
resolution images.

Fig. 6 shows outputs of our face super-resolution models
(64x64 — 512x512) on three test images (provided by col-
leagues), again with selected patches enlarged. With the 8x
magnification factor one can clearly see the detailed struc-
ture inferred. Note that, because of the large magnification
factor, there are many plausible outputs, so we do not
expect the output to exactly match the original reference
image (e.g., most evident in the enlarged patches).

Further qualitative comparisons are shown in Fig. 7,
where SR3 is compared to SOTA GAN models [30], [31] and

Bicubic (input)

Output 1 Output 2 Output 3

Fig. 5. Three samples from SR3 applied to ImageNet test images
(16x16 — 256 x256), demonstrating SR3 diversity.
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Bicubic

Regression Original

R

b
3

—
l 9. s

Fig. 6. Results of a SR3 model (64x64 — 512x512), trained on FFHQ,
and applied to images outside of the training set.

a Normalizing Flow model [32]. While the GAN- and Flow-
based methods produce sharp details, they also tend to gen-
erate artifacts in regions with fine-grained texture (e.g., see
the face of the jaguar, and the structure of the dockyard). By
comparison, SR3 produces sharp images with plausible
details and minimal artifacts. As discussed above, while the
high resolution details are realistic, they are not expected to
perfectly match the original reference image.

4.5 Quantitative Evaluation

Table 2 shows the PSNR, SSIM [63] and Consistency scores
for 16x16 — 128x128 face super-resolution. SR3 outper-
forms PULSE and FSRGAN on PSNR and SSIM while under-
performing the regression baseline. Previous work [14], [15],
[26] observed that these conventional automated evaluation
measures do not correlate well with human perception when
the input resolution is low and the magnification factor is
large. This is not surprising because these metrics tend to
penalize any synthetic high-frequency detail that is not per-
fectly aligned with the target image. Since generating per-
fectly aligned high-frequency details, e.g., the exact same
hair strands in Fig. 6 and identical leopard spots in Fig. 7, is
almost impossible. Thus, PSNR and SSIM tend to prefer MSE
regression-based techniques which are conservative with
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EnhanceNet [31] ESRGANTJ30] SRFlow[32] Original

Fig. 7. SR3 and state-of-the-art methods on 4 x super-resolution (64x64 — 256x256) applied to ImageNet test images. The outputs of EnhanceNet
and ESRGAN are sharp, but include artifacts especially when inspecting enlarged patches. We found that ESRGAN trained on ImageNet-1 M pro-
duced similar artifacts. SR3 outputs seem to resemble the original images the most, but one can still find patches in the original images that contain
more interesting texture than in SR3 outputs.

high-frequency details. This is further confirmed in Table 3 4.5.1 Consistency With Low-Resolution Inputs
for ImageNet super-resolution (64x64 — 256x256) where 1t is important for super-resolution outputs to be consistent

the outputs of SR3 achieve higher sample quality scores (FID  with low-resolution inputs. To measure this consistency, we
and IS), but worse PSNR and SSIM than regression. compute MSE between the downsampled outputs and the
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TABLE 2
PSNR & SSIM on 16x16 — 128128 Face Super-Resolution
Metric PULSE [17] FSRGAN [14] Regression SR3
PSNR 1 16.88 23.01 23.96  23.04
SSIM 1 0.44 0.62 0.69 0.65
Consistency | 161.1 33.8 2.71 2.68

Consistency measures MSE (x107°) between the low-resolution inputs and
the down-sampled super-resolution outputs. SR3 outperforms GAN baselines
in all metrics, especially improving consistency by a big margin.

low-resolution inputs. Table 2 shows that SR3 achieves the
best consistency error beating PULSE and FSRGAN by a
significant margin, even slightly outperforming the regres-
sion baseline. This result demonstrates the key advantage of
SR3 over the state-of-the-art GAN based methods. In fact,
SR3 does not require any auxiliary objective function in
order to ensure consistency with the low-resolution inputs.

