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A B S T R A C T   

The increasing use of electronic converters is making possible the development of more sustainable, efficient, and 
reliable electric power systems, but it is also introducing new challenges that need to be addressed. Power system 
stability is one of them since the converter multiscale coupling between control loops and the mutual effects of 
multiple converters make the traditional approaches and specialized software available not fully adequate. In this 
context, this paper presents a software tool called CSTEP capable of carrying out small- and large-signal stability 
analysis for electric power systems strongly dominated by electronic converters. By utilizing the tool description, 
the paper provides the reader with a systematic methodology to obtain the system dynamic representation, and 
with some software tools for the analysis of the large and small-signal stability. Finally, the validity and func
tionality of CSTEP have been tested with the implementation of three use cases: a simple ac use case to illustrate 
the application of the system algorithm step by step, an IEEE 5-bus use case to validate the tool with already 
established commercial software and a more realistic system based on a medium voltage CIGRÉ benchmark to 
highlight the potential applications of the tool. The results show that, unlike existing tools that simplify or 
neglect the electric part of the grid (filters, line impedances, etc.), CSTEP can predict power system instabilities 
caused by the interactions of fast control loops of electronic converters with the electric part.   

1. Introduction 

Electric power systems are undergoing an unprecedented trans
formation motivated by the need of increasing their sustainability, ef
ficiency, and reliability. The introduction of electronic converters is 
helping enormously in this regard, but it is also introducing new chal
lenges that need to be addressed [1]. Among them, power system sta
bility is one of the most important to consider. Power system stability is 
defined as the ability of an electrical system, for a given initial condition, 
to regain a state of operating equilibrium after being subjected to a 
disturbance, with most system variables bounded [2]. Traditionally, the 
assessment of the stability has been divided into angle, frequency, and 
voltage, further divided into small- and large-signal analyses depending 
on the magnitude of the disturbance studied [2]. 

This division is based on a time-scale separation of the electrome
chanical oscillations associated with synchronous generators and the 
electromagnetic oscillations related to the electrical part of the grid. 
With the massive integration of electronic power converters and their 

controls, the previous assumption is no longer valid for all power sys
tems [3]. Converters can be controlled to mimic the behaviour of clas
sical synchronous machines but with a much faster response to ensure 
the stability of the power system [4]. 

Therefore, the converter multiscale coupling between control loops 
and the mutual interactions of parallel converters frequently requires 
the consideration of the electromagnetic as well as the electromechan
ical dynamics [5]. In light of this issue, an extended classification has 
been recently presented incorporating the term converter-driven stability 
to consider this type of coupling in the assessment of stability [6]. 
Converter-driven or converter stability can be divided into small-signal 
and large-signal analyses [7]. In small-signal studies, the system is 
linearized around an operation point and thus, the conclusions drawn 
are valid for small deviations from this operation point. The advantage 
of small-signal studies is that, since the system is linear, all the powerful 
linear analysis tools can be applied. Such studies can be divided into 
time-domain or frequency-domain, depending on the type of system 
representation employed [8]. 

Time-domain studies are carried out with state-space 
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representations, by looking at the location of eigenvalues in the complex 
plane and their properties (damping factor, natural frequency, oscilla
tion frequency, etc.). Recently, the so-called component connection 
method (CCM) has been proposed to facilitate the construction of sys
tems comprised of several devices (generators, loads, converters, etc.) 
[9]. One of the main disadvantages of this method and similar ones is 
that it does not reduce the redundant states and therefore the models of 
devices must be modified depending on how they are connected (e.g., 
when connecting two nominal-pi equivalent transmission line models, 
the state representing the voltage at one of the terminal capacitors is 
redundant). 

Frequency-domain studies are based on impedance-based represen
tations, which enable the construction of power systems by means of 
equivalent voltage/current sources and impedances [10]. The advan
tages of such representations are that small-signal stability margins can 
be quantified, and their modularity and scalability are high. Moreover, a 
black-box model can be obtained using a frequency-scanning method 
[8]. 

Even though there are tools such as MATLAB that provide commands 
or libraries to facilitate the construction of small-signal time- and 
frequency-domain models for the assessment of the converter stability, 
to the best of the authors’ knowledge, there are no standardized tools to 
carry out such studies systematically. Each model must be constructed 
ad hoc, defining the equations of all the devices connected to the system 
under study. This means that if a device appears more than once in the 
system (e.g., the RL impedance of a line), its model cannot be reutilized 
and the equations have to be repeated in the overall model, but modi
fying the variable names. Moreover, all studies focus either on time- or 
frequency-domain representations but do not take full advantage of 
combining both approaches. 

Regarding large-signal stability analysis, two main methods can be 
distinguished: Lyapunov-based techniques and time-domain simula
tions. Considering the difficulty in generalizing a method based on 
Lyapunov, time-domain simulations are the default solution for studying 
the large-signal stability of any power system scenario. As it was pre
viously explained, in conventional power systems dominated by syn
chronous generators electromagnetic transients (EMT) are neglected, 
and RMS or quasi-steady-state (QSS) phasor simulations are used to 
increase the computational speed [11]. 

The available tools that consider EMT dynamics mainly focus on the 
analysis of transient values of voltages and currents for element sizing 
and design purposes [12], rather than on large-signal stability analyses. 
More general-purpose tools such as MATLAB require the development of 
ad hoc models of the system to be analysed [13]. The former do not 

provide information about the modes or eigenvalues associated with the 
electrical part of the system for the assessment of the small-signal sta
bility, and the latter are usually focused on the analysis and design of 
controllers for electronic converters rather than on the overall analysis 
of the power system [4,14–16]. Other co-simulation tools that combine 
electromechanical and electromagnetic dynamics have been also 
developed to simulate power systems with a high presence of electronic 
power converters in the time domain [17,18]. These tools are usually 
oriented to system planning but do not return the root loci of the system 
to carry out small-signal stability analyses. 

