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Abstract The large-scale construction of fast charging

stations (FCSs) for electrical vehicles (EVs) is helpful in

promoting the EV. It creates a significant challenge for the

distribution system operator to determine the optimal

planning, especially the siting and sizing of FCSs in the

electrical distribution system. Inappropriate planning of

fast EV charging stations (EVCSs) cause a negative impact

on the distribution system. This paper presented a multi-

objective optimization problem to obtain the simultaneous

placement and sizing of FCSs and distributed generations

(DGs) with the constraints such as the number of EVs in all

zones and possible number of FCSs based on the road and

electrical network in the proposed system. The problem is

formulated as a mixed integer non-linear problem

(MINLP) to optimize the loss of EV user, network power

loss (NPL), FCS development cost and improve the voltage

profile of the electrical distribution system. Non-dominated

sorting genetic algorithm II (NSGA-II) is used for solving

the MINLP. The performance of the proposed technique is

evaluated by the 118-bus electrical distribution system.

Keywords Electrical vehicles (EVs), Fast charging

stations (FCSs), Non-dominated sorting genetic algorithm

II (NSGA-II), Renewable energy sources

1 Introduction

One of the greatest challenges in developed and devel-

oping countries is reducing the greenhouse gas emissions

due to fossil fuel vehicles with internal combustion engines

(ICEs) and electrical power generation from fossil fuels.

The most promising pathway to energy security and

reducing emissions is facilitating the global deployment of

20 million electric vehicles (EVs) by 2020 and the use of

renewable distributed generation (DG) systems [1]. If this

rate is maintained to 2050, EVs will replace 62% of fleet

vehicles [2]. The EVs cause lower emission and require

less energy for transit for a mile, as compared to ICEs.

Hence they are required as a promising tool to combat the

challenges related to energy sustainability and global

warming. Therefore, governments, automobile companies,

energy agencies, etc., have made significant efforts to

enhance the popularity of EV [3].

Many researchers focus on optimal placement and sizing

of EV charging stations (EVCSs) [4–9] with different

straggles. Inappropriate placing and sizing of EVCS cause

a negative impact in the distribution system with an

increase in network power losses (NPLs) and more

degradation in voltage profile. In [5], Fox et al. explained

the standard levels of EV charging standards, the level-1

and level-2 EV charging requires hours of time to charge

EVs, but direct current fast charging stations (FCSs) needs

15–20 minutes to charge up to rated SOC of the EVs.

Reference [6] explained the significance of workplace

and public charging stations (CSs) to reinforce and fulfill
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the gaps from home-based charging in dense EVs popu-

lated urban areas. In [7], a mixed integer non-linear

programming (MINLP) problem is formulated to solve the

optimal planning (placement and sizing) of FCS, with the

account of the cost of CS, electrification and electrical

power loss in the distribution system. In [8], a two-step

screening method was developed with the account of

environmental factors and the service radius of EVCSs, to

optimally place of CSs. A modified primal-dual interior

point algorithm was proposed to determine the size of CSs.

In [9], the EVs charging demands on the transportation

network is capture by the capacitated-flow refueling loca-

tion model. The optimal planning of EV FCSs is

considered both the transportation and electrical con-

straints; it is solved by using deterministic branch-and-

bound methods.

In [10], an efficient method was proposed for the opti-

mal planning of CSs, especially battery swap CSs in the

distribution network based on life-cycle cost analysis. In

[11], a two-stage procedure has been developed to deter-

mine the optimal size and location of plug-in hybrid

electric vehicle (PHEV) CSs to maximize the distribution

system manager (DSM) benefit with distribution, traffic

network topologies and the driving behavior of EV owners.

In [12], the authors considered the power distribution net-

work, traffic network and EV owners driving behavior to

formulate a multi-objective CS planning method. The

objectives in multi-objective optimization are to minimize

power loss and voltage deviation in the distribution net-

work and the maximization of the service capability of CS.

To solve the CS planning an efficient cross-entropy method

is used and obtains the optimal Pareto solutions. A new

data-envelopment method is then used to determine the

optimal CS location and its size simultaneously. In [13],

the impact of high penetration of PHEVs on the distribu-

tion systems has been analyzed. In [14], the state of

California uses freeway exits and highway intersections as

moderate candidate CS locations and also solves the opti-

mization problem to optimize the number of CS.

