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A B S T R A C T   

In recent years, blockchain technology has been increasingly adopted in OTC medicine supply 
chains, enabling customers to track the entire process from raw material purchasing to finished 
medicine distribution. This improves the brand image and hence expands the market. With the 
use of blockchain, information transparency can be achieved because data are stored immutably 
and safely in a distributed database that is accessible by all supply chain members. However, will 
the incentives for supply chain members to participate in blockchain for larger-scale demand 
come at the cost of information disclosure? In this paper, to investigate the supply chain mem-
bers’ incentive alignment opportunities towards the adoption of blockchain technology, we 
consider a two-stage supply chain comprising two medicine manufacturers and a common retailer 
that has more accurate demand information than the manufacturers have. We find that, inter-
estingly, the retailer has incentives to participate in blockchain when the manufacturers’ 
competition is mild and the demand variance is low. We further investigate the impact of 
blockchain on total surplus and customer surplus and find that the adoption of blockchain always 
benefits customers and society; therefore, blockchain can be particularly useful for social goods 
such as OTC medicine.   

1. Introduction 

Currently, similar to daily goods, many over-the-counter (OTC) medicines/drugs can be sold without a doctor’s prescription. Take 
the medicine for cold and fever as an example. One can buy medicines, such as Advil, Vicks DayQuil/NyQuil, Tylenol Extra Strength 
Caplets, Ganmaoling granules, and Ibuprofen, directly at nearby chain pharmacies. As a result, many pharmaceutical retail giants have 
emerged that procure a wide variety of medicines from different manufacturers and then resell the medicines to customers. For 
instance, in China, 360kad (www.360kad.com) is a large online pharmacy that has contracted with more than 2000 medicine man-
ufacturers and sells approximately 4,000 OTC medicines. Almost twenty brands of Pediatric Paracetamol Artificial Cow-bezoar and 
Chlorphenamine Maleate Granules, a common medicine for cold and fever in children, are sold on 360kad online pharmacies, including 
the famous brands Sunflower and 999. Similar examples can be observed for Walmart, Walgreen pharmacy, CVS Health and UK Meds. 
Customers may buy Multi-Symptom Cold & Flu produced by Advil or Nyquil at Walmart. 

Generally, there are different levels of demand variance for different medicines, and the demand for the famous manufacturers’ 
medicines can fluctuate less due to the customers’ trust and predictable purchasing behaviors (Zarantonello and Schmitt 2010, Niu 
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et al. 2019a). However, in recent years, it has been reported that even famous brands, such as Baxter International Inc. in the US1 and 
Fuxing Pharmaceutical Co. Ltd. in China2, can be accused of quality issues (Chicago Tribune 2016, FDA.com 2012). The reason is that 
medicine is used for health issues; therefore, customers are always sensitive to medicine quality. To solve this problem, we observe that 
an increasing number of medicine manufacturers have adopted blockchain technology, based on which all the production information 
(e.g., raw material supply information, production information, quality control and inspection information, logistics information) is 
written on blockchain platforms, such as Ethereum3 (Harvard Business Review 2017). All the supply chain members (even the cus-
tomers) are allowed to access the information via ERP or APP, and no one can tamper with the records once they are stored in the 
blockchain network (Choi 2019, Babich and Hilary 2020, Choi et al. 2020a). Clearly, blockchain can be useful for improving the 
medicine manufacturers’ brand image and can hence expand the market because the supply chain members are now capable of 
tracking all business transactions and ethical and responsible medicine production can be guaranteed (Forbes4 2018, Harvard Business 
Report5 2020). Blockchain is also beneficial for pharmaceutical manufacturers, such as AbbVie, Genentech, and Pfizer6 (Cbinsight 
2018), as it has led to an enlarged demand size and has improved customer trust. Under the Pilot Project Program proposed by IBM7 

(IBM 2020), industry leaders Merck (a medicine manufacturer) and Walmart (a pharmaceutical retailer) have even made and 
announced a collaboration example demonstrating how to verify and track the medicines’ quality. Some related practices of using 
blockchain in medicine supply chains are shown in Table 1. 

Having said that, is blockchain always beneficial? Taking a close look at the pharmaceutical retailer’s tradeoffs, we find that the 
answer is: it depends. According to blockchain requirements, the business partners in a supply chain need to share and agree upon key 
information8 (EY 2017). According to Deloitte (2017), blockchain offers opportunities to solve the problems of trust and information 
sharing. Blockchain makes information sharing among stakeholders a reality9. In practice, IBM offers a transparent supply chain with a 
blockchain in which suppliers can improve their forecasting ability with a more accurate demand signal, because the retailer records 
whether a product has been sold into the blockchain system and suppliers can trace inventory information in near real time (IBM 
2020). Then, information from each stage is written in the blockchain, and every supply chain member has a copy. In practice, it is the 
retailer that has more accurate demand information than the manufacturers (Özer and Wei 2006, Xue et al. 2017); therefore, the 
pharmaceutical retailer’s benefits are established at the cost of demand information sharing10 (Deloitte 2018). 

Therefore, if the pharmaceutical retailer does not have incentives to participate in blockchain, then the blockchain system will 
become ill-behaved. If the retailer refuses to join the blockchain, there are only pharmaceutical manufacturers on the blockchain. Since 
blockchain is a distributed ledger that can record information from different sources, the blockchain with the information only from 
the manufacturers is similar to an offline database. According to the report of the Harvard Business Review (HBR 2017), complexity is a 
key dimension of blockchain, and a blockchain with only one participant is of little use. In this case, customers cannot obtain the 
production information of drugs, and manufacturers cannot obtain detailed demand information. In addition, in the adoption of 
blockchain in Walmart, Brigid McDermott, the Vice President of Blockchain Business Development for IBM, warned that if only a 
retailer in the ecosystem participates in the blockchain, a safety solution would not work11 (Digital Initiative 2017). As a result, the 
blockchain would be ineffective and ill-behaved. 

In contrast, blockchain would be more worthwhile when more business partners have signed on it; that is, when the retailer and 
manufacturer in the supply chain have incentive alignment for blockchain adoption, they are capable of sharing information through 
blockchain technology. The manufacturers record the product information so that customers can obtain detailed information and have 
more trust in drugs. On the other hand, the manufacturers can learn more about the demand, and they are better able to schedule 
production. As a result, the blockchain including the total supply chain is a valid one. Several research questions naturally arise: (1) 
Under what conditions will all supply chain members achieve incentive alignment towards the adoption of blockchain? (2) Is 
blockchain beneficial to customers and for the total surplus? 

To answer the aforementioned questions, we build a two-stage supply chain model consisting of two medicine manufacturers and a 
common pharmaceutical retailer. In the pharmaceutical industry, competing with each other, many pharmaceutical manufacturers 
produce substitutable medicine or healthcare products, while pharmaceutical retailers are often regional monopolies. Take Walmart as 
an example; in its stores, there are dozens of brands of medicines against cold and cough, including top brands, such as Advil and Vicks. 
Similar examples can be seen in Walgreens and CVS Health pharmacies. It is a common phenomenon that competition among man-
ufacturers is more intense than that among retailers in the pharmaceutical industry. Therefore, in this paper, to capture the typical 
industrial practice in the pharmaceutical industry, we assume two competing upstream manufacturers and one monopolistic retailer. 
The manufacturers’ medicines have similar curative effects, so they are substitutable, although their demand variance levels are 

1 https://www.chicagotribune.com (accessed 27 July 2020).  
2 https://www.fda.gov (accessed 27 July 2020).  
3 https://hbr.org/2017/01/the-truth-about-blockchain (accessed 27 July 2020).  
4 https://www.forbes.com (accessed 27 July 2020).  
5 https://hbr.org (accessed 27 July 2020).  
6 https://www.cbinsights.com (accessed 27 July 2020).  
7 https://www.ibm.com (accessed 27 July 2020).  
8 https://www.ey.com (accessed 27 July 2020).  
9 https://www2.deloitte.com (accessed 11 November 2020)  

10 https://www2.deloitte.com (accessed 27 July 2020).  
11 https://digital.hbs.edu (accessed 11 November 2020) 
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different because of brand image and customer recognition issues. The pharmaceutical retailer is more familiar with the market; 
therefore, it has accurate demand information, which facilitates its generation of more profits in the medicine reselling business. We 
consider two scenarios: (1) Scenario NB, in which blockchain is not adopted, and (2) Scenario AB, in which the supply chain members 
achieve incentive alignment to adopt blockchain. We formulate blockchain’s two features: information transparency and quality trust. 
The former requires information sharing, especially the retailer’s demand information sharing, while the latter helps gain customers’ 
trust and improve the brand image. Our focus is to determine whether incentive alignment opportunities among the competing 
manufacturers and the pharmaceutical retailer can be identified, without which it is impossible to adopt blockchain. The main findings 
are summarized as follows. 

First, we investigate the wholesale price and quantity decisions in two scenarios. We find that the equilibrium wholesale prices and 
quantities are both higher in scenario AB than in scenario NB. This is because the adoption of blockchain improves brand image and 
thereby attracts more customers, which in turn gives manufacturers pricing power to charge a relatively higher wholesale price. We 
also study the impact of manufacturer competition on wholesale prices and quantities. We find that as the competition intensity in-
creases, the wholesale prices decrease, while the quantities first decrease and then increase. It is straightforward to find decreasing 
wholesale prices because of the manufacturer’s wholesale price war. The sensitivity analysis of the quantities is interesting, and the 
underlying reasons are subtler. To explain this, we cite Lus and Muriel (2009), who find that the total market potential can be 
decreasing in competition intensity. This serves as a driving force for the retailer to lower the order quantity. In contrast, tense 
manufacturer competition results in lower wholesale prices, which leads to a sharp drop in the retailer’s procurement cost. This in-
duces the retailer to place a larger order quantity. 

Next, among the manufacturers and the retailer, we investigate the incentive alignment opportunities for adopting blockchain. We 
find that manufacturers always benefit from blockchain adoption, while the retailer’s preference depends on the manufacturer’s 
competition intensity and the demand variance level. Only when there is mild manufacturer competition and low demand variance in 
the market would the retailer be better off in the adoption of blockchain technology. More specifically, the retailer is willing to adopt 
blockchain only when the benefits from the profit margin increment and the sales quantity increment can offset its loss because of 
demand information disclosure. 

We further examine the impact of blockchain on the total surplus and customer surplus and find that blockchain always results in a 
larger total surplus and customer surplus. This finding sheds light on the wide use of blockchain for social goods such as OTC medicine. 

The remainder of this paper is organized as follows. Section 2 reviews the related literature. We introduce the model settings and 
describe the assumptions in Section 3. Section 4 presents the corresponding analysis. In Section 5, we extend the basic model by 
considering the cost of adopting blockchain, the retailer’s inaccurate information, the retailer’s sales effort, asymmetric substitut-
ability, sequential wholesale pricing, and first-order stochastic dominance. Section 6 concludes this paper and discusses future research 
directions. All the equilibrium results and proofs are summarized in the Online Appendix. 

2. Literature review 

This study is related to three streams of literature, namely, blockchain technology, healthcare supply chain product quality, and the 
impact of competition and cooperation on supply chain performance. 

Our study is closely related to the literature on the role of blockchain in supply chain management. As blockchain technology has 
been adopted in an increasing number of industries, Kumar et al. (2018) point out that the study of blockchain’s role can effectively 
contribute to the literature on operations management (OM) and information system (IS) interfaces. Choi and Luo (2019) investigate 
how to use blockchain to improve data quality in sustainable fashion supply chains. They find that blockchain may enhance total 
surplus but may have a negative impact on supply chain profitability. By analyzing several customer utility models, Choi (2019) 
identifies the value of blockchain in diamond authentication and certification. Choi et al. (2019) then investigated the application of 
blockchain technology in a mean–variance risk analysis framework. Saberi et al. (2019) point out that blockchain has the potential to 
solve some global supply chain management problems. Wang et al. (2019) study the benefits and challenges of the adoption of 
blockchain technology in supply chain management. With the consideration of demand volatility risk, Yoon et al. (2019) examine the 
effectiveness of blockchain technology in improving the exporting firms’ performance in international trades. Hastig and Sodhi (2020) 
conduct an empirical study by considering the business requirements and critical success factors in the implementation of blockchain. 
Chod et al. (2020) find that blockchain helps reduce the verification costs for inventory transactions and to secure favorable financing 
terms at a lower signal cost. Choi et al. (2020a) investigate the impact of blockchain on social media analytics. Choi et al. (2020b) 
further study the impact of blockchain technology on the on-demand service platform’s optimal pricing decisions. Different from these 
works, our study focuses on the application of blockchain technology in the pharmaceutical industry, in which social goods such as 

Table 1 
Business practice of blockchain adoption.  

Companies/ 
Organizations 

The practice of blockchain adoption 

MediLedger Project A project in which pharmaceutical manufacturers, such as GSK, Pfizer, Novartis, and pharmaceutical retailers, such as Walgreens and 
Walmart, use blockchain to track the medicines. 

UKMeds Blockchain is used for the customers’ data management and for medicines’ tracing. 
JD Health Blockchain enables supply chain transparency and traceability.  

B. Niu et al.                                                                                                                                                                                                             



Transportation Research Part E 152 (2021) 102276

4

medicines are purchased and resold by retailers. We investigate the incentive alignment opportunities of two manufacturers and their 
common retailer to adopt blockchain technology when the retailer has more accurate demand information than the manufacturers. We 
further investigate the supply chain’s total surplus, which is an important performance measure of the retailers’ social goods selling. 

There are arising studies that focus on information sharing based on blockchain technology. Typical examples include Yang (2019), 
Choi et al. (2019), Dutta et al. (2020), Choi (2020), and Li (2020). Yang (2019) shows that blockchain technology employed in the 
shipping industry has widely facilitated information sharing among supply chain parties. Choi et al. (2019) point out that blockchain is 
essential for companies to obtain faithful demand information and avoid the downstream firms’ lies. Dutta et al. (2020) point out that 
information sharing is one of the main characteristics of blockchain. Choi (2020) mentions that companies could track the customers’ 
behaviors. Li (2020) indicates that information sharing could be achieved by using smart technologies such as big data and blockchain. 
Yu et al. (2020) investigate whether carbon emissions can be reduced if the retailer shares information with the manufacturer through 
blockchain. Zhang et al. (2020) study the information sharing effect in a luxury supply chain in which the manufacturer can observe 
the signal of the customers’ preferences, while the retailer cannot. Different from the aforementioned literature, our study focuses on 
OTC medicines and healthcare products that show the characteristics of social goods. Due to the significant social impact of medicines 
and healthcare products, customers are especially concerned about product authenticity and quality problems. It is difficult for cus-
tomers to identify whether a drug is real or fake without the adoption of blockchain technology. However, if the pharmaceutical supply 
chain adopts blockchain technology, customers can verify the authenticity and have more trust in the brand of medicines, resulting 
thereby in an expansion of market potential. We capture the significant features of blockchain technology in the medicine supply 
chain. In addition, our study investigates the total surplus, customer surplus, and relative social objectives, which are important for 
social goods and were not formulated in Shang et al. (2016). 

The literature on the healthcare supply chain in the context of product quality is also related. Kornish and Keeney (2008) inves-
tigate the optimal commit-or-defer decisions in influenza vaccine production. Deo and Corbett (2009) suggest that yield uncertainty 
can contribute to a high degree of influenza vaccine supply chain concentration. Shedding light on the Vaccine and Related Biologic 
Products Advisory Committee’s decisions, Cho (2010) finds that a dynamic composition policy can significantly improve the total 
surplus. Adopting a non-linear programming model, Proano et al. (2012) study the best allocation of combination vaccines and 
maximize the total social surplus. For perishable medicines, Masoumi et al. (2012) develop a generalized network model in which 
supply chain members seek profits. Dai et al. (2016) develop a buyback-and-late-rebate (BLR) contract that helps not only to incen-
tivize at-risk early influenza vaccine production but also to eliminate double marginalization. Guo et al. (2019) compare a fee-for- 
service scheme and a bundled-payment scheme in a three-tier public healthcare system. Chen et al. (2019) use a stochastic dy-
namic programming model to study a blood center’s optimal collection policy and platelet production decisions. Nagurney et al. 
(2019) investigate the impact of quality differences on supply chain performance. Akbarpour et al. (2020) developed a robust model to 
improve the efficiency of the medicine relief network. Yoo and Cheong (2018) study the impact of quality improvement mechanisms 
on supply chain performance. Different from their studies, our study considers the OTC medicine supply chain and the impact of 
blockchain. Considering medicine manufacturer competition and the retailer’s demand information advantage, we focus on how 
blockchain helps achieve supply chain information transparency. 

There is arising literature on the impact of competition and cooperation on supply chain performance. McGuire and Staelin (1983) 
suggest that tense competition induces supply chain decentralization in a chain-to-chain model. Ganeshan et al. (1999) study a supplier 
competition model, which, comprising a reliable supplier and an unreliable supplier, helps lower wholesale prices. Later, supplier/ 
manufacturer encroachment arises as a hot topic concerning strategic decisions, such as channel structure, upstream entry and 
downstream cooperation, and the combination of information flow and/or cash flow. For example, Arya et al. (2007) demonstrate that 
both the supplier and the retailer may benefit from the supplier’s encroachment because the double marginalization effect can be 
mitigated. Wang et al. (2013) show that the manufacturer’s encroachment significantly influences the quantity leadership decisions of 
a brand owner and its competitive manufacturer. Considering an offshore supplier and a local supplier, Serel (2015) studies a firm’s 
production and price strategy. Lan et al. (2017) consider a retailer offering after-sales services and study its incentives to share private 
cost information. Li et al. (2018) study upstream competition in a supply chain in which multiple suppliers with different yields and 
quantity discounts sell products to a single buyer. Niu et al. (2019b) identify the cooperation value via demand information sharing 
when logistics service providers compete in both price and promised delivery time. Guan et al. (2020) show that a supplier’s 
encroachment may come along with its voluntary information disclosure, which eventually results in improved information trans-
parency and customer quality perceptions. Wang et al. (2020) study the retailers’ collection decisions in a reverse supply chain 
comprised of a dominated retailer and competitive manufacturers. In contrast, we consider a “two-to-one” supply chain structure, 
which consists of two medicine manufacturers and a retailer. We do not consider manufacturer encroachment but formulate the two 
manufacturers’ free-riding of the retailer’s demand information if blockchain is adopted. Although information transparency can also 
be achieved, the main driving force in our paper is blockchain technology; therefore, we focus on the supply chain members’ incentive 
alignment opportunities towards the adoption of blockchain. 

3. Model 

We consider a two-stage supply chain consisting of two medicine manufacturers (denoted as M1 and M2), who produce and sell 
substitutable products, and a common pharmaceutical retailer (denoted as R), who buys and resells the two manufacturers’ medicines. 
Since the pharmaceutical retailer is familiar with the market and deals directly with customers, it has accurate demand information. 
The two manufacturers only know the mean and the demand variance. This assumption is widely used in previous literature, such as 
Özer and Wei (2006) and Xue et al. (2017). The supply chain structure is illustrated in Fig. 1. 
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We consider two scenarios.  