4.5.2 Classification Accuracy on Super-Resolution
Outputs

Table 4 compares the outputs of 4x natural image super-
resolution models on object classification accuracy. Follow-
ing [31], [64] we apply 4x super-resolution models to 56 x56
center crops from the validation set of ImageNet. Then, we
report classification accuracy of a pre-trained ResNet-
50 [65] model. Since SR3 models are trained on the task of
64x64 — 256x256, we use bicubic interpolation to resize
56 x56 inputs to 64 x64, and then apply 4 x super-resolution,
followed by resizing to 224x224. We note that while SR3
and Regression were trained on ImageNet data (without
labels), the remaining baselines in Table 4 were not.

SR3 outperforms existing methods by a significant mar-
gin on both top-1 and top-5 classification errors, suggesting
higher perceptual quality. The strong performance of the
Regression model can be attributed to the model capacity
and architecture, and in part because it was trained on
ImageNet data. The improvement of SR3 over Regression
can be viewed as a direct indication of the power of the dif-
fusion framework and iterative refinement, as both models
use the same architecture. These results also reaffirm the
limits of conventional reference-based metrics in super-res-
olution, like PSNR and SSIM, for which the baseline Regres-
sion model exhibits higher performance.

4.5.3 Human Evaluation (2AFC)

Direct human evaluation is one of the most desirable met-
rics for evaluating super-resolution models. While mean
opinion score (MOS) is commonly used to measure image

TABLE 3
Performance Comparison Between SR3 and Regression
Baseline on Natural Image Super-Resolution Using Standard
Metrics Computed on the ImageNet Validation Set

Model FID | IS7 PSNR 1 SSIM 1
Reference 1.9 240.8 - -
Regression 15.2 121.1 279 0.801
SR3 5.2 180.1 26.4 0.762
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TABLE 4
Comparison of ResNet-50 Classification Accuracy
on 4x Super-Resolution Outputs of the First 1 K Images
From the ImageNet Validation Set

Method Top-1 Accuracy Top-5 Accuracy
Baseline 0.748 0.920
DRCN [50] 0.523 0.758
PsyCo [66] 0.546 0.776
ENet-E [31] 0.551 0.786
FSRCNN [67] 0.563 0.804
RCAN [64] 0.607 0.833
DRLN [68] 0.655 0.879
Regression 0.617 0.827
SR3 0.683 0.880

Note: These existing baselines have not been trained on ImageNet.

quality in this context, forced choice pairwise comparison
has been found to be a more reliable method for such sub-
jective quality assessments [69]. Furthermore, standard
MOS studies do not capture consistency between low-reso-
lution inputs and high-resolution outputs.

We use a 2-alternative forced-choice (2AFC) paradigm to
measure how well humans can discriminate true images
from those generated from a model. In Task-1 subjects were
shown a low resolution input in between two high-resolu-
tion images, one being the real image (ground truth), and
the other generated from the model. Subjects were asked
“Which of the two images is a better high quality version of the
low resolution image in the middle?” This task takes into
account both image quality and consistency with the low
resolution input. Task-2 is similar to Task-1, except that the
low-resolution image was not shown, so subjects only had
to select the image that was more photo-realistic. They were
asked “Which image would you guess is from a camera?” Sub-
jects viewed images for 3 seconds before responding. The
source code for human evaluation can be found here.'

The subject fool rate is the fraction of trials on which a sub-
ject selects the model output over ground truth. Our fool rates
for each model are based on 50 subjects, each of whom were
shown 50 of the 100 images in the test set. Fig. 9 shows the fool
rates for Task-1 (top), and for Task-2 (bottom). In both experi-
ments, the fool rate of SR3 is close to 50%, indicating that SR3
produces images that are both photo-realistic and faithful to
the low-resolution inputs. We find similar fool rates over a
wide range of viewing durations up to 12 seconds.

The fool rates for FSRGAN and PULSE in Task-1 are
lower than the Regression baseline and SR3. The strength of
SR3 over the Regression model reflects the benefits of itera-
tive refinement in the diffusion model, since both models
share the same architecture. We speculate that the PULSE
optimization has failed to converge to high resolution
images sufficiently close to the inputs. Indeed, when asked
solely about image quality in Task-2 (Fig. 9 (bottom)), the
PULSE fool rate increases significantly.

