
Received February 18, 2022, accepted February 24, 2022, date of publication March 2, 2022, date of current version March 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3155810

Designing a New XTS-AES Parallel Optimization
Implementation Technique for Fast
File Encryption
SANGWOO AN AND SEOG CHUNG SEO , (Member, IEEE)
Department of Financial Information Security, Kookmin University, Seoul 02707, South Korea

Corresponding author: Seog Chung Seo (scseo@kookmin.ac.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the
Korean Government [Ministry of Science and ICT (MSIT)] through the Development of Fast Design and Implementation of Cryptographic
Algorithms Based on Graphic Processing Unit/Application-Specific Integrated Circuit (GPU/ASIC) under Grant 2021-0-00540.

ABSTRACT XTS-AES is a disk encryption mode of operation that uses the block cipher AES. Several
studies have been conducted to improve the encryption speed using XTS-AES according to the increasing
disk size. Among them, there are researches on parallel encryption of XTS-AES using GPU. Although
these studies focus on parallel encryption of AES, optimization for the entire XTS mode has not been
performed. The reason is that the αj computation process included in XTS mode is not suitable for parallel
operation. Therefore, in this paper, we proposed several techniques for high-speed encryption in GPU by
modifying XTS-AES into a form that is advantageous for parallel operation. The core idea is to pre-calculate
the αj calculation on the CPU into a form that is easy to operate on the GPU. To achieve this goal,
we analyzed the αj calculation process and present the parts that can be optimized. First, we presented
a method that can replace multiple operations with a single table reference through the analyzed αj

computation progress. Thereafter, we proposed a method that can be calculated by partially skipping the
entire αj computation process that must be sequentially calculated through the table reference technique.
For the proposed optimization implementation, we presented various results for evaluating the optimal
implementation. In addition, we compared the performance of XTS-AES OpenSSL implementation on CPU
and our proposed optimization implementation on GPU.

INDEX TERMS XTS, AES, GPU, CUDA, software optimization, disk encryption, full disk encryption.

I. INTRODUCTION
Various security systems and cryptographic algorithms have
been developed to protect user information. Disk encryp-
tion [1] is a type of technology that encrypts a computer’s
hard disk to prevent information leakage caused by theft or
loss. Representatively, Bitlocker [2] on Windows performs a
Full-Disk Encryption (FDE) function that encrypts the entire
disk partition with one key. In addition, various disk encryp-
tion software, such as Veracrypt and Truecrypt, have been
used in this area.

A common disk encryption method is the XTS operating
mode using the block cipher algorithm AES [3]. XTS mode
is a tweakable encryption method. The tweakable encryption
method uses the sector address of the block in the sector

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Ching Ying .

and the tweak value, which is a combination of the index,
which has the advantage of having different cryptographic
statements depending on the location of the file.

Since the size of the disk increases, optimization of
XTS-AES is required to effectively perform disk encryption.
In XTS-AES, since the encryption process for each plain-
text block is performed independently, a parallel computing
device such as a GPU can be utilized. However, in the XTS
mode, not only the AES encryption process but also the cal-
culation process for the tweak value required for encryption is
included. In XTS mode, the plaintext is encrypted according
to the α defined in the Galois field. Depending on the total
number j of plaintext blocks, α is raised to a power of j, and
encryption is performed using αi in each i-th block.

Various optimization studies have been conducted on
XTS-AES so far for fast file encryption. Although these
studies contributed to the fast encryption of multiple plaintext

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 25349

https://orcid.org/0000-0003-1683-3720
https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0002-9549-5290


S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

blocks by computing AES in parallel, they still have not
proposed an optimization technique for the XTS mode itself.
This is because the αj computation process included in the
XTS mode is not suitable for parallel operation. Since the αj

computation is operated while reading one most significant
bit(msb), it is a sequential structure in which the next αi+1

operation cannot be performed before the previous αi opera-
tion is finished.

