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A B S T R A C T

In this paper we propose a new measure of market efficiency based on the average response
of a market price after a market event by using Linear Response Theory. It is shown that the
average response to an event in different markets agrees fairly well with this theory’s prediction
from equilibrium data in absence of external forces or events. In this work it is first found that
Linear Response efficiently resolves price dynamics at moderately perturbed financial markets
of different types. Namely we study Forex markets, the S&P500 index, Commodities markets
and the Bitcoin-US dollar one. Furthermore, we determine a measure of market inefficiency,
which can be used to compare the inefficiency between different assets and securities.

. Introduction

The Efficient Market Hypothesis (EMH) (Fama, 1970) states that in an information efficient market, price changes cannot be
orecast if they are properly anticipated, thus, the more efficient the market, the more random the sequence of price changes
enerated by such market (Malkiel, 1989). However, the trade-off between risk and expected return causes market inefficiencies
nd sometimes, price changes are not perfectly random, even if markets operate rationally (Farmer and Lo, 1999). Therefore, the
MH by itself is not properly posed and it is an empirically refutable hypothesis.

From the three efficiency classes introduced by Fama (1970), weak, semi-strong, and strong, the most tested one by financial
iterature is the weak form of efficiency, where market prices are fully and fairly due to information of past ones. After the seminal
aper of 1970 from Malkiel and Fama (1970), researchers have used different methodologies for testing such market efficiency.
ithin this regard, some authors have tested whether technical analysis is able to provide abnormal returns to the investors, see

or example the works from Fama and French (1988), Olson (2004) and Shynkevich (2012). Moreover, other ones such as Lo or
atteo, analysed the statistical implication of this hypothesis: that stock returns follow a random walk (Lo and MacKinlay, 1988;
atteo et al., 2005; Dimitrova et al., 2019). In contrast, the strong efficiency class establishes that all current market information,

ither public or private, is completely reflected at the price of any security or asset. Thus, no investor can gain advantage on the
arket. However, it is possible to know inner events and future movements in companies and organizations and thus, to accurately

stimate market dynamics through Financial Management Theory or insider information (finnerty, 1976; Brigham et al., 2016). To
he semi-strong form of efficiency, where a price reflects solely public market information, literature has explored price adjustments
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after market events, see for example research performed by Pettit (1972) Aharony and Swary (1980) and Vidal.Tomás and Ibañez
(2018). However, as Farmer and Lo (1999) resolved, most of efficiency tests frequently require several auxiliary hypotheses as well,
and a rejection of such joint hypotheses tells us little about which aspect of the joint hypothesis is inconsistent with data. Within
this scope, the main contribution of this paper is to resolve evidence of the semi-strong market efficiency by using a well-known
model from Statistical Physics, Linear Response Theory (LRT) (Kubo, 1957; Onsager, 1931). This theory depicts the response of a
system to an external force in terms of correlation functions of equilibrium quantities, i.e. it links the evolution of the perturbed
system to the dynamics of the unperturbed (equilibrium) case.

LRT has been proven efficient in understanding the NASDAQ market response to fluctuations (Puertas et al., 2021), and here it
s employed to depict the response to weak and moderate fluctuations in a wide range of financial markets, when such systems are
estabilized by weak and moderate market events. Namely, we study a wide variety of financial market data, ranging from Forex
arkets, Commodities markets, the S&P500 index, and the Bitcoin-US dollar market, where LRT is considered within a twofold

cope. It successfully describes market efficiency, as past and current market status and variables are available to market agents,
s stated by the EMH. Thus, LRT is set to resolve market relaxation periods, as well as market depth and amplitude response to
arket fluctuations. Moreover, this approach allows establishing a novel quantitative approach in market efficiency, by establishing

he integral of log-return autocorrelations as a measure of market inefficiency in time.

inear response in colloidal systems

Let us start with a simple example of the application of LRT in a well known physical system, namely, colloids (particles of
ub-micron size in a solvent). There, the particles undergo Brownian motion: the single particle mean squared displacement (MSD)
rows linearly and the velocity autocorrelation function (VACF) is identically zero for all times 𝑡 > 0. In a dense system, however,
he interactions among the particles causes a transient trapping, which is noticed as a shoulder in the MSD between the short and
ong time diffusion regimes. In any case, if an external force 𝐹 is exerted onto a given particle, termed tracer, the time evolution
f the velocity, 𝑣(𝑡) can be calculated within linear response theory as:

⟨𝑣(𝑡)⟩ = 𝛽𝐹 ∫ ⟨𝐯(𝑡′) ⋅ 𝐯(0)⟩𝑑𝑡′ (1)

here ⟨𝐯(𝑡′)⋅𝐯(0)⟩ is the VACF, calculated in equilibrium (without external force) and 𝛽 = 1∕𝑘𝐵𝑇 is the inverse thermal energy. Fig. 1
shows the results from simulations of a system of spherical particles undergoing Langevin dynamics. The upper panel shows the
VACF of an isolated particle in equilibrium (black line) and in a bath with a volume fraction of 50% (red line). Whereas the former
decays as a single exponential, the VACF of the tracer particle in the dense bath displays a faster decay to a negative minimum,
signalling the rebound due to the collision with bath particles, followed by a slow increase toward zero. LRT uses this correlation
function to predict the dynamics of a perturbed particle. As indicated by Eq. (1), the integral of this function provides the evolution
of a perturbed tracer velocity when an external force is applied (thick lines in the lower panel). This agrees perfectly with the
transient velocity of the tracer after the application of the external force (thin lines). The velocity of the isolated tracer (thin lines)
increase continuously until a steady velocity is reached, whereas in a dense system, a maximum is observed, occurring when the
tracer collides with its neighbours, what reduces its velocity until a steady value is reached.

Linear response in financial markets

The application of linear response theory to a system requires the identification of the variable that is conjugate to the generalized
force. In financial markets, this cannot be made in advance, given that it is not a physical system. Nevertheless, we showed previously
that in stock markets, the log-return, shows an auto-correlation function with the same time scale and features as the log-price
evolution after an event (Puertas et al., 2021). This allowed us to identify the log-return as the conjugate variable and calculate the
evolution of the log-price after a dramatic event, assuming that this was caused by an external force that started at the event and
kept constant for all positive time. Here, we extend this identification to other financial markets, with different origins, regulations,
or practitioners, resulting in different dynamics.

Fig. 2 shows the different markets chosen for this study: FOREX, with a free pair Euro/US dollar (EURUSD) and a pegged pair US
dollar/Hong Kong dollar (USDHKD), the Bitcoin price in USD (BTCUSD), commodities (price of Brent crude oil (BCOUSD) and gold
(XAUUSD) in USD), and stocks (S&P500 index). In all cases the price with a 1 min resolution has been studied from January 3, 2012
to December 30, 20211 (except for the bitcoin, whose price was found only starting in 2015). The figure shows the very different
behaviour of these indices. Events in every market are identified as abrupt changes in the price; precisely, when the one-minute
log-return is larger in absolute value than 4 times the root mean square deviation of log-returns. For this analysis, only events
separated by a time span larger than the typical decay time of the log-return autocorrelation function were selected. The red bars in
Fig. 2 shows the number of such events per year in every case. Note that these distributions are also very different from one asset
to another, but in all cases the number of events per year is of the order of 103.

The average normalized evolution of the price of every asset after an event, ⟨̃𝛥𝑥(𝑡)⟩ is shown in Fig. 3, what we identify as the
response to the event (the normalization is introduced to guarantee that in all cases the security evolves from 0 to 1, allowing the
average of different events); this representation also allows to account for positive and negative events. Even more, the separation

1 Data taken from histdata.com.
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Fig. 1. Tracer velocity autocorrelation function (upper panel) in equilibrium and tracer velocity after the application of the force (lower panel) – the thick line
represent the calculation given by Eq. (1), and the thin lines are the results from the simulation.

Fig. 2. Evolution of the assets studied in this work, corresponding to the Euro–US Dollar exchange rate, US Dollar–Hong Kong dollar, Bitcoin price in dollars,
price of the Brendt crude oil in dollars, price of gold in dollars and S&P500 index.
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Fig. 3. Average normalized evolution of the log-price for the same assets as Fig. 2. The circles correspond to the observed evolution, and the lines to the
calculations from LRT (Eq. (2)).

of events imposed in their selection, guarantees that the responses of different events do no overlap. In all cases, the security grows
suddenly, within the first minute, and recovers slightly during the next few minutes, with slight differences from one asset to another.
Such slow evolution indicates a transient market inefficiency which is analysed here with LRT.