The fool rate for the Regression baseline is lower in Task-
2 (Fig. 9 (bottom)) than Task-1. The regression model tends
to generate images that are blurry, but nevertheless faithful

1. https:/ /tinyurl.com/sr3-human-eval-code


https://tinyurl.com/sr3-human-eval-code

SAHARIA ET AL.: IMAGE SUPER-RESOLUTION VIA ITERATIVE REFINEMENT

Bicubic FSRGAN [14]

PULSE [17]
Y

4721

Regression

Fig. 8. Comparison on 4 x face super-resolution (16x16 — 128x128). Reference images are removed for privacy concerns.

to the low resolution input. We speculate that in Task-1,
given the inputs, subjects are influenced by consistency,
while in Task-2, ignoring consistency, they instead focus on
image sharpness. SR3 and Regression samples used for
human evaluation are provided here?.

The results of a similar study with natural images, com-
paring SR3 with Regression, GAN-based models [30], [31]
and a Flow-based model [32] on a subset of the ImageNet
validation set are shown in Fig. 10. In this study images
were displayed for 6 seconds and the input images were not
displayed (i.e., Task-2). We used somewhat longer display
times because natural images are more complex and clut-
tered than the face images. We did not show the input
image because inconsistency between inputs and model
outputs did not appear to be problematic with the baselines
used. From Fig. 10 one can see that SR3 outperforms base-
lines by a substantial margin, suggesting higher perceptual
quality. The regression model is significantly weaker in this
case, which we attribute to the longer viewing time which
makes it easier to discern the image blur.

To further appreciate the experimental results, it is useful
to visually compare outputs of different models on the same
inputs, as in Fig. 8. FSRGAN exhibits distortion in face
region and struggles with generating glasses properly (e.g.,
top row). It also fails to recover texture details in the hair
region (see bottom row). PULSE often produces images that

2. https:/ /tinyurl.com/sr3-outputs

differ significantly from the input image, both in the shape
of the face and the background, and sometimes in gender
too (see bottom row) presumably due to failure of the opti-
mization to find a sufficiently good minima. As noted
above, our Regression baseline produces results consistent
to the input, however they are typically quite blurry. By
comparison, the SR3 results are consistent with the input
and contain more detailed image structure.

In addition to the aggregate fool rate results in Fig. 9, it is
also interesting to inspect images that attain highest and
lowest fool rates for a given technique. This provides insight
into the nature of the problems that models exhibit, as well
as cases in which the model outputs are good enough to reg-
ularly confuse people.

Fig. 11 displays the outputs of PULSE [17] and SR3 with
the lowest and highest fool rates for Task-1 (the conditional
task). Notice that images from PULSE for which the fool
rate is low have obvious distortions, and the fool rates are
lower than 10%. For SR3, by comparison, the images with
the lowest fool rates are still reasonably good, with much
higher fool rates of 14% and 19%. It is interesting to see that
the best fool rates for SR3 on Task-1 are 84% and 88%. The
corresponding original images for these examples are some-
what noisy, and as a consequence, interestingly, many sub-
jects prefer the SR3 outputs.

4.6 Generation Speed
As discussed in Section 2.5, diffusion models typically
require a large number of refinement steps during sample


https://tinyurl.com/sr3-outputs

4722

Fool rates (3 sec display w/ inputs, 16 x 16 — 128 x 128)

FSRGAN-— 8.9%

PULSE

l |

Regression 29.3%
0 10 20 30 40 50 60 70

Fool rates (3 sec display w/o inputs, 16 x16 — 128 x 128)

FSRGAN 8.5%

PULSE .