Therefore, in this paper, we have introduced a technique
that can optimize the entire XTS mode by utilizing GPU.
We have proposed a method to optimize the αj calcula-
tion process using a lookup table and intermediate values.
This method is a new technique that goes through the
pre-processing process on the CPU to efficiently perform
operations on the GPU. Additionally, we have presented an
efficient implementation technique that can parallelly com-
pute AES block cipher algorithms used in XTS mode. The
major contribution of this paper is to provide new insight
regarding:

• First entire XTS mode optimization implementation
In this paper, we have introduced an optimization tech-
nique for XTS-AES. However, this technique does
not simply suggest a parallel encryption optimization
method for AES. We have changed the operation struc-
ture of XTS mode, which is not suitable for parallel
operation, to make it suitable for parallel operation,
so that the entire XTS-AES process can be operated in
parallel.

• State-of-the-Art implementation for XTS-AES
The optimization implementation proposed in this
paper showed the best computational performance than
before. We could confirm that these results repre-
sent 240.1 times faster performance than the Naive
CPU version and 21.96 times better performance
than XTS-AES implemented in parallel with Naive
GPU. This result was also 12.23(XTS-AES-128) and
14.64(XTS-AES-256) times faster than the most recent
work on XTS-AES in OpenSSL.

• Foundation technique available in various fields
We have proposed a fundamental optimization method
for XTS-AES, and it can be utilized in various fields of
research using XTS-AES. In addition to disk encryption,
this optimization technique can be used for memory
encryption using memory addresses, and can also be
applied to encrypt data on the network ormobile devices.

This paper is organized as follows: Section II intro-
duces optimization research papers conducted on existing
XTS-AES. Section III looks at the structure and encryption
procedures for XTS-AES. Section IV describes the optimiza-
tion technique for XTS-AES that we intend to propose in this
paper. Section V presents the implementation performance
results for the optimization technique proposed in this paper
and compares them with the results of the existing XTS-AES
optimization study. Finally, we present significance for the
findings of this paper in Section VI.

II. RELATED WORKS
Researches that optimize the AES encryption process on
GPUs have still being studied. Recently, various optimization
methods and results of AES using GPUs have been presented
in [4], [5] and [6].

However, not much research has been done on XTS mode
yet. In [7] and [8], a method for parallel encryption of
XTS mode using OpenMP [9] has been proposed. [8] have
conducted the idea that multiple threads can encrypt blocks
in parallel by utilizing the part that each plaintext can be
encrypted independently like in CTR mode. [10] have pre-
sented several optimized techniques of XTS-AES that utilizes
up to 32 processors simultaneously to rapidly encrypt large
amounts of data in parallel using MPI [11]. In [12], A frame-
work that can be utilized in mobile devices by speeding
up XTS mode to GPU has been proposed. The proposed
system was implemented in the form of a software module
that performs parallel encryption for each 512-byte sector
data. In the case of the hardware environment, studies on
some XTS modes have been performed on FPGA. In [13],
[14] and [15], various implementation techniques have been
proposed to efficiently encrypt XTS-AES on FPGA.

Apart from research, XTS-AES has been provided by
OpenSSL [16], an open-source implementation of TLS
and SSL.

III. BACKGROUND FOR XTS-AES
A. NOTATION
Table 1 summarizes the parameters for understanding
XTS-AES.

B. XTS MODE
XTS [1] mode is a type of operation mode that operates block
ciphers such as ECB, CBC, and CTR modes. XTS mode is
a type of tweakable cipher specialized for encrypting block-
oriented data, which was standardized by IEEE in 2007. XTS
mode has been used in various disk encryption technologies
so far, with the advantage of preventing vulnerabilities to
existing CBC and XEXmodes. The operating structure of the
XTS mode is shown in Figure 1.

