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Abstract— A new method for systematically estimating health 

index, probability of breakdown and remaining life for power 
transformers is presented. The method combines three basic 
models; a physical winding degradation model, a health index 
model based on condition monitoring data combined with expert 
judgement, and a statistics-based end-of-life model. The statistics-
based model uses data from a database of scrapped transformers 
under development in Norway. Combining the first two models 
with the statistics-based model, an individual and condition-
dependent probability of breakdown is obtained. From this, the 
expected remaining life is calculated. Finally, the stochasticity of 
the method is utilized for optimization of maintenance and 
replacement. The method hence provides key decision support for 
transformer managers, enabling them to identify transformers in 
poor condition, and to follow-up and prioritize transformers for 
maintenance and replacement. The proposed method has been 
implemented in a transformer asset management tool for 
Norwegian utilities. The usefulness of the method is illustrated by 
applying it to selected transformers from one of these utilities. 
Finally, important limitations, uncertainties and further 
improvements are discussed. 
 

Index Terms — Condition monitoring, degradation, health 
index, lifetime estimation, power transformers, maintenance 
optimization, risk analysis 
 

I. INTRODUCTION 
HE Norwegian transformer fleet is aging and has an 

average age of about 32 years, and approximately 15% are 
over 50 years old. The design lifetime for transformers at rated 
load is of the order of 30 years. The average transformer in 
Norway has thus achieved life expectancy under rated load. 
However, as most transformers in Norway operate under lower 
load than rated with excellent cooling conditions, life 
expectancy is probably significantly higher. There is therefore 
a potential for utilizing the transformers beyond their original 
life expectancy, thereby postponing costly replacements. This 
should be done in a controlled way with continuous analysis 
and follow-up of the transformer condition, to ensure that 
transformers in poor condition are identified and replaced prior 
to breakdown. 

Based on present statistics and costs, the cost of replacing all 
transformers in Norway with an age of 50 years or above is 
estimated to 1.8 billion NOK (approx. 200 million USD). If 
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instead, due to improved analysis and follow-up of the 
transformer condition, half of these transformers can safely stay 
in operation for 20 more years, the total positive present value 
of postponed replacement amounts to 800 million NOK 
(approx. 100 million USD). 

For quantitative analysis of transformer condition and 
remaining lifetime, three popular basic approaches stand out: 
Degradation modeling, condition assessment from monitoring 
data, and statistical end-of-life modeling. The first approach 
employs a physical model that estimates the degradation and 
remaining life of the insulation paper using historic operational 
data. The second approach assesses condition monitoring data 
(such as data from oil tests and visual inspections) and typically 
aggregates this information into a quantitative measure of 
present condition (a health index). This approach may be based 
on advanced mathematical modelling, but typically also 
requires some degree of expert judgement. The third approach 
is an evaluation of the expected remaining life of the 
transformer from its current age, by comparison with statistical 
data (combined with expert judgement if statistical data is 
scarce). There are advantages and disadvantages with each of 
these three approaches. The first approach enables calculation 
of remaining life but does not consider condition monitoring 
data. The second approach enables all present condition 
monitoring data to be included but estimating remaining life 
from this is challenging. The last approach enables a stochastic 
model to be built with the use of statistics but does not reflect 
any other data than the transformer age. The validity of this 
approach depends on the quality and representability of the 
available statistical data.  

Several methods for analyzing transformer condition and 
remaining lifetime, that in various ways include or combine 
some of the three above approaches, have been proposed in the 
literature. Some early examples of health index models are 
those of Dominelli et al. [1], Anders et al. [2] and Jahromi et al. 
[3]. Later advancements that combine degradation, condition 
and/or statistical models have been proposed by e.g. Jarman et 
al. [4], Vermeer et al. [5] and Picher et al. [6]. More recently, 
research has been focusing on lifetime estimation [7, 8], feature 
selection methods [9, 10], and ways to aggregate information 
from different condition measurements. For the latter topic, 
methods that utilize e.g. fuzzy theory [11, 12], Markov chains 
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[13], Bayesian belief networks [14] and machine learning 
methods [15, 16] have been suggested. However, less work has 
been done on applying such information to suggest or optimize 
maintenance and replacement decisions [17]. 

This paper presents a new method for power transformer 
assessment combining all the three above basic approaches. The 
method allows for all available relevant data to be combined 
into a quantitatively estimated probability of breakdown, from 
which the transformer remaining life is calculated. The 
developed method takes advantage of data from a database of 
scrapped transformers under development in Norway. Since the 
method is probabilistic, it also enables optimization of 
maintenance and replacement, thus providing key decision 
support for transformer managers. The method is developed for 
power transformers of or above 22 kV with mineral oil and 
cellulose paper as insulation, of both network and generator 
step-up type. 

II. OVERALL METHOD 
The overall flow diagram of the method is shown in Fig. 1. 

The method consists of three basic models; a winding 
degradation model, a condition model, and a statistics-based 
end-of-life model, that together feed a risk model and a 
maintenance and replacement analysis. 

 

 
Fig. 1.  Overall flow diagram for the proposed method. The three basic models 
return the transformer degree of polymerization (DP), the transformer health 
index (HI), and statistics from the scrapping database (a failure probability 
distribution F and health index as a function of age). They are linked through a 
so-called apparent age, that is utilized in the risk model. 
 
The degradation model uses historic load and temperature data 
to estimate the degree of polymerization (DP) for the insulation 
paper, which is related to the paper's mechanical strength. The 
paper strength is widely regarded as the ultimate life limiting 
factor for transformers. The condition model estimates a health 
index from all available data for the current condition of the 
transformer, including the calculated DP-value. The statistics-
based model extrapolates historic scrapping data for several 
transformers to estimate a transformer end-of-life distribution. 
By relating the calculated health index of the transformer in 
question to the statistics for the population of scrapped 

transformers, the condition-dependent probability of 
breakdown and remaining life are estimated. Finally, the 
profitability and optimal timing of maintenance or replacement 
is analyzed. 

The condition model can be based on any data that reflects 
the transformer condition and hence its probability of 
breakdown. However, quantitative condition data at Norwegian 
utilities today are primarily data related to the active part - core, 
windings and oil - most importantly periodic oil test data such 
as dissolved gas concentrations and water content. Other data, 
such as online condition data or condition data for other parts 
than the active part are at present available only to a limited 
extent. The method is therefore presented only for the active 
part of the transformer. 