The rapid increase of EV population requires efficient

charging facilities like FCS. EV charging at home is an

alternative way but it requires too much time. Therefore,

the CS with high voltage is necessary for the convenience

of EV user, because it can charge the EVs at faster rate i.e.,

12 times faster than charging at home [15]. The higher

adoption of EVs may cause a potential impact on the dis-

tribution grid. Reference [16] explained the concept of un

co-ordination charging of EVs and its impact on distribu-

tion system like high peak demand, more NPL, and needs a

significant infrastructure.

Even though CSs have many advantages, they could

even jeopardize the system operation, when the size and

location of CSs are not systematically decided. In [17], a

realistic model was developed for the fast CS placement

problem in cities like Singapore considering the interac-

tions among CSs, EV users charging activities, traffic

congestion and queuing time. In [18], a fuzzy technique

was applied for selecting the most sustainable site of

EVCSs considering environmental, economic and social

criteria. An evaluation index has been developed for the

optimal location of EVCS with the account of environ-

mental, social and economic criteria in the electrical

distribution system. In [19], a heuristic algorithm has been

applied to determine the optimal planning of CSs by con-

sidering the initial investment cost and distribution system

power quality parameters as in the objective function, in

the city of Allahabad in India. In [20], the moderate loca-

tion of EVCS is determined by using the integrated

multiple criteria decision making approach based on grey

decision making trial and evaluation laboratory and

uncertain linguistic multi-objective optimization. In recent

literature, there are two papers considered the simultaneous

optimal planning of CSs and DG power unit in the distri-

bution system. The first one [21] is joint planning of EVCS

and distributed photovoltaic generation in the distribution

system is solved by using an accelerated generalized

Benders decomposition algorithm. A multidisciplinary

approach is proposed with the account of investment cost

(the fixed cost of EVCS and PV power plant, variable cost

for adding an extra charging spot in EVCS and per unit PV

panel in PV power plant) and maintenance cost (the cost of

electricity, penalty for unsatisfied PEV charging demand

and penalty for undesirable voltage deviation), in order to

identify the location and size of EVCS and PV plant.

Reference [22] presented an optimization model for the

optimal planning of DG units, EVCSs, and energy storage

systems within the electrical distribution system. The

optimal planning of CSs, renewable DG units and energy

storage systems in the distribution system is solved by

using a second-order conic programming problem, in order

to optimize the active power loss and penetration of DG,

EVCS and energy storage systems within the distribution

system.

In the majority of previous work, the authors consider

the optimal placement of CSs only, it strongly affects

distribution system power losses and voltage profile. Only

a few papers [21, 22] the authors considered the simulta-

neous optimal planning of CSs and DG power units in

distribution system but in those papers does not consider

the specific energy consumption of EV user loss, voltage

deviation, investment and maintenance cost of CS and DG

power units.

Thus this paper newly presents the simultaneous place-

ment of both FCSs and DGs to minimize the investment

cost of CSs and DG units, specific energy consumption of

EV user loss, voltage deviation and power losses in the
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coupled electrical distribution system and transportation

network.

The major contributions of this paper are presented step

by step as follows:

1) Identifying the optimal number of FCS and their

locations by considering the EV users behavior,

distribution system losses and electrical distribution

system bus voltage profile.

2) Finding the optimal planning of DGs by considering

optimal FCSs load to improve system bus voltage

profile and minimizing the distribution system loss.

3) Placing the FCSs and DGs simultaneously with the

account of system constraints and EV user behavior

for better system bus voltage profile and minimal

power losses.

4) As per our knowledge, first time, an efficient multi-

objective non-dominated sorting genetic algorithm II

(NSGA-II) is proposed for finding Pareto-optimal

solution of the optimal number of FCSs, DGs and its

simultaneous location and sizing for minimizing

station development cost (SDC), specific energy

consumption of EVs, distribution system bus voltage

deviation and power losses in a coupled electrical

distribution system and transportation network.

The paper is organized as follows: the impact of FCS

load in the distribution system and formulation of the

objective function are briefly explained in Section 2. Sec-

tion 3 describes the multi-objective NSGA for the taken

system. The results and analysis are explained in Section 4

and some conclusions are drawn in Section 5.

2 Problem formulation

This section presents the formulation of the objective

function to minimize FCS development cost, cost of

specific energy consumption of EVs, Electrical NPL cost,

DG power generation cost and maximum voltage deviation

(MVD) in the electrical distribution network.

