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Abstract--The forecast errors for distributed energy resources 

(DERs) and hourly demands have contributed to power system 

uncertainties and additional risks in the day-ahead scheduling of 

electricity markets. In this paper, a risk-based approach is 

introduced to determine the stochastic solution of network-

constrained unit commitment (NCUC) when additional 

uncertainties are embedded in the power system scheduling. The 

historical power market transaction data are used to model nodal 

injection uncertainties and reserve capacity requirements are 

considered to assess the solution of the risk-based NCUC. The 

proposed NCUC problem is formulated as a single-stage second 

order cone program which is a convex algorithm. The proposed 

approach provides an efficient solution for large-scale stochastic 

problems and helps accommodate the DER variabilities in secure 

and economic operations of power systems. The proposed 

stochastic algorithm is tested and the results are analyzed for the 

IEEE RTS-96 and IEEE 300-bus test systems. 

Index Terms -- Risk-based network-constrained unit 

commitment (NCUC), second-order cone programming, power 

system uncertainty. 

NOMENCLATURE 

A.  Sets and Indices 

i,j Index for market participants. 

t, 𝜏 Index for time periods. 

G,D Set of Generation and distribution companies. 

Ψi Feasible set of generating unit i. 

conv(Ψi) Convex hull of Ψi. 

B.  Variables 

𝑏𝑖(𝑡) , 𝑞𝑖
∗(𝑡) Price/quantity bid of participant i in period t. 

𝑝𝑖
∗(𝑡), 𝑝𝑖(𝑡) Transacted energy in the market and actual 

energy exchanged by participant i in period 

t. 

𝑝𝑖
𝑝𝑢(𝑡) Normalized actual production/consumption 

of participant i in period t. 

𝑝𝑙
∗(𝑡), 𝑝𝑙(𝑡) Predicted and actual power flow in 

transmission line l in period t. 
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𝑅(𝑡) Required reserve capacity in period t. 

𝑟𝑑𝑛
∗ (𝑡), 𝑟𝑢𝑝

∗ (𝑡) Total negative/positive required ramping 

reserve in period t. 

𝑟𝑑𝑛/𝑢𝑝.𝑖
∗ (𝑡) Negative/positive ramping allocation of 

generating unit i in period t. 

𝑆𝑊(𝑡) Social welfare in period t. 

𝑢𝑖(𝑡)𝑣𝑖(𝑡) Binary variables indicating generating unit i 

starts up/shuts down in period t. 

𝑥𝑖(𝑡) Generating unit i’s commitment status in 

period t. 

𝑤𝑖(𝑡) Accepted bid of participant i in period t. 

𝑧𝑅(𝑡) auxiliary variable used in convex relaxation. 

𝜎𝑖(𝑡), 𝜎𝑅(𝑡) RMSE of participant i’s power/required 

reserve capacity in period t. 

𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) RMSE of flow of line l in period t. 

C.  Parameters 

𝐶𝑖
𝑆𝑈, 𝐶𝑖

𝑆𝐷 Start-up/shut-down cost of generating unit i. 

𝐶𝑅
+, 𝐶𝑅

− Cost of positive/negative reserve capacities. 

𝑘𝑖
𝑙 Generation shift distribution factor of 

participant i corresponding to line l. 

𝑃𝑙
𝑀𝑎𝑥 Maximum capacity of transmission line l. 

𝑀𝑈𝑖, 𝑀𝐷𝑖 Minimum on/off hours of generating unit i. 

𝑃𝑖
𝑀𝑖𝑛, 𝑃𝑖

𝑀𝑎𝑥 Min/Max output power of generating unit i. 

𝑄𝑆𝑖 Start-up/shut-down ramping capability of 

generating unit i. 

𝑅𝐺𝑖 Down/up ramping capability of generating 

unit i when committed. 

𝛼𝑑𝑛, 𝛼𝑢𝑝 Marginal factor of negative/positive reserve. 

𝛼𝑙 Marginal factor of transmission line l’s 

limit. 

D.  Matrices and Vectors 

𝐂𝐎𝐕(𝑡) Covariance matrix of 𝑞𝑖
∗(𝑡). 

𝐊𝑙, 𝐐(𝑡) Diagonal matrix of 𝑘𝑖
𝑙 and 𝑞𝑖

∗(𝑡). 

𝐖(𝑡) Variable vector of 𝑤𝑖(𝑡). 

(𝐗)𝑇, ‖𝐗‖2 Transpose and Euclidean norm of matrix 𝐗. 

Diag(𝐗) Diagonal matrix whose diagonal values are 

vector 𝐗. 

I.  INTRODUCTION 

HE penetration of variable energy resources together with 

the utilization of price sensitive loads have intensified 

supply and demand uncertainties in power systems. In such 

cases, system operators (SOs) have to use proper numerical 

tools to deal with uncertainties in the daily operation of power 
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systems. Among these tools, network-constrained unit 

commitment (NCUC) plays a significant role in providing 

robust decisions when SOs devise hourly schedules for 

maintaining the power system security in an uncertain 

environment. The complexity of the hourly NCUC solution 

will be heightened when generation and demand uncertainties 

are considered as the power system solution will require 

additional input data for the day-ahead scheduling. [1].  

In the literature, numerous approaches are introduced for 

solving the NCUC problem when the proliferation of 

renewable energy is considered in power systems. These 

solution methods are categorized into deterministic and 

stochastic approaches. The deterministic approach which has 

been widely implemented in power systems provides the 

hourly commitment of generation resources in order to satisfy 

a predetermined load level and a conservative reserve 

requirement to respond to large contingencies such as the loss 

of the largest generator [2]. The deterministic approaches 

require fewer input data and impose less stringent 

computational burdens on large-scale systems. However, 

system uncertainties are not modeled in deterministic 

approaches which require a conservative level of reserve for 

managing the system security. Hence, deterministic 

approaches, which may result in economically-efficient UC 

decisions, do not guarantee that the system can withstand 

every probable scenario [3].  

In contrast to deterministic approaches, stochastic NCUC 

relies on probabilistic models and stochastic optimization 

techniques to consider uncertainties in generation and demand 

[4]. Scenario-based and robust optimization techniques are 

commonly employed to solve the stochastic NCUC [5, 6]. In 

scenario-based approaches, probability distribution functions 

are fitted to uncertainty parameters of renewable power 

generation, price responsive loads, random network outages, 

etc. These distribution functions are used to generate 

uncertainty scenarios. Subsequently, the NCUC solution 

would maximize the expected social welfare while satisfying 

the pertaining system security constraints [7-11]. In this 

regard, the scenario-based NCUC can be formulated as multi-

objective or risk-limiting optimization problems [12]. In the 

multi-objective formulation, maximizing social welfare and 

minimizing the cost/risk incurred by the uncertain behavior of 

the market participants are regarded as the objectives of the 

multi-objective optimization problem [7]. In the risk-limiting 

formulation the optimization is performed to maximize the 

social welfare subject while the system risk is limited in the 

constraints [13, 14]. It is also noteworthy that the accuracy and 

the complexity of scenario-based NCUC solutions depend on 

the quality and the number of scenarios. However, considering 

additional uncertain parameters would also require more 

scenarios to achieve a desired level of accuracy which could 

aggravate the complexity of NCUC and restrict its application 

to large-scale systems [15].  