In this paper, a MATLAB-based software tool called CSTEP (Con
verter Stability Tool for Electric Power Systems) is presented to 
construct and analyse the small- and large-signal stability of converter- 
dominated power systems. The mathematical foundations of the tool are 
similar to other tools focused for instance on EMT simulations of elec
trical and electronic circuits [19]. However, CSTEP incorporates a sys
tematic formulation of state-space representations that, in addition to 
time-domain simulations, is aimed at small-signal stability studies by 
providing the root loci of the system under study. The dynamical models 
of the elements that comprise the test case are modelled in a library so 
that they can be used multiple times with different parameters. This 
facilitates the construction of complex systems without the need to 
repeat and interconnect all the equations of the individual elements. 
Therefore, an important contribution of CSTEP is found in its 
element-oriented modelling philosophy, which makes it a modular and 
flexible tool. A difference with other tools is the capacity of CSTEP to 
automatically eliminate dependent dynamic states, which is necessary 
to handle applications such as synchronous generators or power con
verters with L or LCL filters connected to inductive lines or transformers, 
or power distribution systems with meshed or ring topologies where the 
currents are dependent on each other. 

Another advantage of CSTEP compared to already existing software 
is its symbolic engine—in addition to the numerical one—enabling the 
generation of parametric state-space models that can be studied 
analytically and evaluated iteratively e.g., to determine the influence of 
parameters on the stability margins of the system. Moreover, unlike 
other simulation tools, the symbolic engine provides the analytical ex
pressions that represent the dynamics of the system, which is interesting 
to identify the variables and parameters that determine the evolution of 
the states in the time domain. 

Moreover, CSTEP includes a simulation module capable of assessing 
the time-domain behaviour of the constructed system by simulating the 
original set of nonlinear equations. These simulations provide infor
mation about the large-signal stability of the system and facilitate the 

Nomenclature 

Indices 
i element number 
j eigenvalue number 
k parameter number 
l state number 

Sets 
E element 
S system 

Subscripts 
int internal 
pn potential node 
fn flow node 
ip input port 
op output port 

Variables 
x differential (state) variables 
z algebraic variables 
u external input variables 
np system node potential variables 
pp system port potential variables 
A state matrix 
B input matrix 
λ system eigenvalue 
Φ left eigenvector of state matrix A 
Ψ right eigenvector of state matrix A 
pf participation factors 
wpf weighted participation factors 
ps parametric sensitivities 
rps real part of parametric sensitivities 
ρ system parameter  
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validation of small-signal models before the analysis phase without the 
necessity to reconstruct the system in another tool. 

The main objective of the paper is to provide the readers with the 
mathematical foundations and the methodology behind CSTEP for car
rying out stability analyses of converter-dominated power systems. In 
Section 2, the main functions or modules to construct and analyse such 
systems are comprehensively described, and the potential extensions of 
the tool are highlighted. In Section 3, the use of CSTEP is illustrated by 
means of three use cases; the first demonstrates how a system is built in 
CSTEP with the proposed methodology, the second validates the large- 
signal results compared to a commercial tool and exhibits the prob
lems that might arise when electromagnetic states are not considered in 
converter stability studies, and the third shows some of the potential 
applications that could be studied with the tool in a more complex case. 
Finally, in the last section, the main conclusions of the paper are 
gathered. 

2. Description of CSTEP 

The general structure of CSTEP is illustrated in Fig. 1. 
In the following sections, each of the core modules of CSTEP is 

described in detail. The modular nature of the tool will facilitate the 
integration of new modules to manipulate and broaden the study of the 
system equations in the future. For instance, it might be interesting to 
implement model order reduction (MOR) techniques to decouple states 
with different dynamics and to focus the subsequent analyses on the 
dynamics of interest [20]. The reader should not confuse MOR tech
niques with the reduction of redundant states mentioned in the 
following sections. Another interesting feature would be the imple
mentation of a semiautomatic frequency-domain analysis tool to com
plement the information obtained from time-domain studies as in [21]. 
The core modules of CSTEP could be also extended to handle 
multi-harmonic models based on dynamic phasors or harmonic 
state-space systems [8,22]. These functionalities have been represented 
in grey in Fig. 1. 

A. System-building and adaptation module 

The objective of the system-building and adaptation module is the 
definition of the system equations and the automatic construction, 
reduction and linearization of the model. Since CSTEP is an element- 
oriented tool, the equations of the system to be modelled are obtained 

by means of the equations of the individual elements and their in
terconnections. This means that first, it is necessary to define appro
priate element representations. Based on these individual models and 
their interconnections (predefined in a test case file), the complete 
system is then constructed, reduced, and (if necessary) linearized at a 
specific operating point. 

1). Element representation 
CSTEP uses three different types of variables for the element repre

sentation: internal, nodal, and port. The internal variables are used to 
describe the intrinsic behaviour of the element and they can be differ
ential (xint) or algebraic (zint). On the other hand, the nodal and port 
variables are used to define the connections between the elements and 
are always algebraic. Nodes refer to the connections used to transmit 
power, while ports refer to the connections used to transmit information 
(e.g., control signals). Each node has two associated variables, i.e., a 
potential variable (zpn) and a flow variable (zfn). In power systems, po
tential and flow variables are associated with voltages and currents, 
respectively. In other domains, an analogous representation can be 
made, e.g.: speed and torque in mechanical systems; temperature and 
heat flow in thermal circuits, or the magnetic field and flux in magnetic 
circuits. The formulation of CSTEP described in the following sections is 
kept generic so that various domains can be combined in the future. Port 
variables are divided into input variables (zip) and output variables (zop). 