For determining the optimal FCS location and EVs

position, the proposed approach uses an area with the

number of zones as shown in Fig. 1. The study area divided

into zones as z1, z2, and z3 for which the EVs data are

available. EV population in each zone is distributed and it

is assumed that the EV population in each zone is located

at the geographic center of the zone.

Assume that in a considered day, the total number of

EVs (TEV) in the study area is charged by the FCS. The

TEV in study area calculated as:

NTEV ¼
Xnz
z¼0

NEV ;z ð1Þ

where NEV, z is the number of dedicated EVs in zone z, i.e.,
all dedicated vehicles are regular costumers of that zonary

FCS and nz is the number of zones in the considered study

area.

2.1 SDC

The considered jth SDC mainly depends on the number

of charging connectors in jth FCS, S jð Þ; and its rated

capacity ðPCÞ [7].
SDC jð Þ ¼ Cinit þ 25ClanS jð ÞNY þ Ccon S jð Þ � 1ð ÞPC ð2Þ
where Cinit is the station fixed cost; Clan is the yearly land

rental cost; Ccon is the charger development cost of jth

station; NY is the number of years in the study period;

S jð Þ is the number of charging connectors in jth FCS.
The number of connectors in the jth CS S(j) is calculated

as:

S jð Þ ¼
Xnz
z¼1

max CPEVð Þ � NEV ;z � SE z; jð Þ� � ð3Þ

where the variable CPEV is a set having the probability of

EV charging in the hour (h) of the day; SE z; jð Þ is binary

decision variable, equals to 1 if EVs in the zone z is

charged by the station j, otherwise, zero. The selection of

EVs in the zone z to jth CS depends on the minimum dis-

tance between jth CS to zone z as compared to the other

CSs.

The area required for each connector and the minimum

clearance between the connectors are 25 m2 and 3 m

respectively. The rating of charging connector varies in the

range of 50–250 kW based on the connector technology.

The capacity of jth FCS is determined as:

CFCS jð Þ ¼ S jð ÞPC ð4Þ
2.2 EV user cost (EVUC)

The EV user should drive a certain trajectory to reach to

the FCS. EVUC represents the cost associated with the

energy consumed by EV to reach the FCS. For EVs located

in zone z, the EVUC to reach nearest FCS for being

charged at CS j, CEVU z; jð Þ is calculated as follows [23]:

z1

z2

z3

Fig. 1 Proposed area with zones
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CEVU z; jð Þ ¼ d z; jð Þ � SEC �
X24
h¼1

CPEV hð Þ � EV zð Þ � CEP ð5Þ

where d z; jð Þ is the distance between zone z and CS j; SEC
and CEP are the specific energy consumption of EVs and

electricity price during hour h. The distance to displace-

ment ratio depends strongly on the optimality of the road

network in the study area. For an optimal road network, the

distance approaches the displacement. Hence, choosing the

displacement rather than distance in this approach to

obtained CSs are still optimal for the optimal road network.

2.3 NPL cost

The higher FCS charging demand increases the line and

substation loading. It causes an increase in distribution

system losses. The distribution system loss has a nonlinear

relationship with the system loading. The variable distri-

bution system loss is significant due to EV charging

demand, hence the precise calculation of electrical grid loss

is required, with the account of the variation in grid

load.

The distribution NPL cost during one year in all seasons

is calculated as follows:

CNPL ¼
Xnx
x¼1

X24
h¼1

LTP h;xð ÞNTH xð ÞCEP ð6Þ

where nx is the number of seasons; LTP is the total elec-

trical power loss including FCS load; and NTH is the total

number of hours in each season of the year.

The added power loss (APL) for hour h, during the

season x due to FCS charging demand, is calculated as

follows [23]:

LAP h;xð Þ ¼ LTP h;xð Þ � LGP h;xð Þ ð7Þ
where LTP is the total power loss including FCS load; and

LGP is the gross power loss with conventional load (without

FCS load).

2.4 DG power cost

The DG power cost CDG consists of investment cost CI ,

operation cost COP and maintenance cost CM of DGs.

Investment cost contains unit construction, installation and

essential equipment cost. Operation cost includes the cost

of replacing components during their technical lifetime and

maintenance cost contains costs of renewing, repairing, and

restoring unit equipment in case of necessity [24–26].

CI ¼
XNDG

g¼1

ðPDG;gCINV ;gÞ ð8Þ

COP ¼
XNY

y¼1

XNDG

g¼1

PDG;gThC
0
OP

1þ RINF

1þ RINT

� �NY
 !