The statistics-based model uses scrapping data instead of 
failure statistics, since good failure statistics for transformers 
are not available in Norway today. In addition, available failure 
statistics from other countries have previously been shown to 
be poorly suited for establishing a stochastic lifetime model, 
since these statistics tend to show little increase in failure rate 
with age [18]. This is probably partly due to preventive 
replacement and that many transformers have yet to reach an 
old age. The quality of the scrapping database, and how 
representative it is for the transformer to be analyzed is 
important for the reliability of the results. At present, the 
number of transformers in the database is quite limited, and 
hence, the method cannot currently be expected to be generally 
applicable for all transformers in Norway. This, however, will 
improve as the database increases. Due to the limited statistical 
basis, the proposed method also does not differentiate between 
different types of transformers, such as network and generator 
step-up transformers. One exception from this is the winding 
degradation model, which differentiates between standard 
(Kraft) insulation paper and thermally upgraded (Insuldur) 
paper. 

Risk is given by the probability of failure combined with the 
consequences of failure. The probability of failure is estimated 
using the statistics-based model and by modeling the active part 
of the transformer as a non-repairable component. This 
simplification is justified by the fact that repair of the active part 
is difficult and costly, and either is not done or when it's done 
returns the transformer to an almost new condition. Hence, in 
this method, the consequence of a failure is full transformer 
breakdown so that its needs to be replaced. The consequences 
of breakdown are included in terms of financial costs. 

Each part of the proposed method is explained in detail in the 
following three sections, before an example of application of 
the method is given in section VI. 

III. BASIC MODELS 

A. Winding degradation 
The insulation paper in transformer windings degrades over 

time due to the cellulose molecules decomposing to shorter 
molecules. The length of the molecules can be expressed as a 
degree of polymerization (DP), which is the average number of 
monosaccharide units in the molecules. Insulation with short 
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molecules have less mechanical strength, and hence is more 
prone to failure if the transformer is exposed to mechanical 
stress such as a short-circuit. A DP-value of 200 is commonly 
taken as the end-of-life criterion for the paper and thus the 
transformer. The DP-value can be measured in a laboratory, but 
this requires a paper sample to be taken from the windings, 
which is usually not feasible when the transformer is in 
operation. Estimating the DP-value based on the historic 
loading of the transformer is an alternative approach. The 
change in DP over some time period can be described by [19] 
 

 
1

𝐷𝐷𝐷𝐷end
−  

1
𝐷𝐷𝐷𝐷start

= � d𝑡𝑡 
end

start
𝐴𝐴(𝑡𝑡)𝑒𝑒−𝐸𝐸𝑎𝑎/𝑅𝑅𝑅𝑅(𝑡𝑡) (1) 

 
where 𝐷𝐷𝐷𝐷start and 𝐷𝐷𝐷𝐷end are the DP-values at the start and end 
points of the time period, 𝑡𝑡 is the time, 𝐴𝐴(𝑡𝑡) is an environment 
factor that depends on the moisture and oxygen content in the 
oil, 𝐸𝐸𝑎𝑎 is the activation energy, 𝑅𝑅 is the universal gas constant, 
and 𝑇𝑇(𝑡𝑡) is the temperature to which the paper is exposed. The 
parameters 𝐴𝐴(𝑡𝑡) and 𝐸𝐸𝑎𝑎 have been estimated in laboratory 
experiments both for standard Kraft paper and thermally 
upgraded Insuldur paper [20]. In this paper, (1) is used to 
calculate the present DP-value from the DP-value when the 
transformer was commissioned, which typically is around 1000. 
A discretization of (1) into hours is sufficient, as daily 
temperature variations then are included. Note that (1) is a 
simplification that will give conservative results, i.e. 
overestimate the rate of degradation. If better precision is 
required, a more advanced model can be consulted [21, 22]. 

There are typically strong temperature gradients in 
transformers, and this causes the DP-value to vary within the 
transformer. For condition monitoring purposes it is desirable 
to estimate the DP-value at the location in the transformer 
where the paper degrades fastest, i.e. at the winding temperature 
hot-spot. For some new transformers, the hot-spot temperature 
to be included in (1) is measured directly using fibre-optic 
sensors. For older transformers the hot-spot temperature must 
be estimated from other temperature measurements such as top 
oil temperature or ambient temperature. Using the IEC 
temperature model [23], while for simplicity assuming that the 
load varies slowly enough that the transformer is approximately 
in steady state, the hot-spot temperature 𝑇𝑇ℎ𝑠𝑠 is given by 
 

 𝑇𝑇ℎ𝑠𝑠 =  𝑇𝑇𝑎𝑎 + ∆𝑇𝑇𝑡𝑡𝑡𝑡−𝑎𝑎 �
1 + 𝑅𝑅𝐾𝐾2

1 + 𝑅𝑅
�
𝑥𝑥

+ 𝐻𝐻𝑔𝑔𝑟𝑟𝐾𝐾𝑦𝑦 (2) 

 
in terms of the ambient temperature 𝑇𝑇𝑎𝑎. Here ∆𝑇𝑇𝑡𝑡𝑡𝑡−𝑎𝑎 is the top 
oil temperature rise above ambient temperature at rated load, 𝐻𝐻 
is the hot-spot factor, 𝑔𝑔𝑟𝑟 is the average winding temperature rise 
above average oil temperature at rated load, 𝐾𝐾 is the load factor 
(load current/rated current), 𝑅𝑅 is the ratio of load losses at rated 
current to no-load losses, and 𝑥𝑥 and 𝑦𝑦 are the oil and winding 
exponents, respectively. The constants in (2) depend on the 
cooling mode of the transformer (e.g. ONAN, ONAF etc.) and 
can be found from the transformer's temperature rise test. 