Considering all this information, the number of equations required 
for the representation of an element must be equal to the number of 
equations of internal differential variables (f), plus the number of 
equations of internal algebraic variables (g1) plus the number of equa
tions of node variables (g2), plus the number of equations of output port 
variables (g3). These equations are shown in the following expressions: 

ẋEi
int = fEi

(
xEi

int, zEi
int, zEi

pn, z
Ei
fn , zEi

ip , zEi
op, uEi

)
(1)  

0 = gEi
1

(
xEi

int, zEi
int, zEi

pn, zEi
fn , z

Ei
ip , zEi

op, uEi
)

(2)  

0 = gEi
2

(
xEi

int, zEi
int, zEi

pn, zEi
fn , z

Ei
ip , zEi

op, uEi
)

(3)  

0 = gEi
3

(
xEi

int, zEi
int, zEi

pn, zEi
fn , z

Ei
ip , zEi

op, uEi
)

(4)  

where the superscript Ei represents the i-th element. 

Fig. 1. CSTEP general structure.  
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2). Nonreduced system representation 
As it was previously explained, the system representation is obtained 

by means of the system models and their interconnections. The first step 
is for CSTEP to generate the nonreduced system representation con
sisting of the concatenation of the equations of the elements. This pro
cess leads to equations fS, gS

1, gS
2, and gS

3 shown in Eqs. (5)–(8). These 
expressions have a greater number of variables than the number of 
equations. To complete the system of equations, the system node po
tential variables (np) and the system port potential variables (pp) are 
defined based on the node and port variables of the individual elements. 
With these new variables, the relation between the node potential, input 
port and output port variables for each element is defined, obtaining 
equations gS

4, gS
5, and gS

6 shown in expressions Eqs. (9)–(12). The current 
flow on each node of the system is defined according to Kirchhoff’s 
current law to obtain gS

7. Finally, an additional reference node potential 
(np0) is included and set to zero as shown in Eq. (13). This equation 
defines a common reference voltage for all the nodes in the system, 
which will be necessary to solve the system of equations. 

ẋS = fS ⇔
[
xE1

int ,…, xEn
int

]
=

[
fE1 ,…, fEn

]
(5)  

0 = gS
1 ⇔

[
0E1

g1
,…, 0En

g1

]
=

[
gE1

1 ,…, gEn
1
]

(6)  

0 = gS
2 ⇔

[
0E1

g2
,…, 0En

g2

]
=

[
gE1

2 ,…, gEn
2
]

(7)  

0 = gS
3 ⇔

[
0E1

g3
,…, 0En

g3

]
=

[
gE1

3 ,…, gEn
3
]

(8)  

0 = gS
4 =

[
gE1

4

(
zE1

pn , np
)
,…, gEn

4

(
zEn

pn ,np
)]

(9)  

0 = gS
5 =

[
gE1

5
(
zE1

ip , pp
)
,…, gEn

5

(
zEn

ip ,pp
)]

(10)  

0 = gS
6 =

[
gE1

5

(
zE1

po , pp
)
,…, gEn

5

(
zEn

po ,pp
)]

(11)  

0 = g7

(
zE1

fn ,…, zEn
fn

)
(12)  

0 = np0 (13)  

where the superscript S denotes system-level equations. 
Expressions Eqs. (5)–(13) describe the dynamic performance of the 

electric power system. It is called a nonreduced representation because 
the algebraic variables are still present in the equations. To provide a 
more compact fashion of these equations, algebraic variables of indi
vidual elements and node and port potential variables are grouped into 
zS and Eqs. (6)–(13) are grouped into gS, leading to the following non
reduced system representation: 

ẋS = fS( xS, zS,uS)

0 = gS( xS, zS,uS) (14)  

3). Reduced and linearized system representation 
The nonreduced system representation may also contain redundant 

(linearly dependent) differential and algebraic equations [19]. Some 
typical examples where redundant variables appear are synchronous 
generators or electronic power converters with L or LCL filters connected 
in series to transformers or transmission lines, cutsets formed by in
ductors and/or current sources in closed loops (e.g. in meshed or ring 
power system topologies) [23] or the cascaded interconnection of π or T 
transmission line models. To systematically identify and reduce these 
redundancies, Eq. (14) is first represented in the matrix form as: 

ẋS = ExS + FzS + GuS

0 = HxS + KzS + LuS (15)  

where the matrices are obtained by partially differentiating the equa
tions in Eq. (14) with respect to state variables (xS), algebraic variables 
(zS) and inputs (uS): 

E =
∂fS

∂xS F =
∂fS

∂zS G =
∂fS

∂uS

H =
∂gS

∂xS K =
∂gS

∂zS L =
∂gS

∂uS

(16) 

At this point, it is worth noting that, if the original system in Eq. (14) 
is nonlinear, obtaining the matrices by means of the partial derivatives 
as in Eq. (16) will linearize the equations. The mathematical explanation 
behind this linearization is based on the Taylor series expansion of Eq. 
(14), which is detailed in Appendix A. The linearization of the model is a 
necessary step to represent the equations in matrix form and to apply 
classical linear analysis techniques to perform a small-signal stability 
assessment. When equations are linearized, Eq. (15) becomes: 

ΔẋS = EΔxS + FΔzS + GΔuS

0 = HΔxS + KΔzS + LΔuS (17)  

where Δ represents variations around the equilibrium point as explained 
in Appendix A. For the sake of generality, the symbol Δ is not included in 
the following equations. 

When dynamical systems are represented by sinusoidal magnitudes, 
it is not possible to find a constant steady-state equilibrium point, and 
therefore CSTEP makes it possible to model these systems in a dq rota
tory frame such that the sinusoidal variables become constant. The zero 
sequence could be also considered in the analyses, as long as the 
employed library models include the equations that represent this 
sequence. However, most of the studies related to the assessment of the 
small-signal stability of power systems consider symmetrical and 
balanced situations and average power converter models, where the 
zero sequence can be safely neglected. Since it is out of the scope of the 
paper, the assessment of the stability of power systems with zero 
sequence components or unbalances is left as a future research activity. 