ð9Þ

CM ¼
XNY

y¼1

XNDG

g¼1

PDG;gThC
0
M

1þ RINF

1þ RINT

� �NY
 !

ð10Þ

CDG ¼ CI þ COP þ CM ð11Þ
where PDG;g and CINV ;g are the rated real power and

inverter cost of gth DG unit; C0
OP and C0

M are the operating

cost and maintenance cost of each DG unit; RINF and RINT

are the inflation rate and interest rate of each DG unit; Th
and Ny are total number of hours in a year and total the

number of years; and NDG is the number of DGs considered

for the study. The above-mentioned parameters required to

calculate DG power cost are taken from [26].

2.5 MVD

Inappropriate placement of FCSs and DGs causes volt-

age instability in the distribution network. Both of over and

under voltages effects the power supply quality. In this

paper, the bus voltage deviation (p.u.) in four seasons for

24 hours is considered. The MVD of electrical distribution

system is calculated as:

maxvdev ¼ max 1�min v ið Þð Þf g 8i ¼ 1; 2; . . .; n ð12Þ
where min v ið Þð Þ is the minimum per unit voltage at bus i;
and n is the number of buses in a considered electrical

distribution system.

2.6 Objective function

min
XNFCS

j¼1

SDC jð Þ þ
XNTEV

k¼1

CEVU kð Þ þ CNPL þ CDG þmaxvdev

( )

ð13Þ
where NFCS is the optimal number of FCS obtained from

the optimization algorithm. The objective function is to

minimize the total cost related to FCS, DGs and NPL cost;

and minimize the bus voltage deviation of the electrical

distribution system by meeting the following constraints.

2.7 System constraints

The multi-objective optimization function (13) is

bounded to the power balance, voltage, thermal and DG

power generation constraints as explained in [27–29].

At least one CS should be selected to recharge the EVs

in the study area is as follows:
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XNPC

j¼1

X jð Þ[ 0 8c ¼ 1; 2; . . .;NPC ð14Þ

where X jð Þ is the Binary decision variable, which is equal

to 1 if jth CS is selected, otherwise, zero; and NPC is the

number of possible CSs.

At least one charging connector should be considered

for each selected CS, as follows:

S jð Þ� 0 8j ¼ 1; 2; . . .;NPC ð15Þ
EVs in each zone should select one optimal FCS based

on the displacement between jth CS and zone z.

Xnz
z¼1

SE z; jð ÞX jð Þ ¼ 1 ð16Þ

3 NSGA-II for simultaneous optimal planning
of FCSs and DGs

NSGA-II is one of the most popularly used multi-objec-

tive optimization algorithm in different applications, due to

its high performance for finding a set of Pareto solutions. The

performance of NSGA-II is majorly depends on its evolution

operators, mainly including the non-dominated sorting,

crowing distance operator. Initially, a random parent popu-

lationPt of sizeN is generated, then it is sorted based on non-

domination. Assign a rank to each solution based on its fit-

ness value. The binary tournament selection, recombination,

and mutation operators are used to generate offspring pop-

ulation Qt of size N . Get the combined population

Rt Pt [ Qtð Þ of size 2N. Then, the population Rt is sorted

according to its non-domination. The solutions in the first

front Ƒ1 are of good solutions as compared to the other front

solutions in the combined population. If the size of the first

front (Ƒ1) is less than N , then choose all populations of front

Ƒ1 for the new population Ptþ1. Then the remainingmembers

of the new population are chosen from subsequent fronts in

order of their ranking. To choose exact N members for new

population Ptþ1 from the subsequent fronts we use crowding

distance operator [30]. The crowding distance operator

guides the selection process at various stages of the algo-

rithm, to determine the density of solutions that are

surrounding a particular solution [31].

The best parameter values for the NSGA-II which are

selected through multiple test simulation runs for the

optimal planning of FCSs and DGs in a coupled electrical

distribution and transportation network are given in

Table 1.

In NSGA-II, the nondominated sorting technique and

crowding distance operator is used to rank the individual

populations and to get good spread in the optimal Pareto

front respectively. The selection operator is to “select the

best and discard the rest” from a population keeping the

population size constant. The crossover operator is used to

create new solutions from the existing solutions available

in the mating pool after applying selection operator.