Robust optimization is another technique for solving the 

stochastic NCUC problem. In this approach, upper and lower 

bounds of uncertainties are considered to determine optimistic 

and pessimistic solutions that satisfy technical constraints [16, 

17]. In comparison to the scenario-based NCUC method, the 

robust NCUC only requires a moderate level of information 

on uncertainty parameters which impose less computational 

burden to find the optimal solution. Besides, the approach 

produces UC decisions based on worst case scenarios and the 

attained schedule is immunized against uncertainties. 

However, the optimal generating unit schedule based on worst 

case scenario may not be economically optimal. In addition, 

the robust NCUC solution is very sensitive to the proposed 

intervals for uncertainty parameters [18]. 

Moreover, the correlated uncertainties in power systems 

ought to be considered in the operation and planning studies of 

energy systems. For instance, the air conditioning load and 

solar energy are highly correlated as they both are affected by 

solar irradiation. In this context, an uncertainty budget is 

considered in the robust solution of NCUC to restrict the joint 

variability of uncertain parameters [19], while the correlated 

nature of such parameters has seldom been modeled in the 

hourly scheduling of power systems. Authors in [20] also 

incorporate load and wind variability correlations in the robust 

optimization by considering a linear relationship between the 

load and wind. In the scenario-based NCUC, the correlation of 

uncertainties can be modeled theoretically by considering the 

joint probability distribution of uncertainties. For instance, 

variability correlations between wind speed and solar radiation 

are considered within the scenario sampling procedure in [21]. 

However, this approach would dramatically increase the 

required input data and computational complexity of the 

scenario-based NCUC solution which restrict its application to 

the operation of large-scale systems. Careful review of the 

existing works reveals that power system uncertainties have 

not thoroughly addressed correlations in NCUC studies. 

 Finally, NCUC is a large-scale, mixed integer, NP-hard 

optimization problem which ought to be solved efficiently for 

the daily economic and secure operation of power systems 

[22],[23]. In this regard, optimization techniques such as 

Benders decomposition [24] and progressive hedging [25, 26] 

have been implemented to enhance mathematical efficiency of 

the NCUC by breaking the large-scale problem into more 

tractable small-scale sub-problems [27]. Despite the past 

efforts, most of the available approaches impose high 

computational burdens to determine the NCUC solution which 

cannot guarantee its optimality in practical power system 

applications with the integration of large renewable energy 

resources [28, 29]. This paper will address such complexities 

by proposing a risk-based hourly NCUC solution which 

considers correlations. 

A.  Contributions of the Paper 

Increasing the uncertainty among electricity producers and 

consumers introduces new challenges to power system 

operations. We have concentrated our efforts in this paper to 

develop new frameworks that can manage uncertainties 

associated with modern electricity producers and consumers. 

The main challenges of implementing conventional market 

mechanisms in electricity markets with high penetration of 

uncertain participants were discussed in our earlier work [30]. 

We also introduced a new approach in [31] to identify the 

optimal bidding strategy of a producer/consumer with highly 

uncertain production/consumption. Subsequently, a market 

design was proposed in [32] to manage uncertainties 

associated with market participation and facilitate the 
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Fig. 1.  Proposed framework for security-constrained unit commitment 

Get the historical data of the future market transactions and 

actual (real-time) energy exchanges of the Gencos/Discos

Evaluate the deviation risks associated with each the Disco/

Genco and broadcast the risk values

Ask Gencos/Discos to submit production/consumption bids to 

the future market for delivery time t

Broadcast the accepted bids to the Gencos and Discos for 

delivery time t

In the delivery time, Operate the system and commit reserve 

units, if necessary, to maintain the system security

After the operating day, compare the future market and real-

time energy transactions to update the historical data

t= t+1

Clear the future 

market

Network Constraints 

Gencos/Discos technical constraints

deployment of renewables into power systems. Finally, we 

have studies and analyzed power system operations with 

uncertain producers/consumers in emergency scenarios in 

[33]. 

In line with our previous works, this paper introduces a 

practical NCUC solution approach which maximizes the 

social welfare while satisfying technical constraints in an 

uncertain environment. In this regard, the reserve level is 

determined and allocated between the producers to 

compensate the uncertain behavior of the market participants. 

However, the random outages of the power system 

components have not been considered.  

In the proposed approach, the individual and joint 

variabilities of power market participants are initially 

evaluated using historical wholesale market data which are 

incorporated into the solution of the NCUC problem. The 

corresponding optimization problem is modeled as a single-

stage second order cone program (SOCP) which is a convex 

optimization and can be solved efficiently for large-scale 

power systems [34]. The main contributions of this paper are 

listed as follows: 

• An analytical approach is introduced to assess the individual 

and joint uncertainties of power market participants using 

historical market transaction data.  

• A stochastic formulation is proposed which incorporates 

individual and joint uncertainties in the solution of the 

NCUC problem.  

• In the proposed approach, decision about the participation 

strategy of uncertain producers/consumers are made 

considering their bids/offers and associated reserve costs 

incurred to the system by their uncertain behavior. 

• The proposed risk-based optimization model for the solution 

of NCUC problem is formulated as a single-stage SOCP 

which guarantees its practicality for calculating the hourly 

NCUC solution and applicability to large-scale power 

systems. 

The rest of this paper is organized as follows. The general 

structure of the proposed approach is described and associated 

risk of market participants and required system’s reserve are 

formulated in Section II. The NCUC problem is expressed in 

Section III and convex relaxation is conducted in Section IV. 

Numerical results are presented in Section V and conclusions 

are finally drawn Section VI. 

II.  GENERAL STRUCTURE OF PROPOSED ALGORITHM 

In restructured power systems, SO calculates the day-ahead 

schedule using offers/bids submitted by generation and 

distribution companies (Gencos/Discos). The SO applies 

NCUC to determine the optimal schedule of generating units 

that satisfies power system security constraints. However, 

real-time supply/demand of Gencos/Discos might deviate 

from the day-ahead schedule which cause uncertainties in the 

day-ahead schedule. Thus, the risk associated with market 

uncertainties should be considered as SO clears energy and 

reserve markets.  

In power markets, Gencos (Discos) with higher levels of 

uncertainty should submit lower offer (higher bid) prices as 

they incur more reserves at additional system costs. Thus, the 

NCUC solution should consider submitted bids and offers 

along with the associated market risks of market participants 

in the day-ahead market. The outline of the proposed approach 

depicted in Fig. 1 incorporates uncertainty risks in the solution 

of the NCUC problem.  