In the next step, the redundant states of the system are reduced and 
the dependencies between the variables are identified. The process 
consists of arranging the equations in (15) in a matrix form as follows: 

U =

[
I F E G
0 K H L

]

(18) 

A Gauss-Jordan elimination method is used and the matrix U is 
reduced to a row echelon form. The resulting matrix can be represented 
as: 

Ur =

[
Ir Fr Er Gr
0 Kr Hr Lr

]

(19)  

where the subscript r represents the reduced form of the matrices. This 
matrix can be also rewritten as the following differential and algebraic 
system of equations: 

ẋS
r = ErxS

r + FrzS
r + GruS

0 = HrxS
r + KrzS

r + LruS (20)  

where xS
r and zS

r represent the reduced vector of states and algebraic 
variables, respectively. 

CSTEP offers the possibility to carry out this process either numeri
cally or symbolically. The former is faster and makes it possible to apply 
most classical analysis techniques, but unlike the symbolic approach, it 
is not capable of retaining all the information to carry out a parametric 
sensitivity analysis (explained in Section III-C-3) or to identify the var
iables that determine the dynamic behaviour of the system. 

4). Small-signal system representation 
The last step in the system-building and adaptation module is to obtain 

the simplified small-signal representation of the system in the form: 
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ẋS
r = AxS

r + BuS (21) 

For that purpose, the algebraic variables are first isolated from the 
algebraic equations in (2020): 

zS = − K− 1
r

(
HrxS +LruS) (22) 

Note that when obtaining the row echelon form Ur in Eq. (19), Kr 

becomes an upper-diagonal square matrix whose diagonal terms are 
different from zero, meaning that Kr will be invertible. 

Then, the right-hand side of Eq. (22) is incorporated into the dif
ferential equations in (20) as: 

ẋS
r = ErxS

r − FrK− 1
r

(
HrxS

r +LruS)+ GruS (23) 

From Eq. (23), A and B can be calculated as: 

A = Er − FrK− 1
r Hr

B = Gr − FrK− 1
r Lr

(24)  

B Large-signal analysis module 

The large-signal module has two main objectives: the calculation of 
the time-domain response of the system and the validation of the small- 
signal state-space model when the system is nonlinear. 

To perform the nonlinear simulation, the reduced system of equa
tions in Eq. (14) is dynamically solved. For that purpose, the vector of 
input variables is defined as a time-dependent array—since the inputs 
vary during the simulation—and the ode15i solver provided by MATLAB 
is used to solve the system of equations. 

C Small-signal analysis module 

The analysis module is used to carry out a small-signal stability 
analysis of the system from the time-domain representation of 
equations. 

1). Time-domain simulation 
To simulate the linearized system, the representation shown in Eq. 

(21) is solved via the lsim function from MATLAB. The results from this 
simulation are represented on top of the results from the large-signal 
analysis to corroborate the correctness of the linearized model. 

2). Root locus 
The small-signal stability analysis is based on the study of the loca

tion of the eigenvalues in the complex plane. If the real part of the ei
genvalues is negative, the system is stable, and it will reach a new 
equilibrium point under a small disturbance. The tool returns the root 
locus of the system for the operation point provided by the user. 

3). Participation factors 
To analyse the system dynamics, CSTEP calculates the participation 

factors (pf), which provide the incidence of the system eigenvalues on 
the state variables and vice versa. These participation factors are 
calculated according to the following expression: 

pf = Φ⊤ ⊙ Ψ (25)  

where ⊙ denotes the element-by-element or Hadamard product of the 
left and right eigenvectors of the state matrix A. The tool also calculates 
the weighted participation factors (wpf) as in [15] to represent that 
incidence in a percentage or 0–1 scale: 

wpf
(
xl, λj

)
=

⃒
⃒pf

(
xl, λj

)⃒
⃒

∑

μ

⃒
⃒pf

(
μ, λj

)⃒
⃒

(26)  

where μ depicts the set of states for the eigenvalue λj. 

4). Parametric sensitivity 
CSTEP provides a couple of tools to estimate the influence of pa

rameters on the system stability: a parametric sensitivity matrix (ps) and 
an iterative parametric sweep function. The so-called parametric sensi
tivities are calculated to study the movement of eigenvalues with respect 
to variations of any parameter of the system [24]. This matrix is ob
tained as follows: 

psjk =
∂λj

∂ρk
=

Φ⊤
j

∂A
∂ρk

Ψj

Φ⊤
j Ψj

(27) 

The use of symbolic notation in CSTEP makes it possible to calculate 
the exact sensitivity of each of the studied operation points. 

5). Parametric sweeps 
Parametric sweeps, on the other hand, can be carried out either using 

the symbolic or the numeric representation of the system. In the former, 
even though constructing the system model symbolically requires a 
higher computational effort than doing it numerically, the final sym
bolic expressions can be efficiently used afterwards to carry out iterative 
studies such as parametric sweeps without the need to reconstruct the 
linearized system matrices in Eq. (24) each iteration. 

3. Validation and application of CSTEP 

The aim of this section is threefold. Firstly, the purpose is to illustrate 
step-by-step how a very simple example is constructed and reduced with 
CSTEP (Use case I). Secondly, the tool is validated by comparing the 
time-domain response and eigenvalues of a 5-bus IEEE benchmark sys
tem to the same model developed in DigSilent PowerFactory (Use case 
II). Moreover, with this example, the incongruencies that might arise in 
terms of converter stability in both models for certain operating points 
due to the reduction of the electromechanical states are shown. Thirdly, 
the potential applications of CSTEP are demonstrated with a more 
complex CIGRÉ distribution system comprised of 14 buses (Use case III). 

A. use case I – simple ac system 

This benchmark is comprised of an ideal voltage source (Generator 1), 
an RL transmission line (Line 1), and an RL load (Load 1). The general 
diagram is illustrated in Fig. 2a. 