Mutation is the occasional introduction of new features in

to the solution strings of the population pool to maintain

diversity in the population. The flowchart for optimal

planning of FCSs and DGs in a coupled electrical distri-

bution system and transportation network with the NSGA-

II algorithm is shown in Fig. 2, where Front describes the

variation of number of fronts in the multi-objective opti-

mization; Nite is the iterative variable varies from 1 to

maximum number of iterations; and Nite,max is the maxi-

mum number of iterations.

4 Simulation results and observations

To analyze the effectiveness of the proposed optimal

planning of FCSs and DGs in a coupled electrical distri-

bution and transportation network, the following proposed

test system and three scenarios with multiple case studies

are considered in this paper.

4.1 Proposed system data

To test the proposed methodology, a study area of

720 km2 surface has been considered. The study area

consists of 180 zones, and each zone has an equal area of

4 km2 (2 km92 km).

Figure 3 presents the assumed EV population in each

zone of the study area. The total population in the study

area is 1632, among the total EVs population only some

probability of EVs is charging in each hour during a day.

The 118-bus electrical distribution system is assumed on

the study area for electrical power supply.

The percentage of electrical power load variation during

the day for different seasons is taken from [25]. The base

values of 118-bus distribution system are 10 MVA, 11 kV

and the total real and reactive power load on the system is

22.71 MW and 17.041 Mvar. Figure 4 shows the single line

Table 1 Best NSGA-II parameters for optimal planning of FCSs and

DGs

NSGA-II parameters Values

Population size (N) 100

Number of iterations (Nite) 400

Crossover probability (Pc) 0.8

Mutation probability (Pm) 0.33
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diagram of 118-bus distribution network associated with

the considered study area.

The possible placement of 16 FCSs has been assumed to

be placed along the main roads of the study area, with

constraints of approximately equal distance among the

FCSs. Rhombus symbol in Fig. 4 shows the locations of

possible CSs. The distribution system and CS parameters

used in the proposed system are listed in Table 2.

The charging probability of EVs (CPEV) in each hour

during the day is shown in Fig. 5. It is assumed that EVs

are charged at their respective FCSs from 05:00 to 21:00 a

day.

To verify the effectiveness and feasibility of the pro-

posed optimal planning of FCSs and DGs in the radial

distribution network, three different scenarios are proposed

to analyze.

FCS; Bus distribution network
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Fig. 4 118-bus distribution network in considered study area

Start

Initialize parameters (N, Nite, Pc, Pm), 
input system data and load profile  

Randomly generate initial population of size N

Decode the initial population, determine the 
location and size of FCSs and DGs 

Calculate the fitness value (based on above 
objective function) and ranking the population 

Selection

Apply crossover and mutation to obtain a set of 
offspring population (qt) from the current 

population (pt)  

Combine parent (pt) and Offspring (qt) 
populations, rank the 2N population 

Save the best chromosome of current population 
i.e., the optimal planning of FCSs and DGs 

End

Y

Front=Front+1

Select individual 
population of size N

Identify the non-
dominated 
individuals

Sharing the 
populations in to 

current front

Front=Front+1

Update optimal 
Pareto-front

Nite=1

If Nite<Nite,max?

Nite=Nite+1

NIs population
classified in to fronts?

Y

N

Fig. 2 NSGA-II flow chart
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3 12 9 16 13 14 9 14 16 15 17 16 15 13 3 
0 6 7 8 7 5 6 4 8 5 4 6 4 0 0 
0 5 3 4 6 4 0 7 3 0 5 6 4 3 4 

Fig. 3 EVs population in each zone

Table 2 Main study parameters [23]

Parameter Value

NTEV 1632

NY 5

NPC 16

SEC 0.142 kWh/km

CEP 87.7 $/MWh

Clan 240 $/M2 per year

Cinit 70000 $

Ccon 208.33 $/kW

PC 96 kW

928 Gurappa BATTAPOTHULA et al.

123



4.1.1 Scenario 1: optimal placement of FCSs in coupled
electrical distribution and transportation network

The optimal number and locations of FCSs have been

determined by considering the minimization of EV user’s

cost, NPL and the MVD in the distribution network. The

optimal placement of FCSs is determined considering load

variation during four different seasons. The optimization

algorithm presented in Fig. 2 is employed to evaluate the

fitness function given in (13) against the different number

of FCSs in the network. This algorithm determines the

optimal capacity and locations of FCSs in the study area.

Since, the DGs are not considered in this scenario, the CDG

in (13) is zero. The objective function for the different

number of FCSs is compared in Fig. 6. From this com-

parison, the optimal number of FCSs is determined to be

6.