B. Condition model: Health index 
The condition model could be designed to give the 

transformer failure probability directly, based on an assessment 
of all relevant failure modes. Such a model would require 
quantification of the probability of occurrence of each failure 
mode from observable condition data. This poses a huge 
challenge as it requires a lot of unknown data, and is therefore 
left for further work when data availability improves. Here, a 
different approach is chosen in which a health index is instead 
derived from assessment of condition data, and the failure 
probability is next derived from the health index with the aid of 
statistics (see next section). Knowledge of failure modes and 
their criticality are used to weight the importance of each type 
of condition data for the health index. Such a health index 
model must be designed to meet some criteria: 1) The health 
index reflects the probability of failure and is both lower and 
upper bound, 2) Any relevant condition data can be included, 
3) Poor condition data are not masked by aggregation, i.e. the 
health is never better than that indicated by the worst condition 
data. 

The proposed health index (HI) model hence reads 
 

 𝐻𝐻𝐻𝐻 = ��1 − 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗)�
𝑛𝑛

𝑗𝑗=1

 , (3) 

 
where 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) is a function describing the effect on the health 
index of condition data 𝑗𝑗 on a scale from 0 to 1, 𝜃𝜃𝑗𝑗 is the 
assessed grade of condition data 𝑗𝑗, and 𝑛𝑛 is the total number of 
condition data. The health index is a number between 0 and 
100%, where 100% represents a perfect condition. The form of 
the health index function is derived as an analogy to a fault tree 
model with a single OR-gate between the top event and its basic 
events. The model assumes for simplicity that all condition data 
are independent. 

In addition to being bound between 0 and 1, 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) should be 
monotonically increasing (or alternatively decreasing). Hence, 
𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) may be suitably represented by a sigmoid function. 
Furthermore, defining the function piecewise makes it easier to 
tune it according to which condition data 𝑗𝑗 it represents. For 
condition data where an increasing grade 𝜃𝜃𝑗𝑗 signifies a 
deteriorating condition, the function 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) is therefore defined 
as 
 

 
𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� = 𝑅𝑅𝑗𝑗,𝑟𝑟 ∙ �1 + 𝑟𝑟𝑗𝑗,𝑏𝑏�

𝜃𝜃𝑗𝑗−𝜃𝜃𝑗𝑗,𝑟𝑟                     𝜃𝜃𝑗𝑗 ≤ 𝜃𝜃𝑗𝑗,𝑟𝑟 
𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� = 𝑅𝑅𝑗𝑗,𝑚𝑚 − �𝑅𝑅𝑗𝑗,𝑚𝑚 − 𝑅𝑅𝑗𝑗,𝑟𝑟�

∙ �1 + 𝑟𝑟𝑗𝑗,𝑤𝑤�
−�𝜃𝜃𝑗𝑗−𝜃𝜃𝑗𝑗,𝑟𝑟�       𝜃𝜃𝑗𝑗 > 𝜃𝜃𝑗𝑗,𝑟𝑟 

(4) 

 
Here 𝜃𝜃𝑗𝑗,𝑟𝑟 is a reference condition that must be specified, 𝑅𝑅𝑗𝑗,𝑟𝑟 is 
the effect on the health index of the reference condition (0 <
𝑅𝑅𝑗𝑗,𝑟𝑟 ≤ 1), 𝑅𝑅𝑗𝑗,𝑚𝑚 is the maximum effect on the health index 
(𝑅𝑅𝑗𝑗,𝑟𝑟 ≤ 𝑅𝑅𝑗𝑗,𝑚𝑚 ≤ 1), and 𝑟𝑟𝑗𝑗,𝑏𝑏 is the rate of change of 𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� per 
unit of 𝜃𝜃𝑗𝑗 when 𝜃𝜃𝑗𝑗 is below 𝜃𝜃𝑗𝑗,𝑟𝑟. The constant 𝑟𝑟𝑗𝑗,𝑤𝑤 specifies the 
increase of 𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� when 𝜃𝜃𝑗𝑗 is above 𝜃𝜃𝑗𝑗,𝑟𝑟 and is for 𝑟𝑟𝑗𝑗,𝑏𝑏 ≪ 1, 
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𝑟𝑟𝑗𝑗,𝑤𝑤 ≪ 1 and 𝑅𝑅𝑗𝑗,𝑚𝑚 ≠ 𝑅𝑅𝑗𝑗,𝑟𝑟 approximated as  
 

 𝑟𝑟𝑗𝑗,𝑤𝑤 = 𝑟𝑟𝑗𝑗,𝑏𝑏
𝑅𝑅𝑗𝑗,𝑟𝑟

𝑅𝑅𝑗𝑗,𝑚𝑚 − 𝑅𝑅𝑗𝑗,𝑟𝑟
 (5) 

 
by requiring that the derivative of 𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� is continuous for 
𝜃𝜃𝑗𝑗 = 𝜃𝜃𝑗𝑗,𝑟𝑟. The above definition of the function 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) implies 
that the reference condition is the condition at which 𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� 
increases most rapidly. It also ensures that 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) approaches 0 
as 𝜃𝜃𝑗𝑗 decreases towards minus infinity, and 1 as 𝜃𝜃𝑗𝑗 increases 
towards infinity, as required. Hence, a perfect condition state 𝜃𝜃𝑗𝑗 
in this model is represented as minus infinity. 

For some condition data, a decreasing grade rather than an 
increasing grade signifies a deteriorating condition. For such 
data, the function 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) is defined as 
 

 
𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� = 𝑅𝑅𝑗𝑗,𝑟𝑟 ∙ �1 + 𝑟𝑟𝑗𝑗,𝑏𝑏�

−�𝜃𝜃𝑗𝑗−𝜃𝜃𝑗𝑗,𝑟𝑟�,          𝜃𝜃𝑗𝑗 ≥ 𝜃𝜃𝑗𝑗,𝑟𝑟 
𝑅𝑅𝑗𝑗�𝜃𝜃𝑗𝑗� = 𝑅𝑅𝑗𝑗,𝑚𝑚 − �𝑅𝑅𝑗𝑗,𝑚𝑚 − 𝑅𝑅𝑗𝑗,𝑟𝑟�

∙ �1 + 𝑟𝑟𝑗𝑗,𝑤𝑤�
𝜃𝜃𝑗𝑗−𝜃𝜃𝑗𝑗,𝑟𝑟 ,       𝜃𝜃𝑗𝑗 < 𝜃𝜃𝑗𝑗,𝑟𝑟 

(6) 