In CSTEP, the ideal voltage source is modelled according to Fig. 2b. 
The model has a d and q component, and there are no dynamic states. 
Since the element only has four node potential variables, it can be 

Fig. 2. Use case I: (a) simplified ac system scenario, (b) ideal voltage source 
library model, and (c) RL impedance library model. 
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represented with the following four algebraic equations: 

vsd = vpd − vnd ; vsq = vpq − vnq ; ipd = − ind ; ipq = − inq (28)  

where vsd and vsq are considered global inputs of the system. 
Similarly, the line and load of the circuit can be modelled with the 

same RL library component (Fig. 2c). In this case, there are two states 
associated with the inductances and four node potential variables, so the 
element of the RL impedance can be represented with the following set 
of differential-algebraic equations (DAE): 

diLd

dt
=

1
Ld

(
vpd − RdiLd − vnd

)
+ ωiLq

diLq

dt
=

1
Lq

(
vpq − RqiLq − vnq

)
− ωiLd

ipd = iLd ; ind = − iLd ; ipq = iLq ; inq = − iLq

(29)  

where the coupling terms ωiLq and − ωiLd appear due to the conversion to 
the rotating dq reference frame. In this case, ω is considered a global 
input of the system. 

1). Nonreduced system representation 
Based on these library elements, the concatenated element equations 

Eqs. (5)–(8) can be represented as follows: 

ẋS =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

diLn1
Ld

dt
diLn1

Lq

dt
diLd1

Ld

dt
diLd1

Lq

dt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
LLn1

d

(
vLn1

pd
− RLn1

d iLn1
Ld

− vLn1
nd

)
+ ωiLn1

Lq

1
LLn1

q

(
vLn1

pq
− RLn1

q iLn1
Lq

− vLn1
nq

)
− ωiLn1

Ld

1
LLd1

d

(
vLd1

pd
− RLd1

d iLd1
Ld

− vLd1
nd

)
+ ωiLd1

Lq

1
LLd1

q

(
vLd1

pq
− RLd1

q iLd1
Lq

− vLd1
nq

)
− ωiLd1

Ld

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)  

gS
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vGn1
sd

= vGn1
pd

− vGn1
nd

vGn1
sq

= vGn1
pq

− vGn1
nq

iGn1
pd

= − iGn1
nd

iGn1
pq

= − iGn1
nq

iLn1
pd

= iLn1
Ld

iLn1
nd

= − iLn1
Ld

iLn1
pq

= iLn1
Lq

iLn1
nq

= − iLn1
Lq

iLd1
pd

= iLd1
Ld

iLd1
nd

= − iLd1
Ld

iLd1
pq

= iLd1
Lq

iLd1
nq

= − iLd1
Lq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; gS
4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vGn1
pd

= np1

vGn1
pq

= np2

vGn1
nd

= np0

vGn1
nq

= np0

vLn1
pd

= np1

vLn1
nd

= np3

vLn1
pq

= np2

vLn1
nq

= np4

vLd1
pd

= np3

vLd1
nd

= np0

vLd1
pq

= np4

vLd1
nq

= np0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)  

gS
7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 = iGn1
pd

+ iLn1
pd

0 = iGn1
pq

+ iLn1
pq

0 = iLn1
nd

+ iLd1
pd

0 = iLn1
nq

+ iLd1
pq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; 0 = pn0 (32)  

2). Reduced system representation 
From Fig. 2 it is evident that the current of the line and the load is the 

same, meaning that in Eq. (30) there are two linearly dependent 
(redundant) differential equations. By reducing these equations and 

substituting the algebraic equations from (31) and (32) the following 
system of equations is obtained: 

ẋS
r =

⎡

⎢
⎢
⎢
⎣

diLn1
Ld

dt
diLn1

Lq

dt

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vGn1
sd

−
(
RLn1

d + RLd1
d

)
iLn1
Ld

LLn1
d + LLd1

d
+ ωiLn1

Lq

vGn1
sq

−
(

RLn1
q + RLd1

q

)
iLn1
Lq

LLn1
q + LLd1

q
− ωiLn1

Ld

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(33) 

This system is therefore comprised of two state variables and three 
inputs: 

xS
r =

[
iLn1
Ld

iLn1
Lq

]⊤
; u =

[
vGn1

sd
vGn1

sq
ω
]⊤

(34)  

where iLn1
Ld

= iLd1
Ld 

and iLn1
Lq

= iLd1
Lq 

are the reduced dependent state vari
ables. 

3). Linear system representation 
From Eq. (33) it is noticeable that the system appears to be nonlinear, 

due to the multiplication between the inductor current and the reference 
frame rotation frequency (ω). The reason is that ω is defined as an input 
of the system, so that frequency variations can be performed if neces
sary. If this frequency was considered to be constant, the system in Eq. 
(33) would be linear and would not need any linearization. Following 
the process in Appendix A, by partially differentiating the equations in 
Eq. (33) with respect to (34), the linearized representation of the system 
can be obtained: 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
RLn1

d + RLd1
d

)

LLn1
d + LLd1

d
ω

− ω
−
(

RLn1
q + RLd1

q

)

LLn1
q + LLd1

q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
LLn1

d + LLd1
d

0
LLn1

d iLn1
Lq

+ LLd1
d iLd1

Lq

LLn1
d + LLd1

d

0
1

LLn1
q + LLd1

q
−

LLn1
q iLn1

Ld
+ LLd1

q iLd1
Ld

LLn1
q + LLd1

q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35)  

where the upper bar denotes the steady-state value obtained by setting 
the derivative terms in Eq. (33) to zero (i.e., ẋS

r = 0) and by solving the 
remaining system of algebraic equations. 

4). Validation of the linearized state-space model 
To ensure that the linearized system is representative of the original 

nonlinear system, a time-domain simulation is carried out with CSTEP, 
and the response of both systems with a voltage variation in the voltage 
source is compared. The initial parameters of the simulation are given in 
Table 1. 

The time-domain evolution of the states of the system (the current in 
this case) for a 0.1 p.u. d-axis voltage variation can be observed in Fig. 3. 

The results show that the linearized model is correctly representing 
the time-domain behaviour of the system even when moving out of the 
point at which the linearization is made. This means that the matrices in 
Eq. (35) can be employed to carry out a detailed modal analysis. 