In scenario 1, based on the objective functions to min-

imize viz. NPL cost, EVUC and MVD, the following three

cases are considered. The variation of SDC does not impact

significantly on the overall objective function, since the

total number of connectors in all CSs is approximately

constant. Hence, SDC is not considered as an objective to

minimize.

1) Case 1: minimization of NPL cost and MVD

2) Case 2: minimization of NPL cost and EVUC

3) Case 3: minimization of NPL cost, MVD and EVUC
The optimal Pareto-front for the minimization of NPL

cost, EVUC and MVD simultaneously for all case studies

of scenario 1 is shown in Fig. 7.

From the optimal Pareto-front the best compromised

solution is obtained using a min-max optimization tech-

nique as discussed in [31]. For the obtained compromised

or moderate solution, the optimal FCS location and number

of EVs connected to FCS for various cases in scenario 1 are

presented in Table 3. The optimal objective parameters for

scenario 1 are listed in Table 4.

The SDC has been evaluated based on the total number

of connectors in each FCS. The SDC, EVUC, NPL cost and

MVD are obtained as 2.0539106 ($), 2.1789104 ($/year),

2.1789105 ($/year) and 0.1459 p.u. in case 1 of scenario 1.

In case 2, it has approximately same SDC and EVUC, NPL

cost, and MVD are 1.8969104 ($/year), 1.8769105 ($/

year) and 0.156 p.u. respectively. When three objective

Fig. 5 Variation of CPEV

Fig. 7 Optimal Pareto-front plots for scenario 1

Fig. 6 Optimal number of FCSs in considered coupled electrical

distribution and transportation network

Multi-objective simultaneous optimal planning 929

123



parameters are considered in case 3, the SDC, EVUC, NPL

cost and MVD are comparatively minimum as compared to

case 1 and case 2 of scenario 1. From Table 4, the optimal

values of the SDC, EVUC, NPL cost and MVD in scenario

1 are 2.0419106, 1.3999104, 1.88579105 and 0.156 p.u.

respectively.

Even after optimal placement of FCSs, the voltage

profile of the 118-bus distribution system violates the

system voltage constraints. To improve the voltage profile,

in next scenario i.e. scenario 2, the optimal planning of

DGs is considered in the coupled electrical distribution and

transportation network.

4.1.2 Scenario 2: optimal placement of DGs in proposed
study system with the previous optimal FCS load

Optimal placement of DGs has been considered to

improve the voltage profile in proposed distribution sys-

tem. Objective function (13) considered the DG cost, SDC,

EVUC, NPL cost and MVD in distribution system with the

optimal FCSs load obtained in case 3 of scenario 1. The

optimal placement of DGs is determined considering load

variation during four different seasons. The optimization

algorithm presented in Fig. 2 is employed to evaluate the

objection function presented in (13) against different

number of DGs in the network. This algorithm determines

the optimal size and placement of DGs in the network.

The objective function for different number of DGs is

compared in Fig. 8. From this comparison the optimal

number of DGs is determined to be 4. In scenario 2, three

Fig. 8 Optimal number of DGs in the considered coupled electrical

distribution and transportation network

Table 3 Optimal planning of FCSs for scenario 1

FCS

number

Case 1 Case 2 Case 3

FCS

location

No. of

EVs to

FCS

FCS

location

No. of

EVs to

FCS

FCS

location

No. of

EVs to

FCS

1 92 243 28 307 61 661

2 40 187 42 83 108 274

3 98 187 92 330 103 89

4 61 469 71 358 57 281

5 28 300 35 307 80 262

6 108 246 57 247 98 65

Table 4 Optimal objective parameters for scenario 1

Case SDC

(M$)

EVUC

(M$/year)

NPL cost

(M$/year)

MVD

(p.u.)

1 2.053 0.02178 0.21780 0.1459

2 2.052 0.01896 0.18760 0.1560

3 2.041 0.01399 0.18857 0.1560

Fig. 9 Optimal Pareto-front plots for scenario 2

930 Gurappa BATTAPOTHULA et al.

123



cases are conducted to determine the optimal location and

size of DGs with the account of the optimal FCSs load

obtained in case 3 of scenario 1. The EVUC in scenario 2 is

same as case 3 of scenario1 and its value is constant.

