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a b s t r a c t 

Machine learning, particularly deep learning has boosted medical image analysis over the past years. 

Training a good model based on deep learning requires large amount of labelled data. However, it is of- 

ten difficult to obtain a sufficient number of labelled images for training. In many scenarios the dataset 

in question consists of more unlabelled images than labelled ones. Therefore, boosting the performance 

of machine learning models by using unlabelled as well as labelled data is an important but challeng- 

ing problem. Self-supervised learning presents one possible solution to this problem. However, existing 

self-supervised learning strategies applicable to medical images cannot result in significant performance 

improvement. Therefore, they often lead to only marginal improvements. In this paper, we propose a 

novel self-supervised learning strategy based on context restoration in order to better exploit unlabelled 

images. The context restoration strategy has three major features: 1) it learns semantic image features; 

2) these image features are useful for different types of subsequent image analysis tasks; and 3) its im- 

plementation is simple. We validate the context restoration strategy in three common problems in med- 

ical imaging: classification, localization, and segmentation. For classification, we apply and test it to scan 

plane detection in fetal 2D ultrasound images; to localise abdominal organs in CT images; and to segment 

brain tumours in multi-modal MR images. In all three cases, self-supervised learning based on context 

restoration learns useful semantic features and lead to improved machine learning models for the above 

tasks. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep convolutional neural networks (CNNs) have achieved

reat success in computer vision, including image classification

 Simonyan and Zisserman, 2014; Krizhevsky et al., 2012; Szegedy

t al., 2015 ), object detection ( Girshick, 2015; Ren et al., 2015 ) and

emantic segmentation ( Long et al., 2015; Chen et al., 2018 ). In

edical image analysis, CNNs have also demonstrated significant

mprovement when applied to challenging tasks such as disease

lassification ( Wang et al., 2017; Suk et al., 2014 ) and organ

egmentation ( Ronneberger et al., 2015; Çiçek et al., 2016; Kam-

itsas et al., 2017 ). Large amounts of training data with manual
∗ Corresponding author at: Department of Computing, Imperial College London, 

80 Queen’s Gate, London, SW7 2AZ, UK. 
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abels have been crucial in many of these successes. In natural

mages, crowd sourcing can be used to obtain ground-truth labels

or the images ( Russakovsky et al., 2015 ). This is based on the

act that the annotation of natural images only requires simple

uman knowledge, e.g. most humans are able to recognize cars in

atural images. However, crowd sourcing has limited applicability

n medical imaging because annotation usually requires expert

nowledge. This means it is usually easier to access a large num-

er of unlabelled medical images rather than a large number of

nnotated images. 

Training CNNs only using the small number of labelled images

annot always achieve satisfactory results and does not exploit the

otentially large number of unlabelled images that may be avail-

ble. The most straightforward method to make use of unlabelled

ata is to train an auto-encoder ( Bengio et al., 2007 ) to initialise

he task-specific CNN. However, the loss function used in auto-

ncoder is the L2 reconstruction loss which leads the auto-encoder

https://doi.org/10.1016/j.media.2019.101539
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Fig. 1. Demonstration of the RP and CP method on a brain CT image. (a) shows the original CT image in the coronal view. (b) shows the patch grid of the RP method and 

the red rectangles indicate patches of left cerebellum and right cerebrum. (c) shows the selected patch to be predicted. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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to learn features that have limited value for discriminative tasks.

The pretrained models from the natural image domain are not use-

ful in the medical imaging domain since the intensity distribution

of natural images is different from that of medical images. 

Self-supervised learning is a type of machine learning strategy

which has gained more and more popularity in recent years. It

aims at supervised feature learning where the supervision tasks

are generated from data itself. In this case, a very large number of

training instances with supervision is available. Pretraining a CNN

based on such self-supervision results in useful weights to initialise

the subsequent CNN based on data with limited manual labels.

Therefore, self-supervised learning is a good option to explore the

unlabelled images to improve the CNN performance in case where

only limited labelled data is available. 

In this paper, we focus on self-supervision for medical images.

Two existing self-supervised learning strategies are applicable in

our cases, namely, the prediction of the relative positions of image

patches ( Doersch et al., 2015 ) (the RP method) and local context

prediction ( Pathak et al., 2016 ) (the CP method). Fig. 1 shows an

example of these two methods. In the RP approach, a 3 × 3 patch

grid is selected and the CNN learns the relative position between

the central patch and one of its surrounding patches. For instance,

a patch containing left cerebellum should locate at the bottom left

corner of the patch of right cerebrum. In the CP method, a patch

in the centre of image is selected and a CNN learns to predict its

context using other image context. 

We propose a novel self-supervised learning strategy for medi-

cal imaging. Our approach focuses on context restoration as a self-

supervision task. Specifically, given an image, two small patches

are randomly selected and swapped. Repeating this operation a

number of times leads to a new image for which the intensity

distribution is preserved but its spatial information is altered. A

CNN is then trained to restore the altered image back to its orig-

inal version. The proposed context restoration strategy has three

advantages: 1) CNNs trained on this task focus on learning use-

ful semantic features; 2) CNN features learned in this task are

useful for different types of subsequent tasks including classifica-

tion, localization, and segmentation; 3) implementation is simple

and straightforward. We evaluate our novel self-supervised learn-

ing strategy in three different common problems in medical im-

age analysis, namely classification, localization, and segmentation.

Our evaluation uses different types of medical images: image clas-

sification is performed on 2D fetal ultrasound (US) images; organ

localization is tested on abdominal computed tomography (CT) im-

ages; and segmentation is performed on brain magnetic resonance

(MR) images. In all three tasks, the pretraining based on our con-

text restoration strategy is superior to other self-supervised learn-

ing strategies, as well as no self-supervised training. 
. Related work 

The key challenge for self-supervised learning is identifying a

uitable self supervision task, i.e. generating input and output in-

tance pairs from data. In computer vision, various types of self

upervision have been proposed depending on data types, which

s summarised in Table 1 . 