In the proposed approach, the SO initially compares the 

historical data of market transactions to assess the associated 

solution risks pertaining to uncertainties. The SO will 

correspondingly accept participants’ bids and offers for the 

day-ahead market in order to maximize the social welfare 

while maintaining the system security by allocating 

appropriate reserve capacity.  

The participants’ market trades are given as: 

𝑝𝑖
∗(𝑡) = 𝑤𝑖(𝑡) × 𝑞𝑖

∗(𝑡) (1a) 

0 ≤ 𝑤𝑖(𝑡) ≤ 1 (1b) 

where 𝑞𝑖
∗(𝑡)

 
is offer/bid quantity submitted by Genco/Disco i, 

and 𝑤𝑖(𝑡) is the portion of the submitted offer/bid quantities 

that is accepted by the market. Here, 𝑞𝑖
∗(𝑡) and 𝑝𝑖

∗(𝑡) are 

positive values for generation and negative for loads. 

Accordingly, the market is operated so that: 
 

∑ 𝑝𝑖
∗(𝑡)

𝑖

= 0 ∀𝑡
 

 

(2) 

The actual energy procured by Gencos/Discos is modeled 

as a random variable 𝑝𝑖(𝑡). Thus, the reserve capacity for 

satisfying (2) is also a random variable, that is, 

∑ 𝑝𝑖(𝑡)

𝑖

+ 𝑅(𝑡) = 0 ∀𝑡
 

 

(3) 

By combining (2) and (3), the required reserve capacity is  

written as: 

∑(𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)) =

𝑖

− 𝑅(𝑡) ∀𝑡
 

 

(4) 

Accordingly, 𝑅(𝑡) is a positive random variable if the 

system faces generation shortage and is a negative random 

variable otherwise. A rational SO would determine positive 

and negative system reserves such that the available capacities 
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would be larger than 𝑅(𝑡) in every scenario. On this basis, the 

deviation of 𝑅(𝑡) from zero would determine the reserve 

capacity as a rational SO minimizes random deviations of 

𝑅(𝑡) and the corresponding costs. In the following, the Root 

Mean Squared Error (RMSE) is applied to assess the required 

level of system reserve.  

A.  Evaluating RMSE of the Required Reserve 

The RMSE of 𝑅(𝑡) is defined as: 

𝜎𝑅
2(𝑡) = 𝐸([𝑅(𝑡) − 0]2) =

1

𝑡 − 1
∑[𝑅(𝜏) − 0]2

𝑡−1

𝜏=1

= 

    𝐸 ([∑(𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡))

𝑁

𝑖=1

]

2

) =  ∑ 𝐸([𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)]2)

𝑁

𝑖=1

 

        +2 ∑ ∑ 𝐸([𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)][𝑝𝑗(𝑡) − 𝑝𝑗

∗(𝑡)])

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

 

(5) 

where the 𝜎𝑅
2(𝑡) is mean squared error (MSE) and 𝜎𝑅(𝑡) is the 

RMSE of 𝑅(𝑡). According to (5), 𝜎𝑅
2(𝑡) consists of two terms. 

The first term is the sum of market participants’ MSEs which 

measures the deviation of 𝑝𝑖
∗(𝑡) from 𝑝𝑖(𝑡). The second term 

is the measure of joint variability of energy produced/ 

consumed by Gencos/Discos. 

B.  Evaluation of Individual and Joint Variabilities  

In this paper, the historical market transactions data has 

been implemented to evaluate individual and joint variabilities 

of the market participants. To compare day-ahead scheduling 

data, we normalize generation/load of Gencos/Discos as: 

𝑝𝑖
𝑝𝑢(𝑡) =  𝑝𝑖(𝑡)/𝑝𝑖

∗(𝑡) (6) 

which demonstrates the randomness of the day-ahead 

schedule. In a perfect situation, 𝑝𝑖
𝑝𝑢(𝑡) will be equal to 1 and 

the MSE of 𝑝𝑖
𝑝𝑢(𝑡) is stated as: 

𝜎𝑖.𝑝𝑢
2 (𝑡) = 𝐸 ([𝑝𝑖

𝑝𝑢(𝑡) − 1]
2

) =
1

𝑡 − 1
∑ [

𝑝𝑖(𝜏) − 𝑝𝑖
∗(𝜏)

𝑝𝑖
∗(𝜏)

]

2𝑡−1

𝜏=1

 

 

(7) 

By substituting (1a) in (7), the RMSE of  𝑝𝑖(𝑡) is : 

𝜎𝑖(𝑡) = √𝐸([𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)]2) = 𝑤𝑖(𝑡)𝑞𝑖

∗(𝑡)𝜎𝑖.𝑝𝑢(𝑡) (8) 

Equation (8) shows the variabilities of Genco/Disco i. The 

RMSE of 𝑅(𝑡) also depends on the joint variability of 

generation/load. Hence, the covariance of 𝑝𝑖
𝑝𝑢(𝑡) and 𝑝𝑗

𝑝𝑢(𝑡) 

is defined as: 

𝐶𝑜𝑣𝑖.𝑗
𝑝𝑢(𝑡) = 𝐸 ([

𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)

𝑝𝑖
∗(𝑡)

] [
𝑝𝑗(𝑡) − 𝑝𝑗

∗(𝑡)

𝑝𝑗
∗(𝑡)

]) 

=
1

𝑡 − 1
∑ [[

𝑝𝑖(𝜏) − 𝑝𝑖
∗(𝜏)

𝑝𝑖
∗(𝜏)

] [
𝑝𝑗(𝜏) − 𝑝𝑗

∗(𝜏)

𝑝𝑗
∗(𝜏)

]]

2
𝑡−1

𝜏=1

 

 

(9) 

The covariance and correlation of  𝑝𝑖(𝑡) and  𝑝𝑗(𝑡) are: 

𝐶𝑜𝑣𝑖.𝑗(𝑡) =  𝐸([𝑝𝑖(𝑡) − 𝑝𝑖
∗(𝑡)][𝑝𝑗(𝑡) − 𝑝𝑗

∗(𝑡)]) 

                  = (𝑤𝑖(𝑡)𝑞𝑖
∗(𝑡))(𝑤𝑗(𝑡)𝑞𝑗

∗(𝑡)) 𝐶𝑜𝑣𝑖.𝑗
𝑝𝑢(𝑡) 

(10) 

𝐶𝑜𝑟𝑟𝑖.𝑗(𝑡) =
 𝐶𝑜𝑣𝑖.𝑗

𝑝𝑢(𝑡)

𝜎𝑖.𝑝𝑢(𝑡)𝜎𝑗.𝑝𝑢(𝑡)
=

𝐶𝑜𝑣𝑖.𝑗(𝑡)

𝜎𝑖(𝑡)𝜎𝑗(𝑡)
 (11) 

Based on (8) and (10), RMSE of 𝑅(𝑡) is: 

𝜎𝑅(𝑡) = √∑ 𝜎𝑖
2

𝑁

𝑖=1

+ 2 ∑ ∑ 𝐶𝑜𝑣𝑖.𝑗(𝑡)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 (12) 

The SO clears the day-ahead market (at time t) using the 

historical day-ahead market data for evaluating 𝜎𝑖.𝑝𝑢
2 (𝑡) and 

𝐶𝑜𝑣𝑖.𝑗
𝑝𝑢(𝑡) using (7) and (9), respectively. The SO calculates 

(8), (10) and (12) to evaluate 𝜎𝑅(𝑡) for accepted bids and 

offers in day-ahead. 