 
The parameters for the function 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) depend on the 

condition data 𝑗𝑗 that it represents. All the condition data that are 
included in the health index are listed in TABLE I, with a 
suggested specification of 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗). For the parameters from the 
oil tests, the grading 𝜃𝜃𝑗𝑗 follows the standard IEC 60422 [24] and 
CIGRÉ report 443 [25]. The tuning parameters 𝑅𝑅𝑗𝑗,𝑟𝑟 and 𝑅𝑅𝑗𝑗,𝑚𝑚 
serve to weight the importance of the different condition data. 
These have been set with expert judgement based on knowledge 
on how the data relate to failure modes, motivated by [24, 25, 
26]. Therefore, the DP-value and the gas concentrations are set 
to be more important than the oil parameters in TABLE I. The 
last tuning parameter 𝑟𝑟𝑗𝑗,𝑏𝑏 has been set to 1 for all parameters 
from the oil test, which means that 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) doubles for each 
increment in 𝜃𝜃𝑗𝑗. For the DP-value, a value of 0.01 for 𝑟𝑟𝑗𝑗,𝑏𝑏 
ensures that 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗), and hence the effect on the health index, 
remains small until the DP-value is significantly reduced. This 
is because the DP-value must be relatively low before it is 
expected to affect the failure probability. The tuning parameters 
are hard to validate, as the health index cannot be measured 
directly. All tuning parameters should in future work be 
benchmarked and adjusted based on testing of the health index 
model on a selected transformer population, in collaboration 
with transformer experts at utilities. 

For the dissolved gases (𝑗𝑗 = 1 to 7), both the gas 
concentration and the gas concentration increase is included in 
the model, and for each dissolved gas, the grade 𝜃𝜃𝑗𝑗 is 
conservatively determined by 
 

 𝜃𝜃𝑗𝑗 = max�𝜃𝜃j,c,𝜃𝜃j,ci� , (7) 
 
where 𝜃𝜃j,c is the grade for the gas concentration and 𝜃𝜃j,ci is the 
grade for the gas concentration increase. 

 

TABLE I 
SPECIFICATION OF 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) FOR ALL THE CONDITION DATA THAT ARE INCLUDED 

IN THE HEALTH INDEX. 
j Condition data Specification of 𝑅𝑅𝑗𝑗(𝜃𝜃𝑗𝑗) 
1 H2 𝜃𝜃𝑗𝑗 = −∞, 1, 2, 3, 4, 5 (perfect condition: 

−∞) 
𝜃𝜃𝑗𝑗,𝑟𝑟 = 5 
𝑅𝑅𝑗𝑗,𝑟𝑟 = 0.5 
𝑅𝑅𝑗𝑗,𝑚𝑚 = 0.5 
𝑟𝑟𝑗𝑗,𝑏𝑏 = 1 

2 CH4 
3 C2H6 
4 C2H4 
5 C2H2* 
6 CO 
7 CO2 
8 Breakdown voltage 𝜃𝜃𝑗𝑗 = −∞, 1, 2 (perfect condition: −∞) 

𝜃𝜃𝑗𝑗,𝑟𝑟 = 2 
𝑅𝑅𝑗𝑗,𝑟𝑟 = 0.25 
𝑅𝑅𝑗𝑗,𝑚𝑚 = 0.25 
𝑟𝑟𝑗𝑗,𝑏𝑏 = 1 

9 Water content 
10 Acidity 
11 Dielectric dissipation 

factor 
12 Interfacial tension 
13 Colour and 

appearance 
𝜃𝜃𝑗𝑗 = −∞, 1, 2 (perfect condition: −∞) 

𝜃𝜃𝑗𝑗,𝑟𝑟 = 2 
𝑅𝑅𝑗𝑗,𝑟𝑟 = 0.125 
𝑅𝑅𝑗𝑗,𝑚𝑚 = 0.125 
𝑟𝑟𝑗𝑗,𝑏𝑏 = 1 

14 Inhibitor content 
15 Corrosivity and 

passivator content 

16 DP-value 𝜃𝜃𝑗𝑗 = 𝐷𝐷𝐷𝐷 = 0 −∞ (perfect condition: ∞) 
𝜃𝜃𝑗𝑗,𝑟𝑟 = 200 
𝑅𝑅𝑗𝑗,𝑟𝑟 = 0.75 
𝑅𝑅𝑗𝑗,𝑚𝑚 = 1 
𝑟𝑟𝑗𝑗,𝑏𝑏 = 0.01 

*Not to be included for transformers where gas contamination from the tap 
changer is possible, as this is a common gas in tap changers 

C. Statistics-based end-of-life model 
This model is based on data from a scrapping database under 

development in Norway. The database includes measurements 
of DP-value at scrapping, as well as historic load, temperature 
and oil test data. Most of the transformers in the database were 
taken out preventively due to poor condition, but some were 
scrapped following a failure. 

The scrapping data is used to establish a model for the 
transformer technical lifetime. Technical lifetime is here 
defined as the time interval from commission to failure occurs 
or until DP = 200 is reached. The technical lifetime for the 
scrapped transformers is hence estimated as follows: For 
transformers that were scrapped due to failure in the active part 
(2 transformers), the technical lifetime is set equal to the age at 
scrapping. For preventively scrapped transformers (14 
transformers; mainly scrapped due to old age), technical 
lifetime is calculated as the age at scrapping plus estimated 
remaining life until DP = 200 is reached. The remaining lifetime 
calculation is done using the winding degradation model in 
section A with the DP-value measured at scrapping as input. 
For preventively scrapped transformers where the DP value at 
scrapping is not known (3 transformers), the age at scrapping is 
used as a lower limit for the technical lifetime, i.e. these data 
are viewed as right censored. The results from the analysis is 
shown in Fig. 2. All the transformers included in the analysis 
have standard Kraft insulation paper. As of today, there is not 
enough data to produce a similar analysis for transformers with 
thermally upgraded paper. 

The fitted normal distribution in Fig. 2 can be taken as an 
approximation of a probability distribution for failure of the 
active part. This implies modelling the active part as non-

Authorized licensed use limited to: University of Wollongong. Downloaded on May 30,2020 at 11:29:30 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.2972976, IEEE
Transactions on Power Delivery

TPWRD-01197-2019 
 

5 

repairable. Furthermore, this is a conservative approach, as the 
condition DP = 200 used in obtaining Fig. 2 does not 
necessarily cause failure, and the underlying population of 
scrapped transformers is likely representative of transformers 
of below-average condition. 