For static images, patch relative positions ( Doersch et al., 2015;

oroozi and Favaro, 2016 ), local context ( Pathak et al., 2016 ), and

olour ( Zhang et al., 2016; 2017 ) have been used in self-supervised

earning. In the RP method, it was proposed to predict the relative

ositions between a central patch and its surrounding patches in

 3 × 3 patch grid ( Doersch et al., 2015 ). The idea was that there

re intrinsic position relations among divided parts of an object

f interest. The RP method has three shortcomings: First, the rela-

ive position between two patches could have multiple correct an-

wers, e.g. a patch of a car and a patch of a building. Second, it

as reported that CNNs could complete the self-supervised learn-

ng tasks by learning trivial features, instead of semantic features

hat are useful in other discriminative tasks such as classification

nd segmentation. Specifically, in the RP method, CNNs learns the

hared edges or corners of two patches to predict their relative po-

itions. Although techniques were proposed to address this effect,

NNs could still learn trivial features. For instance, it was proposed

hat patches are randomly jittered ( Fig. 1 (b)) so that there is no

hared information at edges or corners. However, the CNN may still

earn patch positions from some background patterns. Third, the

P method is based on patches, which do not convey information

bout the global context of images. As a result, the RP method can

nly provide limited improvements for subsequent tasks requiring

lobal context, such as classification. Later, a more complicated ver-

ion of patch relative positions, a.k.a the jigsaw (JS) method, was

roposed ( Noroozi and Favaro, 2016 ), in which all 9 patches are

nput to CNNs in a random sequence. The CNNs were trained to

nd the correct sequence of the patches. In the 2D case, there are

62,880 possible sequences of the 9 patches. Training a CNN to

lassify these 362,880 sequences is challenging in terms of model

omplexity and memory. To simplify the training, a smaller num-

er of sequences, e.g. 10 0 0 or 100, are sampled; nevertheless, it is

till a difficult task which may affect learning useful feature repre-

entations. 

In terms of feature learning, learning to predict image context

s more straightforward as proposed by Pathak et al. (2016) . They

roposed an idea which trains CNNs to learn how to inpaint miss-

ng information in images with patchy context removed. For the

npainting, an adversarial loss was proposed in addition to the L2

econstruction loss while for feature learning only the L2 loss was

sed. They reported that if the removed patch is always in the
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Table 1 

Summary of related literature. There are many self-supervision strategies have been proposed for 

natural images and videos while there is only one strategy relating to medical images. 

Data type Authors Supervision 

RGB images Doersch et al. (2015) Patch relative position prediction 

Noroozi and Favaro (2016) 

Pathak et al. (2016) Local context prediction 

Zhang et al. (2016) Colourization 

Zhang et al. (2017) Colour-context cross prediction 

Dosovitskiy et al. (2016) Exemplar learning 

Videos Mobahi et al. (2009) Temporal coherence 

Jayaraman and Grauman (2016) 

Wang and Gupta (2015) Temporal continuous 

Walker et al. (2015) Object motion prediction 

Purushwalkam and Gupta (2016) 

Sermanet et al. (2017) 

Misra et al. (2016) Temporal order verification 

Fernando et al. (2017) 

Multi-modal data Agrawal et al. (2015) Ego-motion prediction 

Jayaraman and Grauman (2015) 

Owens et al. (2016) Audio-video matching 

Chung and Zisserman (2017) 

MR images Jamaludin et al. (2017) Follow-up scan recognition 

Table 2 

Comparison between the RP method and the CP method. Weights learned in both of them can ini- 

tialise the subsequent classification CNN. Weights learned in the RP method can only initialise the 

analysis part of the subsequent segmentation CNN; while weights learning in the CP method can ini- 

tialise analysis and reconstruction part of the subsequent segmentation CNN. 
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entre of an image and in the square shape ( Fig. 1 (c)), CNNs would

nly focus on the central context. As a result, patches with ran-

om shapes and in random locations were removed to improve

he feature learning. However, the removal of context changes the

mage intensity distribution. Thus the resulting images belong to

nother domain and the learned features may not be useful for

mages in the original domain. Compared to the RP method, the

P method is more useful for the subsequent tasks. More precisely,

he CNN weights learned in the CP method can be used to initialise

ubsequent CNNs for classification and segmentation; while CNN

eights learned in the RP method can initialise subsequent classifi-

ation CNNs and only the analysis part of the subsequent segmen-

ation CNNs. This is because a CNN predicting the relative positions

f patches is a classification model, which does not have layers

o reconstruct image-level maps. Table 2 compares the RP method

nd the CP method in terms of subsequent task initialization. 

Colour is one of the most important features in natural images.

t was proposed that learning colours from greyscale images learns

eatures that capture semantic information ( Zhang et al., 2016 ), i.e.

NNs must implicitly perform object recognition in order to colour

hem appropriately. However, it is generally difficult to recognize if

he weather is sunny or not in greyscale images. Therefore, learn-

ng semantics via colours is difficult to cover all aspects of stuff

nd things. In subsequent work, Zhang et al. ( Zhang et al., 2017 )
roposed stronger supervision. Specifically, natural images were

rstly converted into greyscale space and colour space. Then im-

ge representing each space was used to train a siamese CNN to

redict the information in the other space. Combining the two out-

uts reconstructs the original image. This cross-supervision forces

he CNNs to learn more useful semantics. In medical imaging, most

mages are in greyscale so that no colour information is available. 

In addition, the exemplar learning has been proposed as a self-

upervised learning strategy ( Dosovitskiy et al., 2016 ). In exemplar

earning, the task is to classify each data instance into a unique

lass. In this case, heavy augmentation is required to generate

raining data. Since each data instance is regarded as one class, the

xemplar learning method is difficult to apply to large datasets. 

Image sequences (or videos) offer rich resources which could

e used in self-supervised learning. First, neighbourhood frames

hould share similar features ( Mobahi et al., 2009 ). Training CNNs

o learn the similarities achieves the goal of learning contextual

emantics. In addition, in events such as ball games, the features

f frames representing a batting action should also be smooth,

.e. temporal continuous ( Jayaraman and Grauman, 2016 ). Second,

rames representing similar motions such as cycling should share

imilar visual features ( Wang and Gupta, 2015 ). More generally,

imilar objects should share similar motions, which can be learned

y CNNs ( Walker et al., 2015 ). For instance, similar human poses
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Algorithm 1: Image context disordering. 