Regression 15.3%

10 20 30 40 50 60 70

o

Fig. 9. Face super-resolution human fool rates (higher is better, for
photo-realistic samples one would expect a fool rate close to 50%). Out-
puts of four models are compared to ground truth. (top) Task-1, subjects
are shown low-resolution inputs. (bottom) Task-2, inputs are not shown.

generation, and are therefore expensive compared to GANSs.
For more efficient inference, given a generation budget,
SR3 determines the noise schedule using hyper-parameter
search. Fig. 12 shows the resulting trade-off between image
quality (FID) and efficiency (number of diffusion steps) for
a 64x64 — 256x256 models trained on ImageNet. FID is
computed on model outputs for the entire ImageNet valida-
tion set, using the original validation set as the reference
distribution. Fig. 12 also compares to a baseline Regression
model (one-step generation). One can see that with just 4
refinement steps SR3 yields a significant drop in FID com-
pared to the single step regression baseline. In practice,
each refinement step takes about 1 ms.

4.7 Cascaded High-Resolution Image Synthesis
We also study cascaded image generation, where SR3 models
at different scales are chained together with generative mod-
els, enabling high-resolution image synthesis. Cascaded gen-
eration allows one to train different models in parallel, and
each model in the cascade solves a simpler task, requiring
fewer parameters and less computation for training. Infer-
ence with cascaded models is also more efficient, especially
for iterative refinement models. With cascaded generation
we found it effective to use more refinement steps at low-res-
olutions, and fewer steps at higher resolutions. This was
much more efficient than generating directly at high resolu-
tion without sacrificing image quality.

For cascaded face generation, as depicted in Fig. 14, we
train a DDPM [1] model for unconditional 64x64 face
images. Samples from this low-dimensional model are then

Fool rates (6 sec display w/o inputs, 64 x 64 — 256 x 256)

EnhanceNet_ 24.7%
s R -+~
SRFlow a—
Regression' 3.2%

0 10 20 30 40 50 60 70

Fig. 10. ImageNet super-resolution fool rates. Model outputs are com-
pared to ground truth with pair of images shown for 6 seconds.
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Worst Fool Rates for PULSE
Input

Worst Fool Rates for SR3
SR3

Input

Pul_se

A

Fool Rate: 18.6%

Best Fool Rates for SR3
SR3

Fool Rate: 2.2%

Best Fool Rates for PULSE

Input Pulse Input

Fool Rate: 63.4% Fool Rate: 83.7%

Fig. 11. Test cases with lowest and highest Fool rates for PULSE and
SR3 in Task-1 (which compares models outputs to reference images, in
the presence of low-resolution inputs). For privacy reasons, reference
images are not shown.

fed to two 4x SR3 models, up-sampling to 256 %256 and
then to 1024 x 1024 pixels. A small set of synthetic high-reso-
lution face samples is shown in Fig. 13.

We also trained a set of Improved DDPM [70] models on
class-conditional 64 x 64 ImageNet data. Samples from these
class-conditional models are then passed to a 4x SR3 model
to produce 256 x256 natural images. We note that the 4x
SR3 model is not conditioned on the class label. Fig. 15
shows four samples for each of six classes. Fig. 16 shows a
selected set of samples many different classes.

121A

—A— Regression |
—- SR3

6 [ —

2 | H\.\.\-\- |

1 4 8 16 25 100 1000
Inference Steps

FID

=
T

Fig. 12. FID score versus number of inference steps for 64x64 —
256x256 super-resolution. Regression (red) requires one step. All SR3
results (blue) are generated from the same denoising model but different
inference noise schedules.
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Fig. 13. Synthetic 1024 x 1024 faces, sampled from an unconditional 64 x 64 model, followed by two 4x SR3 models.

As a way to quantitatively evaluate sample quality,
Table 5 reports FID scores for the resulting class-conditional
ImageNet samples. Our 2-stage model improves on VQ-
VAE-2 [71], is comparable to deep BigGANSs [41] at trunca-
tion factor of 1.5 but underperforms them a truncation fac-
tor of 1.0. Unlike BigGAN, our diffusion models do not
provide control of sample quality versus sample diversity;
this remains an interesting avenue for future research.
Nichol and Dhariwal [70] concurrently trained cascaded
generation models using super-resolution conditioned on
class labels (SR3 is not conditioned on class labels), and also
observed a similar trend with improved FID scores. The
effectiveness of cascaded image generation indicates that
SR3 models are robust to the precise distribution of inputs
(i.e., the specific form of anti-aliasing and downsampling).