(1) Scenario NB. The supply chain members do not adopt blockchain technology. Customers cannot obtain information on the 
whole production process of medicines; therefore, the manufacturers are not well recognized by the customers. The two 
manufacturers determine the wholesale prices based on the expected demand, while the retailer determines the order quantities 
and retail prices based on accurate demand information.  

(2) Scenario AB. The supply chain members adopt blockchain technology. Customers can access all the key pieces of information on 
the whole production process of the medicines, from raw material purchasing to finished medicine sales; therefore, they can 
verify the medicine’s quality. As a result, the manufacturers’ brand image is improved, resulting in larger market potential. In 
addition, with the adoption of blockchain, the retailer is required to log the sales information into the blockchain. Therefore, the 
upstream manufacturers can obtain accurate demand information, based on which they determine their wholesale prices (the 
case in which the manufacturers cannot obtain accurate information will be discussed in Section 5.2). 

The two manufacturers engage in Cournot competition. Their inverse demand functions in scenario NB are as follows: 

pNB
1 = a − qNB

1 − bqNB
2 + ε1  

pNB
2 = a − qNB

2 − bqNB
1 +∊2 

The manufacturers’ inverse demand functions in scenario AB are as follows: 

pAB
1 = θ − qAB

1 − bqAB
2 + ∊1  

pAB
2 = θ − qAB

2 − bqAB
1 + ∊2 

For model tractability, the deterministic part of the market potential in scenario NB is normalized to 1 and that in scenario AB is 
denoted as θ; that is, we have a = 1, and θ > 1. This represents that the manufacturers’ market is expanded because of the adoption of 
blockchain technology. We assume θ cannot be too high (i.e., θ < 3

2); otherwise, the results will be trivial, as the supply chain members 
always prefer the adoption of blockchain. b ∈ (0,1) represents the product substitutability between the medicines produced by the two 
manufacturers. ∊i (i ∈ {1,2}) represents the random part of market potential and captures demand uncertainty. We assume ∊i follows a 
normal distribution with a mean E[∊i] = 0 and a variance V[∊i] = σ2

i (a similar setting can be found in previous literature such as Niu 
et al. 2019a). We assume two manufacturers face different levels of demand uncertainty and σ2

1 = λσ2,σ2
2 = σ2, where λ < 1. That is, 

without loss of generalization, M1
′s medicine has a smaller demand variance than M2. Since the deterministic part of the market 

potential in scenario NB is normalized to 1, we require the demand variance to satisfy σ2 < 1. We further assume the cost of adopting 
blockchain technology is zero, where this assumption is relaxed in Section 5.1. We use Table 2 to show the features of blockchain which 
are helpful in the medicine supply chains and are being modeled. 

The event sequence is shown as follows (see Fig. 2 for illustration), 
In the first stage, supply chain members decide whether to adopt blockchain technology. If incentive alignment is achieved, then 

the manufacturers have accurate demand information. 
In the second stage, the two manufacturers determine the wholesale price wi. 
In the third stage, the retailer determines the order quantities qi and, correspondingly, the retail prices pi. 
Finally, the market demand is realized, and revenues are collected accordingly. 
The profit functions of the two manufacturers and the retailer are as follows: 

πM1 = w1q1; πM2 = w2q2;

πR= (p1 − w1)q1 +(p2 − w2)q2 

Fig. 1. Supply chain structure.  
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4. Analysis 

We solve the game by backward induction, and the equilibrium outcomes are summarized in Tables A1 and A2 in Appendix A. 

4.1. Analysis of wholesale price 

In this subsection, we first compare the equilibrium wholesale prices, and the results are shown in Proposition 1. 

Proposition 1.. Both manufacturers determine higher wholesale prices in scenario AB (i.e., E
[
wAB

i
]
> E[wNB

i ], and i ∈ {1, 2}) than in 
scenario NB. 

The intuition behind Proposition 1 is as follows. As we have mentioned in the Introduction, the adoption of blockchain technology 
helps achieve supply chain information transparency, improve the quality trust of medicine, and hence expand the market. In scenario 
AB, anticipating the increased demand, as the two manufacturers’ pricing powers are enhanced, they raise the wholesale prices. 
Although the retailer’s purchasing cost becomes higher, the benefit from expanded demand compensates for this cost. Consequently, 
E
[
wAB

i
]
> E[wNB

i ] arises as an equilibrium result. 

Lemma 1. ∂(E[wAB
i ])

∂b <
∂(E[wNB

i ])
∂b < 0and ∂(E[wAB

i ]− E[wNB
i ])

∂b < 0., 
Lemma 1 indicates that the wholesale prices in the two scenarios are both decreasing in competition intensity b. As b increases, one 

manufacturer’s product can better substitute for the other’s. Therefore, both manufacturers have incentives to lower their wholesale 
prices to stimulate orders, leading to a fierce “wholesale price war”. Lemma 1 also indicates that as the competition intensity b in-
creases, the wholesale price difference between the two scenarios decreases. The reason is that as b increases, the two medicines 
become more substitutable, and the total market is shrinking (Lus and Muriel 2009; Niu et al. 2020). The manufacturers care more 
about the market share; therefore, in scenario AB, they both have fewer incentives to raise the wholesale prices. 

4.2. Analysis of quantity 

We then focus on the retailer’s order quantity decisions and have Proposition 2. 

Proposition 2.. The equilibrium order quantities in scenario AB are larger than those in scenario NB (E
[
qAB

i
]
> E[qNB

i ], and i ∈ {1,2}). 

Table 2 
Features of blockchain useful in our work.  

Main features Use in medicine supply chains Model formulation 

Transparent Transaction data of medicines recorded in blockchain are visible for all participants. Retailer’s information sharing with blockchain 
adoption 

Immutable Records of medicines in blockchain are immutable and can be verified by customers, 
which improves their trust in medicine quality. 

Market is expanded when customers can use blockchain 
for medicine verification 

Track and 
trace 

Customers can track the production and logistics information via apps or websites, 
thus trust the authenticity of medicines. 

Market is expanded when customers know how 
medicines are produced and shipped  

Fig. 2. The event sequence.  

Table 3 
Summary of Parameters  

Demand variance for medicine produced byM2  σ2 ∈ (0,1), step length 0.1  

The ratio of M1′s demand variance to M2′s demand variance λ ∈ (0,1), step length 0.1   
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Recall the result in Proposition 1. With the adoption of blockchain, the two manufacturers may determine higher wholesale prices, 
which increases the retailer’s procurement cost. However, as Proposition 2 indicates, the retailer still has incentives to order more in 
scenario AB because it can transfer the high procurement cost to customers by determining higher retail prices (E

[
pAB

i
]
> E[pNB

i ], and 
i ∈ {1,2}) and can obtain more profits through larger sales quantities. We define the quantity difference between the two scenarios as 
the index of the sales increase effect, which benefits both manufacturers and the retailer. Then, we investigate the impact of competition 
intensity on the quantities and have Lemma 2. 

Lemma 2.. Whenb < 1
2, we have ∂E[qAB

i ]
∂b <

∂E[qNB
i ]

∂b < 0 and∂(E[qAB
i ]− E[qNB

i ])
∂b < 0; otherwise, we have ∂E[qAB

i ]
∂b >

∂E[qNB
i ]

∂b > 0 and ∂(E[qAB
i ]− E[qNB

i ])
∂b > 0. 

Lemma 2 indicates that the retailer’s order quantities in the two scenarios are both first decreasing and then increasing in 
competition intensityb. When the competition intensity is low, the retailer’s quantity decisions for the two medicines are relatively 
independent. As b increases, the substitution of two medicines increases, leading to similar customer perceptions and shrunken 
markets (Lus and Muriel 2009). This serves as a negative force for the retailer to place a large order. However, when b exceeds a 
threshold (i.e., b > 1

2), interestingly, we find that the retailer may order more as b increases, despite the shrinking demand. The key 
reason is that the lowered procurement cost due to the manufacturers’ wholesale price war serves as a positive force for the retailer to 
order more. When b is sufficiently large (i.e., b > 1

2), the positive force dominates the negative force, and hence, the retailer raises the 
order quantities as b increases. 

Then, we investigate the impact of competition intensity on the quantity difference between the two scenarios. We find that the 
impact on quantity difference indicates that the sales increase effect is first weakened and then enhanced as competition intensity b 
increases. This finding implies that from the perspective of sales quantity, the manufacturers and the retailer benefit more from 

Table 4 
Managerial implications  

Managerial implications Rationality 

We suggest that manufacturers adopt blockchain, the use of which is consistent 
with the practice of Pfizer, McKesson and AmerisourceBergen. 

Manufacturers have prepared well to adopt blockchain to eliminate the 
misalignments in the supply chain (Forbes 2019a). They could not only ensure 
the authenticity of medicines but also gain access to market demand 
information. 

We suggest that retailers adopt blockchain when the manufacturers’ competition 
intensity is mild and the demand variance is low. This is consistent with 
Walmart’s practice. 

Since Walmart is one of the largest retailers around the world and has 
employed a big data program to predict customer demand, it faces low 
demand variance. Our finding explains why Walmart is willing to adopt 
blockchain. 

Given an intense competition between manufacturers and a high demand 
variance, adopting blockchain can be harmful for small- and medium-sized 
pharmaceutical retailers 

Demand information is an important resource for retailers, and the loss of an 
information advantage may hurt the retailers’ profit, especially when they find 
fierce upstream competition and high demand uncertainty.  

Table A1 
Equilibrium results in scenario NB  

wNB
1 =

1 − b
2 − b  

wNB
2 =

1 − b
2 − b  

qNB
1 =

(1 − b)(2 + b) +
(

2 − b2
)

ε1 − bε2

2(2 − b)(1 − b)(1 + b)(2 + b)
qNB

2 =
(1 − b)(2 + b) − bε1 + (2 − b2)ε2

2(2 − b)(1 − b)(1 + b)(2 + b)

pNB
1 =

(2 + b)(3 − 2b) + 2
(

3 − b2
)

ε1 − bε2

2(b + 2)(2 − b)
pNB

2 =
(2 + b)(3 − 2b) − bε1 + 2

(
3 − b2

)
ε2

2(b + 2)(2 − b)
E[πNB

M1
] =

1 − b
2(2 − b)2(1 + b)

E[πNB
M2

] =
1 − b

2(2 − b)2
(1 + b)

E
[
πNB

R
]
=

2(1 − b) + (2 − b)2(1 + λ)σ2

4(2 − b)2(1 − b2)

Table A2 
Equilibrium results in scenario AB  

wAB
1 =

(2 + b)(1 − b)θ + 2∊1 − b2∊1 − b∊2

(2 + b)(2 − b)
wAB

2 =
(2 + b)(1 − b)θ − b∊1 + 2∊2 − b2∊2

(2 + b)(2 − b)

qAB
1 =

(1 − b)(2 + b)θ +
(

2 − b2
)

∊1 − b∊2

2(2 − b)(1 − b)(1 + b)(2 + b)
qAB

2 =
(1 − b)(2 + b)θ − b∊1 + (2 − b2)∊2

2(2 − b)(1 − b)(1 + b)(2 + b)

pAB
1 =

(2 + b)(3 − 2b)θ + 2
(

3 − b2
)

∊1 − b∊2

2(b + 2)(2 − b)
pAB

2 =
(2 + b)(3 − 2b)θ − b∊1 + 2

(
3 − b2

)
∊2

2(b + 2)(2 − b)

E[πAB
M1

] =
(1 − b)2

(2 + b)2θ2 + (2 − b2)
2λσ2 + b2σ2

2
(

4 − b2
)2

(1 − b2)

E[πAB
M2

] =
(1 − b)2(2 + b)2θ2 + (2 − b2)

2σ2 + b2λσ2

2
(

4 − b2
)2

(1 − b2)

E[πAB
M1

] =
2(1 − b)2(2 + b)2θ2 + (4 − 3b2)(1 + λ)σ2

4
(

4 − b2
)2

(1 − b2)
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blockchain when the competition intensity is either low or high. 

4.3. Analysis of the retailer’s profit margin 

Proposition 3.. The retailer’s expected profit margins in scenario AB are higher than those in scenario NB 
(E
[
pAB

i
]
− E

[
wAB

i
]
> E

[
pNB

i
]
− E

[
wNB

i
]
, and i ∈ {1,2}). 

Though the retailer has to bear higher procurement costs when adopting blockchain technology (i.e., E
[
wAB

i
]
> E[wNB

i ], and i ∈ {1,
2}) in scenario AB, Proposition 3 shows that the retailer may obtain a higher profit margin. Combining the results we have obtained 
until now, one can infer that for both the sales quantity and the profit margin, the two manufacturers and the retailer benefit from 
blockchain. 

Lemma 3.. The impact of competition intensity on the retailer’s profit margins shows ∂(E[pAB
i ]− E[wAB

i ])
∂b >

∂(E[pNB
i ]− E[wNB

i ])
∂b > 0 and 

∂[(E[pAB
i ]− E[wAB

i ] )− (E[pNB
i ]− E[wNB

i ] )]
∂b > 0. 

The intuition behind Lemma 3 is that as b increases, the manufacturers’ competition becomes more intense; therefore, they both 
lower the wholesale price for a possibly larger market share. The lower wholesale price eventually benefits the retailer. Lemma 3 also 
indicates that from the perspective of the profit margin, the retailer benefits more from the adoption of blockchain when the 

competition intensity is high (i.e., ∂[(E[pAB
i ]− E[wAB

i ] )− (E[pNB
i ]− E[wAB

i ] )]
∂b > 0). In other words, the retailer has more incentives to participate in 

blockchain when the competing manufacturers’ products are highly substitutable. 

4.4. Analysis of supply chain members’ profits 

Next, by comparing their profits in two scenarios, we investigate the supply chain members’ incentive alignment opportunities 
towards the adoption of blockchain. For model simplicity, define Φ = (1+λ)σ2, where Φ is an index of demand uncertainty. A larger Φ 
represents higher demand uncertainty. Define b1 ∈ (0, 1), which uniquely solves 
8 − 8θ2 +12Φ −

(
6 − 6θ2 +5Φ

)
b1

2
+2

(
θ2 − 1

)
b1

3
+Φb1

4
= 0 andΦ1 = 2

3 (θ
2 − 1). We have Proposition 4. 

Proposition 4.. M1 and M2 always benefit from the adoption of blockchain technology, while R benefits when Φ < Φ1 and 0 < b < b1. 

The reason that M1 and M2 are always willing to adopt blockchain technology is as follows. Recall the results in Proposition 1 and 2. 
The adoption of blockchain not only facilitates the manufacturers to determine higher wholesale prices but also increases the order 
quantities placed by the retailer, which benefits the manufacturers in terms of both profit margin (i.e., wholesale prices) and sales 
quantity. In addition, in the blockchain network, manufacturers can access accurate demand information, which enhances their pricing 
powers. The manufacturers can snatch more profits from the retailer by making better wholesale price decisions based on accurate 
demand information; this capability removes the retailer’s information advantage. These two factors benefit manufacturers and induce 
them to prefer scenario AB. 

Then, we examine the retailer’s preference, which depends on the demand variance (indexed by Φ) and the competition intensityb 
(see Fig. 3 for illustration). Only when the demand variance is low and the manufacturers’ competition is mild would the retailer 
benefit from the adoption of blockchain technology. It is intuitive that the retailer is not willing to adopt blockchain when the demand 
variance is sufficiently high because much information value would spill over to the manufacturers and this value could not be offset by 
the benefits from an increased sales quantity and profit margin. In contrast, when the demand variance is low, we find that the retailer 
prefers blockchain only when the manufacturers’ competition is mild. Low competition intensity indicates that the two manufacturers’ 
products are relatively independent and that the total market is large. Intuitively, the retailer has few incentives to share the demand 
information with the manufacturers through blockchain. Why do the reverse result holds? To better explain the underlying reasons, we 
divide the retailer’s expected profit into two parts: deterministic value and information value. Define E

[
πNB

RD
]
= 1

2(2− b)2(1+b)
(E
[
πAB

RD
]
=

θ2

2(2− b)2(1+b)
) and E

[
πNB

RI
]
= Φ

4(1− b2)
(E
[
πAB

RI
]
=

(4− 3b2)Φ
4(4− b2)

2
(1− b2)

) as the deterministic value and information value, respectively. We have the 

following corollary. 

Corollary 1.. E
[
πAB

RD
]
> E

[
πNB

RD
]
, andE

[
πAB

RI
]
< E

[
πNB

RI
]
. 

Corollary 1 indicates that with blockchain, the retailer’s deterministic value is increased, while the information value is reduced. 
For the former, we have shown in previous subsections that in scenario AB, the retailer may have profit margins and sales quantities 
that are higher, resulting in a higher deterministic value. However, the retailer’s information value spills over to the manufacturers if it 
participates in blockchain, and the retailer hence loses the information advantage over the manufacturers. The tradeoff between the 
gain in deterministic value and the loss in information value plays a critical role in the retailer’s preference for blockchain. Fig. 4 
illustrates the impact of the manufacturers’ competition intensity on this tradeoff. We choose parameter value θ based on JD’s report 
(JD.com Corporate Blog, 2020), which shows that the sales of healthcare products in JD increased by 45% after the adoption of 

B. Niu et al.                                                                                                                                                                                                             



Transportation Research Part E 152 (2021) 102276

9

blockchain12. We then conduct numerical studies by varying the products’ competition intensity, while fixing the demand variance, as 
listed in Table 3. 

We observe that the deterministic value gain is larger under mild competition, while the loss of information value overweighs when 
the competition intensity exceeds a threshold. Specifically, when the competition intensity b is sufficiently high, the two manufacturers 
engage in a fierce wholesale price war. Compared to a less competitive situation, the demand information can significantly enhance the 
manufacturers pricing power, and the need to obtain this information results in more information value spillover, which hurts the 
retailer. In other words, more intense upstream competition calls for better wholesale price decisions based on accurate demand in-
formation. This significantly benefits the manufacturers in the vertical profit allocation because wholesale prices are the profit cutoffs 
between the manufacturers and the retailer. As a result, when b exceeds a threshold, the retailer’s loss in information value dominates 
the gain in deterministic value, and hence, the retailer is unwilling to adopt blockchain technology. 

4.5. Total surplus and customer surplus 

Medicine is a typical kind of social good that is directly related to the customers’ health and safety; therefore, the firms’ social 
responsibility is very important. How can the firms’ profitability and social responsibility be balanced? To answer this question, we 
examine the total surplus and customer surplus with and without blockchain. Following Singh and Vives (1984), the total surplus 
includes the two manufacturers’ profits, the retailer’s profit and the customer surplus and can be formulated as follows: 

TSNB(q1, q2) = qNB
1 + qNB

2 −
1
2
(qNB

1
2
+ 2bqNB

1 qNB
2 + qNB

2
2
)

TSAB(q1, q2) = θ(qAB
1 + qAB

2 ) −
1
2
(qAB

1
2
+ 2bqAB

1 qAB
2 + qAB

2
2
)

Fig. 3. The retailer’s preference in two scenarios (θ = 1.45).  