C.  Reserve Capacity Assessment 

The SO commits reserve units so that the available reserve 

capacity in every scenario is higher than 𝑅(𝑡). However, since 

the variability of 𝑅(𝑡) is often limited to a small number 

multiplies by RMSE, the reserve capacity is calculated as: 

𝑟𝑢𝑝
∗ (𝑡) = 𝛼𝑢𝑝 × 𝜎𝑅(𝑡) (13) 

𝑟𝑑𝑛
∗ (𝑡) = 𝛼𝑑𝑛 × 𝜎𝑅(𝑡) (14) 

where 𝑟𝑢𝑝
∗ (𝑡) and 𝑟𝑑𝑛

∗ (𝑡) are up/down reserve capacities. The 

power system risk is defined as the probability that the actual 

reserve capacity exceeds its committed value, which is stated 

as: 

𝑆𝑅(𝑡) = 𝑃𝑟𝑜𝑏(𝑅(𝑡) >  𝑟𝑢𝑝
∗ (𝑡) 𝑜𝑟 𝑅(𝑡) < −𝑟𝑑𝑛

∗ (𝑡)) (15) 

The SO could reduce the system risk by choosing higher 

values for 𝛼𝑢𝑝 and 𝛼𝑑𝑛. However, higher values would also 

increase the associated reserve costs. 

III.  FORMULATION OF RISK-BASED NCUC PROBLEM 

The objective function of the proposed NCUC problem is 

stated as: 

𝑀𝑎𝑥 ∑ ∑ 𝑤𝑖(𝑡)(−𝑞𝑖
∗(𝑡))𝑏𝑖(𝑡)

𝑖𝜖𝐷𝑡

 

   − ∑ ∑ (𝑤𝑖(𝑡)𝑞𝑖
∗(𝑡)𝑏𝑖(𝑡) + 𝐶𝑖

𝑆𝑈𝑢𝑖(𝑡) + 𝐶𝑖
𝑆𝐷𝑣𝑖(𝑡))

𝑖𝜖𝐺𝑡

 

   − ∑ (𝐶𝑅
+𝑟𝑢𝑝

∗ (𝑡) + 𝐶𝑅
−𝑟𝑑𝑛

∗ (𝑡))

𝑡

 

 
  

(16) 

where the first term represents the revenues for energy sales to 

Discos and the second term represents the Gencos’ production 

and start-up/shut-down costs. The associated costs of positive 

and negative reserve capacities are modeled in the last term. 

The proposed stochastic NCUC model is subject to (1), (2), 

(8)-(10), (12)-(14) and constraints associated with 

transmission flow and generating unit operation as presented 

next. 

A.  System Constraints 

We apply a DC power flow in which the transmission 

flows have linear relations with the energy 

produced/consumed by market participants. Thus, the 

predicted and actual flow of line l are stated as: 

𝑝𝑙
∗(𝑡) = [𝑘1

𝑙 ⋯ 𝑘𝑁
𝑙 ] × [𝑝1

∗(𝑡) ⋯ 𝑝𝑁
∗ (𝑡)]𝑇 (17) 

𝑝𝑙(𝑡) = [𝑘1
𝑙 ⋯ 𝑘𝑁

𝑙 ] × [𝑝1(𝑡) ⋯ 𝑝𝑁(𝑡)]𝑇 (18) 
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where 𝑘1
𝑙  to 𝑘𝑁

𝑙  are generation shift distribution factors that 

solely depend on the network configuration. Hence, 𝑝𝑙(𝑡) is 

the weighted sum of random variables 𝑝𝑖(𝑡) and the RMSE of  

𝑝𝑙(𝑡) is: 

𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) = √∑(𝑘𝑖

𝑙)2𝜎𝑖
2(𝑡)

𝑁

𝑖=1

+ 2 ∑ ∑ 𝑘𝑖
𝑙𝑘𝑗

𝑙𝐶𝑜𝑣𝑖.𝑗(𝑡)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 (19) 

The transmission flow constraints are stated as: 

−𝑃𝑙
𝑀𝑎𝑥 ≤ 𝑝𝑙

∗(𝑡) ± 𝛼𝑙𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) ≤ 𝑃𝑙

𝑀𝑎𝑥 ∀𝑙, 𝑡 (20) 

The generating unit constraints are: 

−𝑥𝑖(𝑡 − 1) + 𝑥𝑖(𝑡) − 𝑥𝑖(𝜏) ≤ 0, 

                               ∀𝑖 ∈ ∀𝑡, ∀𝜏 ∈ {𝑡, ⋯ , 𝑀𝑈𝑖 + 𝑡 − 1} 

(21a) 

𝑥𝑖(𝑡 − 1) − 𝑥𝑖(𝑡) + 𝑥𝑖(𝜏) ≤ 1, 

                               ∀𝑖 ∈ 𝐺, ∀𝑡, ∀𝜏 ∈ {𝑡, ⋯ , 𝑀𝐷𝑖 + 𝑡 − 1} 

(21b) 

−𝑥𝑖(𝑡 − 1) + 𝑥𝑖(𝑡) − 𝑢𝑖(𝑡) ≤ 0  ∀𝑖 ∈ 𝐺, ∀𝑡 (21c) 

𝑥𝑖(𝑡 − 1) − 𝑥𝑖(𝑡) − 𝑣𝑖(𝑡) ≤ 0  ∀𝑖 ∈ 𝐺, ∀𝑡 (21d) 

𝑝𝑖
∗(𝑡) + 𝑟𝑢𝑝.𝑖

∗ (𝑡) ≤ 𝑃𝑖
𝑀𝑎𝑥𝑥𝑖(𝑡)  ∀𝑖 ∈ 𝐺, ∀𝑡 (21e) 

𝑃𝑖
𝑀𝑖𝑛𝑥𝑖(𝑡) ≤ 𝑝𝑖

∗(𝑡) − 𝑟𝑑𝑛.𝑖
∗ (𝑡)  ∀𝑖 ∈ 𝐺, ∀𝑡 (21f) 

𝑝𝑖
∗(𝑡) + 𝑟𝑢𝑝.𝑖

∗ (𝑡) − 𝑝𝑖
∗(𝑡 − 1) + 𝑟𝑑𝑛.𝑖

∗ (𝑡 − 1) ≤ 

             𝑥𝑖(𝑡 − 1)𝑅𝐺𝑖 + (1 − 𝑥𝑖(𝑡 − 1))𝑄𝑆𝑖 ∀𝑖 ∈ 𝐺, ∀𝑡 

(21g) 

