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A B S T R A C T   

Energy resource scheduling is one of the major problems in power systems. This issue has become even more 
significant as renewable sources with intermittent power output are becoming more and more prevalent. Due to 
their low environmental impact and low operating costs, renewable energy sources (RESs) have attracted in-
terest. The excess power generated by such generation methods may be a negative that affects power systems, 
hence issues relating to such systems should be properly handled. The optimal operation of a microgrid (MG) 
with several distributed generation (DG) units and uncertain behavior of RESs is suggested in this research using 
a stochastic optimization approach. So, for an MG fitted with a solar photovoltaic (PV) unit, this research pro-
poses a day-ahead scheduling paradigm. In this regard, the effects of various climatic circumstances on the power 
production of the PV unit and the optimal scheduling of the MG have been examined in this research. In order to 
achieve this, statistics on solar irradiance were extracted from four distinct days from each of the four seasons. 
The single-objective optimization framework used to design the scheduling problem states that the objective 
function should be to minimize the total operating cost across the scheduling period. The aforementioned day- 
ahead scheduling problem can be solved by the "hybrid whale optimization algorithm and pattern search 
(HWOA-PS)” optimization algorithm, while both renewable and nonrenewable generating units, as well as an 
energy storage system are present. In order to confirm the higher performance of the recommended approach, a 
thorough comparison between the Hybrid WOA-PS algorithm and a few well-known optimization algorithms has 
also been conducted.   

1. Introduction 

Renewable energy sources (RESs) have the capability to offer energy 
systems with net-zero carbon energy addressing the worldwide concerns 
surrounding climate change [1,2]. RESs mainly comprise wind energy, 
solar energy, hydro, geothermal, and hydrogen energy, among others. In 
this regard, PV systems, WTs, and FCs are utilized as efficient energy 
harvesting and delivery technologies. Microgrids (MGs) have already 
been implemented and operated in the power system’s low-voltage (LV) 
sector [3,4], addressing the question of how to integrate these tech-
nologies into the power system. An MG largely consists of renewable 
energies, electric vehicles as mobile storage systems, and active loads, 
besides stationary storage devices [5]. It can provide the required ser-
vices while tied/untied to/from the utility grid [6]. This issue has 

become a critical issue in power systems [7] because the quality of 
service provided by the MG mainly depends upon the properly sched-
uling of resources. In general, the mentioned problem is constrained by 
the operational limitations of the generating units and input un-
certainties needing efficient characterization tools.The volatile WT and 
PV generation, dynamic load demand, and the ambient temperature 
would be accounted for as the important uncertain parameters impact-
ing the optimal operation of MGs. Accordingly, an efficacious tool would 
be needed for coping with such severe uncertainties. Intermittency of 
renewable power generation would entail an extra operating cost.  The 
energy, harvested by PV panels can be utilized for various purposes, 
such as district heating and feeding load demands [8]. 
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1.1. Literature review 

In Ref. [9], a model for the bidding strategy of large customers 
equipped with RESs, microturbines (MTs), and storage devices is pre-
sented. Uncertainties in RES generation, load demand, and market price 
are all acknowledged as having significant implications for operational 
planning. In Ref. [10], a for-profit business plan for PV and electrical 
energy storage (EES) systems in the private residential sector was 
developed to compete in the Italian energy market. In Ref. [11], a 
trustworthy energy management system for concurrent PV, FC, and WT 
operation is proposed. Using a diesel generator, a WT, and solar panels 
together is one solution to the integration challenge of DGs discussed in 
Ref. [12], with the goal of keeping costs down. 

Many research works have thus far been devoted to developing en-
ergy management tools for MGs using metaheuristics algorithms and 
multiobjective optimization frameworks. Such techniques have well 
been established in solving complex optimization problems such as the 
day-ahead MG’s operation due to their local and global search capa-
bilities. In this regard, Refs. [13,14] have used a technical and economic 
analysis of how distributed energy resources (DERs) impact the MG’s 
operation and system losses, intended to minimize the system cost and 
environmental emissions. An approach using the fuzzy self-adaptive 
PSO has been deployed in [15] to tackle the economic-environmental 
scheduling of DERs within an MG. The adaptive enhanced PSO has 
been employed in [16] for the resource scheduling of an MG with high 
renewable power generation and battery energy storage system, besides 
a fuel cell (FC) unit and a microturbine. The combined heat and power 
scheduling problem has been addressed in [17] within a two-objective 
optimization model aimed at concurrently optimizing the system’s 
operating cost and emissions where there are thermal units and storage 
systems besides demand response programs (DRPs). An artificial 
intelligence-based energy management system has been introduced in 
[18] for concurrently minimizing the total operating cost and emissions 
of an MG. Ref. [19] employed the genetic algorithm (GA) to tackle an 
islanded MG sizing problem through a multiobjective optimization 
model seeking to minimize emissions and lifecycle cost while maxi-
mizing renewable power integration. A short-term scheduling model has 
been developed in [20] to optimally address the day-ahead operation 
problem of an MG in the presence of high renewable power generation, a 
battery, and also DRPs and it has been concluded that the emissions can 
be significantly mitigated using the presented model. 