1) Case 4: minimization of DG value cost and MVD

2) Case 5: minimization of NPL cost and DG value cost

3) Case 6: minimization of DG value cost, MVD and

NPL cost

The Pareto-front for different case studies in scenario 2

is shown in Fig. 9.

From the above optimal Pareto fronts the best moderate

location and size of DG units are determined using min-

max method. The optimal location and size of DG units for

different case studies in scenario 2 are presented in

Table 5.

From the Pareto-front provided in Fig .8, best compro-

mised objective parameters for the case 4, case 5 and case 6

are reported in Table 6.

There are two observations can be made by analyzing

the results provided in Table 6. The first one is that as

NPL cost and MVD decreases, the DG cost increases. The

NPL cost and MVD directly depend on DGs location and

its size. The second one is that SDC and EVUC are

constant. In scenario 2, the optimal planning of DGs is

determined with the account of optimal FCS load (case 3

of scenario 1) in the electrical distribution system.

Therefore the SDC and EVUC are constant in all three

cases of scenario 2.

In case 4, DG cost and MVD are considered for optimal

planning of DGs in the electrical distribution system. For

which the NPL cost, DG cost and MVD are 7.2129104 $/

year 14.06 M$, 0.0681 p.u. respectively. Similarly, the

NPL cost, DG cost, and MVD are 5.6259104 $/year, 15.95

M$, 0.899 p.u. for case 5. Furthermore, in case 6, three

Fig. 10 Optimal Pareto-front plots for scenario 3

Table 5 Optimal place and sizes of DGs

DG

No.

Case 4 Case 5 Case 6

DG

location

DG size

(MW)

DG

location

DG size

(MW)

DG

location

DG size

(MW)

1 32 0.1032 40 0.1262 37 0.2000

2 36 0.1000 42 0.1010 42 0.1996

3 70 0.1265 72 0.1164 74 0.1982

4 118 0.1071 111 0.0749 111 0.1896

Table 6 Optimal cost values with DGs placement

Case SDC cost

(M$)

EVUC

(M$/year)

NPL cost

(M$/year)

DG cost

(M$)

MVD

(p.u.)

4 2.041 0.01399 0.07212 14.06 0.0681

5 2.041 0.01399 0.05625 15.95 0.8990

6 2.041 0.01399 0.05651 14.82 0.0720
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objective parameters are considered for optimal planning

of DGs in the distribution system. Because of the partici-

pation of three objective parameters in optimization

processes, case 6 provided a best economical solution as

compared to case 4 and case 5 in scenario 2. The optimal

values of the NPL cost, DG cost, and MVD are 5.6519104

$/year 14.82 M$, 0.072 p.u. respectively. It can be

observed that case 6 of scenario 2 gives best economical

solution as compared to the case 4 and case 5. Furthermore,

to minimize the NPL cost, DG cost and MVD, the simul-

taneous placement of FCSs and DGs in coupled electrical

distribution and transportation network is considered in

scenario 3.

4.1.3 Scenario 3: simultaneous placement of FCSs
and DGs in coupled electrical distribution
and transportation network

In this scenario, the FCSs and DGs are simultaneously

placed in the distribution network, with the objective of

decreasing the EVUC, NPL cost, DG cost and MVD. In

scenario 3, the following four different cases are consid-

ered for the simultaneous optimal placement of FCSs and

DGs in coupled electrical distribution and transportation

network.

1) Case 7: minimization of NPL cost and EVUC

2) Case 8: minimization of DG value cost and MVD

3) Case 9: minimization of NPL cost and DG value cost

4) Case 10: minimization of DG value cost, MVD and

NPL cost

The algorithm presented in Fig. 2 is employed to eval-

uate the fitness function given in equation (13) against the

different number of FCSs and DGs in the distribution

network. This algorithm determines the optimal size and

placement of FCSs and DGs in the distribution network, for

the same number of FCSs and DGs as in scenario 1 and

scenario 2 respectively. The Pareto-front for minimization

of NPL cost, DG cost, EVUC and MVD for various case

studies of scenario 3 are shown in Fig. 10.

The optimal capacity and location of FCSs and DGs are

listed in Tables 7 and 8.

Table 9 Optimal cost values in scenario 3

Case SDC cost (M$) EVUC (M$/year) NPL cost (M$/year) DG cost (M$) MVD (p.u.)