Input : original image x i 
Output : image with disordered context ˜ x i 
for iter = 1 , 2 , . . . , T do 

randomly select a patch p 1 ∈ x i 
randomly select a patch p 2 ∈ x i 
p 1 ∩ p 2 = ∅ 
swap p 1 and p 2 
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should also share similar motions ( Purushwalkam and Gupta, 2016;

Sermanet et al., 2017 ). Third, frames representing actions should

occur in a certain temporal order. This idea has led to the develop-

ment of CNNs which learn whether a sequence of frames is in the

correct order or not ( Misra et al., 2016; Fernando et al., 2017 ). 

Imaging data with multiple modalities can be easily used for

self-supervised learning. The cross-supervision mentioned above is

an obvious strategy to use for multi-modal imaging data. For in-

stance, cameras at different angles offer different views. A siamese

CNN could be trained to predict camera poses ( Agrawal et al.,

2015 ). More generally, images with the same ego-motion are

likely to share similar features which can be learned by CNNs

( Jayaraman and Grauman, 2015 ). For videos with audio, it is

reasonable to assume similar events share similar audio sound

( Owens et al., 2016 ). Exceptionally, in news broadcast videos,

similar lip poses represent similar readings ( Chung and Zisser-

man, 2017 ). 

In medical imaging, patients often have follow-up scans. Rec-

ognizing scans of the same patient is a good method of self-

supervised learning. Jamaludin et al. (2017) proposed a siamese

CNN to recognize patients’ MR scans and predict the level of ver-

tebral bodies. A large number of scans was collected to train the

CNN to recognize MR scans. Therefore, a small number of anno-

tated scans is required for disease prediction. The above approach

is one of the first works on self-supervised learning in medical

imaging. 

Our work also relates to the work of Doersch and Zisser-

man (2017) , which proposed to combine multiple self-supervised

learning tasks to improve the feature learning. In this work, patch

relative position prediction ( Doersch et al., 2015 ), colourization

( Zhang et al., 2016 ), exemplar learning ( Dosovitskiy et al., 2016 ),

and motion segmentation ( Pathak et al., 2017 ) were unified into

one architecture. A novel input harmonization method was pro-

posed to enable end-to-end training. Features learned in the in-

dividual tasks were then fused with an L1 penalty loss so that

their combination could be sparse. The results showed that multi-

task self-supervised learning improves subsequent tasks more than

single-task self-supervised learning. The disadvantage of multi-task

self-supervised learning is the training requires significant compu-

tational resources, i.e. 64 GPUs for approximately 16.8K GPU hours.

3. Self-supervision based on context restoration 

We propose a novel strategy for self-supervised learning which

we term context restoration . We first introduce this concept before

we provide further details of the training process. 

3.1. Context restoration 

There are two steps in self-supervised learning based on con-

text restoration: generating paired input/output images for train-

ing and learning a mapping between them. Given a dataset X =
{ x 1 , x 2 , . . . , x N } consisting of N images with no annotations, a new

dataset 

˜ X = f (X ) (1)

is generated. Here ˜ X = { ̃ x 1 , ̃  x 2 , . . . , ̃  x N } . f ( · ) is a function corrupt-

ing the context of original images. Subsequently, a CNN is learned

to approximate the function g ( · ) which is designed to model the

mapping ˜ x i �→ x i , i.e. 

x i = g( ̃ x i ) = f −1 ( ̃ x i ) , (2)

where i = 1 , 2 , . . . , N. 

Given an image x i , we randomly select two isolated small

patches in x i and swap their context. Repeating this process for

T times results in 

˜ x . Fig. 2 demonstrates this process on exemplar
i 
mages and Algorithm 1 summarises the process in detail. Sub-

equently, g ( · ) aims to restore the context using CNN model by

earning to approximate f −1 (·) . This is illustrated in Fig. 3 . 

Inspired by existing self-supervised learning strategies, a good

elf-supervised learning strategy should exhibit three key features:

) features learned in the self-supervised training stage should be

epresentative of the image semantics; 2) self-supervised pretrain-

ng is useful for different types of subsequent tasks; and 3) the im-

lementation should be simple. Our proposed context restoration

ethod features all these advantages. For many common prob-

ems in medical imaging such as classification, localization, and

egmentation, learning image context is key. Therefore, learning

he context of images in the self-supervised pretraining stage ben-

fits the subsequent tasks. Restoring the image context can learn

mage context. Specifically, given the corrupted image ˜ x i , the g ( · )

unction learns to restore it by solving two subtasks: 1) recognis-

ng which parts of the image contain corrupted context; 2) re-

onstructing the correct image context in these areas. Second, the

roposed context restoration pretraining is applicable for different

ypes of subsequent tasks by adjusting CNN architecture according

o that of subsequent task. Finally, the implementation of the con-

ext restoration task is simple and straightforward. 

.2. Network architectures 

We model the proposed self-supervised learning strategy – con-

ext restoration – using CNNs. The CNNs can be implemented using

arious different architectures. Most of these networks are image-

o-image networks consisting of two parts: an analysis part and

 reconstruction part. Fig. 3 shows an overview of the general ar-

hitecture of feasible CNNs. The analysis part encodes input disor-

ered images into feature maps and the reconstruction part uses

hese feature maps to produce output images in correct context. 

Analysis Part: The analysis part consists of stacks of convolu-

ional units and downsampling units, extracting feature maps from

he input images. The convolutional units can be single convolu-

ion layers, residual convolution layers ( He et al., 2016 ), inception

ayers ( Szegedy et al., 2016 ), densely connected convolution lay-

rs ( Huang et al., 2016 ) and so on. The downsampling units could

e single pooling layers or inception pooling layers ( Szegedy et al.,

016; 2017 ) and so on. The CNN weights learned in this part are

hen used to initialise the subsequent tasks. 