To use the probability distribution in Fig. 2 further in this 
paper, the health indices of the scrapped transformers are also 
needed. Fig. 3 shows the health indices of the transformers as a 
function of calendar age, calculated with the health index model 
in section B. The health indices of the transformers before 
scrapping have also been included here. To obtain a common 
basis for all transformers, and since data availability today is 
limited, only the condition data that are available for most 
transformers have been included in Fig. 3, i.e. data j = 1 − 10 
and j = 12 in TABLE I. It is expected that more of the data in 
TABLE I can be included in the future, as there is ongoing work 
to improve and increase the scrapping database, and as a newly 
established national database with oil test data also will improve 
data availability. 
 

 
Fig. 2.  Accumulated distribution for technical lifetime of a selection of 
transformers in Norway examined by SINTEF Energy Research, including a 
cumulative normal distribution fitted to the results (with mean and standard 
deviation 60 and 18, respectively). All transformers have standard Kraft paper 
 

 
Fig. 3.  Health indices for some scrapped transformers as a function of calendar 
age, including a sigmoid function fitted to the data 
 

Since the health index is bound between 0 and 1 and should 
be monotonically decreasing, a sigmoid function is a logical 

representation for the data. The sigmoid function fitted to the 
data in Fig. 3 is given by: 

 

 𝐻𝐻𝐻𝐻(𝑡𝑡) =  
1

1 + 𝑒𝑒0.1𝑡𝑡−5.3 (8) 

 
No correlation between health index and age is apparent in Fig. 
3. In fact, a lot of variation in the data is as expected, since there 
is considerable variation in transformer designs and operation. 
However, when more data becomes available, it should become 
visible that HI approaches 1 as the age approaches 0 and 0 for 
very high ages. 

It is clear from Fig. 2 and Fig. 3 that the number of 
transformers in the statistical basis is very low, due to the 
scrapping database still being under development in Norway. 
Hence, the results in Fig. 2 and Fig. 3 cannot be expected to be 
in general representative for transformers in Norway, but is 
likely representative of transformers of somewhat below-
average condition for the active part. 

IV. RISK ANALYSIS AND LIFETIME ESTIMATION 
Risk is given by the probability of failure combined with the 

consequences of failure. There are many possible causes of 
failure for transformers. In this paper, only the active part of the 
transformer is included, and it is modeled as non-repairable. 
This means that the only type of failure that is included here is 
failure of the active part that results in full transformer 
breakdown resulting in replacement. 

The statistics-based model makes it possible to estimate a 
condition-dependent risk for the transformer, i.e. to determine 
the transformer failure probability from its health index. This is 
done through the transformer's so-called apparent age. The 
apparent age is the age implied by its health index when it is 
compared to the health indices of the scrapped transformers. It 
is calculated by solving (8) for the time, with the transformer 
health index (scaled to match the number of condition data that 
Fig. 3 and (8) are based on) as input. 

From the apparent age today, 𝜏𝜏now, the probability 𝐷𝐷𝑛𝑛 that the 
transformer will fail within year 𝑛𝑛 from now is estimated by 

 

 𝐷𝐷𝑛𝑛 =
𝐹𝐹(𝜏𝜏(𝑛𝑛)) − 𝐹𝐹(𝜏𝜏(𝑛𝑛 − 1))

1 − 𝐹𝐹(𝜏𝜏now)  (9) 

 
where 𝜏𝜏(𝑛𝑛) is the expected apparent age at the end of year 𝑛𝑛 
and 𝐹𝐹 is the cumulative distribution function from Fig. 2. This 
equation assumes that the probability distribution in Fig. 2 can 
be used as an approximate failure probability distribution for 
any transformer, if the distribution is used as a function of the 
transformer's apparent age (i.e. its health) rather than as a 
function of its real age. Hence, (9) links the three basic models 
introduced in the previous section: 𝐹𝐹 is given by the statistics-
based end-of-life model, and takes the apparent age as input. 
The apparent age is given by the health index, in which winding 
degradation is included. 

The future aging of the transformer is taken into account in 
(9) by assuming that the transformer ages as fast as its average 
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aging rate in the past, i.e. that it is exposed to the same stress 
level in the future as in the past. Hence 

 

 𝜏𝜏(𝑛𝑛) = 𝜏𝜏now +
𝜏𝜏now

𝑡𝑡now
𝑛𝑛 (10) 

 
where 𝑡𝑡now is the current calendar age of the transformer.  

Consequences of failure can for example be assessed in terms 
of economy, personal safety or environmental impact. This 
paper is limited to economic consequences. The cost of failure 
depends on the size, location, importance, etc. of the particular 
transformer, and includes costs for damages due to the failure, 
cost of energy not supplied or lost production, costs for 
purchase, installation and commissioning of a new transformer, 
cost for removal of the old transformer corrected for the residual 
value, etc. These costs are not detailed any further in this paper 
but must be assessed by the transformer owner. 

From the failure probability, the expected time to failure or 
remaining life 𝑅𝑅𝑅𝑅 can be calculated as  

 

 𝑅𝑅𝑅𝑅 = �(𝑛𝑛 − 1 2⁄ ) ∙ 𝐷𝐷𝑛𝑛

∞

𝑛𝑛=1

 (11) 

V. MAINTENANCE AND REPLACEMENT ANALYSIS 
The estimated winding degradation, health index and failure 

probability together provide a good basis for assessing whether 
the transformer needs maintenance or replacement and when it 
should be done. A technical-economic cost-benefit model is 
proposed here, enabling a systematic way to carry out such 
assessments. The model mainly focuses on replacement, but 
also oil regeneration and reinhibitation are discussed. The latter 
two measures are only relevant when certain parameters of the 
oil are bad. Furthermore, in this model it is assumed that oil 
regeneration and reinhibitation will be followed by a 
replacement of the transformer when the effect (lifetime) of the 
measure is over. This assumption is included to enable a 
reasonable comparison between these two measures and 
replacement of the transformer. The model can be used to 
estimate the optimal timing of measures. 