7 2.038 0.019580 0.054320 17.950 0.0998

8 2.041 0.023590 0.063120 16.520 0.0720

9 2.040 0.019690 0.053890 16.530 0.0899

10 2.0101 0.005963 0.054323 15.951 0.0613

Table 8 Optimal planning of DGs in scenario 3

DG No. Case 7 Case 8 Case 9 Case 10

DG location DG size (MW) DG location DG size (MW) DG location DG size (MW) DG location DG size (MW)

1 95 0.0711 83 0.0867 97 0.0698 36 0.2000

2 59 0.0611 43 0.0764 30 0.1074 74 0.1749

3 93 0.0751 28 0.0885 103 0.0626 83 0.1498

4 32 0.1811 114 0.1516 46 0.0935 11 0.1947

Table 7 Optimal planning of FCSs in scenario 3

FCS

No.

Case 7 Case 8 Case 9 Case 10

FCS

location

No. of EVs to

FCS

FCS

location

No. of EVs to

FCS

FCS

location

No. of EVs to

FCS

FCS

location

No. of EVs to

FCS

1 28 245 61 428 13 94 83 576

2 71 570 48 200 103 165 28 251

3 22 245 40 76 71 591 80 156

4 98 136 71 376 28 236 103 254

5 80 354 92 276 80 356 48 249

6 103 82 103 276 22 189 92 146
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From the obtained Pareto fronts, the moderate solution

is determined using the min-max technique.

Table 9 presents the optimal objective parameters of

different cases of scenario 3. In case 7, optimized values of

NPL cost and EVUC are 5.4329104 $/year and 1.9589

104 $/year respectively, for which the DG cost and MVD

are 17.95 M$ and 0.0998 p.u.. In case 8, the optimized

values of the DG cost and MVD are 16.52 M$ and 0.072 p.

u., for which EVUC and NPL cost is maximum, i.e., 2.359

9104 $/year and 6.3129104 $/year. Similarly, the opti-

mized values of the DG cost and NPL cost are 16.53 M$

and 5.3899104 $/year in case 9, for which the optimal

EVUC and MVD are 1.9699104 $/year and 0.0899 p.u.

respectively. Furthermore, three objectives, i.e., MVD,

NPL cost and DG cost optimized values are 0.0613 p.u.,

5.43239104 $/year and 15.951 M$ respectively. In sce-

nario 3, the NPL cost and EVUC are considerably reduced

for approximately same investment. The NPL cost and

EVUC are variable ones, with the reduction of this losses

result in benefit to both the EV users and CS owners.

The optimal objective parameters namely NPL cost,

MVD, EVUC and DG cost for the best cases (case 3 in

scenario 1; case 6 in scenario 2; and case 10 in scenario 3)

in the above three different scenarios are presented in

Table 10. From Table 10, it is clear that case 10 gives best

compromised solution as compared to the other cases of

scenario 3.

In scenario 3, the EVUC, NPL cost and MVD are sig-

nificantly reduced as compared to the scenario 2 and

scenario 1. The simultaneous planning of FCSs and DGs in

the coupled electrical distribution and transportation net-

work of case 10 has a 60.7% and 14.97% reduction of

MVD as compared to the case 3 and case 6. Also, the NPL

cost reduced by 71.2% and 3.8% by case 10 as compared to

the case 3 and case 6. Furthermore, there is a 57.3%

reduction of EVUC in case 10 as compared to other cases.

Therefore the proposed method is capable of providing the

best economical solution for the simultaneous optimal

placement of FCS and DGs in coupled electrical distribu-

tion and transportation network.

5 Conclusion

The massive penetration of EVs causes a negative

impact on the power grid. A large number of EVs simul-

taneously connected to the grid causes more NPLs and

large voltage deviation at far away buses from the sources.

To improve the bus voltage profile in the presence of

EVCSs in distribution network, this paper considered

simultaneous placement of DGs and FCSs. Simulation

results show the importance of optimal concurrent place-

ment of both FCSs and DGs in the distribution system. In

the proposed approach, optimal planning of FCSs and

optimal planning of DGs with the account of optimal FCSs

load are compared to simultaneous planning of FCSs and

DGs in coupled electrical distribution and transportation

network. The simultaneous placement of FCSs and DGs

results in more reduction in EVUC and NPL cost for the

same SDC and DG value investment. The EVUC and NPL

cost are variable with respect to time. Hence, the reduction

in this cost will be beneficial for both EV and CS owners.

The optimal simultaneous placement of both FCSs and

DGs in distribution system provides significant benefits to

all parts involved.
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