Reconstruction Part: The reconstruction part consists of stacks

f convolutional layers and upsampling layers, producing output

mages in which the context information has been restored. Again,

he CNN architectures used here are flexible. Various convolutional

nits are applicable and the upsampling layers can be deconvolu-

ion layers or other upsampling layers. However, the CNN architec-

ure in the reconstruction part should be dependent on the subse-

uent task. Specifically, the CNN weights learned in this part are

ot used in subsequent classification tasks while they are almost

ully used in subsequent segmentation tasks. In case of subsequent

lassification tasks, simple CNN layers with a few deconvolution

ayers are sufficient (see Fig. 3 ) ( Doersch and Zisserman, 2017 ). In

his condition, the analysis part makes most contributions to the
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Fig. 2. Generating training images for self-supervised context disordering: Brain T1 MR image, abdominal CT image, and 2D fetal ultrasound image, respectively. In figures 

in the second column, red boxes highlight the swapped patches after the first iteration. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 3. General CNN architecture for the context restoration self-supervised learning. In the figure, the blue, green, and orange strides represent convolutional units, down- 

sampling units, and upsampling units, respectively. In the reconstruction part, CNN structures could vary depending on subsequent task type. For subsequent classification 

tasks, the simple structures such as a few deconvolution layers (2nd row) are preferred. For subsequent segmentation tasks, the complex structures (1st row) consistent with 

the segmentation CNNs are preferred. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ontext restoration. Therefore, the feature maps resulting from the

nalysis part are more useful. In case of subsequent segmentation

asks, the whole CNN architecture can be shared by the pretraining

etwork and the subsequent segmentation network. As a result, al-

ost all the weights of the subsequent segmentation CNN can be

nitialised using those learned in the self-supervised pretraining.

his results in better segmentation results. 

Loss Function: We propose to use the L2 loss for training

he CNNs for the task of context restoration. As suggested by

athak et al. (2016) , the L2 loss is sufficient for feature learn-
ng although the outputs from context restoration outputs may be

lurry. 

Implementation: In this work, the CNNs for context restoration

mploy single convolution layers as the convolutional units. In the

nalysis part, the architecture is similar to that of the VGG-Net

 Simonyan and Zisserman, 2014 ), where there is a pooling layer

ollowing a few convolution layers. In the reconstruction part, if

he subsequent task is a classification task, then there are only a

ew deconvolution layers; if the subsequent task is segmentation,

hen the reconstruction part is in symmetry with the analysis part
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Fig. 4. Self-supervision using context restoration: For brain MR images, our training is on 2D image patch level. Therefore, the context restoration is also based on patches. 
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with concatenation connections, which is similar to a U-Net archi-

tecture ( Ronneberger et al., 2015 ). The loss function of CNNs in the

subsequent tasks is the cross-entropy function. 

As we are training with small datasets (i.e. 25% or 50% of the

whole datasets) from scratch, simple data augmentation techniques

are employed, which include randomly rotating images slices from

-20 ◦ to +20 ◦ and adding random Gaussian noise with σ = 0 . 0 0 01 .

We noticed that a type of new data augmentation method based

on random deformation was proposed ( Chaitanya et al., 2019 ). This

random deformation augmentation requires adversarial CNN train-

ing which is usually expensive in memory. Considering the mem-

ory issue, we only use simple augmentation methods in this work.

All the CNNs use the Adam method ( Kingma and Ba, 2015 )

for optimizing the loss function. We use β1 = 0 . 9 , β2 = 0 . 999 , ε =
1 e − 8 . The learning rates varies for the different problems. Batch

normalization ( Ioffe and Szegedy, 2015 ) is utilized in all CNNs.

Random weights are used for initialization and sampled from a

truncated normal distribution with standard deviation of 0.01. The

kernel size of the convolution and deconvolution layers is 3 × 3.

The stride size of the convolution layers is 1 and that of the de-

convolution layers is 2. 

The CNNs implemented in this paper use the Tensorflow 

1 plat-

form. Our experiments are performed on a desktop PC with an

Core i7-3770 processor and 32GB RAM and with an NVIDIA TITAN

XP GPU processor. 

4. Experiments and results 

To evaluate the proposed self-supervision approach we have

conducted four sets of experiments: First, we show the proposed

self-supervision using context restoration task can be performed

by CNNs on three different datasets, including brain MR images,

abdominal CT images, and fetal US images. In addition, we use the

pretrained CNNs for subsequent tasks such as classification, local-

ization, and segmentation, respectively. For each of these problems,

a different dataset is used. More importantly, we compare differ-

ent self-supervised learning strategies, namely, training an auto-

encoder ( Bengio et al., 2007 ), self-supervision using patch relative
1 https://www.tensorflow.org/ . 

c  

e  

c  
osition prediction ( Doersch et al., 2015 ), self-supervision using lo-

al context prediction ( Pathak et al., 2016 ), and the proposed con-

ext restoration. For each dataset, the self-supervised learning is

ased on the whole training set. The subsequent tasks are based

n the whole, half, and quarter of the training set, respectively. 

.1. Context restoration results 

We evaluate the CNNs employed for context restoration on

hree different datasets, including brain MR images, abdominal CT

mages, and fetal US images. Fig. 4 shows examples of the three

atasets. In all cases, the image context restoration achieve quali-

atively good results. A shortcoming is that the L2 loss results in

mage blur. 

.2. Fetal standard scan plane classification 

Overview: 2D US imaging is the most widely used medi-

al imaging modality to assess the health of the fetus. In the

K, the fetal abnormality screening programme (FASP) handbook

 Programmes, 2015 ) defines guidelines for selecting a number of

tandard scan planes, which are used to make biometric measure-

ents and possible abnormalities. However, US images often have

ow quality because of noise, artefacts, shadows, etc. Therefore, in-

erpreting fetal US images is challenging. Baumgartner et al. pro-

osed a novel CNN-based approach (known as the SonoNet) to de-

ect and localise the defined 13 different standard scan planes in

eal-time from US images ( Baumgartner et al., 2017 ). 