Table 1 
Parameters of Case I  

Param. Value Param. Value Param. Value 
vGn1

sd 
100 V LLn1

d 
0.1 mH RLn1

d 
0.1 Ω 

vGn1
sq 

0 V LLn1
q 0.1 mH RLn1

q 0.1 Ω 

ω 100π rad/s LLd1
d 

30 mH RLd1
d 

20 Ω   

LLd1
q 30 mH RLd1

q 20 Ω  
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5). Modal analysis 
The system has two eigenvalues and their properties have been 

gathered in Table 2. 
The oscillation frequency is the same as the reference frame rotation 

frequency, and the high damping values explain the overdamped 
response observed in Fig. 3. The following two tables show the weighted 
participation factors (wpf) and the real part of the parametric sensitivity 
(ℜ{ps} or rps) of the two eigenvalues.  

wpf λj 

xl 0.5 0.5 
0.5 0.5   

rps RLn1
d RLn1

q LLn1
d LLn1

q RLd1
d RLd1

q LLd1
d LLd1

q 

xl -16.6 -16.6 1.1e4 1.1e4 -16.6 -16.6 1.1e4 1.1e4 
-16.6 -16.6 1.1e4 1.1e4 -16.6 -16.6 1.1e4 1.1e4  

The participation factors show that the eigenvalues and the states are 
equally related, whereas the parametric sensitivity demonstrates that 
the inductances are the parameters that mostly influence the movement 
of eigenvalues in the complex plane. This can be also corroborated by 
carrying out a parametric sweep of the load resistance and inductance 
(see Fig. 4). A small variation of the inductance causes the poles to move 
significantly in the real axis compared to higher variations in the 
resistance. 

Use case II – IEEE 5-bus benchmark system 

The single line diagram of this use case is illustrated in Fig. 5, where 
the green boxes represent the sources (in this case electronic converters), 
and the red triangles represent the loads. The values of the line imped
ances and the passive loads are indicated in the Figure. The employed 
voltage and power base values are 138 kV and 100 MVA, respectively. 

The converters are responsible for controlling the frequency of the 
grid by means of a grid-forming control strategy (Fig. 6). In this case, the 
active power controller consists of a low-pass filter (equivalent to a 
virtual inertia) and a p/f droop regulator with gain Kp. The reactive 
power controller also includes a low-pass filter and a q/v droop regulator 
(Kq). 

The voltage amplitude and angle of the grid-forming control are used 
to obtain the converter reference voltage (v∗cv). The dc bus voltage of 
converters is assumed to be constant, and the switching operation is 
neglected by considering an average model of the converter as in [20, 
24]. This way, the converter output voltage (vcv) is decoupled from dc 
bus oscillations so that vcv ≈ v∗cv. Moreover, an LC filter is included in the 

output of converters. 
This use case has been constructed in CSTEP as well as in Power

Factory. Fig. 7 represents the eigenvalues and the time-domain response 
of the system for a variation of 0.1 p.u. in the resistive part of the load 
connected to node 5. In the case of PowerFactory, the results obtained 
from the RMS model are represented, since the eigenvalues of the system 
cannot be obtained from the EMT model to carry out the small-signal 
stability analysis. 

In Fig. 7a, it is observed that the eigenvalues represented by Pow
erFactory match correctly with the eigenvalues associated with the 
slowest states—i.e., with the lowest frequency—obtained with CSTEP. 
The reason for having such slow eigenvalues with converters is that the 
controllers are aimed at emulating the behavior of classical generators. 
In addition, CSTEP provides the eigenvalues associated with the faster 
electromagnetic states of the system. If the small-signal stability is 
assessed with the results from both tools, it can be concluded that the 
system is stable, but it can also be noted that the dominant eigenvalues 
(i.e., with less damping) differ significantly in both cases. In classical 
power systems where electromagnetic modes do not interact with fast- 
acting converters—e.g., when they are dominated by synchronous 
generators—the oscillations they cause are damped rapidly, and there
fore such modes can be neglected. 

Fig. 3. Time-domain evolution of the system states in Case I for a 0.1 p.u. 
voltage variation 

Table 2 
Eigenvalues of Case I and their properties.  

Eigenvalue  
λj 

Damping ζj Osc. Freq. foj Nat. Freq. fnj 

-667.77 + 314.16i 0.9 50 Hz 117.45 Hz 
-667.77 - 314.16i 0.9 50 Hz 117.45 Hz  

Fig. 4. Parametric sweep in Use case I: (a) load inductance (from 1 mH to 1 H) 
and (b) load resistance (from 18 Ω to 22 Ω). 

Fig. 5. IEEE 5-bus benchmark system (Use case II).  

Fig. 6. Grid-forming control.  
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This can be observed for instance in the results from the time-domain 
simulation in Fig. 7b-d, where the evolution of converter frequencies 
and their active and reactive power are illustrated, respectively. Apart 
from the initial transient caused by the differences in the initial oper
ating point in PowerFactory, the time-domain results show a very good 
match not only in steady-state, but also in the transient response after a 
load disturbance. Moreover, the nonlinear and the linearized models 
obtained in CSTEP also exhibit a good matching. These results validate 
the correctness of the core modules of CSTEP and mean that the con
clusions obtained from the small-signal stability assessment are valid 
near the chosen equilibrium point. 

One of the main contributions of CSTEP compared to already avail
able tools arises when the controllers of electronic converters start 
interacting with faster states associated with the electric part of the grid, 
causing the eigenvalues to approach the unstable area. To illustrate this 
case, the reactive power droop gain from one of the converters in the 5- 
bus use case is modified, causing the dominant eigenvalues to move to 
the unstable area for certain points of operation (Fig. 8a). 

As it can be observed, the eigenvalues obtained from the RMS model 
in PowerFactory still coincide with the slower modes in CSTEP. 