The encryption process via XTSmode is as follows. A total
of two different keys are used in XTS mode. First of all, the
tweak value is encrypted by the first key. This encrypted result
is shared by all plaintext blocks with the same value. The
encrypted tweak value is then multiplied by the αi according
to the number i of each block. The multiplied values are
different for each block and are utilized for a total of two
XOR operations. The first XOR is performed with plaintext.
The second XOR is performed on the result of encrypting the
first XORed value with the second key.

The big difference between XTS mode and other block
cipher operating modes is the multiplication operation with
αj. The multiplication computation process with αj is illus-
trated in detail in Figure 2. The first α0 value uses the tweak
value encrypted with the first key. Alpha values are stored in
the form of polynomials in the Galois field (2128) from the

25350 VOLUME 10, 2022



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

TABLE 1. XTS-AES parameters.

FIGURE 1. Basic structure of XTS-AES.

top byte αi[15] to the bottom αi[0] and calculates αj by mul-
tiplying α repeatedly at each step. The multiplication of every
α is taken twice the total value by shifting all bits one by one
to the left, and if the existing top bit is 1, then 135 is XORed
at the bottom. That is, to perform one α multiplication, a total
of 16 left shifts and 15 or 16 XORs are required (15 times
when the most significant bit(msb) is 0, 16 times when the
msb is 1).

C. AES
AES [3] is one of the well-known standard block ciphers
and is still used in various fields. AES is divided into three
main types, depending on the size of the key, and XTS mode
uses only two types. The AES-128, which uses 128-bit keys,
uses a total of 256-bit keys because two different keys are
required in XTS mode. The AES-256, which uses 256-bit
keys, uses a total of 512-bit keys in XTS mode. The encryp-
tion process for one round of AES can be seen in Figure 3.
The AES block cipher algorithm is based on the Substitution-
Permutation Network(SPN) structure. Each round consists
of SubBytes, ShiftRows, MixColumns, and AddRoundKey.
SubBytes is a non-linear permutation function. ShiftRows
is a function that performs a cyclic rotation on the state.
MixColumns is a matrix multiplication operation that takes
x8+x4+x3+x+1 as a reducing polynomial on a Galois field
(28). AddRoundKey is a function that XORs the expanded

round key with the state. The number of rounds according
to the key length is 10(AES-128) and 14(AES-256) rounds.
The one-round process of AES can be integrated and saved
as a 32-bit version of the table. It is called T-table [17].
Using T-table, encryption can be performed by referring to the
T-table value 16 times in one round. The principle of T-table
creation and usage for encryption is as follows. si,j means the
j-th word of the state in i-th round.

T0[x] =


Sbox[x] ∗ 02
Sbox[x]
Sbox[x]

Sbox[x] ∗ 03

T1[x] =


Sbox[x] ∗ 03
Sbox[x] ∗ 02
Sbox[x]
Sbox[x]



T2[x] =


Sbox[x]

Sbox[x] ∗ 03
Sbox[x] ∗ 02
Sbox[x]

T3[x] =


Sbox[x]
Sbox[x]

Sbox[x] ∗ 03
Sbox[x] ∗ 02


si+1 = T0[si,j0 ]⊕ T1[si,j1 ]⊕ T2[si,j2 ]⊕ T3[si,j3 ]

D. GPU
GPU is a device developed to handle graphical oper-
ations. Recently, lots of General-Purpose computing on
GPU(GPGPU) techniques that can utilize GPUs for general
operations by utilizing Nvidia’s CUDA [18] library have been
used. The advantage of GPUs is that they can handle multiple
operations in parallel.
GPU consists of multiple blocks on a grid, and each block

is composed of multiple threads. In NVIDIA GPU, the max-
imum number of threads that each block can utilize is 1024,
but since there are limited resources per block, it is necessary
to adjust the number of threads while considering thememory
such as registers used by one thread.
Many cryptographic algorithms perform operations using

not only basic bit-wise operations but also lookup tables.
Since various types of memory exist in GPU, the performance
difference greatly increases depending on which memory
the reference table is stored and used. The overall memory
structure of the GPU can be shown in Figure 4.
If the reference table is stored and used in the global