A stochastic mixed-integer linear programming (MILP) framework is 
suggested in [21] to optimally design and plan an MG including com-
bined heat and power (CHP) units using the Monte-Carlo simulation 
technique. A model on the basis of a hetero-functional graph theory 

rooted in the axiomatic design is used in [22] for presenting an effective 
MG operation that is dynamic. A MILP-based model has been proposed 
in [23] for the optimal operation of an MG to minimize the operating 
cost. The MG comprises different generation technologies from micro-
turbines (MTs) and fuel cells (FCs) to wind turbines (WTs) and solar PV 
panels. In this respect, the studied MG is separated into multiple areas 
and the MG can inject power into the upstream network. An MG 
intended to serve residential loads is presented in [24], where an 
optimal energy management system has been proposed to schedule the 
generating units, including combined cooling, heat and power (CCHP), 
PEVs, PV panels, and storage systems of battery type. The proposed 
problem is based on the stochastic scenario-based approach and the 
uncertain parameters have been characterized using the probability 
distribution functions (PDFs). The normal PDF has been used for the 
load demand, while for the electrical and heat load demand the Weibull 
PDF has been utilized. Solar irradiance has also been modeled using the 
Beta PDF. As the number of generated scenarios is too high, a scenario 
reduction technique is used. A multi-layer method is proposed in [25] 
for scheduling a smart distribution network (SDN), while it is comprised 
of multiple MGs (MMGs). 

Power losses must be reduced, and efficient placement of EES sys-
tems in distribution networks has been discussed previously [26]. In 
Ref. [27], a comprehensive energy management framework for an iso-
lated MG was designed. This framework takes into account the many 
different types of distributed energy resources (DERs) that might be 
present. Ref. [27] provides more information about how MGs might be 
used effectively when on the island mode. In Ref. [28], an optimization 
model was developed with the goal of minimizing the total cost while to 
manage the optimal operation of MGs equipped with DERs, a linear 
programming (LP) model is used in Ref. [29]. The planning problem of 
MGs with DERs is addressed with an MILP approach in Ref. [30]. For the 
coordinated day-ahead operation of interconnected MGs, Ref. [31] 
outlined a hierarchical control technique. It is important to note, how-
ever, that the PSO method is capable of being used to predict the pa-
rameters of the solar PV generation system, as one of the uncertainty 
sources in the day-ahead operating problem [32]. In order to specify the 
operating points of a CHP system and other generation assets in an MG, a 
bi-objective optimization model has been proposed in [33] aimed at 
simultaneously reducing operating costs and environmental emissions. 
With similar objectives, Ref. [34] presents an intelligent energy man-
agement paradigm for an MG outfitted with RESs with parameter un-
certainty. In Ref. [35], an LP technique is used to examine how DR 
programs could be used in the day-ahead management of an MG. The 
self-scheduling mechanism depicted in Ref. [36] was implemented by an 
MG in Taiwan to maximize profits while mitigating emissions. In 

Nomenclature 

RES renewable energy sources 
MGs microgrids 
PV photovoltaic 
HWO hybrid whale optimization 
PS pattern search 
WTs wind turbines 
FCs fuel cells 
LV low-voltage 
MTs microturbines 
EES electrical energy storage 
DERs fistributed energy resources 
PSO particle swarm optimization 
DNI direct normal irradiance 
DR demand response 
SOC state of charge 

PCC point of common connection 
PDF probability distribution function 
GA genetic algorithm 
ICA differential evolution 
SFLA shuffled frog-leaping algorithm 
Vpv output voltage 
Ipv output current 
NREL National Renewable Energy Laboratory 
Iph photocurrent 
Rsh shunt resistance 
n ideality factor 
Rs series resistance 
IPVO saturation current 
BGi bid of DG 
Bsj bid of BESS 
Ssj start-up cost 
SGi shutdown cost  
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Ref. [37], a chaotic quantum genetic algorithm (CQGA) was used to 
solve the MGs-DGs resourced economic-environmental power dispatch 
problem. The Whale optimization algorithm is another optimization 
algorithm, inspired by nature, i.e. humpback whales’ hunting technique, 
the so-called bubble-net feeding approach. In this respect, the whales 
produce bubbles and surround the prey by these bubbles through a spiral 
movement and move toward the surface [35]. A combinatorial optimi-
zation algorithm based on the squirrel search algorithm and WOA, 
known as “SSAWO” has been utilized in Ref. [36] to tackle the power 
flow management of a grid-connected hybrid generation system. The 
WOA ensures locating the online control signals by employing the par-
allel execution for the variations of the active and reactive power. An 
optimal battery EES (BEES) system allocation technique has been 
developed in Ref. [37] based on the single-objective optimization 
model, aimed at optimizing power losses. A multi-objective WOA has 
been used for the allocation of charging stations for plug-in electric 
vehicles together with PV and BEES systems in distribution networks 
[38]. 