However, in this case, PowerFactory does not consider the two dominant 
eigenvalues that make the system unstable, thus providing an incorrect 
conclusion in the assessment of the small-signal stability. This can be 
further corroborated by looking at the time-domain response of the 
system in both tools (Fig. 8b-d). The simulation is started from a stable 
point of operation, where CSTEP and PowerFactory provide almost the 
same results. At the instant t = 5s the disturbance in the load causes the 
system poles to cross to the unstable area, causing the time-domain 
response to approach infinity. However, the RMS model in Power
Factory from which eigenvalues are obtained converges to a new stable 
operating point. The differences of the modes considered in CSTEP and 
PowerFactory can be also observed in the transient after the disturbance 
at t = 5s; the enlarged sections in Fig. 8c-d show the transient with 
different frequency components obtained in CSTEP, compared to the few 
points provided by the RMS model. Although this transient and the 
instability could be represented with more detail via an EMT simulation 
in PowerFactory, there is no option to calculate the eigenvalues from 
PowerFactory’s EMT model. 

Fig. 7. Results of the IEEE 5-bus benchmark system: (a) eigenvalues, (b) converter control frequencies, (c) converter active powers, (d) converter reactive powers.  
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Use case III – CIGRÉ distribution system 

The purpose of this use case is to illustrate the potential applications 
of CSTEP with a more complex use case. The scenario is based on the 
medium-voltage distribution network proposed by the CIGRÉ Task 
Force C6.04.02 in [25]. The topology is comprised of two feeders and 14 
buses, as illustrated in Fig. 9. 

The transformers and loads are modelled as equivalent RL imped
ances. On the other hand, transmission lines are modelled with two 
different fidelity levels to observe their effect on the small-signal sta
bility. One benchmark variant is modelled with RL transmission lines 
(named Variant 1), whereas the second one is modelled with nominal π 
transmission line circuits (Variant 2). The parameters of the trans
mission lines and transformers, as well as the generated/demanded 
power values, have been gathered from [25]. 

The use of simple element models for the considered test cases is 
justified since the objective of the paper is to illustrate the operation and 
functionalities of the tool rather than analysing the accuracy of the 
obtained results. On the other hand, converter-driven stability is closely 
linked to distributed generation, and thus to distribution lines. When the 
frequency spectrum of the signals involved is not too wide, and assuming 
frequency-independent line parameters, distribution lines are 
commonly represented in literature as cascaded π circuits. However, this 
approach has been also analysed for frequency-dependent transmission 
lines with satisfactory results in [26,27]. 

In Variant 1 there are 62 state variables, whereas in Variant 2 there 

are 122. These are automatically reduced by CSTEP to a representation 
of 34 and 88 state variables, respectively. The reason for this significant 
reduction is that many currents of the system depend on other ones (e.g., 
the current from loads depends on the line current), and that the ca
pacitors of adjacent π equivalent transmission lines are connected in 
parallel (meaning that their voltage is equal). In other tools, the con
struction of such state-space models would have to be done either by 
manually writing all the equations (grouping adjacent inductors and 
capacitors) or by alternatively cascading π and T line models to avoid 
redundant states in the first place. Another alternative is the addition of 
“phantom” components to avoid the appearance of redundant states 
[19], but these parasitic elements introduce undesired dynamics and 
fictitious poles in the complex plane. 

The root loci of the two benchmarks are illustrated in Fig. 10. The 
right side of the figure shows that both systems exhibit some relatively 
damped modes at similar locations in the complex plane. These are 
primarily related to the inductances of the lines and loads. In addition to 
these, the left side of Fig. 10 shows that Variant 2 exhibits several ei
genvalues with an extremely low damping factor. In this case, their high 
imaginary component is caused by the low capacitance of the π equiv
alent transmission lines. Such low damping factors will cause high- 
frequency oscillations under power disturbances in the system. 

The participation factor analysis of the eigenvalues shows that the 
most poorly damped eigenvalues—the so-called dominant modes—are 
associated with the state variables of transmission lines 2, 13 and 16 in 
Variant 1, and to 7, and 11 and 12 in Variant 2. This means that the buses 

Fig. 8. Results of the IEEE 5-bus benchmark system for an unstable point of operation: (a) eigenvalues, (b) converter control frequencies, (c) converter active powers, 
(d) converter reactive powers 
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adjacent to these lines are more prone to oscillate under the same load or 
generation variation. The frequency of these oscillations will be the 
same as the frequency of the eigenvalues, but the amplitude will be 
dependent on how these modes are excited. From this study, it can be 
already seen that the fidelity of transmission lines returns different 
dominant oscillation modes for the same benchmark. 

Since another potential application of CSTEP is the study of the 
integration of converters in the grid, 6 converter-interfaced devices have 
been included in Variants 1 and 2 of Use case III. These converters are 
connected to the grid by means of LC filters and their location is shown 
in Fig. 9. Their control consists of a classical power controller based on 
dq current PI regulators. The converters are equipped with a 

synchronous reference frame PLL (SRF-PLL) to synchronize with the 
grid. 

The root loci of Variants 1 and 2 including these converters are 
shown in Fig. 11. Apart from increasing the number of oscillatory 
modes, on the right side of the figure, it can be observed that the con
verters generate less damped oscillation modes compared to the previ
ous results. This might lead to a more oscillatory behaviour under power 
disturbances. To study the effect of these additional modes, the simu
lation module provided by CSTEP is used. 

Fig. 12 shows the dynamic response of the current through line 1 for 
a 0.05 p.u. and a -0.1 p.u. power reference variation of Cv3 at instants t =
1s and 3s, respectively. The comparison between the linearized (LIN) 
and nonlinear (NL) representations of Variants 1 and 2 shows that the 
small-signal models are accurate even for a 0.1 p.u. disturbance. 

Depending on the type of model employed for transmission lines, the 
system exhibits a different transient response under the same power 
disturbance, and the currents converge to different operation points in 
steady-state. In fact, Variant 2 exhibits a more oscillatory current 
response, and the q-axis term has a larger transient response and current 
excursion after the perturbation at t = 3s. 