According to linear response theory, and taking the log-return as the conjugate variable 𝑣(𝑡), the response of the log-price, 𝑥(𝑡),
after the application of the external force is given by:

⟨𝛥𝑥(𝑡)⟩ = −𝛽 ∫

𝑡

0
𝐹 (𝜏)⟨�̇�(𝜏)𝑣(0)⟩𝑑𝜏 = −𝛽𝐹 ∫

𝑡

0
⟨𝑣(𝜏)𝑣(0)⟩𝑑𝜏 (2)

where ⟨𝑣(𝜏)𝑣(0)⟩ is the log-return autocorrelation function obtained from the experimental data, and the force follows a Heaviside
function, 𝐹 (𝜏) = 𝐹𝜃(𝜏). In order to compare with the normalized evolution, ⟨𝛥𝑥(𝑡)⟩ is calculated using the normalized correlation
function,

𝐶𝐴𝐵(𝜏) =
⟨𝐴(𝜏 + 𝑡)𝐵(𝑡)⟩ − ⟨𝐴⟩⟨𝐵⟩

𝜎𝐴𝜎𝐵
(3)

where the brackets imply averages over the time origin, 𝑡, and 𝜎𝑋 stands for the standard deviation of the time series of variable
𝑋 = 𝐴 or 𝐵. The results are shown in Fig. 3 as red lines. In all cases, the agreement is very good; the prediction from Eq. (2) captures
not only the shape of the curve but also the right intensity and time scale.

The total change in the log-price upon the application of the external force is measured from the difference between the initial
log-price (immediately before the event, and well after it). As given by Eq. (2), this is proportional to the external force, ⟨𝛥𝑥 ⟩ = 𝑘 𝐹 ,
4
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Table 1
Transport coefficient 𝑘𝑥 for the log-price and after-event inefficiency of the market, .

Asset 𝑘𝑥 [min−1]  [min]

2012–21 2012–13 2014–15 2016–17 2018–19 2020-21

EURUSD 8.3 ⋅ 10−9 0.11 0.11 0.11 0.09 0.10 0.14
USDHKD 5.6 ⋅ 10−11 1.12 0.79 1.16 1.10 0.82 1.84
BTCUSD 6.1 ⋅ 10−7 0.56 – 0.64a 1.96 0.37 0.59
BCOUSD 1.7 ⋅ 10−7 0.04 0.07 0.06 0.02 0.02 0.02
XAUUSD 2.8 ⋅ 10−8 0.12 0.08 0.07 0.11 0.02 0.22
S&P500 3.4 ⋅ 10−8 0.07 0.07 0.12 0.04 0.07 0.06

aOnly 2015.

Table 2
Comparison of the inefficiency measure  with other measures from the literature.

Asset  TIME AMIM

EURUSD 0.11 0.976 0.928
USDHKD 1.12 0.993 0.979
BTCUSD 0.56 0.995 0.986
BCOUSD 0.04 0.808 0.43
XAUUSD 0.12 0.976 0.928

and the proportionality constant (or transport coefficient in physical terms) is:

𝑘𝑥 = ∫

∞

0
⟨𝑣(𝜏)𝑣(0)⟩𝑑𝜏 (4)

Table 1 gives the results of 𝑘𝑥 for all securities studied in this work. Because the units of 𝑘𝑥 are p2∕min, where 𝑝 stands for the
rice of the asset, all prices are given in USD, to allow comparison among them. 𝑘𝑥 can be interpreted as the sensibility of such
sset to external forces, and the values in the table indicate that the bitcoin or commodities are more sensitive than currencies. In
articular, the bitcoin is affected by external forces around 104 times more than the HKD. It is worth recalling that the calculation
f 𝑘𝑥 uses only equilibrium data, which according to LRT allows the prediction of the average response when an external force is
pplied.

The slow evolution of the price after the event indicate inefficiencies in the market, as mentioned above, in the picture of the
MH. These can be quantified by calculating the area above the dashed line for positive time in Fig. 3, i.e.

 = ∫

∞

0

[

⟨̃𝛥𝑥⟩(𝜏) − 1
]

𝑑𝜏 (5)

here ⟨̃𝛥𝑥⟩(𝜏) can be taken directly, or calculated using 𝐶𝑣𝑣(𝑡). Here, the inefficiency measure  is intended to account for how long
does the market need to incorporate new information into the price.  = 0 depicts that this is instantaneous, as predicted by the
MH, whereas significantly greater values of  indicate that new information needs some time to be reflected at the market price.
he values of , using 𝐶𝑣𝑣(𝑡) for all markets are also included in Table 1, indicating that the USDHKD is the less efficient market,
hile the Brendt oil, BCOUSD, responds immediately to external events. Even more,  has been calculated in periods of two years

rom 2012 to 2021, confirming that the USDHKD is the less efficient market throughout, but also this indicates that most markets
ave been less efficient in 2020–2021, in coincidence with the COVID19 crisis.

To validate this inefficiency measure, Table 2 compares the results with other methods recently proposed in the literature, TIME
nd AMIM, which are based on the autocorrelation of returns (Tran and Leirvik, 2019, 2020; Noda, 2016). These also identify the
SDHKD and bitcoin as the less efficient markets, although  is more sensible, as it separates clearly more inefficient markets than
lmost efficient ones.