Fig. 4. Impact of manufacturers’ competition on the retailer’s deterministic value and information value.(λ = 0.7, σ = 0.4, θ = 1.45)

12 https://jdcorporateblog.com (accessed 11 November 2020) 
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TSNB(q1, q2) and TSAB(q1, q2) are the total surplus functions in scenarios NB and AB, respectively. The corresponding customer 
surplus can be calculated as follows: 

CSNB = TSNB(q1, q2) − E[πNB
M1
] − E[πNB

M2
] − E

[
πNB

R

]

CSAB = TSAB(q1, q2) − E[πAB
M1
] − E[πAB

M2
] − E

[
πAB

R

]

Substituting the equilibrium outcomes into the above equations, we obtain Lemmas 4 and 5. 

Lemma 4.. In scenario NB, the expected total surplus and customer surplus are as follows: 

E[TSNB(q1, q2)] =
2(1 − b)(7 − 4b) − (2 − b)2Φ

8(2 − b)2
(1 − b2)

E[CSNB] =
2(1 − b) − 3(2 − b)2Φ

8(2 − b)2
(1 − b2)

Lemma 5.. In scenario AB, the expected total surplus and customer surplus are as follows: 

E[TSAB(q1, q2)] =
2(1 − b)(2 + b)2

(7 − 4b)θ2 + (4 − 3b2)Φ
8
(
4 − b2

)2
(1 − b2)

E[CSAB] =
2(1 − b)(2 + b)2θ2 + (28 − 21b2 + 4b4)Φ

8
(
4 − b2

)2
(1 − b2)

Comparing the outcomes, we have Proposition 5. 

Proposition 5.. The expected total surplus and customer surplus are both higher in scenario AB than in scenario NB (i.e., E[TSAB] > E[TSNB],

and E[CSAB] > E[CSNB]). 

Proposition 5 indicates that the adoption of blockchain technology can indeed increase the total surplus and customer surplus. 
There are mainly two benefits. First, blockchain technology enhances the medicines’ quality trust, and hence, customers improve their 
perception and utility levels. Meanwhile, since customers are willing to pay a higher price for medicine of high utility, manufacturers 
and retailers enjoy benefits from higher profit margins and sales quantities, thereby leading to a higher total surplus. Second, 
blockchain technology improves supply chain information transparency and facilitates information sharing among supply chain 
members, both of which are supply chain enhancements that can promote the coordination of the supply chain and enlarge the total 
supply chain profit pie. 

5. Extensions 

5.1. Cost of adopting blockchain technology 

In practice, the adoption of blockchain can be costly (Choi, 2019). We study two cost structures: unit blockchain cost and fixed 
blockchain cost13. 

Assume the manufacturers and the retailer pay a unit cost c for blockchain. We denote this scenario as scenario BC. To ensure that 
all the outcomes are positive, we need c ≤ θ

2. The three supply chain members’ profit functions in scenario BC are as follows, and the 
outcomes are shown in Table A3 in Appendix A. 

πM1 = (w1− c)q1  

πM2 = (w2 − c)q2  

πR= (p1 − w1 − c)q1 +(p2 − w2 − c)q2 

Comparing the equilibrium outcomes with those in scenario NB, we derive Lemma 6. 

Lemma 6.. ((1)) E[wBC] > E[wNB]; 

(2) When 12 (θ − 1) < c < θ
2, we have E

[
qBC

i
]
< E[qNB

i ], and i ∈ {1,2}. 

13 In scenario FB, a fixed blockchain cost is charged for the use of blockchain technology. Compared with the basic model, the only difference 
between scenario AB and scenario FB is the fixed cost in the equilibrium profits. Therefore, the fixed cost only weakens the supply chain members’ 
incentives to adopt blockchain and the main insights in basic model are unchanged. 
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(3) E[pBC
i ] > E[pNB

i ], and i ∈ {1,2}. 
Lemma 6 indicates that the retailer’s quantity decision is influenced by the unit blockchain cost and the improvement of market 

potential. The retailer may order less than scenario NB if the market potential improvement is limited and the unit blockchain cost is 
high. 

Since we cannot obtain analytical solutions for the profit comparison results, we conduct extensive numerical studies to investigate 
the impact of unit blockchain cost on three supply chain members’ profits and their incentives to adopt blockchain technology. Let θ =

1.45,λ = 0.7,andσ = 0.4; we present two typical curves in Fig. 5. 
Fig. 5 shows that the unit blockchain cost c may significantly influence the firms’ incentives to adopt blockchain. We first focus on 

the case in which the competition intensity b is low (see Fig. 5 (a) for illustration). When the unit cost c is low, all the firms benefit from 
blockchain technology, which verifies the results in the basic model (the special case where c = 0). When the unit cost c is in a 
moderate range, we interestingly observe that there exists an interval in which the retailer and M1 are not willing to adopt blockchain, 

Table A3 
Equilibrium results in scenario BC  

wBC
1 =

(2 + b)(bc + (1 − b)θ ) +
(

2 − b2
)

∊1 − b∊2

4 − b2  
wBC

2 =
(2 + b)(bc + (1 − b)θ ) − b∊1 + (2 − b2)∊2

4 − b2  

qBC
1 =

(2 + b)(1 − b)(θ − 2c) +
(

2 − b2
)

∊1 − b∊2

2(2 − b)(1 − b)(1 + b)(2 + b)
qBC

2 =
(2 + b)(1 − b)(θ − 2c) − b∊1 + (2 − b2)∊2

2(2 − b)(1 − b)(1 + b)(2 + b)

pBC
1 =

(2 + b)(2c + a(3 − 2b)θ ) + 2
(

3 − b2
)

∊1 − b∊2

2(4 − b2)

pBC
2 =

(2 + b)(2c + a(3 − 2b)θ ) − b∊1 + 2(3 − b2)∊2

2(4 − b2)

E[πBC
M1

] =
(2 − b − b2)

2
(2c − θ)2

+ b2σ2 + (2 − b2)
2λσ2

2
(

4 − b2
)2

(1 − b2)

E[πBC
M2

] =
(2 − b − b2)

2
(2c − θ)2

+ (2 − b2)
2σ2 + b2λσ2

2
(

4 − b2
)2

(1 − b2)

E
[
πBC

R
]
=

2(1 − b)(2 + b)2
(2c − θ)2

+ (4 − 3b2)(1 + λ)σ2

4
(

4 − b2
)2

(1 − b2)

(a)

(b)

Fig. 5. The impact of c on profit difference.  
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while M2 is willing to adopt. This is because M2 can obtain higher information value than M1 with blockchain, and hence, M2 has more 
incentives to adopt blockchain. In contrast, when the unit cost c is high, both firms have no incentives to adopt blockchain because the 
benefits cannot offset the cost. Then, we turn to the case in which the competition intensity is high (see Fig. 5(b) for illustration). By 
comparing Fig. 5 (a) and Fig. 5(b), we observe that the two manufacturers have more incentives to adopt blockchain when the 
competition intensity is high. 

5.2. Inaccurate information 

In the basic model, we assume that manufacturers can obtain accurate demand information from the retailer if they all participate 
in blockchain. However, the shared information can be only an updated signal rather than the truth. Even if the retailer shares accurate 
demand information, that information can be the last period’s information; therefore, the manufacturers’ information from the 
blockchain is slightly inaccurate. Therefore, we investigate the impact of information accuracy on the manufacturers’ decisions. We 
denote the scenario as scenario IB. 

When blockchain is adopted, the manufacturers’ information on ∊i is Γi = ∊i + ∊, where ∊ is an updated signal of demand pre-
diction. Following classic literature, such as Ha and Tong (2008), ∊ is independent of demand uncertainty ∊i and follows a normal 
distribution with a mean E[∊] = 0 and a variance V[∊] = σ2

o . A smaller variance implies a more accurate information forecast. The 
manufacturers’ information forecast is based on the demand information shared in the blockchain. This information potentially en-
hances demand forecasting. 

Therefore, following the results in Vives (1984), Raju and Roy (2000), Ha and Tong (2008), and Niu and Zou (2017), we derive the 
following: 

E[∊1|Γ1] =
λσ2Γ1

λσ2 + σ2
o
=

λσ2

λσ2 + σ2
o
(∊1 + ∊)

E[∊2|Γ2] =
σ2Γ2

σ2 + σ2
o
=

σ2

σ2 + σ2
o
(∊2 + ∊)

V[∊1|Γ1] =
λσ2

oσ2

λσ2 + σ2
o  

V[∊2|Γ2] =
σ2

oσ2

σ2 + σ2
o 

According to the above equations, we find that the accuracy of the demand forecast is improved (i.e., V[∊i|Γi] < σ2
i ). The profit 

functions of the supply chain members are as follows: 

E[πM1 |Γ1] = E[w1q1|Γ1]

E[πM2 |Γ2] = E[w2q2|Γ2]

E[πR]= (p1 − w1)q1 +(p2 − w2)q2 

The equilibrium outcomes in scenario IB are summarized in Table A4 in Appendix A. Comparing the equilibria with those in 
scenario NB, we have Proposition 6: 

Proposition 6.. The retailer always benefits from the adoption of blockchain technology, while M1 benefits when θ > θ1 and M2 benefits 
when θ > θ2, where 

θ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
4 − 2b2

(1 − b)2
(b + 2)2∙

λσ2
oσ2

λσ2 + σ2
o
+

3b2 − b4

(1 − b)2
(b + 2)2∙

σ2
oσ2

σ2 + σ2
o

√

θ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
3b2 − b4

(1 − b)2
(b + 2)2∙ λσ2

oσ2

λσ2 + σ2
o
+

4 − 2b2

(1 − b)2
(b + 2)2∙ σ2

oσ2

σ2 + σ2
o

√

Proposition 6 shows that both manufacturers benefit from the adoption of blockchain technology when the enlarged market po-
tential is higher than a threshold (i.e.,θ1 or θ2), while the retailer always benefits from the adoption of blockchain. The findings are 
different from those in the basic model. This is mainly because the manufacturer obtains inaccurate demand information such that the 
retailer’s information value loss is lowered. However, the benefit from the enlarged market can cover the information value loss. For 
manufacturers, inaccurate demand information may have a negative impact on their wholesale price decisions. As a result, they are 
willing to adopt blockchain technology only when the benefit from an enlarged market is sufficiently large. 
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5.3. Sales efforts 

In this subsection, we take the retailer’s sales efforts into consideration. We assume that the retailer invests in sales efforts at the 
cost of kx2

2 and that these efforts contribute to expanding the market potential of the two manufacturers’ products from a to a + x. To 
guarantee positive outcomes, we assume k > 1

(2− b)2(1+b)
. We use the superscripts SNB and SAB to represent not adopting blockchain and 

adopting blockchain scenarios, respectively. We assume that the retailer determines the sales effort level x before the decision of 
whether to adopt blockchain technology. 

The event sequence is shown as follows (see Fig. 6 for illustration): 
In the first stage, the retailer determines the sales effort x. 
In the second stage, the supply chain members decide whether to adopt blockchain technology. If an incentive alignment is 

achieved, then the manufacturers have accurate demand information. 
In the third stage, the two manufacturers determine the wholesale price wi. 
At the fourth stage, the retailer determines the order quantities qi and, correspondingly, the retail prices pi. 
Finally, the market demand is realized, and the revenues are collected accordingly. 
Then, the inverse demand functions in scenario SNB become the following: 

pSNB
1 = 1 + x − qSNB

1 − bqSNB
2 + ∊1; 

pSNB
2 = 1+ x − qSNB

2 − bqSNB
1 + ∊2 

The inverse demand functions in scenario SAB are as follows: 

pSAB
1 = θ + x − qSAB

1 − bqSAB
2 + ∊1; 

pSAB
2 = θ+ x − qSAB

2 − bqSAB
1 + ∊2 

Correspondingly, the profit functions of the two manufacturers and the retailer become the following: 

Table A4 
Equilibrium results in scenario IB  

wIB
1 =

(2 + b)(1 − b)θ + (2 − b2)E[∊1|Γ1] − bE[∊2|Γ2]

(2 + b)(2 − b)

wIB
2 =

(2 + b)(1 − b)θ − bE[∊1|Γ1 ] + (2 − b2)E[∊2|Γ2]

(2 + b)(2 − b)

qIB
1 =

(2 + b)(1 − b)θ − 2E[∊1|Γ1] + b(3 − b2)E[∊2|Γ2] + (4 − b2)(∊1 − b∊2)

2(2 − b)(1 − b)(1 + b)(2 + b)

qIB
2 =

(2 + b)(1 − b)θ + b(3 − b2)E[∊1|Γ1] − 2E[∊2|Γ2] + (4 − b2)(∊2 − b∊1)

2(2 − b)(1 − b)(1 + b)(2 + b)

pIB
1 =

(
6 − b − 2b2

)
θ +

(
2 − b2

)
E[∊1 |Γ1] − bE[∊2|Γ2] + (2 + b)(2 − b)∊1

2(2 + b)(2 − b)

pIB
2 =

(
6 − b − 2b2

)
θ − bE[∊1|Γ1] + (2 − b2)E[∊2|Γ2] + (2 + b)(2 − b)∊2

2(2 + b)(2 − b)

E
[
πIB

M1

]
=

(1 − b)θ2

2(2 − b)2
(1 + b)

+
(b2 − 2)

(2 + b)2
(2 − b)2

(1 + b)(1 − b)
∙

λσ2
o σ2

λσ2 + σ2
o
+

b2(b2 − 3)
2(2 + b)2

(2 − b)2(1 + b)(1 − b)
∙

σ2
o σ2

σ2 + σ2
o  

E
[
πIB

M2

]
=

(1 − b)θ2

2(2 − b)2
(1 + b)

+
(b2 − 2)

(2 + b)2
(2 − b)2

(1 + b)(1 − b)
∙ σ2

o σ2

σ2 + σ2
o
+

b2(b2 − 3)
2(2 + b)2

(2 − b)2
(1 + b)(1 − b)

∙ λσ2
o σ2

λσ2 + σ2
o  

E
[
πIB

R
]
=

θ2

2(2 − b)2
(1 + b)

+
(1 + λ)σ2

4(1 − b2)
+

(4 + b2 − b4)

4(2 + b)2(2 − b)2
(1 + b)(1 − b)

∙ σ2
o σ2

σ2 + σ2
o
+

(4 + b2 − b4)

4(2 + b)2
(2 − b)2(1 + b)(1 − b)

∙ λσ2
o σ2

λσ2 + σ2
o   

Fig. 6. The event sequence with the sales effort.  
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πM1 = w1q1; πM2 = w2q2; 

πR= (p1 − w1)q1 +(p2 − w2)q2 −
kx2

2 

The equilibrium outcomes in the two scenarios are summarized in Table A5 and Table A6 in Appendix A. Comparing the firms’ 
profits between two scenarios, we have the following proposition. 

Proposition 7.. With the retailer’s sale efforts, the manufacturers are willing to adopt blockchain (i.e., E
[
πSAB

M1

]
> E[πSNB

M1
], and 

E
[
πSAB

M2

]
> E[πSNB

M2
]) 

Proposition 7 suggests that considering that the retailer makes sales efforts, the preference of manufacturers is the same as that in 
the basic model. However, for the retailer, it is more complicated and we cannot obtain a clear analytical solution; therefore, we study 
the retailer’s preference by numerical studies. To verify the results, we develop numerical studies with different values of the main 
parameters. We find that the retailer adopts blockchain only when the competition is relatively mild, which is a finding similar to that 
in the basic model. 

8.1. Asymmetric substitutability 

In this subsection, we investigate the impact of asymmetric substitutable products. We assume that M1’s products are superior to 
those of M2. The former can thus be seen as perfect substitutes for the latter, but the reverse is not true. For model tractability, we 
assume b2 = 1 and that b1 = b < 1(Wang et al. 2013). We use the superscripts ANB and AAB to represent the two scenarios of not 
adopting blockchain and adopting blockchain, respectively. Further, the inverse demand functions in scenario ANB are as follows: 

pANB
1 = 1 − qANB

1 − bqANB
2 + ∊1; 

pANB
2 = 1 − qANB

2 − qANB
1 + ∊2 

The inverse demand functions in scenario AAB are as follows: 

pAAB
1 = θ − qAAB

1 − bqAAB
2 + ∊1; 

pAAB
2 = θ − qAAB

2 − qAAB
1 + ∊2 

The equilibrium outcomes are summarized in Table A7 and Table A8 in Appendix A. Before comparing the supply chain members’ 
profits, we define bA1 ∈ (0, 1), which uniquely satisfies 100 − 100θ2 + 173Φ + ( − 60+60θ2 − 36Φ)b + ( − 36+36θ2 − 14Φ)b2 +

( − 4+4θ2 +4Φ)b3 + Φb4 = 0. 

Proposition 8.. Given an asymmetric b, the manufacturers are still willing to adopt blockchain (i.e., E
[
πAAB

M1

]
> E

[
πANB

M1

]
,

E
[
πAAB

M2

]
> E

[
πANB

M2

]
), while the retailer prefers to adopt blockchain when Φ <

100(θ2 − 1)
173 and 0 < b < bA1. 

Proposition 8 shows that the main results are robust given asymmetric brand images; that is, two manufacturers are always willing 
to adopt blockchain, while the preference of the retailer is conditional. Only when the demand variance is low and the competition 
between manufacturers is mild would the retailer adopt blockchain, which is a result consistent with that in the basic model. 