As was indicated before, the optimal operation of MGs is complicated 
by a number of sources of uncertainty, including load demand and 
variable power supply from RESs. Stochastic programming is an effec-
tive method for this purpose. In particular, household installations of 
solar photovoltaic panels (PVs) have an impact on the efficiency of 
distribution networks and, in particular, on the performance of MGs. 
Consequently, applying various PV power generation realizations and 
evaluating their effects on the ultimate operating strategy can be 
accomplished with scenario-based optimization. For this reason, this 
work models various levels of solar irradiation while accounting for 
seasonal changes in weather patterns. The investigated MG consists of a 
WT, solar panels, an FC, a battery energy storage system, and an MT. 

The current paper delves into the question of how best to plan for the 
next day’s use of MG, involving a solar PV panel and other DERs. The 
suggested framework accounts for seasonal variations in weather by 
simulating conditions on a single day in each season. The best possible 

resource schedule and, by extension, the lowest possible operating cost, 
could then be calculated. Stochastic programming is used here with the 
BEES system’s state-of-charge set to zero while assets can be turned on 
and off at will. It is also worth noting that the RESs would be used at 
their full potential and that the issue of load demand uncertainty is taken 
into consideration. The "HWOA-PS" (hybrid WOA and PS) is then used to 
tackle the resulting optimization problem. Note that the WOA and PS 
would conduct the global search and the local search, respectively. The 
main contributions of the papers are as below:  

• Modeling and using the effects of seasonal weather conditions.  
• Proposing an effective day-ahead resource scheduling framework for 

a grid-connected MG.  
• Using real data to assess the developed model for the PV system. 

It is also worth mentioning that the remainder of the paper is cate-
gorized as follows, where the next section includes the model, presented 
for the PV system. The third section proposes the energy scheduling 
model, while the descriptions of the stochastic programming and the 
applied HWOA-PS would be available in Sections 4 and 5, respectively. 
The results, derived by simulating the day-ahead operation problem are 

Fig. 1. The circuit representation of the proposed photocell model.  

Fig. 2. A typical discretized PDF.  

Fig. 3. Humpback whale and its bubble-net hunting technique.  
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given in Section 6 and conclusion remarks have been represented in 
Section 7. 

2. PV model 

PV panel is formed by several cells that are connected to each other. 
The interconnection would be in parallel and series to achieve the 
desired values of current and voltage. Although there are different 
structures for the PV panel, a single-diode model which is of high ac-
curacy is employed in this paper to prevent any more complexities [39]. 
As may be seen in Fig. 1, this setup is depicted schematically for a single 
photocell. The PV system’s I-V equation can be written as (1). Adding 
series and parallel connections, respectively, can produce the necessary 
output voltage and current. Many PV modules are wired together to 
form the whole panel [40]. 

VPV =
nKT

q
ln
(

Iph

IPV
+ 1

)

(1)  

IPV = Iph − IPV0

[

exp
(

q(VPV + IPV Rs)

nKT
− 1

)]

−
VPV + RsIPV

Rsh
(2) 

Where Rs and Rsh are the series and shunt resistances used in the 
model, respectively. Moreover, the ideality factor of the p-n junction 
diode is represented by the symbol n, and its photocurrent, Iph, is 
measured in Ampere. In addition, IPVO, or reserve saturation current, is 
calculated in Amperes and K, or the Boltzmann constant is displayed as 
1.38×1023 J/K. In addition, q, the electronic charge, is set to be 
1.602×1019 C. The model is next subjected to the photocell’s temper-
ature, denoted as T, in Kelvin. If the fill factor, current, and voltage were 
all increased to their maximum values, the system’s nominal capacity 
would be available at the output. Maximizing the fill factor requires 
setting the series resistance to zero and the shunt resistance to infinity, 
respectively. 