The benefit of maintenance and replacement is given in terms 
of the resulting improvement of the transformer condition. This 
reduces the probability of failure and may also give reduced 
operational and maintenance costs. In case of replacement, the 
new condition becomes as new. In case of oil regeneration, 
parameters 𝑗𝑗 = 10 to 14 in TABLE I become as-new, while for 
reinhibitation only the inhibitor content (𝑗𝑗 = 14) becomes as-
new. From this, the health index and thus the apparent age and 
failure probability after the maintenance or replacement is 
calculated using the models in the above sections. 

Maintenance or replacement may also change the aging rate, 
as given by (10). For oil regeneration and reinhibitation, the 
aging rate is assumed not to change, as these are measures with 
a limited effect. After a replacement, the aging rate of the 
transformer is assumed equal to the real aging. 

For measures not implemented today but planned to be 

implemented in a few years, the transformer condition at 
implementation is not known. This makes it difficult to predict 
the benefit of maintenance at this time. For regeneration and 
reinhibitation, the reduction of the apparent age is for simplicity 
assumed to be the same as if the measure was implemented 
today. Due to this simplification, the model should only be used 
for assessing postponing of measures a few years (e.g. up to 10 
years). 

The cost-benefit model calculates the present value of the net 
benefit of a measure, i.e. revenue minus costs, over a chosen 
number of years (e.g. 20 years). It is assumed that a measure 
will change the future costs, but not the future revenue, and 
therefore only costs are included in the analysis. The present 
value 𝐶𝐶𝑁𝑁 of costs over an analysis period of 𝑁𝑁 years including 
a measure that is being implemented in the year 𝑙𝑙 is given by 

 

 

𝐶𝐶𝑁𝑁 = �
𝐶𝐶𝑡𝑡𝑚𝑚,𝑛𝑛

(1 + 𝑟𝑟)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ �𝐷𝐷𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐶𝐶𝑓𝑓,𝑛𝑛

(1 + 𝑟𝑟)𝑛𝑛

+ �1 −�𝐷𝐷𝑛𝑛

𝑙𝑙−1

𝑛𝑛=1

�
𝐶𝐶𝑚𝑚/𝑟𝑟,𝑙𝑙

(1 + 𝑟𝑟)𝑙𝑙−1 , 

(12) 

 
where the first term represents operational and maintenance 
costs 𝐶𝐶𝑡𝑡𝑚𝑚,𝑛𝑛 in year 𝑛𝑛, the second term represents costs 𝐶𝐶𝑓𝑓,𝑛𝑛 
associated with a failure in year 𝑛𝑛, the third term represents 
costs 𝐶𝐶𝑚𝑚/𝑟𝑟,𝑙𝑙 associated with maintenance/replacement 
implemented in year 𝑙𝑙, and 𝑟𝑟 is the discount rate. For generator 
step-up transformers in power plants the failure cost 𝐶𝐶𝑓𝑓,𝑛𝑛 
includes lost revenue due to lost production. Notice that in both 
the second and third terms in (12), costs are calculated for each 
year by spreading them equally throughout the lifetime of the 
transformer or measure, respectively, and then summing up 
over the analysis period. Also, these terms are adjusted for the 
annual probability of failure 𝐷𝐷𝑛𝑛 given in the previous section. 
The profitability of a measure is finally calculated as the 
difference between the total costs in the analysis period with 
and without implementing the measure during the period. 

VI. EXAMPLE 
The proposed method has been implemented in a transformer 

asset management tool for Norwegian utilities. The usefulness 
of the method is illustrated by applying it to selected 
transformers for one of these utilities. Note that this example is 
provided for illustration only, as some of the input data were of 
low quality. 

The method has been tested on 18 substation transformers, 
listed with selected key data in TABLE II, including four 
transformers that were already preventively scrapped a few 
years ago. The results are shown in a risk plot for the 
transformers in Fig. 4. This illustrates that the model is well 
suited for comparing transformers in a population and for 
identifying high-risk transformers. In establishing Fig. 4, 
detailed cost data for the transformers could not be obtained. 
Therefore, a simple model has been utilized to obtain the cost 
of failure, for illustration purposes only. This model simply 
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estimates the cost of failure as the cost of energy not supplied 
to consumers plus the cost of buying a new transformer. Both 
are estimated based on the transformer rated power and voltage, 
combined with some confidential historic cost data from the 
utility. Note that some of the transformers in Fig. 4 have 
thermally upgraded insulation paper, and that the presented 
results therefore likely are conservative for these. 
 

TABLE II 
LIST OF SUBSTATION TRANSFORMERS ANALYZED IN THE EXAMPLE, WITH 

SELECTED KEY DATA 
No. Rated power 

(MVA) 
Cooling 
mode 

Age Paper 
type 

Status 

1 200 ONAF 11 Upgraded In operation 
2 200 OFAF 33 Upgraded In operation 
3 116 OFAF 58 Standard Scrapped 

2012 
4 200 ONAF 8 Upgraded In operation 
5 167 OFAF 54 Standard In operation 
6 80 OFAF 58 Standard Scrapped 

2010 
7 125 ONAN 49 Upgraded Scrapped 

2014 
8 300 ONAF 13 Upgraded In operation 
9 300 ONAF 6 Standard In operation 
10 300 ONAF 6 Standard In operation 
11 250 OFAF 37 Upgraded In operation 
12 250 OFAF 38 Upgraded In operation 
13 160 OFAF 35 Standard In operation 
14 116 - 57 Standard In operation 
15 160 OFAF 50 Upgraded In operation 
16 200 OFAF 36 Upgraded In operation 
17 200 OFAF 45 Upgraded In operation 
18 107 OFAF 54 Standard Scrapped 

2011 
 

 
Fig. 4.  Risk plot for selected transformers at a Norwegian utility. The markers 
are labelled with the transformer age 
 

There are considerable individual variations in Fig. 4. These 
may be due to differences in design, loading, maintenance etc., 
as well as age. There does not seem to be a general trend with 
an increasing failure probability with the transformer age. This 
illustrates that evaluating transformers for replacement simply 
based on age is not a wise approach. The poor condition of the 
transformers is due to both gassing and deteriorating oil 
condition. For two of the transformers, also relatively low DP-

values contribute. For the transformers that were already 
scrapped a few years ago, the illustrated results show the 
estimated risk if the transformers had still been kept in 
operation today. These transformers all place themselves to the 
right in the figure, indicating that they were relevant objects for 
scrapping consideration. Post-mortem investigations showed 
that two of these transformers had DP-values approaching 200 
(i.e. 250 and 230) when they were scrapped, while the other two 
had somewhat higher DP-values (i.e. 354 and 523). 