memory that is not mounted on the GPU chip, which can
be accessed by all threads, the load speed of the global
memory is very slow, so it can show significantly slower
performance compared to other memories. In the case of
shared memory, since it is mounted on a chip, it has the
advantage of being faster than the global memory and has
the characteristic that it can be shared and used by threads
within the same block. However, the shared memory has a
limited size, and there is a disadvantage in that a bank conflict
problem occurs when a plurality of threads access the same
shared memory bank may occur. Registers show the fastest
memory speed, but since the register size that a thread can
utilize is greatly limited, efficient register design and use are
required. Separately, the constant memory of the GPU has a
slow memory access speed, but since frequently used values
can be cached and used, it has a characteristic that it can show
a memory access speed comparable to a register. Therefore,

VOLUME 10, 2022 25351



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

FIGURE 2. αj computation process.

FIGURE 3. AES round encryption process.

FIGURE 4. GPU memory structure.

when using memory in GPU, it is important to avoid using
global memory but to create the best reference environment
by properly distributing shared memory, constant memory,
and registers.

IV. XTS-AES OPTIMIZATION
IMPLEMENTATION TECHNIQUES
A. PROBLEM
In XTS mode, each plaintext block can be encrypted inde-
pendently, as in CTR mode. But the XORed values in each

plain block are all different depending on the sector number
of the block. If the plaintext block is up to the j-th, the XTS
mode requires the sequential computation of the multiplica-
tion operations of 1 to j power of α for the tweak value to
be encrypted. The problem is that the larger the size of the
data you want to encrypt, the larger the j, the greater the load
of the j-th power operation of α. For example, if we encrypt
data in size 1 GB, each plain block has a size of 16 bytes,
so j assigns a number from 1 to 67,108,864 to each plain
block. This method of computation needs to be improved
because the capacity of the storage devices used by the user
has increased significantly compared to the past. Therefore,
in this paper, we introduce an optimization technique that can
parallelly speed up the sequentially processed operations for
efficient XTS-AES encryption on large data.

B. MAIN IDEA
Our main idea is a technique that uses intermediate values for
parallel processing of the j-th power operations of α, which
are computed sequentially. Rather than multiplying α one by
one, we present a method that allows the index to be calcu-
lated by skipping a certain interval, such as α to the 8th and
128th. With this calculation of the intermediate value on the
CPU, the remaining intervals that have been skipped can be
calculated in parallel through the GPU. Figure 5 summarizes
our main idea.

C. LOOKUP TABLE
During the power operation of α, whole 128-bits data are
shifted to the left by 1 bit each time α is multiplied, and 135 is
XORed or not at the bottom of the data according to the msb.
135 is 8-bit data expressed in binary as 10000111(2). While
considering the msb one by one, we decided to calculate the
final XORed value by considering the top 8 bits at once rather
than deciding whether to XOR at 135 or not. This is possible
because XOR values at the bottom of the data do not affect the
Most Significant Byte(MSB). For example, suppose the top
8 bits of data were 11111111(2). If we operate the 8th power

25352 VOLUME 10, 2022



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

FIGURE 5. Summary of XTS-AES optimization techniques (with α128 calculation process).

of α, XOR 135 and 1-bit shift to the left will be repeated a
total of eight times. The first XOR 135 will finally be a 7-bit
left shift, and the second XOR 135 will be a 6-bit left shift.
The final results for a total of 8 bits are shown in Figure 6.

This XORed value depends only on msb, regardless of the
lowest value of the data. Therefore, we can make a table
of 256 results for the values 00000000(2) to 11111111(2) that
the highest 8-bit can have. Results for 8-bit inputs can be
found in Table 2.