𝑝𝑖
∗(𝑡 − 1) + 𝑟𝑢𝑝.𝑖

∗ (𝑡 − 1) − 𝑝𝑖
∗(𝑡) + 𝑟𝑑𝑛.𝑖

∗ (𝑡) ≤ 

                           𝑥𝑖(𝑡)𝑅𝐺𝑖 + (1 − 𝑥𝑖(𝑡))𝑄𝑆𝑖 ∀𝑖 ∈ 𝐺, ∀𝑡 

(21h) 

∑ 𝑟𝑑𝑛.𝑖
∗ (𝑡)

𝑖∈𝐺

≥ 𝑟𝑑𝑛
∗ (𝑡). ∑ 𝑟𝑢𝑝.𝑖

∗ (𝑡)

𝑖∈𝐺

≥ 𝑟𝑢𝑝
∗ (𝑡) ∀𝑖 ∈ 𝐺, ∀𝑡

 

 

(21i) 

where (21a)-(21b) represent the generating unit min on/off 

time; (21c)-(21d) represent start-up and shut-down status of 

generating units; capacity constraints are shown in (21e)-

(21f); ramping constraints are enforced in (21g)-(21h); and 

(21i) indicates the total positive and negative reserve capacity 

of the system should be more than the required reserve.  

The optimization model for the stochastic NCUC is a 

mixed integer and non-convex optimization problem. We 

develop a second order conic relaxation of the NCUC problem 

in the next section which is computationally tractable and 

practical for large-scale stochastic problems. It is noteworthy 

that large-scale convex SOCP problems can be efficiently 

solved with available software packages.  

IV.  CONVEX RELAXATION OF THE PROPOSED NCUC MODEL 

In this section, a convex relaxation approach is 

implemented to eliminate binary variables and nonlinear 

constraints (10), (12) and (19) are reformulated to convert the 

nonlinear NCUC to a SOCP problem which is much easier to 

solve. 

A.  Convex Relaxation of Generating Unit Feasible Set 

The algorithm proposed in [35, 36] is applied to convert 

binary decision variables to continuous variables in which 

case the feasible set of each generating unit is substituted by 

its convex hull. The feasible set of generating unit i is stated 

as: 

𝜓𝑖 = {𝑝𝑖
∗(𝑡), 𝑟𝑢𝑝.𝑖

∗ (𝑡), 𝑟𝑑𝑛.𝑖
∗ (𝑡)𝜖ℝ; 

𝑥𝑖(𝑡), 𝑢𝑖(𝑡), 𝑢𝑖(𝑡)𝜖{0.1}|(21𝑎) − (21𝑖)}          
(22) 

In order to reach the convex hull of the feasible set 𝜓𝑖, 

many inequalities are to be embedded which makes the 

problem intractable. To address this issue, we utilize a 

tractable approximation of convex hull of 𝜓𝑖 [35] and consider 

the following inequalities to construct a tractable 

approximation of convex hull for generating unit i.  

𝑝𝑖
∗(𝑡 − 1) + 𝑟𝑢𝑝.𝑖

∗ (𝑡 − 1) ≤ 𝑄𝑆𝑖𝑥𝑖(𝑡 − 1) 

+(𝑃𝑖
𝑀𝑎𝑥 − 𝑄𝑆𝑖)(𝑥𝑖(𝑡) − 𝑢𝑖(𝑡)) ∀𝑖 ∈ 𝐺, ∀𝑡 

(23a) 

𝑝𝑖
∗(𝑡) + 𝑟𝑢𝑝.𝑖

∗ (𝑡) ≤ 𝑃𝑖
𝑀𝑎𝑥𝑥𝑖(𝑡) 

−(𝑃𝑖
𝑀𝑎𝑥 − 𝑄𝑆𝑖)𝑢𝑖(𝑡) ∀𝑖 ∈ 𝐺, ∀𝑡 

(23b) 

𝑝𝑖
∗(𝑡) + 𝑟𝑢𝑝.𝑖

∗ (𝑡) − 𝑝𝑖
∗(𝑡 − 1) + 𝑟𝑑𝑛.𝑖

∗ (𝑡 − 1) ≤ 

                        (𝑃𝑖
𝑀𝑖𝑛 + 𝑅𝐺𝑖)𝑥𝑖(𝑡)−𝑃𝑖

𝑀𝑖𝑛𝑥𝑖(𝑡 − 1) − 

(𝑃𝑖
𝑀𝑖𝑛 + 𝑅𝐺𝑖 − 𝑄𝑆𝑖)𝑢𝑖(𝑡) ∀𝑖 ∈ 𝐺, ∀𝑡 

(23c) 

𝑝𝑖
∗(𝑡 − 1) + 𝑟𝑢𝑝.𝑖

∗ (𝑡 − 1) − 𝑝𝑖
∗(𝑡) + 𝑟𝑑𝑛.𝑖

∗ (𝑡) ≤ 

                                  −(𝑃𝑖
𝑀𝑖𝑛 + 𝑅𝐺𝑖 − 𝑄𝑆𝑖)𝑢𝑖(𝑡) 

−(𝑄𝑆𝑖 − 𝑅𝐺𝑖)𝑥𝑖(𝑡) ∀𝑖 ∈ 𝐺, ∀𝑡 

(23d) 

𝑐𝑜𝑛𝑣(𝜓𝑖) = {𝑝𝑖
∗(𝑡), 𝑟𝑢𝑝.𝑖

∗ (𝑡), 𝑟𝑑𝑛.𝑖
∗ (𝑡)𝜖ℝ; 

𝑥𝑖(𝑡), 𝑢𝑖(𝑡), 𝑢𝑖(𝑡)𝜖ℝ+|(21𝑎) − (21𝑖). (23𝑎) − (23𝑑)} 
(23e) 

where (23a)-(23d) tighten the feasible set 𝜓𝑖 so that 𝑐𝑜𝑛𝑣(𝜓𝑖) 

in (23e) is the approximation of the smallest convex set that 

contains 𝜓𝑖. In [37], it is proved that how constraints (23a)-

(23d)  give a tighter description of feasible schedules for 

generating units. Accordingly, the binary variables are 

regarded as continuous if (23a)-(23d) are embedded in the 

proposed NCUC approach [38]. By implementing this tight 

relaxation, the optimal value of relaxed binary variables will 

be close to integer solutions. 

B.  Second Order Conic Formulation of the Proposed NCUC 

By substituting binary variables with continuous variables, 

(10), (12) and (19) would be the only nonlinear constraints. 

These nonlinear constraints are reformulated as a second order 

cone. In this regard, the non-linear constraints are represented 

as matrices and converted to a second order cone. 