Results from a maintenance and replacement analysis for one 
of the transformers are shown in TABLE III. For this 
transformer, the expected time to failure or remaining life is 
estimated to 41 years. The model predicts that the most 
profitable course of action is to reinhibit the oil immediately, 
because this transformer had a low condition score for the 
inhibitor content. Replacing the transformer is not evaluated as 
profitable. Note however that this analysis is provided only for 
illustration, as actual cost data for the transformer was not 
available. It must also be remembered that the model does not 
take into account all positive effects of replacing the 
transformer. For example, reduced failure probabilities for 
other components than the active part are not taken into 
account, and consequences of e.g. fire or explosion have not 
been quantified as costs. Also, for substation transformers as 
analyzed here, rerouting via another transformer is often 
possible. The failure costs are expected to be higher for 
generator step-up transformers where failure can cause lost 
production. 

 
TABLE III 

MAINTENANCE AND REPLACEMENT ANALYSIS FOR TRANSFORMER 7 IN 
TABLE II, GIVING THE NET VALUE OF THE COST INCURRED DURING THE 

ANALYSIS PERIOD (20 YEARS) FOR RELEVANT IMPLEMENTED MEASURES. THE 
MEASURE EVALUATED AS MOST PROFITABLE IS BOLD FACED 

Measure Cost (1000 NOK) 
No measure 1074 
Regeneration, year 0 603 
Regeneration, year 5 742 
Regeneration, year 10 895 
Oil reinhibitation, year 0 330 
Oil reinhibitation, year 5 585 
Oil reinhibitation, year 10 811 
Replacement, year 0 12170 
Replacement, year 5 8079 
Replacement, year 10 5007 

VII. DISCUSSION  
A health index as proposed here is useful for ranking 

transformers, but it is important to clarify what type of ranking 
the health index is to be used for. The proposed method is 
designed to be used to support long-term transformer 
management, i.e. major maintenance measures and/or 
replacement, and not in day-to-day operations or short-term 
maintenance decisions. The proposed health index is first and 
foremost an index for prioritizing transformers for replacement. 
The absolute value of the health index should not be 
emphasized, rather it is the value of the index relative to the 
indices of other transformers that is of most interest. 

The method does not attempt to identify what the underlying 
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cause of a poor condition is. Before making final decisions for 
individual transformers, they should be analyzed in detail using 
additional investigations and/or measurements, as well as 
consultation with transformer experts. 

The availability of data varies a lot, and for some 
transformers it may be rather poor. This is to some extent 
handled by the method. Specifically, in the winding degradation 
model, if load and temperature data are not available for the 
whole lifetime, the known load and temperature data series are 
assumed applicable throughout the lifetime. For the health 
index model, missing data are simply omitted, i.e. they do not 
contribute to a reduction of the health from the initial 100%. Of 
course, missing data does affect the thrustworthiness of the 
results. Although not described here, the method also includes 
a simple assessment of the quality of the input data, i.e. to which 
extent all the desired input data is provided. 

It should be remembered that there is considerable 
uncertainty in the method. For example, the winding 
degradation model has large inherent uncertainties, including 
some conservative assumptions and simplifications. The 
grading and weighting of oil test data are necessarily somewhat 
subjective, although it is based on information from IEC 
standards. The method should therefore be further tested at 
utilities to gain more experience with it, and the weighting 
adjusted and benchmarked based on this testing.  

The method is presented here for illustration, with the 
understanding that the data basis for it should be further 
improved. The statistical data that the method is based on is 
very limited as of today. With the current data basis, the method 
cannot be expected to be generally applicable for all 
transformers in Norway. Hence, improvement of the statistical 
basis is important further work. If the method is to be used in 
another country, a relevant statistical basis should be 
established for that country. 

The method may be further developed. The condition model 
can be improved by utilizing national statistics for oil test 
parameters, in accordance with recommendations by IEC. 
There is not sufficient data available in Norway to do this today, 
but a national database with oil test data has newly been 
established and is being populated. Furthermore, this data may 
be useful for correlating condition data to failure modes, which 
can give a basis for improving the method to provide the health 
index based on an evaluation of failure modes, instead of 
directly from condition data. This will give a more physical 
basis for the health index. 

The scope of the method can be increased by including also 
other components than the active part. The most interesting 
components to include are bushings and tap changers, since 
these have significant failure frequencies. However, this 
requires that gradable condition data are measured and 
registered also for these components. 

The method in this paper does not differentiate between 
different types of transformers, except for the separation into 
standard and thermally upgraded insulation paper. This is due 
to the current small database of scrapped transformers on which 
the method is based. However, both construction, technology, 
geographic location (network / power station) as well as other 

factors can affect the condition and lifetime of transformers. 
The scrapping database under development and the newly 
established national oil test database will in the future provide 
a much better data basis for refining the method. 

VIII. CONCLUSION 
In conclusion, the presented method is a systematic approach 

to assess and rank the condition of power transformers. The 
method enables transformers to be compared, transformers 
requiring attention to be identified, and suggests the best course 
of action for maintenance or replacement. The calculated health 
index reflects the probability of major failure of the active part. 
However, these assessments are necessarily uncertain. 
Therefore, the transformers should not be assessed based on 
them only, but also on the underlying data, assumptions, models 
and uncertainties, as well as additional investigations as needed. 

The proposed method utilizes data commonly available in 
Norway today. Application of the method on selected 
transformers from a Norwegian utility shows its usefulness in 
identifying transformers in poor condition, and for follow-up 
and prioritization of transformers for maintenance or 
replacement. This enables the total potential lifetime of a 
transformer fleet to be better utilized. The method should be 
further tested at more utilities. The trustworthiness of the model 
may be further investigated by benchmarking it with the help of 
transformer experts, and by post-mortem analysis of scrapped 
transformers that can be compared with method predictions. 

IX. ACKNOWLEDGMENT 
The authors thank Lars Lundgaard, Thomas Welte, Eivind 

Solvang and Knut Liland for helpful discussions and comments. 