Following the example of Use case I the analysis can be extended, for 
example, by studying the effect of varying controller parameters on the 
movement of eigenvalues. Fig. 13 shows the movement of eigenvalues in 
the complex plane for variations of the proportional and integral gains of 
the PLL of Cv3. For instance, a slight modification of the proportional 
gain can significantly change the damping and hence the stability 
margins of the system. 

This brings out the necessity not only to automatically build small- 
signal models, but also to provide a time-domain study to corroborate 
the analytical results. This does not make the small-signal model invalid 
or useless, because it can still be used to identify which are the states and 
parameters associated to the unstable modes, modify the design of the 
system and increase the stability margins. 

Regarding the integral gain, the damping of poles varies for different 
values of the parameter. However, in this case, they do not tend to 
approach the unstable region. 

The results elucidate that the topology of the studied system, the 
fidelity with which the transmission lines are modelled, or control pa
rameters play a key role in the dynamic behaviour of the system. Other 
aspects such as the type of control employed at the converters, the model 
fidelity of transformers, or the consideration of a nonstiff grid in the 
system will also modify the dynamic properties of the system. However, 
since the purpose of this paper is to show the potential applications and 
advantages offered by CSTEP, these studies are left for future research 
activities. 

CSTEP is providing information that might be challenging to get 
otherwise, since most available tools either (1) do not provide an 
automatic method for connecting element models, (2) do not consider 

Fig. 9. CIGRÉ medium-voltage distribution network (Use case II).  

Fig. 10. Use case II: root loci of the CIGRÉ benchmark for RL transmission lines and π equivalent lines.  
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the dynamics of line impedance, filters and converter controllers in the 
assessment of converter stability, and/or (3) they simulate the electro
magnetic transients with a high level of detail for a short period but do 
not provide any analysis of the oscillation modes. 

4. Conclusions 

Power systems are suffering one of the most significant paradigm 
shifts because of the massive integration of electronic power converters. 
Even though there are a wide number of tools capable of carrying out 
stability analyses of conventional power systems, these tools do not 
consider the faster dynamics introduced by the electrical part of the grid 
or by power converters. This paper has described a new converter sta
bility analysis tool called CSTEP to simulate and analyse the stability of 
power systems with a considerable penetration of converters. This tool 

makes it possible to consider not only the electromechanical dynamics of 
machines, but also the electromagnetic dynamics of the grid and the 
effect of converter topology and controllers. 

In the paper, the mathematical foundations of the tool that enable to 
automatically construct and reduce the system of equations representing 
a specific use case have been introduced, based on the individual 
element models. Moreover, the time-domain simulation module and the 
analysis module of CSTEP have been described. The former is useful to 
simulate the original nonlinear representation and the linearized small- 
signal model of the system, which facilitates the validation of the line
arized models for further analyses and provides information under large 
disturbances. The tool also incorporates several analysis techniques to 
study the stability margins of the system and to identify the influence of 
parameters on the dynamic behaviour of the system. Among these 
techniques, with CSTEP, it is possible to obtain the participation factors 
and the weighted participation factors that relate to the states and ei
genvalues of the system, and the parametric sensitivities to estimate the 
effect of parameter variations in the location of eigenvalues. Moreover, 
it is possible to automatically perform parameter value sweeps to 
investigate their effect on the location of eigenvalues. 

The system-building module algorithm has been demonstrated by 
means of a simplified ac use case, and the functionalities and potential 
applications of CSTEP have been highlighted using a converter- 
dominated 5-bus IEEE benchmark and the CIGRÉ medium voltage dis
tribution grid as an example. 
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Appendix 

A. Taylor series expansion 
According to the Taylor series expansion, an arbitrary function f(x) can be expanded around the equilibrium point x as: 

f (x) = f (x) +
df
dx

⃒
⃒
⃒
⃒

x=x
(x − x) +

1
2!

d2f
dx2

⃒
⃒
⃒
⃒

x=x
(x − x)2

+
1
3!

d3f
dx3

⃒
⃒
⃒
⃒

x=x
(x − x)3

+ ⋯ (36) 

When x is near x, second and higher-order terms are very close to zero and therefore they can be neglected, obtaining the following approximation: 

f (x) ≈ f (x) +
df
dx

⃒
⃒
⃒
⃒

x=x
(x − x) (37) 

By defining the variation of the state as Δx = x − x, Eq. (37) can be rewritten as: 

Δẋ ≈
df
dx

⃒
⃒
⃒
⃒

x=x
Δx (38) 

In a power system, equations depend not only on states but also on algebraic variables and inputs. Eq. (38) can be generalized to consider the effect 
of algebraic and input variables as: 

Δẋi ≈
∑m

l=1

∂fi

∂xl

⃒
⃒
⃒
⃒
⃒

xl=xl

Δxl +
∑n

l=1

∂fi

∂zj

⃒
⃒
⃒
⃒
⃒

zl=zl

Δzl +
∑o

l=1

∂fi

∂ul

⃒
⃒
⃒
⃒
⃒

ul=ul

Δul (39)  

where x, z and u are the values of the states, algebraic variables, and inputs at the equilibrium point, respectively. These values are calculated by 
setting all the derivatives equal to zero (meaning the system is in steady-state) and solving the system of equations for x, z and u. The indices m, n and o 
represent the number of states, algebraic variables, and inputs, respectively. The matrices that group the partial derivatives of all system equations 
obtained according to Eq. (39) are known as Jacobian matrices, and they can be easily calculated by applying the jacobian command in MATLAB. The 
compact and grouped matrix form of the Jacobian matrices in Eq. (39) is shown in Eq. (17). 
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[11] F. Milano, Á.Ortega Manjavacas, Frequency variations in power systems: Modeling, 
state estimation and control. Frequency Variations in Power Systems: Modeling, 
State Estimation and Control, Wiley-IEEE Press, 2020. 

[12] J. Mahseredjian, V. Dinavahi, J.A. Martinez, Simulation tools for electromagnetic 
transients in power systems: overview and challenges, IEEE Trans. Power Deliv. 24 
(2009) 1657–1669, https://doi.org/10.1109/TPWRD.2008.2008480. 
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