Table A5 
Equilibrium results in scenario SNB  

x =
1

(2 − b)2
(1 + b)k − 1  

wSNB
1 =

(2 − b)(1 − b)(1 + b)k
(2 − b)2

(1 + b)k − 1  
wSNB

2 =
(2 − b)(1 − b)(1 + b)k
(2 − b)2

(1 + b)k − 1  

qSNB
1 =

((2 − b)2(1 + b)k − 1)(b∊2 − ∊1) − (2 − b)(1 − b)(1 + b)k
2(1 − b2)(1 − 4k + 3b2k − b3k)

qSNB
2 =

b((2 − b)2
(1 + b)k − 1)∊1 + (1 − (2 − b)2(1 + b)k)∊2 − (2 − b)(1 − b)(1 + b)k

2(1 − b2)(1 − 4k + 3b2k − b3k)
pSNB

1 =
1
2
(
(2 − b)(1 + b)(3 − 2b)k
(2 − b)2

(1 + b)k − 1
+ ∊1) pSNB

2 =
1
2
(
(2 − b)(1 + b)(3 − 2b)k
(2 − b)2

(1 + b)k − 1
+ ∊2)

E
[
πSNB

M1

]
=

(2 − b)k((2 − b)(1 − b)(1 + b)k)
2((2 − b)2

(1 + b)k − 1)2  E[πSNB
M2

] =
(2 − b)k((2 − b)(1 − b)(1 + b)k)

2((2 − b)2(1 + b)k − 1)2  

E
[
πSNB

R
]
=

2
(

1 − b2
)

k − (1 − (2 − b)2
(1 + b)k)(1 + λ)σ2

4(1 − b2)((2 − b)2
(1 + b)k − 1)
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10.1. First-order stochastic dominance 

In the basic model, we assume E[∊1] = E[∊2] and Var[∊1] > Var[∊2], which is the second-order stochastic dominance. As a com-
plement, we consider a model with first-order stochastic dominance; that is, E[∊1] > E[∊2], and Var[∊1] = Var[∊2]. We assume ∊i follows 
a normal distribution with a mean E[∊1] = m and E[∊2] = 0, where m > 0, and a variance V[∊i] = σ2. We use the superscripts FNB and 
FAB to represent the two scenarios of not adopting blockchain and adopting blockchain, respectively. The inverse demand functions in 
scenario FNB are as follows: 

pFNB
1 = 1 − qFNB

1 − bqFNB
2 + ∊1; 

pFNB
2 = 1 − qFNB

2 − bqFNB
1 + ∊2 

The inverse demand functions in scenario FAB are as follows: 

Table A6 
Equilibrium results in scenario SAB  

x =
2θ + ∊1 + ∊2

2(2 − b)2(1 + b)k − 2  

wSAB
1 =

(1 + b)(2(b − 2)(b − 1)(2 + b)kθ + (2(b − 2)(b2 − 2)k − 1)∊1 + (1 − 2(2 − b)bk)∊2)

(2(2 + b)(4k − 3b2k + b3k − 1))

wSAB
2 =

(1 + b)(2(b − 2)(b − 1)(2 + b)kθ + (1 − 2(2 − b)bk)∊1 + (− 1 + 2(− 2 + b)(− 2 + b2)k)∊2)

(2(2 + b)(4k − 3b2k + b3k − 1))

qSAB
1 =

8bkθ − 8kθ + 2b2kθ − 2b3kθ + ∊1 − 8k∊1 + 4bk∊1 + 4b2k∊1 − 2b3k∊1 − ∊2 + 4bk∊2 − 2b2k∊2

4(2 − b − b2)(1 − 4k + 3b2k − b3k)

qSAB
2 =

8bkθ − 8kθ + 2b2kθ − 2b3kθ − ∊1 + 4bk∊1 − 2b2k∊1 + ∊2 − 8k∊2 + 4bk∊2 + 4b2k∊2 − 2b3k∊2

4(2 − b − b2)(1 − 4k + 3b2k − b3k)

pSAB
1 =

(2(2 − b)(1 + b)(2 + b)(3 − 2b)kθ − (3 + 2b − 2(2 − b)(1 + b)k(2(3 − b2)∊1 − b∊2)

(4(2 + b)((2 − b)2(1 + b)k − 1))

pSAB
2 =

2(2 − b)(1 + b)(2 + b)(3 − 2b)kθ + (3 + 2b − 2(2 − b)(1 + b)k )(b∊1 − 2
(

3 − b2
)

k∊2)

(4(2 + b)((2 − b)2
(1 + b)k − 1))

E[πSAB
M1

] =
(1 + b)(4(2 − b)2(1 − b)2(2 + b)2k2θ2 + (σ − 2(2 − b)bkσ)2

+ λ(σ − 2(2 − b)(2 − b2)kσ)2
)

8(1 − b)(2 + b)2
(1 − (2 − b)2(1 + b)k)2  

E[πSAB
M2

] =
(1 + b)(4(2 − b)2(1 − b)2(2 + b)2k2θ2 + λ(σ − 2(2 − b)bkσ)2

+ (σ − 2(2 − b)(2 − b2)kσ)2
)

8(1 − b)(2 + b)2
(1 − (2 − b)2(1 + b)k)2  

E
[
πSAB

R
]
=

4(b − 1)(2 + b)2kθ2 + (1 − (8 − 6b2)k)(1 + λ)σ2

8(1 − b)(2 + b)2(1 − (2 − b)2
(1 + b)k)2   

Table A7 
Equilibrium results in scenario ANB  

wANB
1 =

1 − b
3 − b  

wANB
2 =

1 − b
3 − b  

qANB
1 =

2(1 − b) + 2(3 − b)∊1 − (3 − b)(1 + b)∊2

(3 − b)(1 − b)(3 + b)
qANB

2 =
2(1 − b) − (3 − b)(1 + b)∊1 + 2(3 − b)∊2

(3 − b)(1 − b)(3 + b)
pANB

1 =
7 − b(2 + b) + (3 − b)∊1 + (3 − b)∊2

9 − b2  pANB
2 =

(5 − b2) − (3 − b)∊1 + (3 − b)(2 + b)∊2

9 − b2  

E[πANB
M1

] =
2(1 − b)

(3 − b)2
(3 + b)

E[πANB
M2

] =
2(1 − b)

(3 − b)2
(3 + b)

E
[
πANB

R
]
=

4(1 − b) + (3 − b)2Φ
(3 − b)2

(1 − b)(3 + b)

Table A8 
Equilibrium results in scenario AAB.  

wAAB
1 =

(1 − b)(5 + b)θ + (7 − b(2 + b) )∊1 − 2(1 + b)∊2

(3 − b)(5 + b)
wAAB

2 =
(1 − b)(5 + b)θ − 2(1 + b)∊1 + (7 − b(2 + b))∊2

(3 − b)(5 + b)
qAAB

1 =
2((1 − b)(5 + b)θ + (7 − b(2 + b) )∊1 − 2(1 + b)∊2)

(3 − b)(1 − b)(3 + b)(5 + b)
qAAB

2 =
2((1 − b)(5 + b)θ − 2(1 + b)∊1 + (7 − b(2 + b))∊2)

(3 − b)(1 − b)(3 + b)(5 + b)
pAAB

1 =
(5 + b)(7 − b(2 + b))θ + (31 − b(− 3 + b(5 + b)))∊1 + 2(2 − b(3 + b))∊2

(3 − b)(3 + b)(5 + b) pAAB
2 =

(
5 − b2

)
θ − 2∊1 + (7 − b2)∊2

9 − b2  

E[πAAB
M1

] =
2((5 − 4b − b2)

2θ2 + (7 − 2b − b2)
2σ2 + 4(1 + b)2λσ2)

(3 − b)2
(1 − b)(3 + b)(5 + b)2  E[πAAB

M2
] =

2((5 − 4b − b2)
2θ2 + 4(1 + b)2σ2 + (7 − 2b − b2)

2λσ2)

(3 − b)2(1 − b)(3 + b)(5 + b)2  

E
[
πAAB

R
]
=

4((1 − b)(5 + b)2θ2 + (13 − 3b(2 + b))σ2 + (13 − 3b(2 + b))λσ2)

(3 − b)2(1 − b)(3 + b)(5 + b)2   
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pFAB
1 = θ − qFAB

1 − bqFAB
2 + ∊1; 

pFAB
2 = θ − qFAB

2 − bqFAB
1 + ∊2 

Correspondingly, the profit functions of manufacturers and retailer become the following: 

πM1 = w1q1; πM2 = w2q2; 

πR= (p1 − w1)q1 +(p2 − w2)q2 

The equilibrium outcomes in the two scenarios are summarized in Table A9 and Table A10 in Appendix A. We define bF1 ∈ (0,1), 
which is the unique root of equation 4 + 4m − 4mθ − 4θ2 + 12σ2 + (3mθ+ 3θ2 − 3 − 3m − 5σ2)b2 + (mθ+ θ2 − 1 − m)b3 + σ2b4 = 0. 
Then, we have the following proposition. 

Proposition 9.. Under the first-order stochastic dominance scenario, two manufacturers always prefer to adopt blockchain (i.e., E
[
πFAB

M1

]
>

E
[
πFNB

M1

]
,E

[
πFAB

M2

]
> E

[
πFNB

M2

]
), while the retailer adopts blockchain when0 < σ <

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mθ+θ2 − 1− m

3

√

and 0 < b < bF1. 

Proposition 9 shows that the main results are still robust when two manufacturers face a different expectation of demand and the 
same demand variance. Similarly to the result in the basic model, the retailer adopts blockchain only when the manufacturers’ 
competition is mild and the demand variance is low. 

13.1. Sequential wholesale price 

In the basic model, we assume the two manufacturers decide wholesale prices simultaneously. In this subsection, we study the 
impact of the pricing sequence. We consider the event sequence in which M1 decides its wholesale price first and then M2 decides the 
wholesale price. The event sequence is shown as follows (see Fig. 7 for illustration): 

In the first stage, the supply chain members decide whether to adopt blockchain technology. If an incentive alignment is achieved, 
then the manufacturers have accurate demand information Fig. 8.. 

In the second stage, manufacturer M1 determines its wholesale price w1 first. 
In the third stage, manufacturer M2 determines its wholesale price w2. 
At the fourth stage, the retailer determines the order quantities qi and, correspondingly, the retail prices pi. 
Finally, the market demand is realized, and the revenues are collected accordingly. 
We use the superscripts WNB and WAB to represent the two scenarios of not adopting blockchain and adopting blockchain, 

respectively. The equilibrium outcomes in the two scenarios are summarized in Table A11 and Table A12 in Appendix A. 
We define bW1 ∈ (0, 1), which is the second root of equation 32 − 32θ2 + 48σ2 + 48λσ2 +

(
− 48+48θ2 − 44σ2 − 36λσ2)b2 +

(
− 4+4θ2)b3 +

(
21 − 21θ2 +11σ2)b4 +

(
2 − 2θ2)b5 +

(
− 3+3θ2 +3λσ2)b6 = 0. We have the following proposition. 

Proposition 10.. Under the sequential wholesale pricing scenario, two manufacturers always prefer to adopt blockchain (i.e., E
[
πWAB

M1

]
>

E
[
πWNB

M1

]
,andE

[
πWAB

M2

]
> E

[
πWNB

M2

]
), while the retailer adopts blockchain when0 < σ <

̅̅̅̅̅̅̅̅̅̅̅̅̅
2(θ2 − 1)
3(1+λ)

√

and 0 < b < bW1. 

Proposition 10 shows that the main results are still robust when the manufacturer with a famous brand decides wholesale price first 
and then the other manufacturer sets its wholesale price. Similarly to the basic model, the result here reveals that the retailer adopts 
blockchain only when the manufacturers’ competition is mild and the demand variance is low. 

14. Conclusion 

OTC medicines are available in every pharmaceutical retailer, regardless of whether the retailer is an online or an offline one. 
Although OTC medicines are sold similarly to how daily goods are sold, these medicines are used for their effect on the customers’ 
health; therefore, they are typical social goods. In this paper, we focus on the tradeoffs among medicine quality tracking, the phar-
maceutical retailer’s demand information sharing, and the customers’ demand expansion when blockchain is adopted in a two-stage 
supply chain comprising competing medicine manufacturers and a common pharmaceutical retailer. Since incentive alignment is 
critical in the adoption of blockchain (otherwise blockchain will be empty and useless), we investigate the preferences of the man-
ufacturers and the retailer for blockchain. We also examine the total surplus and customer surplus to show the OTC medicine’s social 
goods properties. 

We first compare the wholesale prices and the quantities with and without blockchain. We find that the adoption of blockchain 
technology results in higher wholesale prices and quantities, a result that is referred to as the sales increase effect. This benefits the 
manufactures and the retailer. We also find that, interestingly, in both scenarios, the wholesale prices are decreasing in the manu-
facturers’ competition intensity but that the quantities are first decreasing and then increasing in the competition intensity. 

We then investigate three supply chain members’ preferences for the adoption of blockchain technology. We find that two man-
ufacturers are always better off with blockchain but that for the retailer, the answer depends on the situation. Only when the 
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Table A9 
Equilibrium results in scenario FNB.  

wFNB
1 =

(2 − b − b2) + (2 − b2)m
4 − b2  wFNB

2 =

(
2 − b − b2

)
− bm

4 − b2  

qFNB
1 =

(
2 − b − b2

)
− 2m + (4 − b2)(∊1 − b∊2)

2(4 − 5b2 + b4)

qFNB
2 =

(2 − b − b2) + b(3 − b2)m − b(4 − b2)∊1 + (4 − b2)∊2

2(4 − 5b2 + b4)

pFNB
1 =

(6 − b − 2b2) + (2 − b2)m + (4 − b2)∊1

2(4 − b2) pFNB
2 =

(
6 − b − 2b2

)
− bm + (4 − b2)∊2

2(4 − b2)

E[πFNB
M1

] =
((2 − b − b2) + (2 − b2)m)(

(
2 − b − b2

)
− 2m + (4 − b2)m)

2
(

4 − b2
)2

(1 − b2)

E[πFNB
M2

] =
(
(

2 − b − b2
)
− bm)((2 − b − b2) + b(3 − b2)m − b(4 − b2)m)

2
(

4 − b2
)2

(1 − b2)

E
[
πFNB

R
]
=

2(1 − b)(2 + b)2
+ 2(1 − b)(2 + b)2m −

(
12 − 5b2 + b4

)
m2 +

(
4 − b2

)2
(2σ2 + m2)

4
(

4 − b2
)2

(1 − b2)

Table A10 
Equilibrium results in scenario FAB.  

wFAB
1 =

(
2 − b − b2

)
θ +

(
2 − b2

)
∊1 − b∊2

4 − b2  wFAB
2 =

(
2 − b − b2

)
θ − b∊1 +

(
2 − b2

)
∊2

4 − b2  

qFAB
1 =

(
2 − b − b2

)
θ +

(
2 − b2

)
∊1 − b∊2

2(4 − 5b2 + b4)
qFAB

2 =

(
2 − b − b2

)
θ + b∊1 +

(
2 − b2

)
∊2

2(4 − 5b2 + b4)

pFAB
1 =

(
6 − b − 2b2

)
θ + 2

(
3 − b2

)
∊1 − b∊2

2(4 − b2)
pFAB

2 =

(
6 − b − 2b2

)
θ − b∊1 + 2(3 − b2)∊2

2(4 − b2)

E[πFAB
M1

] =

(2 − b − b2)
2θ2 + 2(4 − 2b − 4b2 + b3 + b4)θm + (2 − b2)

2
(σ2 + m2) + b2σ2

2(4 − b2)
2
(1 − b2)

E[πFAB
M2

] =

(2 − b − b2)
2θ2 − 2b(2 − b − b2)θm + b2(σ2 + m2) + (2 − b2)

2σ2

2(4 − b2)
2
(1 − b2)

E
[
πFAB

R
]
=

2(1 − b)(2 + b)2θ(m + aθ) + (4 − 3b2)(2σ2 + m2)

4
(

4 − b2
)2

(1 − b2)

Fig. 7. The retailer’s decision with the sales effort.(k = 1, θ = 1.45, σ = 0.4, andλ = 0.7)

Fig. 8. The event sequence with a sequential wholesale price.  
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manufacturers’ competition intensity is mild and the demand variance is low can the retailer’s loss of information value because of 
demand information sharing be limited, inducing it to participate in blockchain. When the demand variance is high or the manu-
facturers’ competition intensity is high, the retailer will suffer from a significant loss of information value; therefore, it has no incentive 
to participate in blockchain. We further show that if the manufacturers’ information obtained in blockchain is not perfectly accurate, 
then the retailer will always be better off with blockchain, while the manufacturers’ profits might be hurt, especially when the market 
expansion is not significant. Regarding the total surplus and customer surplus, we show that blockchain always benefits the supply 
chain members; therefore, this finding sheds light on the wide use of blockchain for social goods. 

Our findings can be insightful for pharmaceutical retailers and manufacturers, especially when they need to undertake social re-
sponsibility. In practice, many famous pharmaceutical manufacturers (e.g., Pfizer, Novartis and GSK) are preparing to adopt block-
chain technology (Mediledger 2020). Some pharmacies (e.g., UK Meds) accept using blockchain in situations in which they record the 
customers’ requests and trace and track shipment information. However, it has been reported that some pharmacies are still not ready 
to use blockchain. For them, we have the following suggestions. 

1. We suggest that the manufacturers adopt blockchain. Our finding is consistent with the cases of Pfizer, McKesson and Amer-
isourceBergen. Manufacturers have prepared well to adopt blockchain to eliminate misalignments in the supply chain14 (Forbes 
2019). By joining a blockchain, they can not only ensure the authenticity of medicines but also have access to market demand 
information.  

2. We suggest that retailers adopt blockchain when the manufacturers’ competition intensity is mild and the demand variance is low. 
This finding is consistent with the case of Walmart, which is mentioned in the Introduction section. Since Walmart is one of the 
largest retailers around the world and has employed a big data program to predict customer demand, it faces low demand variance. 
Our finding explains why Walmart is willing to join the blockchain program.  

3. Given intense competition between manufacturers and a high demand variance, retailers are suggested to reconsider the decision to 
adopt blockchain. For common small- and medium-sized pharmaceutical retailers, we also provide the insight that the adoption of 
blockchain is not necessarily the best choice, especially when facing fierce upstream manufacturer competition and high demand 
uncertainty. 

Compared to the case without blockchain, the adoption of blockchain by supply chain members can result in the improvement of 
the total surplus and the achievement of a customer surplus. The government is suggested to pay more attention to the application of 
blockchain in medicine supply chains, as this may not only improve the profit of the supply chain but also be good for customers. This 
explains why the FDA is running a project titled the FDA Pilot Program that promotes the adoption of blockchain (Mediledger 2020). 

Table A11 
Equilibrium results in scenario WNB.  

wWNB
1 =

(1 − b)(2 + b)
2(2 − b2)

wWNB
2 =

4 − 2b − 3b2 + b3

4(2 − b2)

qWNB
1 =

(
2 − b − b2

)
+ 4∊1 − 4b∊2

8(1 − b2)
qWNB

2 =
(1 − b)(4 + (2 − b)b ) − 4b

(
2 − b2

)
∊1 + 4(2 − b2)∊2

8(2 − 3b2 + b4)

pWNB
1 =

6 − b − 3b2 + 4∊1 − 2b2∊1

4(2 − b2)
pWNB

2 =
12 − 2b − 7b2 + b3 + 8∊2 − 4b2∊2

8(2 − b2)

E[πWNB
M1

] =
(2 + b)(2 − b − b2)

16(1 + b)(2 − b2)
E[πWNB

M2
] =

(1 − b)(4 + (2 − b)b)2

32(1 + b)(2 − b2)
2  

E
[
πWNB

R
]
=

(
32 − b2(48 + b(4 − (3 − b)b(7 + 3b) ) )

)
+ 16(2 − b2)

2
(1 + λ)σ2

64
(

2 − b2
)2

(1 − b2)

Table A12 
Equilibrium results in scenario WNB.  

wWAB
1 =

(2 − b − b2)θ + (2 − b2)∊1 + b∊1

2(2 − b2) wWAB
2 =

(1 − b)(4 + (2 − b)b )θ + b
(

2 − b2
)

∊1 − (4 − 3b2)∊2

4(2 − b2)

qWAB
1 =

(
2 − b − b2

)
θ +

(
2 − b2

)
∊1 − b∊2

8(1 − b2)
qWAB

2 =
(1 − b)(4 + (2 − b)b )θ + b

(
2 − b2

)
∊1 − (4 − 3b2)∊2

8(2 − 3b2 + b4)

pWAB
1 =

(
6 − b − 3b2

)
θ + 3

(
2 − b2

)
∊1 − b∊2

4(2 − b2)

pWAB
2 =

(12 − b(2 + (7 − b)b ) )θ − b(2 − b2)∊1 + (12 − 7b2)∊2

8(2 − b2)

E[πWAB
M1

] =
(2 − b − b2)

2θ2 + (2 − b2)
2λσ2 + b2σ2

16(1 − b2)(2 − b2)
E[πWAB

M2
] =

(1 − b)2
(4 + (2 − b)b)2θ2 + b2(2 − b2)

2λσ2 + (4 − 3b2)
2σ2

32
(

2 − b2
)2

(1 − b2)

E
[
πWAB

R
]
=

(
32 − b2(48 + b(4 + (b − 3)b(7 + 3b) ) )

)
θ2 −

(
2 − b2

)2(
4 − 3b2

)
λσ2 − (16 − 20b2 + 5b4)σ2

64
(

2 − b2
)2

(1 − b2)

14 https://www.forbes.com (accessed 11 November 2020) 
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The managerial implications are also presented in Table 4. 
We discuss two future research directions to conclude this paper. First, medicine is not always effective. Some medicines are 

effective because of the manufacturer’s production quality control or its purchasing of some specific raw materials. However, the 
retailer usually cannot inspect the materials purchased and/or determine the level of production quality control. To formulate this as a 
research issue, production yield uncertainty can be assumed. We predict that the retailer may have more incentives to adopt block-
chain technology because it can obtain accurate production information through the blockchain and make better order quantity 
decisions. Second, we consider a common pharmaceutical retailer selling medicines for two manufacturers. In practice, medicine 
manufacturers may sell products through multiple retailers, resulting in a cross-selling channel structure. In such a complicated 
system, the adoption of blockchain can be more difficult because the shared information might spill over to competitors. Consequently, 
how to balance the increased sales via multiple channels in the context of the information sharing cost can be an interesting problem, 
but it fundamentally changes our model. We leave it as a future research issue. 
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Appendix. A: Equilibrium results 

Appendix B:. Derivations of equilibrium results 

Derivation of Table A1 
Given the wholesale prices wNB

1 and wNB
2 , the retailer solves the following problem to maximize its profit: πNB

R = (1 − qNB
1 − bqNB

2 +

∊1 − wNB
1 )qNB

1 + (1 − qNB
2 − bqNB

1 + ∊2 − wNB
2 )qNB

2 . 