Dataset: We use the same dataset as used in

aumgartner et al. (2017) . Our dataset consists of 2694 2D

ltrasound examinations of fetuses with gestational ages between

8 and 22 weeks. More details about the image acquisition pro-

ocol can be found in Baumgartner et al. (2017) . Fig. 5 shows

xamples of each class of scan planes. 

Implementation: The CNN for this classification problem

s the SonoNet-64 which achieved the best performance in

 Baumgartner et al., 2017 ). In terms of the training strategy, we

se a fixed learning rate of 0.01. In the original training, each batch

onsists of two images from each of the standard scan plane cat-

gories and 26 images from background images. As a multi-class

lassification problem, the numbers of instances across classes are

https://www.tensorflow.org/
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Fig. 5. Examples of standard scan planes and background views of 2D fetal ultrasound images. The standard scan planes consist of brain view at the level of the cerebellum 

(Brain cb), brain view at posterior horn of the ventricle (Brain tv), coronal view of the lips and nose (Lips), standard abdominal view at stomach level (Abdominal), axial 

kidneys view (Kidneys), standard femur view (Femur), sagittal spine view (Spine sag), coronal spine view (Spine cor), four chamber view (4CH), three vessel view (3VV), 

right ventricular outflow tract (RVOT), left ventricular outflow tract (LVOT), and median facial profile (Profile). 

Table 3 

The classification of standard scan planes of fetal 2D ultrasound images. The entries in bold highlight the best comparable 

results. 

Training Initialisation Precision (%) Recall (%) F1-score (%) 

100% ( Baumgartner et al., 2017 ) Random 80.60 86.00 82.80 

100%, Ours Random 89.39 89.66 89.42 

50% Random 84.69 84.94 84.64 

Random + augmentation 84.09 84.86 84.06 

Auto-encoder ( Bengio et al., 2007 ) 84.63 86.09 84.50 

Relative positions ( Doersch et al., 2015 ) 85.15 86.79 84.74 

Jigsaw ( Noroozi and Favaro, 2016 ) 84.89 86.96 85.4 

Context prediction ( Pathak et al., 2016 ) 84.43 85.27 84.43 

Context restoration 85.52 87.56 85.94 

25% Random 57.23 78.99 62.85 

Random + augmentation 60.48 76.23 64.16 

Auto-encoder ( Bengio et al., 2007 ) 55.54 82.87 62.32 

Relative positions ( Doersch et al., 2015 ) 61.01 83.09 66.38 

Jigsaw ( Noroozi and Favaro, 2016 ) 61.56 79.54 65.81 

Context prediction ( Pathak et al., 2016 ) 57.73 81.58 63.10 

Context restoration 65.69 85.25 69.93 
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mbalanced. In our implementation, we sample the same number

f background views with other classes. 

In the context restoration training, the whole 2D image

224 × 288) is used. The batch size is 30 and the model was trained

n 58K iterations. 

Evaluation: As in Baumgartner et al. (2017) , we evaluate the

erformance of CNNs in this classification task using the precision,

ecall, and the F1-score. 

Results: Table 3 displays the results of performance of the CNNs

nder different configurations. Balancing the numbers of instances

n each class significantly improves the performance in all three

etrics. 

In training in random initialisation situations, it is not sur-

rising that less training data leads to worse results. When the

onoNet is trained on half of the training data, the precision and

ecall both decrease, which lead to the decrease of the F1-score.

nterestingly, when the SonoNet is trained on quarter of the train-

ng data, the precision decreases significantly while there is only

light decrease in terms of the recall. This suggests a large num-

er of false positives (FPs) occur. Data augmentation does not lead

o improvement when the SonoNet is trained on half data; while

t lead to obvious improvement when the SonoNet is trained on

uarter of data. On quarter of training data, the data augmentation

echniques can be advantageous over some self-supervised learn-

ng methods such as the CP method. 

With the help of self-supervised pretraining, the performance

f CNNs when using small training sets can be improved. Specifi-

ally, when learning on half of training images, the F1-scores keep
 F  
table in most cases except where the SonoNet is pretrained based

n context restoration. In this scenario, the baseline (i.e. random

nitialisation) is not far away from the ceiling (i.e. SonoNet on

he whole training set). Therefore, it is difficult to obtain improve-

ents. The SonoNet pretrained using context restoration can only

ffers marginal improvement. When learning using only a quar-

er of training images, the SonoNet with feature initialisation from

he auto-encoder pretraining still cannot improve the baseline;

hile SonoNets using other pretraining strategies perform better

han the baseline. Our context restoration pretraining improves the

onoNet performance the most. This suggests that context restora-

ion pretraining is more useful for image classification in this case.

.3. Abdominal multi-organ localization 

Overview: In many medical image analysis problems, localiza-

ion anatomical structures is a prerequisite. For instance, in the

iver segmentation challenge ( Heimann et al., 2009 ) hosted in

ICCAI 2007, the provided CT images were cropped such that the

ivers were roughly localized. This excludes irrelevant organs and

issue and benefits the segmentation. However, manual cropping

equires expert knowledge and costly. de Vos et al. (2017) proposed

 novel approach which can localize anatomical structures in 3D

edical images. This approach defines the localization as discov-

ring bounding boxes in 3D images so that regions within these

ounding boxes contain target anatomical structures (see Fig. 6 ).

ollowing this idea, we localise multiple abdominal organs in CT
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Fig. 6. An example of abdominal CT image in axial, coronal, and sagittal views. The 

pancreas, left kidney, right kidney, liver, and spleen are colours in red, green, blue, 

yellow, and purple, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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images. The organs of interest are pancreas, kidneys, liver, and

spleen. 

Dataset: A dataset of 3D abdominal CT image from 150 sub-

jects is employed. The patient demographics and image acquisition

details can be found in Tong et al. (2015) . We normalize the vol-

ume intensities in zero mean and unit deviation before analysis.

The whole dataset is randomly divided into two equal halves. The

first half is used for training and validation and the other half is

used for testing. Images in this dataset were annotated at voxel

level. We derive the reference bounding boxes and slice labels (or-

gan presence) using these annotations. 