D. INTERMEDIATE VALUE
The use of tables reduces the operation of the 8th power of α
to a single table lookup. In this case, the entire data needs to
perform an 8-bit left shift, but since 8 bits is a single byte, it is
only necessary to increase the byte index of the data one by
one without having to shift. Using this, we can compute the
next 128 bits, that is, to the 128th power of α, using a table of
all 16 bytes of data. Figure 7 shows the process of referencing
the MSB data to a table and then XORing it to the least
significant 2-byte. Figure 8 shows the process of referencing
each byte of 16-byte data to a table and then XORing it to its
location, considering the shift.

The primitive operation of repeated multiplication of α
can be found in Algorithm 1. For an αi of 128-bits, each
operation is performed as follows: The value of the αi+1 is
doubled for mod2128 from αi. In implementation, this can be
implemented by shifting left by one bit. After that, the most
significant bit of the alpha is checked, and if it is 1, the result
of XORing 135 becomes the final αi+1 result.
The optimized operation that shortens the time to multiply

the α one by one can be found in Algorithm 2 and 3. The
difference from the Algorithm 1 is that αi+8 or αi+128 can be
directly calculated through αi instead of αi+1.

In the case of Algorithm 2, αi+8 is the result of multiplying
α from αi 8 times, so 2 is multiplied 8 times. Alpha is data
composed of 16 bytes. Therefore, in byte representation, there
is no need to multiply by 28, just move the positions of the

FIGURE 6. Value that is finally XORed at the bottom of the data when the
top 8 bits were 11111111(2).

FIGURE 7. α8 calculation process using lookup table.

byte data array one by one. In Figure 7, it can be seen that
byte data moves to the next byte position. The process of
performing XOR 135 while reading the most significant bit 8
times is converted into a single table reference. The most
significant byte goes into table T (Table 2) and comes out as
a 16-bit result, which is XORed on the result.

VOLUME 10, 2022 25353



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

TABLE 2. Table of hexadecimal result values to be XORed by 16 bits according to top 8-bit input.

FIGURE 8. α128 calculation process using lookup table.

In Algorithm 3, all 16 byte values constituting alpha go
through table reference. The result values of each byte of data
entered into the reference table must be XORed according
to their byte positions. This is why the result values of each
table are XORed as shown in Figure 8. However, since the
most significant byte data performing table reference outputs
a 16-bit table result value, an 8-bit carry occurs, and it must
be XORed to the result value by putting it in the reference
table once more.

E. PARALLEL OPERATION IN GPU
By changing the operation process for alpha into a form that is
easy for parallel operation and transferring it to the GPU, the
GPU can perform the powering operation on alpha in parallel
and then independently encrypt each plaintext block. Inside
the GPU, encryption proceeds in two stages. The first is the
process of generating tweak values for all blocks from α0 to

Algorithm 1 Primitive Operation of Repeated Multiplication
of α
Input: 128-bits data αi

Output: 128-bits data αi+1

1: αi+1 = (2 × αi) mod 2128

2: if Most Significant Bit of αi is 1 then
3: αi+1 = αi+1 ⊕ 135
4: end if

Algorithm 2 Optimized Operation of Repeated Multiplica-
tion of α8

Input: 128-bits data αi F T = Alpha Table(Table 2)
Output: 128-bits data αi+8

1: αi+8 = (28 × αi) mod 2128

2: n =Most Significant Byte of αi

3: αi+8 = αi+8 ⊕ T [n]

αj−1 using the received α0, α128, α256, . . . , αj−128, and the
second is the process of encrypting the plaintext using the
tweak values.