This yields qNB
1 =

1− b− wNB
1 +bwNB

2 +∊1 − b∊2
2(1− b2)

, qNB
2 =

1− b+bwNB
1 − wNB

2 − b∊1+∊2
2(1− b2)

. 

The manufacturers’ optimal wholesale prices can be derived by maximizing E
[
πNB

M1

]
= wNB

1 E
[
qNB

1
]
=

(1− b− wNB
1 +bwNB

2 )wNB
1

2(1− b2)
; E

[
πNB

M2

]
=

wNB
2 E

[
qNB

2
]
=

(1− b− wNB
2 +bwNB

1 )wNB
2

2(1− b2)
. 

Substituting qNB
1 and qNB

2 into the manufacturers’ profit functions, we have the optimal wholesale prices: wNB
1 = wNB

2 = 1− b
2− b, based 

on which we obtain the other equilibriums as follows 

qNB
1 =

1 − b + (b − 2)(b∊2 − ∊1)

2(b − 2)(b + 1)(b − 1)
; qNB

2 =
1 − b + (b − 2)(b∊2 − ∊1)

2(b − 2)(b + 1)(b − 1)
;

pNB
1 =

3 − 2b + (2 − b)∊1

2(2 − b)
; pNB

2 =
3 − 2b + (2 − b)∊2

2(2 − b)
;

E[qNB
1 ] = E[qNB

2 ] = 1
2(2− b)(1+b); E[p

NB
1 ] = E[pNB

2 ] = 3− 2b
2(2− b). 

Because the manufacturers’ profit functions are based on the expectation, we have 

E[πNB
M1

] = wNB
1 E[qNB

1 ] = 1− b
2(2− b)2

(1+b)
; E

[
πNB

M2

]
= wNB

2 E
[
qNB

2
]
= 1− b

2(2− b)2(1+b)
. 

The retailer’s profit is based on accurate demand information, so we substitute the outcomes with accurate demand information 
and derive its expected profit with information value as E

[
πNB

R
]
=

(
1 − qNB

1 − bqNB
2 +∊1 − wNB

1
)
qNB

1 +
(
1 − qNB

2 − bqNB
1 +∊2 − wNB

2
)
qNB

2 =

2(1− b)+(2− b)2
(1+λ)σ2

4(2− b)2
(1− b2)

. 

Note that the retailer has accurate demand information but the manufacturers do not in scenario NB, so the manufacturers’ de-
cisions are based on expected demand and hence, their equilibriums are independent of demand variance σ2. In contrast, the retailer’s 
decisions are based on accurate demand information so its equilibrium profit includes the item σ2 that is related to information value 
(Wang et al. 2014, Wu and Zhang 2014, Niu et al. 2019a). Its equilibrium quantities qNB

1 , qNB
2 and retail prices pNB

1 , pNB
2 include the 

accurate random demand items ∊1 and ∊2. 
Derivation of Table A2 
Note that, the manufacturers make decisions based on the expectation when the supply chain does not adopt blockchain while the 

manufacturers make use of accurate demand information to determine the wholesale prices with the adoption of blockchain. 
Given the wholesale price wAB

1 and wAB
2 , the retailer solves the following problem to maximize its profit: πAB

R = (θ − qAB
1 − bqAB

2 +

∊1 − wAB
1 )qAB

1 + (θ − qAB
2 − bqAB

1 + ∊2 − wAB
2 )qAB

2 . 

B. Niu et al.                                                                                                                                                                                                             



Transportation Research Part E 152 (2021) 102276

20

The best order quantities are qAB
1 = θ− bθ− w1+bw2+∊1 − b∊2

2(1− b2)
and qAB

2 = θ− bθ+bw1 − w2 − b∊1+∊2
2(1− b2)

. Anticipating the quantities above, the manu-
facturers maximize their profit functions by determining wholesale prices as 

w1 =
(2 + b)(1 − b)θ + 2∊1 − b2∊1 − b∊2

(2 + b)(2 − b)
andw2 =

(2 + b)(1 − b)θ − b∊1 + 2∊2 − b2∊2

(2 + b)(2 − b)
.

Therefore, the supply chain members’ equilibrium outcomes are wAB
1 =

(2+b)(1− b)θ+2∊1 − b2∊1 − b∊2
(2+b)(2− b) ,wAB

2 =
(2+b)(1− b)θ− b∊1+2∊2 − b2∊2

(2+b)(2− b) , qAB
1 =

(2+b)(1− b)θ+(2− b2)∊1 − b∊2

2(2− b)(1− b)(1+b)(2+b) ,qAB
2 =

(2+b)(1− b)θ− b∊1+(2− b2)∊2
2(2− b)(1− b)(1+b)(2+b) .

As a result, their expected profits are E[πAB
M1

] =
((2+b)(1− b))2θ2+(2− b2)2λσ2+b2σ2

2(2+b)2
(2− b)2(1+b)(1− b)

, E[πAB
M2

] =
((2+b)(1− b))2θ2+(2− b2)2σ2+b2λσ2

2(2+b)2
(2− b)2(1+b)(1− b)

, andE
[
πAB

R
]
=

2(1− b)(2+b)2θ2+(4− 3b2)(1+λ)σ2

4(2+b)2(2− b)2(1+b)(1− b)
. 

Different from scenario NB, both the manufacturers and the retailer in scenario AB have the accurate demand information and all of 
their equilibrium profits include the item σ2 that is related to information value. We also note that the accurate random demand items 
∊1 and ∊2 appear in wAB

1 , wAB
2 , qAB

1 , qAB
2 , pAB

1 and pAB
2 . 

Derivation of Table A3 

Given the wholesale price wBC
1 and wBC

2 , the retailer solves the following problem to maximize its profit: πBC
R = (θ − qBC

1 − bqBC
2 +

∊1 − wBC
1 − c)qBC

1 + (θ − qBC
2 − bqBC

1 + ∊2 − wBC
2 − c)qBC

2 . 
The best order quantities are qBC

1 = θ− bθ− w1+bw2+∊1 − b∊2
2(1− b2)

and qBC
2 = θ− bθ+bw1 − w2 − b∊1+∊2

2(1− b2)
. Anticipating the quantities above, the manu-

facturers maximize their profit functions by determining wholesale prices as 

wBC
1 =

(2+b)(bc+(1− b)θ )+(2− b2)∊1 − b∊2

4− b2 and wBC
2 =

(2+b)(bc+(1− b)θ )− b∊1+(2− b2)∊2
4− b2 . 

Therefore, the supply chain members’ equilibrium outcomes are qBC
1 =

(2+b)(1− b)(θ− 2c)+(2− b2)∊1 − b∊2

2(2− b)(1− b)(1+b)(2+b) , qBC
2 =

(2+b)(1− b)(θ− 2c)− b∊1+(2− b2)∊2
2(2− b)(1− b)(1+b)(2+b) . 

As a result, their expected profits are E[πBC
M1

] =
(2− b− b2)2(2c− θ)2

+b2σ2+(2− b2)2λσ2

2(4− b2)
2
(1− b2)

, E[πBC
M2

] =
(2− b− b2)2(2c− θ)2

+(2− b2)2σ2+b2λσ2

2(4− b2)
2
(1− b2)

, and E
[
πBC

R
]
=

2(1− b)(2+b)2(2c− θ)2
+(4− 3b2)(1+λ)σ2

4(4− b2)
2
(1− b2)

. 

Till now, the outcomes in Table A3 are derived. 
Derivation of Table A4 
The manufacturers make use of inaccurate demand information to determine the wholesale prices with the adoption of blockchain. 
Given the wholesale price wIB

1 and wIB
2 , the retailer solves the following problem to maximize its profit: πIB

R =
(
θ − qIB

1 − bqIB
2 +∊1 − wIB

1
)
qIB

1 +
(
θ − qIB

2 − bqIB
1 +∊2 − wIB

2
)
qIB

2 − f . 
The best order quantities are qIB

1 = θ− bθ− w1+bw2+∊1 − b∊2
2(1− b2)

and qIB
2 = θ− bθ+bw1 − w2 − b∊1+∊2

2(1− b2)
. Anticipating the quantities above, the manu-

facturers maximize their profit functions by determining wholesale prices as 
w1 =

(2+b)(1− b)θ+(2− b2)E[∊1 |Γ1 ]− bE[∊2 |Γ2 ]
(2+b)(2− b) and w2 =

(2+b)(1− b)θ− bE[∊1 |Γ1 ]+(2− b2)E[∊2 |Γ2 ]
(2+b)(2− b) . 

Therefore, we have the supply chain members’ equilibrium outcomes are 

wIB
1 =

(2 + b)(1 − b)θ + (2 − b2)E[∊1|Γ1] − bE[∊2|Γ2]

(2 + b)(2 − b)
,wIB

2 =
(2 + b)(1 − b)θ − bE[∊1|Γ1] + (2 − b2)E[∊2|Γ2]

(2 + b)(2 − b)
, qIB

1

=
(2 + b)(1 − b)θ − 2E[∊1|Γ1] + b(3 − b2)E[∊2|Γ2] + (4 − b2)(∊1 − b∊2)

2(2 − b)(1 − b)(1 + b)(2 + b)
,

qIB
2 =

(2 + b)(1 − b)θ + b(3 − b2)E[∊1|Γ1] − 2E[∊2|Γ2] + (4 − b2)(∊2 − b∊1)

2(2 − b)(1 − b)(1 + b)(2 + b)

Note that, the variance in this subsection becomes conditional variance 

V[∊1|Γ1] =
λσ2

oσ2

λσ2 + σ2
o
,V[∊2|Γ2] =

σ2
oσ2

σ2 + σ2
o 

As a result, their expected profits are E
[
πIB

M1

]
=

(1− b)θ2

2(2− b)2(1+b)
+

(b2 − 2)
(2+b)2(2− b)2(1+b)(1− b)

∙ λσ2
o σ2

λσ2+σ2
o
+

b2(b2 − 3)
2(2+b)2(2− b)2(1+b)(1− b)

∙ σ2
o σ2

σ2+σ2
o
, E

[
πIB

M2

]
=

(1− b)θ2

2(2− b)2(1+b)
+

(b2 − 2)
(2+b)2(2− b)2(1+b)(1− b)

∙ σ2
o σ2

σ2+σ2
o
+

b2(b2 − 3)
2(2+b)2(2− b)2(1+b)(1− b)

∙ λσ2
o σ2

λσ2+σ2
o
, and E

[
πIB

R
]
= θ2

2(2− b)2(1+b)
+

(1+λ)σ2

4(1− b2)
+

(4+b2 − b4)

4(2+b)2(2− b)2(1+b)(1− b)
∙ σ2

o σ2

σ2+σ2
o
+

(4+b2 − b4)

4(2+b)2(2− b)2(1+b)(1− b)
∙ λσ2

o σ2

λσ2+σ2
o
. 

Derivation of Table A5 
Given the sales effort x and wholesale prices wSNB

1 and wSNB
2 , the retailer solves the following problem to maximize its profit: πSNB

R =

qSNB
1 (1+ x − qSNB

1 − bqSNB
2 − wSNB

1 + ∊1) + qSNB
2 (1+ x − bqSNB

1 − qSNB
2 − wSNB

2 + ∊2) −
kx2

2 . 
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This yields qSNB
1 =

(1− b)(1+x)− wSNB
1 +bwSNB

2 +∊1 − b∊2

2(1− b2)
, qSNB

2 =
(1− b)(1+x)− wSNB

2 +bwSNB
1 +∊2 − b∊1

2(1− b2)
. 

The manufacturers’ optimal wholesale prices can be derived by maximizing E
[
πSNB

M1

]
= wSNB

1 E
[
qSNB

1
]
=

[(1− b)(1+x)− wSNB
1 +bwSNB

2 ]wSNB
1

2(1− b2)
; 

E
[
πSNB

M2

]
= wSNB

2 E
[
qSNB

2
]
=

[(1− b)(1+x)− wSNB
2 +bwSNB

1 ]wSNB
2

2(1− b2)
. 

Solving the profit functions of manufacturers, we have the optimal wholesale prices: wSNB
1 = wSNB

2 =
(1− b)(1+x)

2− b . 
Substituting wSNB

1 and wSNB
2 into the retailer’s profit function, we have the optimal sales effort x = 1

(2− b)2(1+b)k− 1
, based on which we 

obtain the other equilibriums as follows 
wSNB

1 =
(2− b)(1− b)(1+b)k
(2− b)2(1+b)k− 1

; wSNB
2 =

(2− b)(1− b)(1+b)k
(2− b)2(1+b)k− 1

; 

qSNB
1 =

((2− b)2(1+b)k− 1)(b∊2 − ∊1)− (2− b)(1− b)(1+b)k
2(1− b2)(1− 4k+3b2k− b3k) ; 

qSNB
2 =

b((2− b)2(1+b)k− 1)∊1+(1− (2− b)2(1+b)k)∊2 − (2− b)(1− b)(1+b)k
2(1− b2)(1− 4k+3b2k− b3k) ; 

pSNB
1 = 1

2 (
(2− b)(1+b)(3− 2b)k
(2− b)2(1+b)k− 1

+ ∊1); pSNB
2 = 1

2 (
(2− b)(1+b)(3− 2b)k
(2− b)2(1+b)k− 1

+ ∊2); 

E[qSNB
1 ] =

(2− b)(1− b)(1+b)k
2(1− b2)(4k− 1− 3b2k+b3k); E[q

SNB
2 ] =

(2− b)(1− b)(1+b)k
2(1− b2)(4k− 1− 3b2k+b3k)

E[pSNB
1 ] = E[pSNB

2 ] =
(2 − b)(1 + b)(3 − 2b)k
2(2 − b)2

(1 + b)k − 2 

Because the manufacturers’ profit functions are based on expectation, we have 

E[πSNB
M1

] = wSNB
1 E[qSNB

1 ] =
(2− b)k((2− b)(1− b)(1+b)k)

2((2− b)2(1+b)k− 1)2
; E

[
πSNB

M2

]
= wSNB

2 E
[
qSNB

2
]
=

(2− b)k((2− b)(1− b)(1+b)k)
2((2− b)2(1+b)k− 1)2

. 

The retailer’s profit is based on accurate demand information, so we substitute the outcomes with accurate demand information 
and derive its expected profit with information value as E

[
πSNB

R
]
=

(
1+x − qSNB

1 − bqSNB
2 +∊1 − wSNB

1
)
qSNB

1 +

(
1+x − qSNB

2 − bqSNB
1 +∊2 − wSNB

2
)
qSNB

2 =
2(1− b2)k− (1− (2− b)2(1+b)k)(1+λ)σ2

4(1− b2)((2− b)2(1+b)k− 1)
. 

Derivation of Table A6 

Given the sales effort x and wholesale prices wSAB
1 and wSAB

2 , the retailer solves the following problem to maximize its profit: πSAB
R =

qSAB
1 (θ+ x − qSAB

1 − bqSAB
2 − wSAB

1 + ∊1) + qSAB
2 (θ+ x − bqSAB

1 − qSAB
2 − wSAB

2 + ∊2) −
kx2

2 . 
The best order quantities are qSAB

1 =
(1− b)(x+θ)− w1+bw2+∊1 − b∊2

2(1− b2)
and qSAB

2 =
(1− b)(x+θ)+bw1 − w2 − b∊1+∊2

2(1− b2)
. Anticipating the quantities above, 

the manufacturers maximize their profit functions by determining wholesale prices as 
wSAB

1 =
(2− b− b2)(x+θ)+(2− b2)∊1+b∊2

4− b2 and wSAB
2 =

(2− b− b2)(x+θ)+b∊1+(2− b2)∊2
4− b2 . 

Substituting wSAB
1 and wSAB

2 into the retailer’s profit function, we have the optimal sales effort x = 2θ+∊1+∊2
2(2− b)2(1+b)k− 2

, based on which we 

could update the manufacturers’ wholesale price decisions and retailer’s order quantity decisions. 
Therefore, the supply chain members’ equilibrium outcomes are 

wSAB
1 =

(1 + b)(2(b − 2)(b − 1)(2 + b)kθ + (2(b − 2)(b2 − 2)k − 1)∊1 + (1 − 2(2 − b)bk)∊2)

(2(2 + b)(4k − 3b2k + b3k − 1))

wSAB
2 =

(1 + b)(2(b − 2)(b − 1)(2 + b)kθ + (1 − 2(2 − b)bk)∊1 + (− 1 + 2(− 2 + b)(− 2 + b2)k)∊2)

(2(2 + b)(4k − 3b2k + b3k − 1))

qSAB
1 =

8bkθ − 8kθ + 2b2kθ − 2b3kθ + ∊1 − 8k∊1 + 4bk∊1 + 4b2k∊1 − 2b3k∊1 − ∊2 + 4bk∊2 − 2b2k∊2

4(2 − b − b2)(1 − 4k + 3b2k − b3k)

qSAB
2 =

8bkθ − 8kθ + 2b2kθ − 2b3kθ − ∊1 + 4bk∊1 − 2b2k∊1 + ∊2 − 8k∊2 + 4bk∊2 + 4b2k∊2 − 2b3k∊2

4(2 − b − b2)(1 − 4k + 3b2k − b3k)

As a result, their expected profits are 

E[πSAB
M1

]=
(1+b)(4(2− b)2(1− b)2(2+b)2k2θ2+(σ− 2(2− b)bkσ)2+λ(σ− 2(2− b)(2− b2)kσ)2)

8(1− b)(2+b)2(1− (2− b)2(1+b)k)2 ,  

E[πSAB
M2

]=
(1+b)(4(2− b)2(1− b)2(2+b)2k2θ2+λ(σ− 2(2− b)bkσ)2+(σ− 2(2− b)(2− b2)kσ)2)

8(1− b)(2+b)2(1− (2− b)2(1+b)k)2 , and E
[
πSAB

R
]
=

4(b− 1)(2+b)2kθ2+(1− (8− 6b2)k)(1+λ)σ2

8(1− b)(2+b)2(1− (2− b)2(1+b)k)2
. 