Implementation: The CNN for multi-organ localization task is

similar to the SonoNet ( Baumgartner et al., 2017 ). It has one more
tack of convolution and pooling layers than the SonoNet since

he input images are 512 × 512 which is approximately twice larger

han the processed 2D ultrasound frames in each side. The CNN for

ocalization is also equipped with a global mean pooling layer. The

utput of this CNN is a prediction vector with K elements indicat-

ng the probabilities of presence of the K organs. The learning rate

n this task is fixed as 0.001. The batch size is 16 and the model

as trained in 55K iterations. 

Evaluation: We follow ( de Vos et al., 2017 ) that distances (in

m) from the reference bounding boxes to the predicted bounding

oxes are used to evaluate the localization performance. Specifi-

ally, we compute the distances of the centroids and walls between

ounding boxes. 

Results: Table 4 displays localization performance of the CNN in

ifferent training strategies. Initialising by pretrained features, par-

icularly those from context restoration tasks, improves the CNN

erformance. 

Performance is compared among CNNs using different pretrain-

ng strategies. Training on incomplete training set using random

nitialization is used as baseline in each comparison group. Data

ugmentation did not offer performance improvement in many

ases. This may because the augmented images do not cover the

ariance of organ shapes and positions and introduce additional

ariance to pixel intensities. Within each group, the CNN pre-

rained using the auto-encoder sometimes improves the perfor-

ance upon the baseline. For instance, on half training data, it im-

roves the centroid prediction of pancreas. However, it is worse

han the baseline in terms of liver. In total, the results cannot

erify auto-encoding pretraining improves the CNN performance.

n contrast, pretraining based on relative position prediction and

ontext prediction improves the CNN performance. Specifically, in

ost cases, pretraining of these two tasks decreases the errors on

aselines in terms of both centroid and walls. In terms of rela-

ive position prediction methods, the RP method provides more

mprovement than the JS method since the JS method training is

ore likely to learn trivial features so that less useful image fea-

ures can be learned. Specifically, the JS method uses 9 patches

hich are likely to include organ borders; while the RP method

nly uses 2 patches. Importantly, pretraining based on context

estoration results in more localization improvements. In some

ases, the CNN using context restoration pretraining is compara-

le to or even better than none pretraining on more annotated

raining data. For instance, in terms of left kidney, the CNN on half

raining data slightly outperforms that on all the training data; in

erms of spleen, the CNN on a quarter training data performs bet-

er than the one on half training data. These improvements cannot

e achieved by CNNs using other pretraining strategies. 

In terms of different organs, the distance variance of centroid

nd walls in kidneys is significantly larger than that of other or-

ans. This is because not all patients have two kidneys. It is chal-

enging for CNNs to distinguish two kidneys individually because

f inter-subject variance. CNNs are more likely to make mistakes

ased on less training data. Although the CNN pretrained using the

P method on quarter training data outperforms that using con-

ext restoration pretraining, it performs much worse in left kid-

ey. Therefore, performance on two kidneys should be assessed

ogether instead of individually. Regarding the pancreas, the per-

ormance of CNNs without pretraining decreases slightly when the

raining data halves. However, it decreases significantly when there

s only quarter training data. In the opposite, in terms of the liver,

he CNN performance decreases sharply with half training data;

hile it remains stable with quarter training data. On the spleen,

he situation is different. The CNN performance keeps decreas-

ng rapidly with less and less training data. It is noteworthy that

f less training data leads to significant decrease of results, self-

upervised learning is likely to improve the results significantly. 
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Table 4 

The performance of the CNN solving the multi-organ localization problem in different training settings. The entries in bold highlight 

the best comparable results. The RD, AE, RP, JS, CP, CR are short for random, auto-encoder ( Bengio et al., 2007 ), relative positions 

( Doersch et al., 2015 ), jigsaw( Noroozi and Favaro, 2016 ), context prediction ( Pathak et al., 2016 ), and our proposed context restora- 

tion. The numbers displayed are the mean ± std distances in mm. 