F. PARALLEL ENCRYPTION PROCESS
Each GPU thread performs encryption using one tweak value
and a plaintext block. In XTS mode, the tweak value is
XORed with the data before and after the encryption pro-
cess. Therefore, plaintext should be stored in GPU memory.
To encrypt the plaintext after XORing it with the tweak value
inside the GPU, it is necessary to copy the plaintext data
from the CPU to the GPU in advance. We use CUDA streams
to reduce the memory copy time between CPU and GPU.
By dividing data by the number of streams, each stream
can perform memory copy and operation asynchronously.
We leveraged 32 CUDA streams to maximize the pipe-lining
effect of encryption and memory copy. 32 is the maximum

25354 VOLUME 10, 2022



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

Algorithm 3 Optimized Operation of Repeated Multiplica-
tion of α128

Input: 128-bits data αi F T = Alpha Table(Table 2)
Output: 128-bits data αi+128

1: for j = 0→ 14 do
2: n = j-th Least Significant Byte of αi

3: αi+128 = αi+128 ⊕ T [n] · 28j

4: end for
5: n = 15-th Least Significant Byte of αi

6: nm =Most Significant Byte of T [n]
7: nl = Least Significant Byte of T [n]
8: αi+128 = αi+128 ⊕ nl · 2120

9: αi+128 = αi+128 ⊕ T [nm]

number of streams available on the GPU and shows the
highest performance.

In XTS-AES, since all plaintext blocks use the same key
value, the round key can be expanded in the CPU and copied
to the GPU’s constant memory for use. GPU constant mem-
ory improves memory reference speed by caching frequently
used values. In addition, we implemented AES with a 32-bit
word size using T-box to speed up the AES encryption pro-
cess by utilizing the 32-bit size register of the GPU.

In the case of the implementation method that uses the
T-box by storing it in shared memory, if the threads access
the same bank address in the shared memory, a bank conflict
problem may occur. To avoid this problem, we implemented
T-box to be copied as much as the bank size so that each
thread refers to a different bank address in the same shared
memory. In our implementation, 32 identical T-boxes corre-
sponding to the bank size were stored in shared memory and
used for encryption.

V. EVALUATION
In this section, we evaluated the performance of our proposed
XTS-AES optimization implementation. First, we profiled
the computational weight required to calculate the tweak
value in each environment of the CPU and GPU. After-
ward, we compared the performance difference when the
encryption was exclusively performed in each environment
of the CPU and GPU. In addition, we summarized how
performance differs for different implementations of opti-
mizations. Finally, for performance comparison with other
XTS-AES implementations, we compared the performance
of XTS-AES provided by the open-source OpenSSL [16]
with the performance of our proposed implementation.
OpenSSL provides CPU multi-threading technology and
parallel operation through AVX instructions [19]. This
allows cryptographic operations to run very quickly even on
the CPU.

The environment used to measure the implementation per-
formance is as follows. In AMD Ryzen 9 5900X 4.7GHz
OC CPU environment, we evaluated the performance of our
Naive CPU implementation and benchmarked the XTS-AES

TABLE 3. XTS-AES performance results of the Navie CPU(all operations
are performed sequentially) and Naive GPU(only the encryption process
proceeds in parallel). The result is the time(ms) taken to encrypt 128 MB
of data.

TABLE 4. Comparison of performance according to various αj operation
optimization implementations. The result is the time(ms) taken to
encrypt 128 MB of data.

implementation of OpenSSL 3.0.1. Performance of all
GPU implementations was measured on NVIDIA GeForce
RTX 3090 GPU. All performance measurement results were
calculated as the average of the results of 1,000 iterations.
Due to the computational characteristic of GPUs, there is
a size of parallel computation data at which performance
reaches a critical point. Therefore, Tables 3 and 4 present the
performance results at the 128 MB data size, which is the
performance saturation point.

The performance results of the GPU were measured based
on the time it takes to copy all the plaintext data from the CPU
to the GPU and then copy the ciphertext data from the GPU
back to the CPU after encryption.