Till now, the outcomes in Table A6 are derived. 
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Derivation of Table A7 

Given the wholesale prices wANB
1 and wANB

2 , the retailer solves the following problem to maximize its profit: πANB
R = (1 − qANB

1 −

bqANB
2 + ∊1 − wANB

1 )qANB
1 + (1 − qANB

2 − qANB
1 + ∊2 − wANB

2 )qANB
2 . 

This yields qANB
1 =

(1− b)+2wANB
1 +(1+b)wANB

2 +2∊1 − (1+b)∊2
(1− b)(3+b) , qANB

2 =
(1− b)+2wANB

2 +(1+b)wANB
1 +2∊2 − (1+b)∊1

(1− b)(3+b) . 

The manufacturers’ optimal wholesale prices can be derived by maximizing E
[
πANB

M1

]
= wANB

1 E
[
qANB

1
]
=

[(1− b)+2wANB
1 +(1+b)wANB

2 ]wANB
1

(1− b)(3+b) ; 

E
[
πANB

M2

]
= wANB

2 E
[
qANB

2
]
=

[(1− b)+2wANB
2 +(1+b)wANB

1 ]wANB
2

(1− b)(3+b) . 

Substituting qANB
1 and qANB

2 into the manufacturers’ profit functions, we have the optimal wholesale prices: wANB
1 = wANB

2 = 1 − 2
3− b, 

based on which we obtain the other equilibriums as follows 

qANB
1 =

2(1 − b) + 2(3 − b)∊1 − (3 − b)(1 + b)∊2

(3 − b)(1 − b)(3 + b)
; qANB

2 =
2(1 − b) − (3 − b)(1 + b)∊1 + 2(3 − b)∊2

(3 − b)(1 − b)(3 + b)
;

pANB
1 =

7 − b(2 + b) + (3 − b)∊1 + (3 − b)∊2

9 − b2 ; pANB
2 =

(5 − b2) − (3 − b)∊1 + (3 − b)(2 + b)∊2

9 − b2 ;

E[qANB
1 ] = E[qANB

2 ] =
2(1− b)

(3− b)(1− b)(3+b); 

E[pANB
1 ] =

7 − b(2 + b)
9 − b2 ;E[pANB

2 ] =
(5 − b2)

9 − b2 .

Because the manufacturers’ profit functions are based on expectation, we have 

E[πANB
M1

] = wANB
1 E[qANB

1 ] =
2(1− b)

(3− b)2(3+b)
; 

E
[
πANB

M2

]
= wANB

2 E
[
qANB

2

]
=

2(1 − b)
(3 − b)2

(3 + b)

The retailer’s profit is based on accurate demand information, so we substitute the outcomes with accurate demand information 
and derive its expected profit with information value as E

[
πANB

R

]
= (1 − qANB

1 − bqANB
2 + ∊1 − wANB

1 )qANB
1 + (1 − qANB

2 − qANB
1 + ∊2 −

wANB
2 )qANB

2 =
4(1− b)+(3− b)2(1+λ)σ2

(3− b)2(1− b)(3+b)
. 

Derivation of Table A8 

Given the wholesale price wAAB
1 and wAAB

2 , the retailer solves the following problem to maximize its profit: πAAB
R = (θ − qAAB

1 −

bqAAB
2 + ∊1 − wAAB

1 )qAAB
1 + (θ − qAAB

2 − qAAB
1 + ∊2 − wAAB

2 )qAAB
2 . 

The best order quantities are qAAB
1 =

(1− b)θ− 2w1+(1+b)w2+2∊1 − (1+b)∊2
(1− b)(3+b) and qAAB

2 =
(1− b)θ− 2w2+(1+b)w1+2∊2 − (1+b)∊1

(1− b)(3+b) . Anticipating the quan-
tities above, the manufacturers maximize their profit functions by determining wholesale prices as 

wAAB
1 =

(1− b)(5+b)θ+(7− b(2+b) )∊1 − 2(1+b)∊2
(3− b)(5+b) and wAAB

2 =
(1− b)(5+b)θ− 2(1+b)∊1+(7− b(2+b))∊2

(3− b)(5+b) . 
Therefore, the supply chain members’ equilibrium outcomes are 
wAAB

1 =
(1− b)(5+b)θ+(7− b(2+b) )∊1 − 2(1+b)∊2

(3− b)(5+b) , wAAB
2 =

(1− b)(5+b)θ− 2(1+b)∊1+(7− b(2+b))∊2
(3− b)(5+b) , qAAB

1 =
2((1− b)(5+b)θ+(7− b(2+b) )∊1 − 2(1+b)∊2)

(3− b)(1− b)(3+b)(5+b) and 

qAAB
2 =

2((1 − b)(5 + b)θ − 2(1 + b)∊1 + (7 − b(2 + b))∊2)

(3 − b)(1 − b)(3 + b)(5 + b)

As a result, their expected profits are 

E[πAAB
M1

] =
2((5 − 4b − b2)

2θ2 + (7 − 2b − b2)
2σ2 + 4(1 + b)2λσ2)

(3 − b)2
(1 − b)(3 + b)(5 + b)2 

E[πAAB
M2

] =
2((5− 4b− b2)2θ2+4(1+b)2σ2+(7− 2b− b2)2λσ2)

(3− b)2(1− b)(3+b)(5+b)2
, and 

E
[
πAAB

R

]
=

4((1 − b)(5 + b)2θ2 + (13 − 3b(2 + b))σ2 + (13 − 3b(2 + b))λσ2)

(3 − b)2
(1 − b)(3 + b)(5 + b)2 

Till now, the outcomes in Table A8 are derived. 
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Derivation of Table A9 

Given the wholesale prices wFNB
1 and wFNB

2 , the retailer solves the following problem to maximize its profit: πFNB
R = (1 − qFNB

1 −

bqFNB
2 + ∊1 − wFNB

1 )qFNB
1 + (1 − qFNB

2 − qFNB
1 + ∊2 − wFNB

2 )qFNB
2 . 

This yields qFNB
1 =

1− b− wFNB
1 +bwFNB

2 +∊1 − b∊2

2− 2b2 , qFNB
2 =

1− b− wFNB
2 +bwFNB

1 +∊2 − b∊1

2− 2b2 . 

The manufacturers’ optimal wholesale prices can be derived by maximizing E
[
πFNB

M1

]
= wFNB

1 E
[
qFNB

1
]
=

(1− b+m− wFNB
1 +bwFNB

2 )wFNB
1

2− 2b2 ; 

E
[
πFNB

M2

]
= wFNB

2 E
[
qFNB

2
]
=

(1− b− wFNB
2 +bwFNB

1 − bm)wFNB
2

2− 2b2 . 

Substituting qFNB
1 and qFNB

2 into the manufacturers’ profit functions, we have the optimal wholesale prices: wFNB
1 =

2− b− b2+(2− b2)m
4− b2 

and wFNB
2 = 2− b− b2 − bm

4− b2 , based on which we obtain the other equilibriums as follows 

qFNB
1 =

2(1− b)+2(3− b)∊1 − (3− b)(1+b)∊2
(3− b)(1− b)(3+b) ; qFNB

2 =
2(1− b)− (3− b)(1+b)∊1+2(3− b)∊2

(3− b)(1− b)(3+b) ; 

pFNB
1 =

7− b(2+b)+(3− b)∊1+(3− b)∊2
9− b2 ; pFNB

2 =
(5− b2)− (3− b)∊1+(3− b)(2+b)∊2

9− b2 ; 

E[qFNB
1 ] =

2− b− b2 − 2m+(4− b2)(∊1+b∊2)

2(4− 5b2+b4)
; 

E[qFNB
2 ] =

(2 − b − b2) + b(3 − b2)m − b(4 − b2)∊1 + (4 − b2)∊2

2(4 − 5b2 + b4)

E[pFNB
1 ] =

(6− b− 2b2)+(2− b2)m+(4− b2)∊1
2(4− b2)

; E[pFNB
2 ] =

(6− b− 2b2)− bm+(4− b2)∊2

2(4− b2)
. 

Because the manufacturers’ profit functions are based on expectation, we have 

E[πFNB
M1

] = wFNB
1 E[qFNB

1 ] =
((2− b− b2)+(2− b2)m)((2− b− b2)− 2m+(4− b2)m)

2(4− b2)
2
(1− b2)

; E
[
πFNB

M2

]
= wFNB

2 E
[
qFNB

2
]
=

((2− b− b2)− bm)((2− b− b2)+b(3− b2)m− b(4− b2)m)

2(4− b2)
2
(1− b2)

. 

The retailer’s profit is based on accurate demand information, so we substitute the outcomes with accurate demand information 
and derive its expected profit with information value as E

[
πFNB

R
]
= (1 − qFNB

1 − bqFNB
2 + ∊1 − wFNB

1 )qFNB
1 + (1 − qFNB

2 − qFNB
1 + ∊2 −

wFNB
2 )qFNB

2 =
2(1− b)(2+b)2+2(1− b)(2+b)2m− (12− 5b2+b4)m2+(4− b2)

2
(2σ2+m2)

4(4− b2)
2
(1− b2)

. 

Derivation of Table A10 

Given the wholesale price wFAB
1 and wFAB

2 , the retailer solves the following problem to maximize its profit: πFAB
R = (θ − qFAB

1 −

bqFAB
2 + ∊1 − wFAB

1 )qFAB
1 + (θ − qFAB

2 − bqFAB
1 + ∊2 − wFAB

2 )qFAB
2 . 

The best order quantities are qFAB
1 =

(1− b)θ− wFAB
1 +bwFAB

2 +∊1 − b∊2

2(1− b2)
and qFAB

2 =
(1− b)θ− wFAB

2 +bwFAB
1 +∊2 − b∊1

2(1− b2)
. Anticipating the quantities above, 

the manufacturers maximize their profit functions by determining wholesale prices as 

wFAB
1 =

(2− b− b2)θ+(2− b2)∊1 − b∊2

4− b2 and wFAB
2 =

(2− b− b2)θ− b∊1+(2− b2)∊2

4− b2 . 

Therefore, the supply chain members’ equilibrium outcomes are wFAB
1 =

(2− b− b2)θ+(2− b2)∊1 − b∊2

4− b2 , wFAB
2 =

(2− b− b2)θ− b∊1+(2− b2)∊2

4− b2 , 

qFAB
1 =

(2− b− b2)θ+(2− b2)∊1 − b∊2

2(4− 5b2+b4)
, qFAB

2 =
(2− b− b2)θ+b∊1+(2− b2)∊2

2(4− 5b2+b4)
. 

As a result, their expected profits are 

E[πFAB
M1

] =
(2 − b − b2)

2θ2 + 2(4 − 2b − 4b2 + b3 + b4)θm + (2 − b2)
2
(σ2 + m2) + b2σ2

2(4 − b2)
2
(1 − b2)

E[πFAB
M2

] =
(2− b− b2)2θ2 − 2b(2− b− b2)θm+b2(σ2+m2)+(2− b2)2σ2

2(4− b2)2(1− b2)
, and E

[
πFAB

R

]
=

2(1− b)(2+b)2θ(m+aθ)+(4− 3b2)(2σ2+m2)

4(4− b2)
2
(1− b2)

. 

Till now, the outcomes in Table A10 are derived. 

Derivation of Table A11 

Given the wholesale prices wWNB
1 and wWNB

2 , the retailer solves the following problem to maximize its profit: πWNB
R = (1 − qWNB

1 −

bqWNB
2 + ∊1 − wWNB

1 )qWNB
1 + (1 − qWNB

2 − bqWNB
1 + ∊2 − wWNB

2 )qWNB
2 . 
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This yields qWNB
1 =

1− b− wWNB
1 +bwWNB

2 +∊1 − b∊2

2(1− b2)
, qWNB

2 =
1− b+bwWNB

1 − wWNB
2 − b∊1+∊2

2(1− b2)
. 

The manufacturers’ optimal wholesale prices can be derived by maximizing E
[
πWNB

M1

]
= wWNB

1 E
[
qWNB

1
]
=

(1− b− wWNB
1 +bwWNB

2 )wNB
1

2(1− b2)
; 

E
[
πWNB

M2

]
= wWNB

2 E
[
qWNB

2
]
=

(1− b− wWNB
2 +bwWNB

1 )wWNB
2

2(1− b2)
. 

Substituting qWNB
1 and qWNB

2 into the manufacturers’ profit functions, we solve the optimal wholesale price: wWNB
2 = 1

2 (1 − b +

bwWNB
1 ) first. Then, we solve the wWNB

1 =
(1− b)(2+b)

2(2− b2)
based on wWNB

2 . Therefore, we could obtain the updated wWNB
2 and other equilibriums 

as follows 

wWNB
2 = 4− 2b− 3b2+b3

4(2− b2)
; 

qWNB
1 =

(2− b− b2)+4∊1 − 4b∊2

8(1− b2)
; qWNB

2 =
(1− b)(4+(2− b)b )− 4b(2− b2)∊1+4(2− b2)∊2

8(2− 3b2+b4)
; 

pWNB
1 = 6− b− 3b2+4∊1 − 2b2∊1

4(2− b2)
; pWNB

2 = 12− 2b− 7b2+b3+8∊2 − 4b2∊2
8(2− b2)

; 

E[qWNB
1 ] =

(2− b− b2)
8(1− b2)

; E[qWNB
2 ] =

(1− b)(4+(2− b)b )
8(2− 3b2+b4)

; 

E[pWNB
1 ] = 6− b− 3b2

4(2− b2)
; E[pWNB

2 ] = 12− 2b− 7b2+b3

8(2− b2)
. 

Because the manufacturers’ profit functions are based on expectation, we have 

E[πWNB
M1

] = wWNB
1 E[qWNB

1 ] =
(2+b)(2− b− b2)

16(1+b)(2− b2)
; E

[
πWNB

M2

]
= wWNB

2 E
[
qWNB

2
]
=

(1− b)(4+(2− b)b)2

32(1+b)(2− b2)2
. 

The retailer’s profit is based on accurate demand information, so we substitute the outcomes with accurate demand information 
and derive its expected profit with information value as πWNB

R = (1 − qWNB
1 − bqWNB

2 + ∊1 − wWNB
1 )qWNB

1 + (1 − qWNB
2 − bqWNB

1 + ∊2 −

wWNB
2 )qWNB

2 =
32− b2(48+b(4− (3− b)b(7+3b) ) )+16(2− b2)2(1+λ)σ2

64(2− b2)
2
(1− b2)

. 

Derivation of Table A12 

Given the wholesale price wWAB
1 and wWAB

2 , the retailer solves the following problem to maximize its profit: πWAB
R = (θ − qWAB

1 −

bqWAB
2 + ∊1 − wWAB

1 )qWAB
1 + (θ − qWAB

2 − bqWAB
1 + ∊2 − wWAB

2 )qWAB
2 . 

The best order quantities are qWAB
1 =

θ− bθ− wWAB
1 +bwWAB

2 +∊1 − b∊2

2(1− b2)
and qWAB

2 =
θ− bθ+bwWAB

1 − wWAB
2 − b∊1+∊2

2(1− b2)
. Anticipating the quantities above, 

the manufacturers maximize their profit functions by determining wholesale prices sequentially. 
First, we maximize the profit function of M2 and we have wWAB

2 = 1
2 (θ − bθ+ bw1 − b∊1 + ∊2). Then, substituting wWNB

2 into profit 

function, we could obtain wWAB
1 =

(2− b− b2)θ+(2− b2)∊1+b∊1
2(2− b2)

. And we are able to obtain the updated wWNB
2 based on wWAB

1 . Therefore, we 
have 

wWAB
1 =

(2− b− b2)θ+(2− b2)∊1+b∊1
2(2− b2)

and 

wWAB
2 =

(1 − b)(4 + (2 − b)b )θ + b
(
2 − b2)∊1 − (4 − 3b2)∊2

4(2 − b2)

Correspondingly, the supply chain members’ equilibrium outcomes are qWAB
1 =

(2− b− b2)θ+(2− b2)∊1 − b∊2

8(1− b2)
, qWAB

2 =

(1− b)(4+(2− b)b )θ+b(2− b2)∊1 − (4− 3b2)∊2

8(2− 3b2+b4)
. 

As a result, their expected profits are E[πWAB
M1

] =
(2− b− b2)2θ2+(2− b2)2λσ2+b2σ2

16(1− b2)(2− b2)
, E[πWAB

M2
] =

(1− b)2(4+(2− b)b)2θ2+b2(2− b2)2λσ2+(4− 3b2)2σ2

32(2− b2)
2
(1− b2)

, and 

E
[
πWAB

R
]
=

(32− b2(48+b(4+(b− 3)b(7+3b) ) ) )θ2 − (2− b2)
2
(4− 3b2)λσ2 − (16− 20b2+5b4)σ2

64(2− b2)
2
(1− b2)

. 

Appendix C:. Proofs 

Proof of Proposition 1 

Based on Table A1 and Table A2, the difference of the expected wholesale prices with and without blockchain is 

E
[
wAB

1

]
− E

[
wNB

1

]
=

(1 − b)θ
2 − b

−
1 − b
2 − b

=
(1 − b)(θ − 1)

2 − b 

Because the market potential with blockchain θ is larger than 1, and the manufacturers’ competition intensity b is between 0 and 1, 
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we know the items 2 − b, 1 − b and θ − 1 are all positive. Therefore, E
[
wAB

1
]
− E

[
wNB

1
]
> 0 always holds. Similarly, we can prove 

E
[
wAB

2
]
− E

[
wNB

2
]
> 0. 

Proof of Lemma 1 

Based on Table A1 and Table A2, taking the first-order conditions with respect to b, we have 
∂(E[wAB

i ])
∂b = − θ

(b− 2)2
< 0, ∂(E[wNB

i ])
∂b = − 1

(b− 2)2 < 0, and ∂(E[wAB
i ])

∂b −
∂(E[wNB

i ])
∂b = −

(θ− 1)
(b− 2)2

< 0. 

Therefore, it can be shown that ∂(E[wAB
i ])

∂b <
∂(E[wNB

i ])
∂b < 0, and ∂(E[wAB

i ]− E[wNB
i ])

∂b =
(1− θ)
(b− 2)2

< 0. 

Proof of Proposition 2 

The difference of the expected order quantities with and without blockchain is 

E
[
qAB

i

]
− E

[
qNB

i

]
=

θ
2(2 − b)(1 + b)

−
1

2(2 − b)(1 + b)
=

(θ − 1)
2(2 − b)(1 + b)

Similarly, we find that the items (θ − 1), (2 − b) and (1 + b) are all positive, so E
[
qAB

i
]
− E

[
qNB

i
]
> 0 always holds. 