Note that validity of inefficiency measure relies on LRT, which can be further tested. The log-return can be also studied with
his formalism, as the derivative of expression (2), i.e.

⟨𝛥𝑣(𝑡)⟩ = −𝛽𝐹 ∫

𝑡

0
⟨�̇�(𝜏)𝑣(0)⟩𝑑𝜏 = −𝛽𝐹 ⟨𝑣(𝑡)𝑣(0)⟩ (6)

he normalized correlation function 𝐶𝑣𝑣(𝜏) is plotted with the normalized experimental evolution of the log-return in Fig. 4. For
ll securities studied, the log-return peaks when the event occurs (𝑡 = 0), then it describes a negative minimum whose depth varies

from asset to asset, and recovers its base line for long times, i.e. in a few minutes (⟨𝛥𝑣(𝑡)⟩ reaches zero). Therefore, the evolution of
he log-return has been normalized differently, evolving from 1 at the event, to 0 at long times. The comparison with the log-return
utocorrelation function gives a good agreement in all cases, as predicted by linear response theory.

Once the force and its conjugate are known, the perturbation energy can be calculated as 𝐻 ′ = 𝐴𝐹 , where 𝐴 is the conjugate
o the force, and 𝐹 the force – in a physical system, if 𝐹 is a conventional force, 𝐴 is the displacement. In the case of financial
arkets, the variable 𝐴 has been identified as the log-return, but the force is unknown. However, using the linear relation between
5
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Fig. 4. Average normalized evolution of the log-return for the same indices as Fig. 2. The circles correspond to the observed evolution, and the lines to the
calculations from LRT (Eq. (6)).

the force and the total change in the log-price, the perturbation energy can be written as:

𝐻 ′ = 𝐴𝐹 = 1
𝑘𝑥

⟨𝛥𝑥∞⟩𝑣(𝑡∗) (7)

where 𝑣(𝑡∗) is the log-return at the event. Note that since the force is constant, the evolution of this energy after the event is given
by the change of the log-return, i.e. it decreases to negative values and reaches a constant base line. In physical terms, this implies
that the system relaxes the energy toward the stationary state, which is reached in a few minutes.

Eq. (7) can also be used to calculate the perturbation energy due to all the events accumulated in every day. This is shown in
Fig. 5, and allows the identification of the most dramatic dates, in terms of perturbation energy. This evolution can be correlated
with the number of events shown in Fig. 2 (red lines), giving the strength of those events. Note that although the number of events
is similar in all the cases studied here, the perturbation energy shows more prominent peaks in the currency pairs and the bitcoin,
whereas the gold price or the S&P500 index have much less perturbation energy. This implies that the events in currency pairs are
more energetic than in the gold or S&P500.

Conclusions

In this paper, we study the semi strong hypothesis of efficiency in different markets by using Lineal Response Theory, which
is a well-established physical model. Such model accurately predicts the average price evolution in the next few minutes after a
market event. Here, it must be remarked that when implementing LRT to financial markets, the model does not require setting any
external parameter or initial condition, as it only depends on the log-return auto-correlation functions. Moreover, LRT performs well
6
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Fig. 5. Evolution of the perturbation energy per day from 2012 to 2021 (except for the bitcoin, which starts in 2015). The panels correspond to the same
indices as in Fig. 2.

in depicting market response to moderate fluctuations, indicating an interesting symmetry between natural systems such as colloids
or granular systems with an artificial one such as financial markets.

From our findings, it is straightforward to consider a scope of market efficiency with regard to LRT on financial markets. In an
efficient market, the response to an event should be instantaneous and then, on average, the log-price should remain unvaried, as
the semi-strong class of efficiency establishes. This is the case to most systems studied in this work. However, for the Oil-US Dollar
system, we can determine that the response is efficient within statistical noise, but at the Hong Kong-Dollar vs. the US-Dollar market,
or at the Bitcoin one, the return to equilibrium takes more time, and hence, there is a temporary loss of efficiency after an event.
In the first case, it takes up to 5 to 10 min after the event to return to equilibrium, which is striking as return times are faster in
most markets. In the case of the Hong Kong-Dollar, such slower efficiency can be understood due to the different economic policies
of its central bank. However, for the Bitcoin case, and although financial literature supports the results obtained, the causes of this
inefficiency could be the subject of further research, in order to determine, for example, if it is due to the non-existent regulation of
the market, trading volume, or even the timing necessary for authenticating and registering operations at the blockchain. In view of
such evidence, we propose the integrated area of the time dependant log-price variation after an event as a measure of efficiency,
where an increasing magnitude of such integral indicates stronger inefficiency in each market.
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