Each processing time for αj computation and encryption
in XTS-AES is shown in Table 3. Naive CPU is an imple-
mentation that sequentially encrypts AES using all the gen-
erated αi values after all αj computations are sequentially
performed. Naive GPU is an implementation that performs
αj computation sequentially but encrypts AES in parallel
using the generated αi. When comparing the Naive CPU
and Naive GPU implementations, it could be seen that the
αj computation time of both is the same, but the encryption

VOLUME 10, 2022 25355



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

TABLE 5. Performance by implementation type and block size (GB/s). The percentage numbers in parentheses indicate the performance increase.

operation time is greatly reduced in the GPU environment.
Therefore, it was confirmed that the time to encrypt the entire
data through XTS-AES is reduced by about 1/11(10.69 times
faster) of the Naive GPU (35.72 ms) compared to the Naive
CPU (381.76 ms).

Table 4 shows the comparison of our several optimization
implementation. The optimized GPU is an implementation
that calculates the intermediate value α8 or α128 through
a lookup table so that the αj computation process can be
performed in parallel, and then performs the rest αi cal-
culation and encryption in parallel. Unlike the Naive GPU
implementation, which computes only the encryption process
in parallel, it could be seen that the αj computation time
is greatly reduced in the implementations that optimize the
αj computation process in a form that is easy for parallel
operation. It could be seen that the encryption time increases
as the intermediate value range for αj are set larger, but
the total operation time of XTS-AES gradually decreases.
Finally, it was confirmed that the computation time of the
implementation optimized to compute α128 as an intermedi-
ate value (1.59 ms) compared to the computation time of the
naive GPU implementation (34.91 ms) is reduced by about
1/22(21.96 times faster).

Table 5 compares the performance of XTS-AES in
OpenSSL with the performance of the optimization imple-
mentation proposed in this paper. The percentage figures
in the table are the performance improvement of the GPU
implementation compared to OpenSSL 3.0.1. It could be
seen that the overall performance of the GPU implementation
improves as the block size increases in XTS-AES. When the
block size is 8192, it was confirmed that the performance
improvement of XTS-AES-128 was about 12.23 times, and
that of XTS-AES-256 was about 14.64 times faster.

VI. CONCLUSION
In this paper, we propose several optimization techniques that
can efficiently compute XTS-AES, an encryption method
used for disk encryption. We proposed implementation tech-
niques that can change the tweak operation process, which
is not suitable for parallel operation, into a form that is

easy for parallel operation by using a lookup table and
intermediate values. As a result of this implementation,
it was possible to achieve about 12.23(XTS-AES-128) and
14.64(XTS-AES-256) times improvement in performance
compared to the implementation of OpenSSL. The tech-
niques and results proposed in this paper can be used for
various disk encryption functions and can be used not only
for disk encryption but also for mobile device encryption
or network encryption that can utilize location information
for encryption. In addition, since it is not a block cipher
AES optimization technique for the XTS operation mode and
does not depend on a specific algorithm, it can be used for
the XTS mode of various cryptographic algorithms. In the
future, we plan to compare the performance improvement by
applying our optimization techniques to Veracrypt, an open
source FDE software.

CONFLICT OF INTEREST
All authors have no conflict of interest

REFERENCES
[1] Standard for Cryptographic Protection of Data on Block-Oriented Storage

Devices, Standard IEEE P1619T/D16, 2007.
[2] Overview BitLocker Device EncryptionWindows, Microsoft, Albuquerque,

NM, USA, 2021.
[3] Advanced Encryption Standard (AES), NIST, Gaithersburg, MD, USA,

2001.
[4] W. K. Lee, B.-M. Goi, and R. Phan, ‘‘Terabit encryption in a second:

Performance evaluation of block ciphers in GPU with Kepler, Maxwell,
and Pascal architectures,’’ Concurrency Comput., Pract. Exp., vol. 31,
p. e5048, Oct. 2018.

[5] O. Hajihassani, S. K. Monfared, S. H. Khasteh, and S. Gorgin, ‘‘Fast
AES implementation: A high-throughput bitsliced approach,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 10, pp. 2211–2222, Oct. 2019.

[6] S. An and S. C. Seo, ‘‘Highly efficient implementation of block ciphers
on graphic processing units for massively large data,’’ Appl. Sci., vol. 10,
no. 11, p. 3711, 2020.