Proof of Lemma 2 

Taking the first-order conditions with respect to b, we have 
∂E[qAB

i ]
∂b =

(2b− 1)θ
2(2− b)2(1+b)2

, ∂E[qNB
i ]

∂b = 2b− 1
2(2− b)2(1+b)2

, and ∂E[qAB
i ]

∂b −
∂E[qNB

i ]
∂b =

(θ− 1)(2b− 1)
2(2− b)2(1+b)2

. 

Because the items 2(2 − b)2
(1 + b)2 and (θ − 1) are positive, it is easy to show that ∂E[qAB

i ]
∂b < 0, ∂E[qNB

i ]
∂b < 0 and ∂E[qAB

i ]
∂b <

∂E[qNB
i ]

∂b hold 

when b < 1
2. We further conduct a sensitive analysis of E

[
qAB

i
]
− E

[
qNB

i
]

with respect to b, and have ∂(E[qAB
i ]− E[qNB

i ])
∂b =

(2b− 1)(θ− 1)
2(2− b)2(1+b)2

. Thus, 

when b < 1
2, we have ∂(E[qAB

i ]− E[qNB
i ])

∂b < 0; Otherwise, we have ∂(E[qAB
i ]− E[qNB

i ])
∂b > 0. 

Proof of Proposition 3 

Note that E
[
pAB

i
]
− E

[
wAB

i
]
= θ

4− 2b, and E
[
pNB

i
]
− E

[
wNB

i
]
= 1

4− 2b. 
Because θ > 1, it can be shown that E

[
pAB

i
]
− E

[
wAB

i
]
> E

[
pNB

i
]
− E

[
wNB

i
]

holds. 

Proof of Lemma 3 

Taking the first-order conditions of (E
[
pAB

i
]
− E

[
wAB

i
]
) and (E

[
pNB

i
]
− E

[
wNB

i
]
) with respect to b, we have 

∂(E[pAB
i ]− E[wAB

i ])
∂b = 2θ

(4− 2b)2
> 0; 

∂(E[pNB
i ]− E[wNB

i ])
∂b = 2

(4− 2b)2 > 0; 

∂(E
[
pAB

i

]
− E

[
wAB

i

]
)

∂b
−

∂(E
[
pNB

i

]
− E

[
wNB

i

]
)

∂b
=

2(θ − 1)
(4 − 2b)2 > 0  

Proof of Proposition 4 

The difference between M1
′s expected profits with and without blockchain is 

E
[
πAB

M1

]
− E

[
πNB

M1

]
=

(1 − b)2
(2 + b)2θ2 +

(
2 − b2

)2λσ2 + b2σ2

2(b + 2)2
(2 − b)2

(1 − b)(1 + b)
−

1 − b
2(2 − b)2

(1 + b)
=

(1 − b)2
(2 + b)2

(θ2 − 1) +
(

b2 +
(
2 − b2

)2λ
)

σ2

2(b + 2)2
(2 − b)2

(1 − b)(1 + b)

Since θ > 1, b ∈ (0,1), λ > 0 and σ2 > 0, the items (1 − b)2
(2 + b)2

(θ2 − 1), 
(

b2 +
(
2 − b2

)2
λ
)

σ2 and 2(b + 2)2
(2 − b)2

(1 − b)(1+b)

are all positive, so E
[
πAB

M1

]
− E

[
πNB

M1

]
> 0 always holds. 

The difference between M2
′s expected profits with and without blockchain is 
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E
[
πAB

M2

]
− E

[
πNB

M2

]
=

(1 − b)2
(2 + b)2θ2 +

(
b2 − 2

)2σ2 + b2λσ2

2(b + 2)2
(2 − b)2

(1 − b)(1 + b)
−

1 − b
2(2 − b)2

(1 + b)

=
(1 − b)2

(2 + b)2
(θ − 1)(θ + 1) +

(
4 + b4 + b2(λ − 4)

)
σ2

2(b + 2)2
(2 − b)2

(1 − b)(1 + b)

Similarly, the items (1 − b)2
(2 + b)2

(θ − 1)(θ+1), 
(
4+b4 +b2(λ − 4)

)
σ2 and 2(b + 2)2

(2 − b)2
(1 − b)(1+b) are all positive, so 

E
[
πAB

M2

]
− E

[
πNB

M2

]
> 0 always holds. 

The difference between R’s expected profits with and without blockchain is 

E
[
πAB

R

]
− E

[
πNB

R

]
=

2(1 − b)2
(2 + b)2θ2 + (4 − 3b2)(1 + λ)σ2

4
(
4 − b2

)2
(1 − b2)

−
2(1 − b) + (2 − b)2

(1 + λ)σ2

4(2 − b)2
(1 − b2)

=
2(1 − b)(2 + b)2

(θ − 1)(θ + 1) − (12 − 5b2 + b4)(1 + λ)σ2

4
(
4 − b2

)2
(1 − b2)

The item 4
(
4 − b2

)2
(1 − b2) is positive. Let Φ = (1+ λ)σ2. We find that 2(1 − b)(2 + b)2

(θ − 1)(θ+1) − (12 − 5b2 + b4)(1 + λ)σ2 can 
be rewritten as 2(1 − b)(2 + b)2

(θ − 1)(θ+1) − (12 − 5b2 + b4)Φ. 

It is easy to show that 2(1 − b)(2 + b)2
> 0 and 

(
12 − 5b2 +b4

)
> 0. Let 2(1 − b)(2 + b)2( θ2 − 1

)
−
(

12 − 5b2 +b4
)

Φ = 0 and it can be 

rewritten as 12− 5b2+b4

2(1− b)(2+b)2
=

(θ2 − 1)
Φ . 

Define f(b) = 12− 5b2+b4

2(1− b)(2+b)2, which is continuous when b ∈ (0,1). Then, we have ∂f(b)
∂b =

(2− b)b(8+9b+6b2+b3)

2(1− b)2
(2+b)3

> 0, which indicates that f(b)

is increasing in b. Therefore, f(b)min = f(0) = 3
2. 

When (θ2 − 1)
Φ ≤ 3

2, we find 12− 5b2+b4

2(1− b)(2+b)2
>

(θ2 − 1)
Φ always holds. When (θ2 − 1)

Φ > 3
2, there exists a unique b1 satisfying 12− 5b2

1+b4
1

2(1− b1)(2+b1)
2 =

(θ2 − 1)
Φ . 

When b < b1, we find 12− 5b2+b4

2(1− b)(2+b)2 <
(θ2 − 1)

Φ holds. Therefore, when Φ < Φ1 = 2
3 (θ

2 − 1) and b < b1, we have E
[
πAB

R
]
− E

[
πNB

R
]
> 0; 

Otherwise, we have E
[
πAB

R
]
− E

[
πNB

R
]
< 0. 

Proof of Corollary 1 

The difference of R’s deterministic value part in two scenarios is 

E
[
πAB

RD
]
− E

[
πNB

RD
]
= θ2

2(2− b)2
(1+b)

− 1
2(2− b)2(1+b)

= θ2 − 1
2(2− b)2(1+b)

; 

Since θ > 1 and b ∈ (0,1), the items θ2 − 1 and 2(2 − b)2
(1+b) are both positive, so E

[
πAB

RD
]
− E

[
πNB

RD
]
> 0 always holds. 

The difference between R’s information value part in two scenarios is 

E
[
πAB

RI

]
− E

[
πNB

RI

]
=

(
4 − 3b2

)
Φ

4(b + 2)2
(2 − b)2

(1 − b)(1 + b)
−

Φ
4(1 − b)(1 + b)

=

(
5b2 − b4 − 12

)
Φ

4(b + 2)2
(2 − b)2

(1 − b)(1 + b)
< 0 

Similarly, the item 
(
5b2 − b4 − 12

)
Φ is negative while item 4(b + 2)2

(2 − b)2
(1 − b)(1+b) is positive, so E

[
πAB

RI
]
− E

[
πNB

RI
]
< 0 always 

holds. 

Proof of Lemma 4 

Substituting the equilibrium outcomes in NB scenario into TSNB(q1, q2) = qNB
1 + qNB

2 − 1
2

(
qNB

1
2
+2bqNB

1 qNB
2 +qNB

2
2
)

, we derive the 

expected total surplus as: 

E[TSNB(q1, q2)] =
2(1 − b)(7 − 4b) − (2 − b)2Φ

8(2 − b)2
(1 − b)(1 + b)

Correspondingly, the expected customer surplus in NB scenario is 

CSNB = UNB(q1, q2) − E[πNB
M1
] − E[πNB

M2
] − E

[
πNB

R

]
=

2(1 − b) − 3(2 − b)2Φ
8(2 − b)2

(1 − b)(1 + b)
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Proof of Lemma 5 

Substituting the equilibrium outcomes in AB scenario into TSAB(q1, q2) = θ(qAB
1 + qAB

2 ) − 1
2 (q

AB
1

2
+ 2bqAB

1 qAB
2 + qAB

2
2
), we derive the 

expected total surplus as: 

E[TSAB(q1, q2)] =
2(1 − b)(2 + b)2

(7 − 4b)θ2 + (4 − 3b2)Φ
8(b + 2)2

(b − 2)2
(1 − b)(1 + b)

Correspondingly, the expected customer surplus in AB scenario is 

CSNB = UNB(q1, q2) − E[πNB
M1
] − E[πNB

M2
] − E

[
πNB

R

]
=

2(1 − b)(2 + b)2θ2 + (28 − 21b2 + 4b4)Φ
8(b + 2)2

(b − 2)2
(1 − b)(1 + b)

Proof of Proposition 5 

The difference between the expected total surplus in two scenarios is 

E[TSAB] − E[TSNB] =
2(1 − b)(2 + b)2

(7 − 4b)(θ − 1)(1 + θ) + (20 − 11b2 + b4)Φ
8(b + 2)2

(2 − b)2
(1 − b)(1 + b)

Since θ > 1, b ∈ (0, 1) and Φ > 0, the items 2(1 − b)(2 + b)2
(7 − 4b)(θ − 1)(1+ θ), (20 − 11b2 +b4)Φ and 

8(b + 2)2
(2 − b)2

(1 − b)(1 + b) are all positive, so E[TSAB] − E[TSNB] > 0 always holds. 
The difference in the expected customer surplus in two scenarios is 

E[CSAB] − E[CSNB] =
2(1 − b)(2 + b)2

(θ − 1)(1 + θ) +
(
20− b4 − 3b2

)
Φ

8(b + 2)2
(b − 2)2

(1 − b)(1 + b)

Similarly, items 2(1 − b)(2 + b)2
(θ − 1)(1+θ), 

(
20− b4 − 3b2

)
Φ and 8(b + 2)2

(b − 2)2
(1 − b)(1+b) are all positive, so E[CSAB] −

E[CSNB] > 0 always holds. 
Taking the first-order conditions of (E[CSAB] − E[CSNB]) with respect to b, we have 

∂(E[CSAB] − E[CSNB])

∂b
=

3(1 − b)2
(1 + b)2b(2 + b)3

(θ − 1)(1 + θ) + b
(
108 − 71b2 + 10b4 + b6

)
Φ

4
(
4 − b2

)3( 1 − b2
)2 

The items 3(1 − b)2
(1 + b)2b(2 + b)3

(θ − 1)(1+ θ), b
(
108 − 71b2 +10b4 +b6

)
Φ and 4

(
4 − b2

)3(
1 − b2

)2 
are all positive, so 

∂(E[CSAB ]− E[CSNB ])
∂b > 0 always holds. 

Proof of Lemma 6 

Comparing the equilibrium outcomes in BC scenario with those in NB scenario, we have 

E
[
wBC] − E

[
wNB] =

b(1+c− θ)+θ− 1
2− b =

(1− b)(θ− 1)+bc
2− b > 0; 

E[qBC
1 ] − E[qNB

1 ] = E[qBC
2 ] − E[qNB

2 ] = θ− 1− 2c
2(2− b)(1+b). Therefore, when c < 1

2 (θ − 1), we have θ− 1− 2c
2(2− b)(1+b) > 0; Otherwise, we have 

θ− 1− 2c
2(2− b)(1+b) < 0. 

E
[
pBC

1

]
− E

[
pNB

1

]
= E

[
pBC

2

]
− E

[
pNB

2

]
=

3 − 2c + 2b(θ − 1) − 3θ
2(b − 2)

=
(3 − 2b)(θ − 1) + 2c

2(2 − b)
> 0  

Proof of Proposition 6 

Comparing M1
′s expected profits in IB scenario and that in NB scenario, we have 

E
[
πIB

M1

]
− E

[
πNB

M1

]
=

1
2
(

b − 1
(2 − b)2

(1 + b)
+

(1 − b)θ2

(1 + b)(2 − b)2 +
2
(
b2 − 2

)

(
1 − b2

)(
4 − b2

)2
λσ2

oσ2

λσ2 + σ2
o
+

b2(b2 − 3)
(1 − b2)(4 − b2)

2
σ2

oσ2

σ2 + σ2
o
)

Since 
∂(E
[

πIB
M1

]
− E

[
πNB

M1

]
)

∂θ =
(1− b)θ

(1+b)(2− b)2
> 0, we find E

[
πIB

M1

]
− E

[
πNB

M1

]
is increasing in θ. When θ > θ1 =
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 4− 2b2

(b− 1)2(b+2)2
∙ λσ2

o σ2

λσ2+σ2
o
+ 3b2 − b4

(b− 1)2(b+2)2
∙ σ2

o σ2

σ2+σ2
o

√

, it can be shown that E
[
πIB

M1

]
− E

[
πNB

M1

]
> 0; Otherwise, we have E

[
πIB

M1

]
− E

[
πNB

M1

]
< 0. 

Similarly, comparing M2
′s expected profits in IB scenario and that in NB scenario, we have 

E
[
πIB

M2

]
− E

[
πNB

M2

]
=

1
2
(

b − 1
(2 − b)2

(1 + b)
+

(1 − b)θ2

(1 + b)(2 − b)2 +
2
(
b2 − 2

)

(
1 − b2

)(
4 − b2

)2
σ2

oσ2

σ2 + σ2
o
+

b2(b2 − 3)
(1 − b2)(4 − b2)

2
λσ2

oσ2

λσ2 + σ2
o
)

Similarly, since 
∂(E
[

πIB
M1

]
− E

[
πNB

M1

]
)

∂θ =
(1− b)θ

(1+b)(2− b)2
> 0, it can be shown that E

[
πIB

M2

]
− E

[
πNB

M2

]
is increasing in θ. When θ > θ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 3b2 − b4

(b− 1)2(b+2)2
∙ λσ2

o σ2

λσ2+σ2
o
+ 4− 2b2

(b− 1)2(b+2)2
∙ σ2

o σ2

σ2+σ2
o

√

, we have 
[
πIB

M2

]
− E

[
πNB

M2

]
> 0; Otherwise, we have E

[
πIB

M2

]
− E

[
πNB

M2

]
< 0. 

Similarly, comparing R’s expected profits in IB scenario and that in NB scenario, we have 

E
[
πIB

R

]
− E

[
πNB

R

]
=

(
8 − 2b3 − b2

)
(θ2 − 1)

4
(
4 − b2

)2( 1 − b2
) +

4 − b4 + b2

4
(
4 − b2

)2( 1 − b2
)

(
λσ2

oσ2

λσ2 + σ2
o
+

σ2
oσ2

σ2 + σ2
o

)

> 0  

Proof of Proposition 7 

With the retailer’s sales effort, the difference between the profit of M1 in two scenarios is 

E
[
πSAB

M1

]
− E

[
πSNB

M1

]
=
(1+b)(4(2 − b)2

(1 − b)2
(2+b)2k2(1 − θ2) − σ2 +(4(2 − b)bk(1 − (2 − b)bk)+(1 − 2(2 − b)(2 − b2)k)2λ)σ2)

8(1 − b)(2+b)2
(4k+b3k − 1 − 3b2k)2 

We have 8(1 − b)(2+b)2( 4k+b3k − 1 − 3b2k
)2

>0 and the signs of E
[
πSAB

M1

]
− E

[
πSNB

M1

]
depends on (1+

b)(4(2 − b)2
(1 − b)2

(2+b)2k2(1 − θ2) − σ2 + (4(2 − b)bk(1 − (2 − b)bk)+ (1 − 2(2 − b)(2 − b2)k)2λ)σ2). 

We define f(λ)= (1+b)
(

1 − 2(2 − b)
(

2 − b2
)

k
)2

λσ2+(1+b)
(

4(2 − b)2
(1 − b)2

(2+b)2k2( θ2 − 1
)
+σ2+4(2 − b)bk(1 − (2 − b)bk)σ2

)

which is a liner function of λ. Because ∂f(λ)
∂λ = − (1+b)

(
1 − 2(2 − b)

(
2 − b2

)
k
)2

σ2 <0, we have f(λ) decreases in λ and f(λ)> lim
λ→1

f(λ)

holds for 0< λ<1. 

Since (1+b)
(

σ − 2( − 2 + b)
(
− 2 + b2

)
kσ

)2
> 0 and 4(2 − b)2

(1 − b)2
(2 + b)2k2( θ2 − 1

)
+ (σ − 2(2 − b)bkσ )

2
> 0, We have 

lim
λ→1

f(λ) = (1+b)
(

σ − 2( − 2+b)
(
− 2+b2

)
kσ

)2
+ (1+b)

(
4(2 − b)2

(1 − b)2
(2+b)2k2( θ2 − 1

)
+(σ − 2(2 − b)bkσ )2

)
>0. As a result, 

f(λ)> lim
λ→1

f(λ)>0 which means that(1+b)
(

4(2− b)2
(1− b)2

(2+b)2k2( 1− θ2)− σ2+

(

4(2− b)bk(1− (2− b)bk)+
(

1− 2(2− b)
(

2−

b2
)

k
)2

λ
)

σ2
)

>0.

Therefore, we have E
[
πSAB

M1

]
− E

[
πSNB

M1

]
> 0. 

With the retailer’s sales effort, the difference between the profit of M2 in two scenarios is 

E
[
πSAB

M2

]
− E

[
πSNB

M2

]
=

(1 + b)((1 + λ)σ2 − 4(2 − b)k(2 − b2 + bλ)σ2 + 4(2 − b)2k2(
(
2 − b − b2

)2
(θ2 − 1) + (4 + b4 − b2(4 − λ))σ2))

8(1 − b)(2 + b)2
(4k − 1 − 3b2k + b3k)2 

The signs of E
[
πSAB

M2

]
− E

[
πSNB

M2

]
depend on (1 + b)((1 + λ)σ2 − 4(2 − b)k(2 − b2 + bλ)σ2 +4(2 − b)2k2(

(
2 − b − b2

)2 
(θ2 − 1) + (4 +

b4 − b2(4 − λ))σ2)) for 8(1 − b)(2 + b)2( 4k − 1 − 3b2k + b3k
)2

> 0. Rewrite the expression of 

(1 + b)((1 + λ)σ2 − 4(2 − b)k(2 − b2 + bλ)σ2 +4(2 − b)2k2(
(
2 − b − b2

)2
(θ2 − 1) + (4 + b4 − b2(4 − λ))σ2)) and we define g(λ) =

4(2 − b)2
(
(
2 − b − b2

)2
k2(θ2 − 1) + σ2 − 8(2 − b)kσ2 + 4(2 − b)b2kσ2 + 16(2 − b)2k2σ2 − 16(2 − b)2b2k2σ2 + 4(2 − b)2b4k2σ2 +

λ(σ2 − 4(2 − b)bkσ2 + 4(2 − b)2b2k2σ2). 
Taking the first order condition with respect to λ, we have ∂g(λ)

∂λ = (σ2 + 4(− 2+ b)bkσ2 + 4(− 2 + b)2b2k2σ2). 
Define y(k) = σ2 +k(4b2σ2 − 8bσ2)+k2(16b2σ2 − 16b3σ2 + 4b4σ2) which is a quadratic function of k. We have ∂y(k)

∂k =

(4b2σ2 − 8bσ2)+2k(16b2σ2 − 16b3σ2 + 4b4σ2) and ∂2y(k)
∂k2 = 2(16b2σ2 − 16b3σ2 + 4b4σ2). Because ∂2y(k)

∂k2 > 0, ∂y(k)
∂k increases in k and 

∂y(k)
∂k > lim

k→0
∂y(k)

∂k holds. 