    1)  Matrix representation of nonlinear constraints 

Assume 𝐂𝐎𝐕(𝑡), 𝐐(𝑡) , 𝐊𝑙 and 𝐖(𝑡) are defined as below: 

𝐂𝐎𝐕(𝑡) = [
𝐶𝑜𝑣1.1

𝑝𝑢(𝑡) ⋯ 𝐶𝑜𝑣1.𝑁
𝑝𝑢 (𝑡)

⋮ ⋱ ⋮
𝐶𝑜𝑣𝑁.1

𝑝𝑢 (𝑡) ⋯ 𝐶𝑜𝑣𝑁.𝑁
𝑝𝑢 (𝑡)

] (24) 

𝐐(𝑡) = Diag([𝑞1
∗(𝑡) ⋯ 𝑞𝑁

∗ (𝑡)]) (25) 

𝐊𝑙 = Diag([𝑘1
𝑙 ⋯ 𝑘𝑁

𝑙 ]) (26) 

𝐖(𝑡) = [𝑤1(𝑡) ⋯ 𝑤𝑁(𝑡)]𝑇 (27) 

Consequently, 𝜎𝑅(𝑡) and 𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) can be written as: 

𝜎𝑅(𝑡) = √𝐖(𝑡)𝑻𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡)𝐖(𝑡) (28) 

𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) = √𝐖(𝑡)𝑻𝐊𝑙𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡)𝐊𝑙𝐖(𝑡) (29) 

where 𝐖(𝑡) are decision variables while 𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡) 

and 𝐊𝑙𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡)𝐊𝑙 are known matrices when the SO 

https://en.wikipedia.org/wiki/Convex_set
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clears the day-ahead market. By implementing the Cholesky 

decomposition [39], the matrices are decomposed as: 

𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡) = (𝑪𝑹(𝑡))𝑇𝑪𝑹(𝑡) (30) 

𝐊𝑙𝐐(𝑡)𝐂𝐎𝐕(𝑡)𝐐(𝑡)𝐊𝑙 = (𝑪𝒍(𝑡))𝑇𝑪𝒍(𝑡) (31) 

Subsequently, 𝜎𝑅(𝑡) and 𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) are reformulated as: 

𝜎𝑅(𝑡) = √(𝑪𝑹(𝑡)𝐖(𝑡))
𝑇

(𝑪𝑹(𝑡)𝐖(𝑡)) 

= ‖𝑪𝑹(𝑡)𝐖(𝑡)‖2 

(32) 

𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) = √(𝑪𝒍(𝑡)𝐖(𝑡))

𝑇
(𝑪𝒍(𝑡)𝐖(𝑡)) 

= ‖𝑪𝒍(𝑡)𝐖(𝑡)‖2 

(33) 

According to (32) and (33), , 𝜎𝑅(𝑡) and 𝜎𝑙
𝑙𝑖𝑛𝑒(𝑡) are 

represented as the Euclidean norm. 

    2)  Second Order Cone Formulation 

The proposed formulation of NCUC presented as SOCP 

has a linear objective and constraints together with inequality 

constraints stated in the form of Euclidean norm. So, by 

substituting (33) in (20), transmission constraints are 

converted to inequality constraints in the form of Euclidean 

norm. The proposed formulation is a SOCP problem if the 

nonlinear equality constraints (32) are reformulated as 

inequality constraints. So, auxiliary variables 𝑧𝑅(𝑡) are used 

and the proposed NCUC problem which is reformulated as: 

𝑀𝑎𝑥 ∑ ∑ 𝑤𝑖(𝑡)(−𝑞𝑖
∗(𝑡))𝑏𝑖(𝑡)

𝑖𝜖𝐷𝑡

 

   − ∑ ∑ (𝑤𝑖(𝑡)𝑞𝑖
∗(𝑡)𝑏𝑖(𝑡) + 𝐶𝑖

𝑆𝑈𝑢𝑖(𝑡) + 𝐶𝑖
𝑆𝐷𝑣𝑖(𝑡))

𝑖𝜖𝐺𝑡

 

   − ∑(𝐶𝑅
+𝛼𝑢𝑝 + 𝐶𝑅

−𝛼𝑑𝑛)𝑧𝑅(𝑡)

𝑡

 

 

  

(34) 

subject to: 

𝜎𝑅(𝑡) = ‖𝑪𝑹(𝑡)𝐖(𝑡)‖2 ≤ 𝑧𝑅(𝑡) ∀𝑡 (35) 

−𝑃𝑙
𝑀𝑎𝑥 ≤ 𝑝𝑙

∗(𝑡) ± 𝛼𝑙‖𝑪𝒍(𝑡)𝐖(𝑡)‖2 ≤ 𝑃𝑙
𝑀𝑎𝑥 ∀𝑙, 𝑡 (36) 

and linear constraints (1), (2), (13), (14), (17), (21), 

and (23). 
 

In the above formulation, equality constraints (32) are 

converted to inequality constraints (35) using 𝑧𝑅(𝑡). In the 

optimum solution, 𝑧𝑅(𝑡) take their lowest feasible values 

which are defined by (35). Thus, 𝑧𝑅(𝑡) is equal to 𝜎𝑅(𝑡) in the 

optimal solution.  

 

V.  IMPLEMENTATION  

To demonstrate the merits and applicability of the proposed 

risk-based NCUC approach, the proposed methodology is 

implemented on the IEEE RTS-96 and IEEE 300-bus test 

systems to clear an hourly day-ahead market. The 

computations are run on an Intel® Xeon® with 3.50 GHz 

process clocking and 32 GB of RAM by using the solver 

Gurobi 7.5.1. 

A.  IEEE RTS-96 test system 

The IEEE RTS-96 test system contains 73 buses, 96 

generating units, and 120 transmission lines. To study the 

effect of uncertain generation and demand, 6 wind power 

producers with a total installed capacity of 7,200 MW and 3 

uncertain load points with a total demand of 4,500 MW are 

added to the system. The capacities, submitted bid prices, 

associated RMSEs of generating units and customers are 

summarized in [40]. 

    1)  Performance of the Proposed Risk-Based NCUC  

In this section, the performances of deterministic and 

stochastic approaches are compared with that of the proposed 

risk-based model. We consider the following cases: 

• Case 1: Deterministic SCUC with the required reserve is 

set to the largest generating unit (400MW). 

• Case 2: Deterministic SCUC with the required reserve is 

set based on the NREL 3+5% rule. 