[7] M. A. Alomari, K. Samsudin, and A. R. Ramli, ‘‘A parallel XTS encryption
mode of operation,’’ inProc. IEEE Student Conf. Res. Develop. (SCOReD),
Nov. 2009, pp. 172–175.

[8] M. A. Alomari, K. Samsudin, and A. R. Ramli, ‘‘Implementation of a
parallel XTS encryption mode of operation,’’ Indian J. Sci. Technol., vol. 7,
no. 11, pp. 1813–1819, 2014.

[9] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel Program. OpenMP. Burlington, MA, USA: Morgan kaufmann,
2001.

25356 VOLUME 10, 2022



S. An, S. C. Seo: Designing New XTS-AES Parallel Optimization Implementation Technique

[10] M. Shrestha, ‘‘Parallel implementation of AES using XTS mode of oper-
ation,’’ in Culminating Projects in Computer Science and Information
Technology. USA: St. Cloud State Univ., 2018.

[11] MPI: A Message-Passing Interface Standard, Madhyanchal Forum,
Madhya Pradesh, India, 1994.

[12] M. A. Alomari and K. Samsudin, ‘‘A framework for GPU-accelerated
AES-XTS encryption in mobile devices,’’ in Proc. IEEE Region 10 Conf.,
Nov. 2011, pp. 144–148.

[13] A. Shakil, K. Samsudin, A. Ramli, and F. Rokhani, ‘‘Effective implemen-
tation of AES-XTS on FPGA,’’ in Proc. IEEE Region Conf., Nov. 2011,
pp. 184–186.

[14] S. Ahmed, K. Samsudin, A. R. Ramli, and F. Z. Rokhani, ‘‘Advanced
encryption standard-XTS implementation in field programmable gate array
hardware,’’ Secur. Commun. Netw., vol. 8, no. 3, pp. 516–522, Feb. 2015.

[15] Y. Wang, A. Kumar, and Y. Ha, ‘‘FPGA-based high throughput XTS-AES
encryption/decryption for storage area network,’’ in Proc. Int. Conf. Field-
Program. Technol. (FPT), Dec. 2014, pp. 268–271.

[16] OpenSSL: The Open Source Toolkit for SSL/TLS, OpenSSL, 2021.
[17] B. Gladman, ‘‘A specification for Rijndael, the AES algorithm,’’ Kent State

Univ., USA, 2001.
[18] CUDA Toolkit, NVIDIA, Santa Clara, CA, USA, 2021.
[19] C. Lomont, Introduction to Intel Advanced Vector Extensions. Santa Clara,

CA, USA: Intel, 2011.

SANGWOO AN received the bachelor’s degree
from the Department of Information Security,
Cryptology, and Mathematics, Kookmin Univer-
sity, Seoul, South Korea, where he is currently
pursuing the master’s degree with the Department
of Financial Information Security. His research
interests include optimization of cryptographic
algorithms and designing efficient parallel opera-
tion in GPU environments.

SEOG CHUNG SEO (Member, IEEE) received
the B.S. degree in information & computer
engineering from Ajou University, Suwon,
South Korea, the M.S. degree in information
and communications from the Gwangju Institute
of Science and Technology (GIST), Gwangju,
South Korea, in 2005 and 2007, respectively, and
the Ph.D. degree from Korea University, Seoul,
South Korea, in 2011. He worked as a Research
Staff Member with the Samsung Advanced Insti-

tute of Technology (SAIT) and the Samsung DMC Research and Develop-
ment Center, from September 2011 to April 2014. He was a Senior Research
Member of the Affiliated Institute of ETRI, South Korea, from 2014 to 2018.
He is currently working as an Associate Professor with Kookmin University,
South Korea. His research interests include public-key cryptography, its
efficient implementations on various IT devices, cryptographic module
validation program, network security, and data authentication algorithms.

VOLUME 10, 2022 25357