We have lim
k→0

∂y(k)
∂k = (4b2σ2 − 8bσ2) and ∂y(k)

∂k > 0 only when k > 1
2b− b2. That is, y(k) has the minimum value y(k) = σ2for k = 1

2b− b2. 

Then, we have y(k) > 0. 
As a result, ∂g(λ)

∂λ > 0 always hold and we have g(λ) > lim
λ→0

g(0). 
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Because lim
λ→0

g(0) = 4(2 − b)2
(1 − b)2

(2 + b)2k2( θ2 − 1
)
+

(
σ − 2(2 − b)

(
2 − b2

)
kσ

)2
> 0, we have g(λ) > 0 for λ ∈ (0, 1) There-

fore, (1+b)
(

(1 + λ)σ2 − 4(2 − b)k
(

2 − b2 + bλ
)

σ2 +4(2 − b)2k2
((

2 − b − b2
)2(

θ2 − 1
)
+
(

4 + b4 − b2(4 − λ)
)

σ2
))

> 0 holds and 

E
[
πSAB

M2

]
− E

[
πSNB

M2

]
> 0 can be proven. 

Proof of Proposition 8 

Given asymmetric b, the difference between M1’s profit in two scenarios is 

E
[
πAAB

M1

]
− E

[
πANB

M1

]
=

2(1 − b)2
(5 + b)2

(θ2 − 1) + 2(4(1 + b)2
+ (7 − b(2 + b))2λ)σ2

(3 − b)2
(1 − b)(3 + b)(5 + b)2 

Because (3 − b)2
(1 − b)(3+b)(5 + b)2

> 0 and 2(1 − b)2
(5 + b)2

(θ2 − 1) + 2
(

4(1 + b)2
+(7 − b(2 + b) )2λ

)
σ2 > 0, we have 

E
[
πAAB

M1

]
− E

[
πANB

M1

]
> 0. 

The difference between M2’s profit in two scenarios is 

E
[
πAAB

M2

]
− E

[
πANB

M2

]
=

4(1 − b)(5 + b)2
(θ2 − 1) + (173 − 36b − 14b2 + 4b3 + b4)(1 + λ)σ2

(3 − b)2
(1 − b)(3 + b)(5 + b)2 

Because 173 − 36b − 14b2 + 4b3 + b4 > 173 − 36b − 14b2 > 120, (3 − b)2
(1 − b)(3+b)(5 + b)2

> 0 and 4(1 − b)(5 + b)2
(θ2 − 1) > 0, 

we haveE
[
πAAB

M2

]
− E

[
πANB

M2

]
> 0. 

The difference between the retailer’s profit in two scenarios is 

E
[
πAAB

R

]
− E

[
πANB

R

]
=

4(1 − b)(5 + b)2
(θ2 − 1) − (173 + b(2 + b)(b(2 + b) − 18))Φ
(3 − b)2

(1 − b)(3 + b)(5 + b)2 

Because (3 − b)2
(1 − b)(3+b)(5 + b)2

> 0, the signs of E
[
πAAB

R
]
− E

[
πANB

R
]

depend on 4(1 − b)(5 + b)2
(θ2 − 1) − (173+ b(2+ b)(b(2+

b) − 18))Φ, which can be rewritten as − 100(− 1+ θ2) + b(60(− 1+ θ2) − 36Φ) + b2(36(− 1+ θ2) − 14Φ) + 173Φ + b3(4(− 1+ θ2)+

4Φ) + b4Φ. 
It is easy to show that 4(1 − b)(5 + b)2

> 0 and (173 + b(2 + b)(b(2 + b) − 18)) > 0. Let 

4(1 − b)(5 + b)2( θ2 − 1
)
− (173 + b(2 + b)(b(2 + b) − 18))Φ = 0 and it can be rewritten as (173+b(2+b)(b(2+b)− 18))

4(1− b)(5+b)2
=

(θ2 − 1)
Φ . 

Define t(b) =
(173+b(2+b)(b(2+b)− 18))

4(1− b)(5+b)2
, which is continuous when b ∈ (0,1). Then, we have ∂t(b)

∂b = 339+415b+58b2 − 30b3 − 13b4 − b5

4(1− b)2
(5+b)3

> 0, which 

indicates that t(b) is increasing in b. Therefore, t(b)min = t(0) = 173
100. 

When (θ2 − 1)
Φ ≤ 173

100, we find (173+b(2+b)(b(2+b)− 18))
4(1− b)(5+b)2

>
(θ2 − 1)

Φ always holds. When (θ2 − 1)
Φ > 173

100, there exists a unique bA1 satisfying 

(173+b(2+b)(b(2+b)− 18))
4(1− b)(5+b)2

=
(θ2 − 1)

Φ . When b < bA1, we find (173+b(2+b)(b(2+b)− 18))
4(1− b)(5+b)2 <

(θ2 − 1)
Φ holds. Therefore, when Φ < ΦA1 = 100

173 (θ
2 − 1), and 

b < bA1, we have E
[
πAAB

R
]
− E

[
πANB

R
]
> 0. 

Proof of Proposition 9 

Given M1’s the expectation of demand m, the difference between M1’s profit in two scenarios is 

E
[
πFAB

M1

]
− E

[
πFNB

M1

]
=

(2 − b − b2)(θ − 1)(2(1 + 2m + θ) + b(1 + θ + b(1 + 2m + θ))) + (4 − 3b2 + b4)σ2

2
(
4 − b2

)2
(1 − b2)

Because 2
(
4 − b2

)2(
1 − b2

)
> 0, the signs of E

[
πAAB

M1

]
− E

[
πANB

M1

]
depend on (2 − b − b2)(θ − 1)(2(1+ 2m+ θ) + b(1+ θ+ b(1+ 2m+

θ))) + (4 − 3b2 + b4)σ2. We have 
(
2 − b − b2

)
> 2(1 − b) > 0and 

(
4 − 3b2 +b4

)
σ2 > (4 − 3b+b)σ2 > 2σ2 > 0, therefore 

(
2 − b − b2

)
(θ − 1)(2(1 + 2m + θ) +b(1 + θ + b(1 + 2m + θ) ) )+

(
4 − 3b2 +b4

)
σ2 > 0 holds. As a result, E

[
πFAB

M1

]
− E

[
πFNB

M1

]
> 0 can be 

proven. 
The difference between M2’s profit in two scenarios is 

E
[
πFAB

M2

]
− E

[
πFNB

M2

]
=

(
2b3 − 4b

)
(1 + m + mθ + θ2) + (4 + b4)(1 + θ2 + σ2) + b2(2m2 + 2m(1 + θ) − 3(1 + θ2 + σ2))

2
(
4 − b2

)2
(1 − b2)

Because 2
(
4 − b2

)2(
1 − b2

)
> 0, the signs of E

[
πFAB

M2

]
− E

[
πFNB

M2

]
depend on 

(
2b3 − 4b

)
(1+m+mθ+θ2) + 4(1+θ2 +σ2) + b4(1+ θ2 +

σ2) + b2(2m2 + 2m(1 + θ) − 3(1+ θ2 + σ2)), which can be rewritten as a quadratic function of θ. 
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We define L(θ) = 4
(
1+σ2) − 4b(1+m) + b2

(
2b(1 + m)+2m(1 + m) − 3

(
1 + σ2)+b2( 1 + σ2)

)
− (4bm − 2b2m − 2b3m)θ + (4 −

4b − 3b2 + 2b3 + b4)θ2. It is easy to show that L(θ) increases in θ when θ > bm
2− b− b2. Therefore, we have L(θ) > Min{lim

θ→1
L(θ), L

(
bm

2− b− b2

)}

for any θ > 1.

We have L(1) = 2(b(1 + b + m) − 2)2
+
(

4 − 3b2 +b4
)

σ2 > 0 and L
(

bm
2− b− b2

)

= (b(1 + b + m) − 2)2
+

(
4 − 3b2 +b4

)
σ2 > 0. There-

fore, L(θ) > 0 holds and E
[
πFAB

M2

]
− E

[
πFNB

M2

]
> 0 can be proven. 

The difference between R’s profit in two scenarios is 

E
[
πFAB

R

]
− E

[
πFNB

R

]
=

(1 − b)(2 + b)2
(θ − 1)(1 + m + θ) − (12 − 5b2 + b4)σ2

2
(
4 − b2

)2
(1 − b2)

Because 2
(
4 − b2

)2(
1 − b2

)
> 0, the signs of E

[
πFAB

R
]
− E

[
πFNB

R
]

depend on (1 − b)(2 + b)2
(θ − 1)(1+m+θ) −

(
12 − 5b2 +b4

)
σ2. It is 

easy to show that (1 − b)(2 + b)2
> 0 and (12 − 5b2 + b4) > 0. Let (1 − b)(2 + b)2

(θ − 1)(1+m+θ) − (12 − 5b2 + b4)σ2 = 0 and it can be 
rewritten as 12− 5b2+b4

(1− b)(2+b)2
=

(θ− 1)(1+m+θ)
σ2 . 

Define K(b) = 12− 5b2+b4

(1− b)(2+b)2
, which is continuous when b ∈ (0,1). Then, we have ∂K(b)

∂b =
(2− b)b(8+b(3+b)2)

(1− b)2(2+b)3
> 0, which indicates that K(b) is 

increasing in b. Therefore, K(b)min = K(0) = 3. 
When (θ− 1)(1+m+θ)

σ2 ≤ 3, we find 12− 5b2+b4

(1− b)(2+b)2
>

(θ− 1)(1+m+θ)
σ2 always holds. When (θ− 1)(1+m+θ)

σ2 > 3, there exists a unique bF1 satisfying 

12− 5b2+b4

(1− b)(2+b)2
=

(θ− 1)(1+m+θ)
σ2 . When b < bF1, we find 12− 5b2+b4

(1− b)(2+b)2
<

(θ− 1)(1+m+θ)
σ2 holds. Therefore, when σ <

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mθ+θ2 − 1− m

3

√

, and b < bF1, we have 

E
[
πFAB

R
]
− E

[
πFNB

R
]
> 0. 

Proof of Proposition 10 

Facing a sequential wholesale price, the difference between M1’s profit in two scenarios is 

E
[
πWAB

M1

]
− E

[
πWNB

M1

]
=

(2 − b − b2)
2
(θ2 − 1) + (b2 + (2 − b2)

2λ)σ2

16(2 − b2)(1 − b2)

Because 
(
2 − b − b2

)2
(θ2 − 1)+

(
b2 +

(
2 − b2

)2
λ
)

σ2 > 0 and 16
(
2 − b2

)(
1 − b2

)
> 0, we have E

[
πWAB

M1

]
− E

[
πWNB

M1

]
> 0. 

The difference between M2’s profit in two scenarios is 

E
[
πWAB

M2

]
− E

[
πWNB

M2

]
=

(1 − b)2
(4 + (2 − b)b)2

(θ2 − 1) + ((4 − 3b2)
2
+ b2(2 − b2)

2λ)σ2

32(2 − b2)
2
(1 − b2)

Because (1 − b)2
(4 + (2 − b)b )2

(θ2 − 1)+
((

4 − 3b2
)2

+b2
(
2 − b2

)2
λ
)

σ2 > 0 and 32
(
2 − b2

)2(
1 − b2

)
> 0, we have E

[
πWAB

M2

]
−

E
[
πWNB

2
]
> 0. 

The difference between R’s profit in two scenarios is 

E
[
πWAB

R

]
− E

[
πWNB

R

]
=

(
32 − b2

(
48 + 4b − 21b2 − 2b3 + 3b4

) )
(θ2 − 1) − (11b4 + 3b6λ + 48(1 + λ) − 4b2(11 + 9λ))σ2

64
(
2 − b2

)2
(1 − b2)

Because 64
(
2 − b2

)2
(1 − b2) > 0, the signs of E

[
πWAB

R
]
− E

[
πWNB

R
]

depend on 
(
32 − b2

(
48 + 4b − 21b2 − 2b3 + 3b4

) )

(θ2 − 1) − (11b4 + 3b6λ + 48(1 + λ) − 4b2(11 + 9λ))σ2. It is easy to show that 32 − b2
(
48+4b − 21b2 − 2b3 +3b4

)
> 0 and 11b4 + 3b6λ +

48(1+ λ) − 4b2(11+ 9λ) > 0. Let 
(
32 − b2

(
48 + 4b − 21b2 − 2b3 + 3b4

) )
(θ2 − 1) − (11b4 + 3b6λ + 48(1 + λ) − 4b2(11 + 9λ))σ2 = 0 

and it can be rewritten as 11b4+3b6λ+48(1+λ)− 4b2(11+9λ)
32− b2(48+4b− 21b2 − 2b3+3b4)

=
(θ2 − 1)

σ2 . 

Define G(b) =
11b4+3b6λ+48(1+λ)− 4b2(11+9λ)
32− b2(48+4b− 21b2 − 2b3+3b4)

, which is continuous when b ∈ (0, 1). Then, we have ∂G(b)
∂b =

1792b+576b2 − 2624b3 − 656b4+1656b5+220b6 − 528b7 − 22b8+66b9

(b2(48+b(4− (3− b)b(7+3b)))− 32)2 +
(2304b+576b2 − 4032b3 − 624b4+2952b5+216b6 − 1008b7 − 36b8+126b9+6b10)λ

(b2(48+b(4− (3− b)b(7+3b)))− 32)2
. We define M(b) =

2304 + 576b − 4032b2 − 624b3 + 1952b4. Taking the first order condition with respect to b, we have ∂M(b)
∂b = 576 − 8064b − 1872b2 +

7808b3. Taking the second order condition with respect to b, we have ∂2M(b)
∂b2 = − 4032 − 3544b + 23424b2. Similarly, we can obtain 

∂3M(b)
∂b3 = − 3544 + 46848b, ∂

4M(b)
∂b4 = − 46848. It is easy to show that ∂

3M(b)
∂b3 decreases in b and ∂

3M(b)
∂b3 = 0 when b = 3544

46848. Then, ∂
2M(b)
∂b2 has 

the minimum value ∂
2M(b)
∂b2 < 0 when b = 3544

46848, limb→0
∂2M(b)

∂b2 < 0 and lim
b→0

∂2M(b)
∂b2 > 1. Therefore, ∂M(b)

∂b decreases in b first and then increases in 

b. Because of ∂M(b)
∂b < 0 when = 1

2 ,limb→0
∂M(b)

∂b > 0 and lim
b→1

∂M(b)
∂b < 0, we know that M(b) increases in b first and then decreases in b. As a 
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result, we have M(b) > min{lim
b→0

M(b),lim
b→1

M(b)}. Because lim
b→0

M(b) = 2304 > 0 and lim
b→1

M(b) = 176 > 0, M(b) > 0 holds for any b ∈ (0,1). 

Then we have (2304b+576b2 − 4032b3 − 624b4+2952b5+216b6 − 1008b7 − 36b8+126b9+6b10)λ
(b2(48+b(4− (3− b)b(7+3b)))− 32)2

> 0 since (b2(48 + b(4 − (3 − b)b(7 + 3b))) − 32)2
> 0, 

M(b) > 0 and 1000b5 + 216b6 − 1008b7 − 36b8 + 126b9 + 6b10 > 0. Similarly, we obtain that 
1792b+576b2 − 2624b3 − 656b4+1656b5+220b6 − 528b7 − 22b8+66b9

(b2(48+b(4− (3− b)b(7+3b)))− 32)2
> 0 holds for any b ∈ (0,1). 

As a result, we have ∂G(b)
∂b > 0 which indicates that G(b) is increasing in b. Therefore, G(b)min = G(0) =

3(1+λ)
2 . When (θ2 − 1)

σ2 ≤
3(1+λ)

2 , 

we find 11b4+3b6λ+48(1+λ)− 4b2(11+9λ)
32− b2(48+4b− 21b2 − 2b3+3b4)

>
(θ2 − 1)

σ2 always holds. When (θ2 − 1)
σ2 >

3(1+λ)
2 , there exists a unique bW1 satisfying 

11b4+3b6λ+48(1+λ)− 4b2(11+9λ)
32− b2(48+4b− 21b2 − 2b3+3b4)

=
(θ2 − 1)

σ2 . When b < bW1, we find 11b4+3b6λ+48(1+λ)− 4b2(11+9λ)
32− b2(48+4b− 21b2 − 2b3+3b4)

<
(θ2 − 1)

σ2 holds. Therefore, when σ <

̅̅̅̅̅̅̅̅̅̅̅̅̅
2(θ2 − 1)
3(1+λ)

√

, and 

b < bW1, we have E
[
πWAB

R
]
− E

[
πWNB

R
]
> 0. 

Appendix D:. Single supply chain structure 

In the basic model, we assume two manufacturers compete in the upstream and sell medicine through a common retailer. In this 
subsection, we consider the scenario where there is only one manufacturer and one retailer. We use the superscript ONB and OAB to 
represent the two scenarios of not adopting blockchain and adopting blockchain, respectively. The inverse demand function in sce-
nario ONB is 

pONB
1 = 1 − qONB

1 + ∊1; 

The inverse demand function in scenario OAB is 

pOAB
1 = θ − qOAB

1 + ∊1; 

In scenario ONB, the equilibrium wholesale price, quantity, retail price, and the supply chain members’ profits are  

(1) wONB
1 = 1

2;  

(2) qONB
1 = 1

4 (1+ 2∊1);  

(3) pONB
1 = 1

4 (3+ 2∊1);  

(4) E[πONB
M1

] = 1
8, E

[
πONB

R
]
= 1

16 + σ2

4 . 

In scenario AAB, the equilibrium wholesale price, quantity, retail price, and the supply chain members’ profits are  

(1) wOAB
1 = 1

2 (θ+ ∊1);  

(2) qOAB
1 = 1

4 (θ+ ∊1);  

(3) pOAB
1 = 3

4 (θ+ ∊1);  

(4) E[πOAB
M1

] = θ2+σ2

8 , E
[
πOAB

R
]
= θ2+σ2

16 . 

We can observe that the manufacturer always benefits from adopting blockchain technology while the retailer benefits from it only 
when σ2 < θ2 − 1

3 . The result is similar to the scenario where there are two manufacturers and one common retailer, the latter is more 
complicated with the competition effect. 
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