4.8 Ablation Studies on Cascaded Models

Table 6 reports results of ablations on a 64 x64 — 256 x 256
Imagenet SR3 model. First, to improve SR3 robustness, we
experiment with data augmentation during training. That
is, we trained SR3 with varying amounts of Gaussian Blur-
ring noise added to the low resolution input image. No blur-
ring is applied during inference. We find that this has a

(256 x 256)

(1024 x 1024)

(64 % 64)

Fig. 14. Cascaded generation with an unconditional model chained with
two SR3 models.

significant impact, improving the FID score roughly by 2
points. In addition to their efficiency, our initial cascade
experiments gave lower FID scores than full resolution

Fig. 15. Class-conditional 256 x256 ImageNet samples. Each row repre-
sents samples from a specific ImageNet class, from top to bottom: Gold-
fish, Red Fox, Balloon, Monarch Butterfly, Church, Fire Truck. For a
given label, we sample a 64 x64 image from a class-conditional diffusion
model, and then apply a 4x SR3 model.
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Fig. 16. Synthetic 256x256 ImageNet images. We draw a label at ran-
dom, sample a 64x64 image from the corresponding class-conditional
diffusion model, and then apply a 4 x SR3 model.

models trained directly, which has been confirmed in more
recent work [72].

We also explore the choice of L, norm for the denoising
objective (6). We find that L; norm gives slightly better FID
scores than L,. However, subsequent work shows that L,
tends to generate greater diversity in SR3 outputs [34].

5 DiscusSION AND CONCLUSION

SR3 leverages conditional diffusion models to address sin-
gle image super-resolution. It initializes the output image
with random Gaussian noise iteratively refines the condi-
tioned on the low resolution input. We find that SR3 works
well on natural images and faces images, with a wide range
of magnification factors, or as part of a cascading pipeline to
generate high resolution images. SR3 models outperform
several GAN and Normalizing Flow baselines. Human
studies, in which subjects are asked to discriminate model
outputs from real images, yield SR3 fool rates close to 50%
on faces and 40% on natural images, which indicates that
SR3 produces high fidelity outputs. The success of SR3 is in
part a function of large model capacity and the use of large
training datasets, motivating further exploration of scaling
in future super-resolution work.

TABLE 5
FID Scores for Class-Conditional, 256 x 256 ImageNet
Generation
Model FID-50 k
Prior Work
VQ-VAE-2 [71] 38.1
BigGAN (Truncation 1.0) [41] 7.4
BigGAN (Truncation 1.5) [41] 11.8
Our Work
SR3 (Two Stage) 11.3
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TABLE 6

Ablations on SRS for Class-Conditional 256 x256 ImageNet
Model FID-50 k
Training with Augmentation

SR3 13.1

SR3 (w/ Gaussian Blur) 11.3
Objective L, Norm

SR3 (L) 11.8

SR3 (L) 11.3

Augmenting input images with Gaussian blur improves SR3 performance, and
L, loss outperforms L.

One practical issue with diffusion models is the computa-
tion cost of many refinement steps during inference. Our
results indicate that one can trade sample quality for genera-
tion speed and achieve decent results in just 4 refinement
steps. That said, recent and concurrent work proposes alter-
native approaches that can result in higher quality fast sam-
plers for diffusion models [73], [74], [75], [76]. We further note
that the use of self-attention, while powerful, also constrains
the output dimension of our model; this will be addressed in
future versions of SR3.

Finally, bias is an important issue with all generative
models, including SR3. While in theory, our log-likelihood
based objective is mode covering (e.g., unlike some GAN-
based objectives), we do observe some indication of mode
drop in SR3 outputs, e.g., the model consistently generates
nearly the same image output during sampling (when con-
ditioned on the same input). We also observe that the model
generates very continuous skin texture in face super-resolu-
tion, dropping moles, pimples and piercings found in the
reference image. We note that SR3 should be used in super-
resolution products after further studies of its potential
biases. Nevertheless, diffusion models like SR3 can be use-
ful in reducing dataset bias by generating synthetic data
from underrepresented groups.
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