• Case 3: Stochastic SCUC with SR(t) ≤ 0.01 

• Case 4: Proposed risk-based SCUC with SR(t) ≤ 0.01 

It is assumed that the SO determines the level of reserve in 

Cases 3 and 4 to maintain SR(t) below 1%. Accordingly, the 

operation in the day-ahead market is simulated and the 

committed reserve, associated system risks, social welfare, 

and reserve costs are compared in Figs. 2 and 3. The 

stochastic NCUC with SR(t)<0.01 is a two-stage stochastic 

NCUC (scenario-based) model such that in the first stage, the 

traded with market participants as well as allocated reserves 

are determined while in the second stage, considering the 

reserve capacity calculated in the first stage, the power 

 
Fig. 2.  Operating reserve and risk of the proposed approach and the 

benchmark settlements 

 
Fig. 3. Social welfare and reserve cost of the proposed approach and the 

benchmark settlements  
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production of conventional generating units is adjusted in each 

scenario to satisfy all corresponding constraints associated 

with conventional generating units, transmission lines, and 

power balance. To compare the proposed risk-based model 

and the two-stage stochastic NCUC, we assign the reserve 

capacity of the first stage to maintain SR(t) below 1%. 

The computation times in Cases 1, 2 and 4 are 82, 91 and 

198 seconds respectively. In the two-stage stochastic NCUC 

approach, depending on the number of scenarios, the 

computation time would be considerably increased. For 

instance, if the number of scenarios is 5, 10, and 15, the 

computation time will be 423, 1169, and 3380 seconds, 

respectively. Hence, the proposed approach is much faster and 

efficient compared to the two-stage stochastic program. 

In Fig. 2, the widely known strategies of setting the reserve 

capacity as the largest unit [41] (Case 1) and the deterministic 

policy of the NERL 3+5% rule [42] (Case 2) would result in 

an unacceptable level of system risk. Cases 1 and 2 show that 

using the deterministic approaches for risk-based scheduling 

with highly uncertain generation and demand cannot attain the 

optimal level of reserve. To maintain the system risk below 

the acceptable range, the SO in Case 3 commits a considerable 

reserve capacity to control the system risk.  However, Case 3 

is a costly approach to satisfy the system risk requirements 

which imposes the highest reserve cost and achieves the 

lowest social welfare in comparison to the other strategies. 

According to Figs. 2 and 3, the proposed risk-based NCUC 

approach in Case 4 can maintain the system risk within the 

acceptable range without dispatching an extensive level of 

reserve capacity. The unit commitment in Case 4 incurs the 

lower cost of reserve and achieve a higher social welfare in 

comparison to Case 3. 

The deterministic NCUC approaches such as the ones 

studied in Cases 1 and 2 are inherently inefficient because the 

reserve capacity is determined without modeling the uncertain 

behavior of producers/consumers. In this regard, considering a 

deterministic reserve requirement will usually lead to either a 

low-cost high-risk operating strategy or a high-cost low-risk 

operating strategy [41]. For instance, the schedule devised by 

the strategy in Case 1 does not satisfy the required system risk 

level of 1% although it incurs lower reserve costs in 

comparison to Case 3. Likewise, by applying the NREL rule, 

the allocated quantity of reserve in Case 2 at each time 

interval is less than that in Case 1 (400 MW), which ends up 

with a higher system risk. Although the social welfare in Case 

2 is higher due to the lower reserve cost, the system risk in 

Case 2 is also higher compared to that of the other Cases, 

which indicates the inefficiency of the deterministic policy. 

 The stochastic approach in the stochastic NCUC is also 

economically inefficient since highly uncertain Gencos and 

Discos are dispatched without considering their impact on the 

system security. In Case 3, the SO has to commit expensive 

reserve units to maintain the system security. In contrast to the 

conventional approaches described in first three Cases, the 

proposed approach considers both the price-quantity 

bids/offers and associated uncertainties in the NCUC process. 

Consequently, the energy will be traded with uncertain 

producers/consumers if and only if their offered prices 

outweigh the associated reserve costs incurred to the system 

by their uncertain behavior. On this basis, risky producers 

should submit lower energy prices to sell their produced 

energy and risky customers have to submit higher energy 

prices to satisfy their demand. This feature is thoroughly 

studied in the next subsection. 

    2)  Revenue/Cost of Gencos/Discos  

A salient feature of the proposed methodology is that the 

revenues/costs of Gencos/Discos not only depend on the 

submitted price-quantity bids but also are affected by the 

associated risk of the participants. On this basis, risky 

participants are automatically penalized for their risky 

behavior which incur reserve costs to the system. To highlight 

this feature, the accepted bids of typical producer P3 and 

consumer C3 in a day-ahead schedule are illustrated in Figs. 4 

and 5 for different levels of RMSE. As demonstrated, the 

transacted energy by P3 and C3 in the market will be reduced 

as their associated RMSE aggravates. Consequently, a 

producer with high RMSE should offer lower offer prices to 

sell its produced energy. Similarly, by increasing the 

associated RMSE of a consumer, it should submit higher bid 

prices to purchase the required energy to supply its demand. 

On this basis, increasing the associated risk of market 

participants would reduce the revenues of producers and 

increase the costs of consumers.  

Based on the above discussion, the associated reserve cost 

of each participant is incorporated in the proposed NCUC 

formulation. Accordingly, risky participants are automatically 

penalized by decreasing Gencos’ selling prices and increasing 

Discos’ purchasing prices. This penalty mechanism will 

incentivize stochastic producers/consumers to invest in risk 

reduction techniques such as implementing enhanced 

forecasting algorithms, installing storage facilities, using 

demand response, etc. to reduce their RMSEs and 

subsequently increase/decrease their revenue/cost. 

 
Fig. 4. Sold energy of P3 for different values of bid prices and RMSE. 

 
Fig. 5. Purchased energy of C3 for different values of bid prices and RMSE. 
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    3)  Effects of Correlations Among Market Participants 

The other feature of the proposed NCUC lies in the fact that 

it can account for mutual correlations of different market 

participants. This is an important feature because the 

uncertainties of Gencos/Discos would have different impacts 

on power system operations. For instance, if associated 

uncertainties of a producer have positive correlation with the 

overall system demand, it can produce more energy when the 

 system load increases which mitigates the generation 

shortages. Conversely, if a producer has negative correlation 

with the overall system demand, the generation capacity of the 

producer decreases when the overall system load increases 

which exacerbates the generation shortages. The following 

Cases are considered to study the effects of mutual 

correlations of Gencos/Discos on the social welfare, reserve 

costs and revenue/costs of Gencos/Discos, and the results are 

reported in Figs. 6, 7 and 8: 

• Case 1: Consider the correlations of producers P1 and P2 

and producers P4 and P5.  

• Case 2: Consider the correlations of consumers C1 and 

C2.  

• Case 3: Consider the correlations of consumer C1 and 

producer P2 and consumer C2 and producer P3.  

In Case 1, the correlation of two different producers has 

been studied. Positive correlation of producers indicates that 

their production changes in the same direction. Thus, when 

producers have positive correlations, the system risk will 

increase which results in a higher reserve cost and a lower 

social welfare. In contrast, negative correlations of producers 

will alleviate the system risk as any increment in the output of 

one generating unit can be translated to a lower production of 

the other unit. Thus, negative correlation between producers 

would reduce the required reserves and lead to lower 

operation and reserve costs and a higher social welfare. 