Train Init. Left kidney Right kidney 

Centroid Wall Centroid Wall 

100% RD 6.45 ± 8.47 3.68 ± 21.41 5.71 ± 10.17 2.79 ± 23.65 

50% RD 17.49 ± 49.67 9.36 ± 75.00 10.40 ± 30.37 5.89 ± 48.28 

RD + AG 67.22 ± 123.47 37.79 ± 180.12 21.82 ± 58.52 11.78 ± 88.17 

AE 12.79 ± 38.67 6.84 ± 56.97 20.44 ± 41.48 11.52 ± 67.01 

RP 12.11 ± 39.01 6.75 ± 61.67 10.61 ± 30.41 5.77 ± 48.64 

JS 14.15 ± 35.71 7.87 ± 55.31 22.31 ± 58.4 12.29 ± 87.93 

CP 11.95 ± 38.97 6.82 ± 61.23 8.30 ± 11.92 4.47 ± 27.83 

CR 5.99 ± 9.83 3.16 ± 22.66 5.83 ± 10.10 2.90 ± 22.04 

25% RD 28.23 ± 71.95 15.87 ± 107.18 12.71 ± 30.39 6.77 ± 49.26 

RD + AG 52.19 ± 105.74 29.72 ± 154.70 56.56 ± 98.47 31.62 ± 146.47 

AE 25.90 ± 65.64 14.40 ± 98.28 36.28 ± 73.65 19.55 ± 111.46 

RP 27.65 ± 75.31 15.41 ± 111.82 8.34 ± 11.22 3.97 ± 23.26 

JS 40.21 ± 89.41 23.30 ± 132.33 66.62 ± 102.08 15.17 ± 43.75 

CP 21.86 ± 60.28 13.03 ± 90.92 15.58 ± 35.3 8.42 ± 57.53 

CR 7.63 ± 9.02 3.94 ± 22.78 17.51 ± 52.67 9.8 ± 78.57 

Train Init. Pancreas Liver Spleen 

Centroid Wall Centroid Wall Centroid Wall 

100% RD 13.39 ± 9.73 8.98 ± 23.27 7.50 ± 5.22 4.35 ± 14.07 6.63 ± 9.68 4.10 ± 23.02 

50% RD 16.45 ± 9.00 10.74 ± 26.77 12.79 ± 8.19 6.89 ± 22.6 13.24 ± 36.97 8.54 ± 56.87 

RD + AG 18.25 ± 11.23 12.75 ± 31.70 13.73 ± 9.28 7.17 ± 24.95 17.86 ± 48.84 10.64 ± 74.25 

AE 15.59 ± 8.51 10.35 ± 24.35 14.07 ± 8.66 7.41 ± 24.39 12.36 ± 11.31 8.54 ± 31.16 

RP 15.54 ± 7.98 11.13 ± 23.50 10.12 ± 8.85 6.18 ± 22.31 7.64 ± 10.16 4.77 ± 24.41 

JS 16.81 ± 9.52 12.00 ± 26.13 16.63 ± 14.37 11.08 ± 40.40 12.78 ± 8.34 7.53 ± 23.22 

CP 14.76 ± 8.78 10.07 ± 26.26 9.91 ± 6.78 5.03 ± 15.39 7.79 ± 11.41 4.82 ± 25.98 

CR 14.76 ± 8.10 10.14 ± 24.86 8.91 ± 6.20 4.67 ± 16.83 7.07 ± 9.54 4.05 ± 22.17 

25% RD 22.09 ± 11.72 17.14 ± 39.23 12.02 ± 6.46 7.14 ± 20.27 24.86 ± 36.64 15.30 ± 61.38 

RD + AG 20.60 ± 18.48 16.40 ± 43.83 19.06 ± 12.48 10.77 ± 36.17 24.78 ± 34.56 13.44 ± 59.24 

AE 17.67 ± 8.40 12.24 ± 25.54 16.79 ± 9.47 9.56 ± 28.30 22.65 ± 47.91 13.95 ± 73.05 

RP 17.84 ± 8.94 11.74 ± 25.06 15.59 ± 9.79 9.25 ± 29.74 14.51 ± 38.89 9.95 ± 62.12 

JS 17.91 ± 10.54 11.99 ± 27.74 20.49 ± 13.76 13.12 ± 59.83 20.44 ± 37.19 37.91 ± 152.35 

CP 21.81 ± 11.44 18.59 ± 41.57 11.40 ± 8.69 6.18 ± 22.50 10.34 ± 9.92 7.56 ± 27.58 

CR 16.01 ± 8.46 11.78 ± 28.79 11.17 ± 9.03 7.52 ± 25.68 8.39 ± 6.28 5.82 ± 19.50 

Fig. 7. An example of MR image in multiple modalities with gliomas and the tumour structure annotations. In the manual annotation image, the background, edema, non- 

enhancing tumours, and enhancing tumours are coloured in purple, green, blue, and yellow, respectively. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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.4. Brain tumour segmentation 

Overview: Gliomas are the major brain tumours occurring in

dults. They are routinely assessed using MR imaging ( Bakas et al.,

017b ). Accurate segmentation of gliomas on MR image is a key

tep for quantification. Our segmentation task is based on the Brain

umour segmentation (BraTS) challenge ( Menze et al., 2015 ). The

ask is to segment the necrotic and non-enhancing tissues, the

eritumoral edema, and gadolinium enhancing tissues of tumour

 Bakas et al., 2017a ) on multi-modal MR images. Fig. 7 shows such

n example. 

Dataset: We use the dataset of the BraTS 2017 challenge which

onsists of 285 subjects. Each subject has MR images in multi-
le modalities, namely, native T1 (T1), post-contrast T1-weighted

T1-Gd), T2-weighted (T2), T2 fluid attenuated inversion recovery

FLAIR). These images were preprocessed that images in different

odalities are co-registered into the same anatomical template;

kulls are removed; and voxels are resampled into the isotropic

esolution (1 mm 

3 ) ( Menze et al., 2015 ). Intensities are normalized

o zero mean and unit variance. We use 142 out of the 285 images

or training and validation and remaining 143 ones for testing. 

Implementation: For the tumour segmentation in this work,

e use a 2D patch-based CNN approach as suggested in

amnitsas et al. (2017) and Chen et al. (2017) in medical image

egmentation since medical images usually have large sizes while

esions of interest are small. Fig. 4 shows an example of such
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Table 5 

The segmentation results of the customised U-Nets ( Ronneberger et al., 2015 ) in different training settings. The entries in bold highlight the 

best comparable results. The RD, AE, RP, JS, CP, CR are short for random, auto-encoder ( Bengio et al., 2007 ), relative positions ( Doersch et al., 

2015 ), jigsaw ( Noroozi and Favaro, 2016 ), context prediction ( Pathak et al., 2016 ), and our proposed context restoration. 

Train Init. Dice % Sensitivity % Specificity % Hausdorff95 

Whole Core Enh. Whole Core Enh. Whole Core Enh. Whole Core Enh. 