X. REFERENCES 
 
[1]  N. Dominelli, M. Lau, D. Olan and J. Newell, 

"Equipment health rating of power transformers," in 
Conf. record 2004 IEEE int. symp. elect. insul., 
Indianapolis, 2004.  

[2]  G. Anders, S. Otal and T. Hjartarson, "Deriving asset 
probabilities of failure: effect of condition and 
maintenance levels," in IEEE power eng. soc. gen. 
meeting, Montreal, 2006.  

[3]  A. Jahromi, R. Piercy, S. Cress, J. Service and W. Fan, 
"An approach to power transformer asset management 
using health index," IEEE elect. insul. mag., vol. 25, no. 
2, pp. 20-34, 2009.  

[4]  P. Jarman, R. Hooton, L. Walker, Q. Zhong, T. Ishak 
and Z. Wang, "Transformer life prediction using data 
from units removed from service and thermal 
modeling," in CIGRE session, Paris, 2010.  

[5]  M. Vermeer and J. Wetze, "Asset management decision 
support modelling, using a health index, for 
maintenance and replacement planning," in CIGRE SC 
A2 & C4 joint colloq., Zurich, 2013.  

Authorized licensed use limited to: University of Wollongong. Downloaded on May 30,2020 at 11:29:30 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.2972976, IEEE
Transactions on Power Delivery

TPWRD-01197-2019 
 

9 

[6]  P. Picher, J.-F. Boudreau, A. Manga, C. Rajotte, C. 
Tardif, G. Bizier, N. Di Gaetano, D. Garon, B. Girard, 
J.-F. Hamel and S. Prouix, "Use of health index and 
reliability data for transformer condition assessment and 
fleet ranking," in CIGRE session, Paris, 2014.  

[7]  D. Zhou, Z. Wang and C. Li, "Data requisites for 
transformer statistical lifetime modelling - Part I: Aging-
related failures," IEEE trans. power del., vol. 28, no. 3, 
pp. 1750-1757, 2013.  

[8]  N. Abu Bakar and A. Abu-Siada, "Fuzzy logic approach 
for transformer remnant life prediction and asset 
management decision," IEEE trans. dielect. elect. insul., 
vol. 23, no. 5, pp. 3199-3208, 2016.  

[9]  K. Benhmed, A. Mooman, A. Younes, K. Shaban and A. 
El-Hag, "Feature selection for effective health index 
diagnoses of power transformers," IEEE trans. power 
del., vol. 33, no. 6, pp. 3223-3226, 2018.  

[10]  A. Alqudsi and A. El-Hag, "Assessing the power 
transformer insulation health condition using a feature-
reduced predictor mode," IEEE trans. dielect. elect. 
insul., vol. 25, no. 3, pp. 853-862, 2018.  

[11]  A. E. B. Abu-Elanien, M. M. A. Salama and M. 
Ibrahim, "Calculation of a health index for oil-immersed 
transformers rated under 69 kV using fuzzy logic," IEEE 
trans. power del., vol. 27, no. 4, pp. 2029-2036, 2012.  

[12]  A. D. Ashkezari, H. Ma, T. K. Saha and C. Ekanayake, 
"Application of fuzzy support vector machine for 
determining the health index of the insulation system of 
in-service power transformers," IEEE trans. dielect. 
elect. insul., vol. 20, no. 3, pp. 965-973, 2013.  

[13]  M. S. Yahaya, N. Azis, M. Z. A. Ab Kadir, J. Jasni, M. 
H. Hairi and M. A. Talib, "Estimation of transformers 
health index based on the Markov chain," Energies, vol. 
10, no. 11, p. 1824, 2017.  

[14]  S. Li, H. Ma, T. Saha and G. Wu, "Bayesian information 
fusion for probabilistic health index of power 
transformer," IET gen. trans. dist., vol. 12, no. 2, pp. 
279-287, 2018.  

[15]  M. M. Islam, G. Lee, S. N. Hettiwatte and K. Williams, 
"Calculating a health index for power transformers using 
a subsystem-based GRNN approach," IEEE trans. 
power del., vol. 33, no. 4, pp. 1903-1912, 2018.  

[16]  E. Kadim, N. Azis, J. Jasni, S. Ahmad and M. Talib, 
"Transformers health index assessment based on neural-
fuzzy network," Energies, vol. 11, no. 4, p. 710, 2018.  

[17]  M. Dong, H. Zheng, Y. Zhang, K. Shi, S. Yao, X. Kou, 
G. Ding and L. Guo, "A novel maintenance decision 
making model of power transformers based on 
reliability and economy assessment," IEEE access, vol. 
7, pp. 28778-28790, 2019.  

[18]  Transformer reliability survey, CIGRE technical 
brochure 642, 2015.  

[19]  A. Ekenstam, "The behaviour of cellulose in mineral 
acid solutions: Kinetic study of the decomposition of 
cellulose in acid solutions," Berichte der deutschen 

chemischen Gesellschaft, vol. 69, no. 3, pp. 553-559, 
1936.  

[20]  L. Lundgaard, W. Hansen, D. Linhjell and T. J. Painter, 
"Aging of oil-impregnated paper in power 
transformers," IEEE trans. power del., vol. 19, no. 1, pp. 
230-239, 2004.  

[21]  P. Calvini and A. Gorassini, "On the rate of paper 
degradation: Lessons from the past," Restaurator, vol. 
27, no. 4, pp. 275-290, 2006.  

[22]  P. Calvini, A. Gorassini and A. L. Merlani, "On the 
kinetics of cellulose degradation: Looking beyond the 
pseudo-zero order rate equation," Cellulose, vol. 15, no. 
2, pp. 193-203, 2007.  

[23]  Power transformers - Part 7: Loading guide for 
mineral-oil-immersed power transformers, IEC 60076-
7, 2018.  

[24]  Mineral insulating oils in electrical equipment - 
supervision and maintenance guidance, IEC 60422, 
2013.  

[25]  DGA in non-mineral oils and load tap changers and 
improved DGA diagnosis criteria, CIGRE technical 
brochure 443, 2010.  

[26]  Life management techniques for power transformers, 
CIGRE technical brochure 227, 2003.  

 
 

Authorized licensed use limited to: University of Wollongong. Downloaded on May 30,2020 at 11:29:30 UTC from IEEE Xplore.  Restrictions apply. 