Similar conclusions can be drawn for correlations of 

consumers as demonstrated in Case 2. In contrast to the first 

two Cases, the results in Case 3 shows that if the correlations 

of consumer and producer are positive, the total risk will be 

lower which will lower reserve costs and increase the social 

welfare. On the contrary, when the correlations of generation 

and demand are negative, the total risk will be higher.  

As mentioned earlier, the proposed approach penalizes 

uncertain behavior of producers and customers as they incur 

reserve costs to the system. However, the proposed NCUC 

also favors producers that their uncertainties show negative 

correlations with other producers and positive correlations 

with consumers as they mitigate the overall system risks and 

enhance the social welfare.  

For further clarification, the energy sold by producers in 

Case 3 are depicted in Fig. 8 using different values of 

correlation. As demonstrated here, by increasing the 

correlation of C1-P2 and C2-P3, a higher portion of bids 

submitted by these producers are accepted in the market which 

increases the amount of energy sold. Convesely, the SO 

decreases the purchased energy from other stochastic 

producers (P1, P4-P6) to balance the supply and demand. 

Accordingly, the proposed approach favors producers that 

their uncertain behavior can mitigate the overall system risk in 

power systems.  

B.  IEEE 300-bus test system 

In order to demonstrate the efficiency and tractability of the 

proposed model in a larger scale system, we extend our study 

to the IEEE 300-bus test system which is composed of 300 

buses, 69 generating units, and 411 transmission lines. The 

parameters of the system are obtained from MATPOWER 

[43]. We consider 10 generating units as stochastic producers 

with the total capacity of 1,058 MW. The details about the 

power profile and the submitted bid prices of stochastic 

producers are given in [40]. It is assumed that the producers 

are statistically independent with the same RMSE, and their 

submitted bid quantity is equal to their power profile. We 

implemented the proposed formulation on this test system to 

clear an hourly day-ahead market. The computation time, 

social welfare, and sold energy from stochastic producers as 

well as the reserve cost for different values of RMSE are 

reported in Table I. 

From this table, it can be observed the computation time of 

all instances is less than 6 minutes, which shows the 
tractability of the proposed formulation for large scale 

systems. Meanwhile, it can be seen that with increasing the 

uncertainty of stochastic participants, the computation time 

would be higher. Another observation from this table is that 

social welfare will be reduced as the RMSE of stochastic 

producers aggravates due to reducing the sold energy from 

these producers. Please note that the submitted bid price of 

stochastic producers is considered less than that of 

conventional generating units. In contrast, the reserve cost 

does not have a monotonically trend, since it depends on both 

the amount of sold energy from stochastic producers and their 

RMSE.   
TABLE I 

COMPUTATIONAL RESULTS FOR THE IEEE 300-BUS SYSTEM 

RMSE Computation 

time (s) 

Social welfare  

($) ×105 

Sold energy from 

SP1 ($)×103 

Reserve Cost 

($)×103 

0.05 167 63154 11541 15041 

0.1 217 63005 11083 28511 

0.15 325 62972 466 0.793 

1. Stochastic Producers 

VI.  DISCUSSIONS 

A.  Feasibility of the solution 

In the proposed formulation, the required reserve capacity 

is determined assuming that the variability of R(t) is often 

limited to a small number multiplies by RMSE. Accordingly, 

in some scenarios, the required reserve capacity (R(t)) may 

exceed the committed reserve level. The power system risk 

defined in (15) demonstrates the probability that the actual 

reserve capacity exceeds its committed value. 

Accordingly, the proposed approach is viewed to be similar 

to the chance-constrained optimization in which the solution 

might not be feasible in every possible scenario. However, 

similar to the chance constrained approach, the proposed 

approach ensures that the probability of satisfying the power 

balance constraints, quantified in (15), is above a certain level. 

Additionally, SO can increase the probability of satisfying the 

power balance constraints by adjusting the marginal factors 

αup and αdn. The calibration strategy for marginal factors is 

discussed in IV-B. 
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B.  Calibration of Marginal factors 𝛼𝑢𝑝, 𝛼𝑑𝑛 and 𝛼𝑙 

Marginal factors 𝛼𝑢𝑝, 𝛼𝑑𝑛 and 𝛼𝑙 should be carefully 

selected to guarantee that the system risk and flow of 

transmission lines stay within the acceptable range. Since each 

power system is subject to different operating conditions (such 

as types of uncertainty sources, penetration of renewables, 

storage capacity etc.), the optimal values of these factors are 

system dependent. In this regard, the calibration process of 

𝛼𝑢𝑝, 𝛼𝑑𝑛 and 𝛼𝑙 is introduced here. 

To calibrate 𝛼𝑢𝑝 and 𝛼𝑑𝑛, the historical data associated 

with the required system reserve (actually used to balance the 

supply and demand) has to be initially extracted.  Then, the 

RMSE of the required system reserve can be calculated by 

incorporating the historical operational data in equation (5). 

Using (13)-(14), the up and down reserve capacities 

(𝑟𝑢𝑝
∗ (𝑡) and 𝑟𝑑𝑛

∗ (𝑡)) can be assessed as a function of 𝛼𝑢𝑝 and 

𝛼𝑑𝑛. The system risk 𝑆𝑅(𝑡) over the historical data set can 

then be calculated for different values of 𝛼𝑢𝑝 and 𝛼𝑑𝑛. Now, 

𝛼𝑢𝑝 and 𝛼𝑑𝑛 should be calibrated so that the 𝑆𝑅(𝑡) stays 

within the acceptable range over the historical data set. As a 

note, the calibration of 𝛼𝑙 follows the same procedure. 

However, it will be more practical to consider equal  𝛼𝑙 for 

transmission lines with similar conditions.   

VII.  CONCLUDING REMARKS 

In this paper, the effects of variabilities in renewable power 

generation and load points is explored in NCUC solutions. To 

reach this goal, Individual and joint variabilities of exchanged 

energy in market environment are modeled using historical 

transaction data and applying the concept of RMSE. These 

models are then incorporated in formulation of the SCUS 

problem by which a stochastic model is extracted for this 

problem. The proposed NCUC model is then reformulated to 

apply SOCP for solving stochastic NCUC problem. In the case 

studies, the performance of the proposed NCUC model is 

compared against deterministic models and it was shown that 

this method can efficiently decrease the risk of system without 

extensive reserve requirements. The lower risk can be 

translated into higher social welfare. This is due to the fact 

that the proposed NCUC is modeled as a risk-based 

optimization and therefore the energy will be traded with 

uncertain producers/consumers if and only if their offered 

prices outweigh the associated reserve costs incurred to the 

system by their uncertain behavior. This salient feature not 

only guarantees the system with lowest risk scheduling 

strategies, but also it penalizes risky participants and 

motivates them to be equipped with risk reduction tools in 

power system operations. Finally, it has been discussed that 

how employing such a risk-based model for NCUC can lend 

the SO a hand in better understanding the effects of negative 

and positive correlation between producers and customers. 
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