100% RD 86.56 77.04 66.31 87.05 77.28 77.62 99.88 99.94 99.95 30.78 25.03 25.74 

50% RD 84.41 75.55 65.11 84.75 77.76 80.20 99.86 99.91 99.94 31.29 25.26 26.81 

RD + AG 82.30 73.17 62.82 88.46 77.88 72.67 99.78 99.89 99.95 50.98 47.61 42.96 

AE 84.33 71.85 65.07 84.71 74.19 77.38 99.87 99.91 99.95 33.36 25.24 24.56 

RP 84.38 75.65 66.73 84.65 77.02 79.48 99.87 99.92 99.95 36.43 23.15 20.69 

JS 83.08 72.02 65.55 80.41 74.44 80.04 99.90 99.93 99.94 41.46 33.46 35.76 

CP 84.54 73.86 66.01 84.59 75.28 79.46 99.86 99.92 99.94 33.59 28.59 26.90 

CR 85.57 76.20 68.24 83.83 78.17 80.53 99.89 99.92 99.95 26.41 20.34 24.38 

25% RD 81.91 71.22 62.57 84.08 75.68 75.98 99.82 99.89 99.94 36.34 37.21 31.57 

RD + AG 81.02 66.69 60.79 79.64 64.49 66.23 99.87 99.94 99.96 44.59 34.61 33.59 

AE 83.05 68.92 61.28 83.90 76.52 76.75 99.85 99.86 99.93 33.21 34.9 31.95 

RP 82.38 71.33 61.86 84.23 72.53 75.38 99.83 99.92 99.94 37.83 31.81 31.04 

CP 83.19 71.55 62.77 85.75 73.68 76.88 99.83 99.91 99.94 36.21 36.45 31.90 

JS 82.09 70.81 62.01 81.59 72.60 68.68 99.88 99.92 99.96 42.68 36.51 33.69 

CR 84.27 73.43 64.12 85.57 78.79 79.14 99.85 99.89 99.94 33.15 32.18 30.61 
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patches. The patch size used is 64 × 64. The CNN used in this ex-

periment is a 2D U-Net ( Ronneberger et al., 2015 ). The learning

rate is fixed as 0.001. The batch size is 100 and the number of it-

erations is 50K. We follow the post-processing strategy proposed

in Kamnitsas et al. (2016) : a 3D dense conditional random fields

(CRFs) ( Krähenbühl and Koltun, 2011 ) is used to refine the out-

put of whole tumour structures; isolated voxel clusters of whole

tumours less than 10 0 0 voxel size are then removed based on

the connected component analysis; the predicted voxels of tumour

cores outside the regions of whole tumours are removed. 

Evaluation: The evaluation is not based on three tumour

classes individually. It is based on the following three classes: the

whole tumour region which include all tumour structures, the tu-

mour core region which include tumour structures except edema,

and the enhancing tumour core region. We use the same evalu-

ation metrics in the BraTS 2017 challenge: Dice score, sensitivity,

specificity, and Hausdorff distance. Particularly, we use a robust

version of the Hausdorff distance (Hausdorff95), which measures

the 95% quantile, instead of the maximum distance between two

surfaces. 

Results: Table 5 shows the results on the BraTS problem. The

general experiment settings are similar to the previous experi-

ments. According to the results, U-Nets ( Ronneberger et al., 2015 )

initialised by context restoration pretraining achieve the best per-

formance in total. 

Data augmentation was observed to decrease the segmentation

accuracy, which may because of three reasons: 1) The segmenta-

tion is based on patches so a large number of image patches can be

sampled. 2) The augmentation does not introduce any more useful

variance in terms of tumour appearance. 3) The augmentation in-

troduces additional intensity variations which are not meaningful. 

In terms of different pretraining strategies, the auto-encoding

pretraining does not improve CNN performance, which has been

verified in previous experiments. This is also similar to the previ-

ous experiments that pretraining based on relative positions and

context prediction tasks improves the segmentations but they are

not as good as the pretraining based on the context restoration

task. Again, self-supervision based on context restoration offers

best pretraining strategy for the segmentation task. 

The decrease in U-Net performance is not significant every time

when the size of the training data halves. Therefore, the differ-

ences in performance among different self-supervision strategies

are not significant. The performance using self-supervision based

on context restoration approaches that of random initialisation on
 m  
 larger dataset. For instance, using 50% of the training set, the

roposed self-supervision strategy offers similar performance to

sing the whole training set. The Dice score in enhanced tumour

ore, the sensitivity in non-enhanced and enhanced tumour cores,

nd the Hausdorff distances in all aspects are even slightly better. 

. Discussion and conclusion 

In this paper, we proposed a novel self-supervised learning

trategy based on context restoration. This enables CNNs to learn

seful image semantics without any labels. The subsequent task-

pecific CNNs benefit from this pretraining. We conclude from the

xisting self-supervised feature learning literature that the ideal

retraining task should have similar goal to the subsequent task.

articularly, in medical image analysis, the image context is the

ommon feature for classification, localization/detection, and seg-

entation tasks. Therefore, the context restoration learning con-

ribute to learning features for these goals. 

In addition, the CNNs for context restoration can be struc-

ured in flexible architectures depending on subsequent tasks. The

dea is to ensure subsequent tasks can make full advantages of

he weights from pretrained CNNs. Furthermore, the implementa-

ion of the context restoration task is simple and straightforward,

eaning that it can be widely used. Compared with the existing

trategies such as relative positions and context prediction, solv-

ng the context restoration task requires pattern recognition and

rediction, which ensures the context restoration task offers more

fficient image semantics. 

We have validated the proposed context restoration pretrain-

ng on three types of representative tasks in medical image analy-

is, which are classification, localization, and segmentation. Each

f these tasks are based on a different type of medical images.

he classification task is based on fetal 2D ultrasound images; the

ocalization task is based on abdominal CT image; and the seg-

entation task is based on multi-modal brain MR images. In all

hree tasks, context restoration pretraining outperforms other pre-

raining methods. These results underlines the advantages of our

ontext restoration strategy. In our experiments, we found that if

he reduction of training data causes significant performance de-

rease, the context restoration pretraining can offer significant per-

ormance improvement over the baselines. 

In computer vision, many CNNs are pretrained before the

ain task. For instance, the Faster R-CNN ( Ren et al., 2015 ) is
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ased on the pretraining of the VGG-Net ( Simonyan and Zis-

erman, 2014 ). This type of pretraining leads to good detection

esults in the Faster R-CNN. However, it was reported that the self-

upervised pretraining is not as good as the supervised pretraining

 Larsson et al., 2017 ). This is not verified in this paper since in

edical image analysis, it is difficult to conduct supervised pre-

raining, which requires a large number of annotations. However,

t is noteworthy to explore more powerful self-supervised learning

ethod so that the self-supervised pretraining can be as good

s supervised pretraining in the future. For instance, we could

ntegrate the advantages of the relative position method into

he proposed context restoration method. Specifically, a 3-by-3

atch grid could be chosen in the image and the context of these

atches could randomly swapped. A CNN is then trained to detect

nd identify this context distortion with the subsequent task of

estoring the context. 
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