3. Objective functions 

As previously mentioned, an MG is equipped with DERs. The oper-
ation of MGs is exposed to several uncertainties, mainly due to volatile 
renewable power generation, load demand, as well as market price. 
These uncertainties impose additional costs on the system and in some 
cases, cause power shortage when supplying the local load demand. One 
possible and economical solution is to connect the MG to the upstream 

Fig. 4. Flowchart of the HWOA-PS.  
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system to transact power when necessary. By formulation, the total cost 
can be written as below [32,17]:  

where PGrid (t) is the active power that is purchased from or sold to the 
utility at time t and BGi (t) is the utility’s bid at t. SGi and Ssj are the 
start-up and shut-down costs, respectively. Active powers of units and 
their associated states are included in the vector of state variables known 
as X, which is defined as follows [14]: 

X =
[
Pg,Ug

]

1×2nT ;Pg = [PG,Ps]; n = Ng + Ns + 1 (4)  

where Pg and Ng are the active power and total number of all DG units, 

respectively. Ns is the total number of storage units, T is the total number 
of hours in the time period under consideration, n is the number of state 
variables. Additionally, PGi(t) and Psj(t), respectively, demonstrate the 
active power of DG units and energy storage systems. These variables fit 
the following descriptions: 

PG =
[
PG,1,PG,2, ...,PG,Ng

]
; Ps =

[
Ps,1,Ps,2, ...,Ps,Ns

]

PG,i =
[
PG,1(1),PG,2(2), ...,PG,i(T)

]
; i = 1, 2, ...,Ng+1

Ps,j =
[
Ps,j(1),Ps,j(2), ...,Ps,j(T)

]
; i = 1, 2, ...,Ns

(5)  

3.1. Power balance 

The fundamental requirement for managing a power system’s 
operation is to meet the load with the available generations. where NL is 
the total number of load levels and PL,l is the magnitude of the kth load. 

∑Ng

i=1
PG,i(t) +

∑Ns

i=1
Ps,j(t) + PGrid(t) =

∑NL

l=1
PL,l(t) (6)  

3.2. Generation limitations 

The permissible operating range must be met by the power produced 
by the generation units, the power exchanged with the upstream grid, 
and the power of the BEES system. 

PGi,min(t) ≤ PGi(t) ≤ PGi,max(t)
Pgrid,min(t) ≤ PGrid(t) ≤ Pgrid,max(t)
Psj,min(t) ≤ Psj(t) ≤ Psj,max(t)

(7) 

Fig. 5. The microgrid test system.  

Table 1 
Characteristics of the studied PV panel (MF165EB3 by Mitsubishi Electric).  

Isc Voc Vmpp Immp ns 

7.36A 30.4 V 24.2 V 6.83 A 50  

Table 2 
Price of DGs [7, 8].   

Bat PV WT Bat FC MT 

PMin kw -30 0 0 -30 3 6 
Bid €ct/kwh 0.38 2.584 1.073 0.38 0.294 0.457 
P Max kW 30 25 15 30 30 30 
SUD/SDC €ct – – – – 1.65 0.96  

Min f (X) =
∑T

t=1
Costt

=
∑T

t=1

{
∑Ng

i=1
[ui(t)pGi(t)BGi(t) + SGi|ui(t) − ui(t − 1)|]

}

+
∑Ns

j=1

[
uj(t)psj(t)Bsj(t) + Ssj

⃒
⃒uj(t) − uj(t − 1)

⃒
⃒
]
+

pGrid(t)BGrid(t)uj(t)

(3)   
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where the minimum active powers of the ith DG, the jth storage, and the 
utility at time t are PG,min(t), Ps,min(t), and Pgrid,min(t), respectively. 
PG,max(t), Ps,max(t), and Pgrid,max(t) are the maximum power outputs of 
the associated units at hour t, respectively. 

The above constraints are checked at every iteration of the solution 
procedure and if any violation occurs for the value of the variable, in 
case it is more than the maximum value, its value is assigned to the 
problem as its maximum amount. On the contrary, if the value of the 
variable is lower than the minimum permitted limit, its value is assigned 
to the problem as its minimum limit. 

3.3. Energy storage limit 

The following equation and restriction can be written as a result of 
the limitation on the charge and discharge rate of storage devices during 
each time interval: 

Wess(t) = Wess(t − 1) + ηchargeΔt −
1

ηdischarge
PdischargeΔt (8)  

⎧
⎨

⎩

Wess,min ≤ Wess(t) ≤ Wess,max
Pcharge(t) ≤ Pcharge,max
Pdischarge(t) ≤ Pdischarge,max

(9) 

Where Pcharge and Pdischarge are the allowed rates of charge and 
discharge over a specific time Δt, Wess,t and Wess,t − 1 are the amounts of 
energy storage of the battery at time slot t and time slot t − 1, respec-
tively. Moreover, the efficiencies in the charging and discharging modes 
are denoted by ηcharge and ηdischarge, respectively. The battery energy 
storage limits are Wess,min and Wess,max while the maximum rates of 
charge or discharge are Pcharge,max and Pdischarge,max for each interval of 
time Δt. 

Fig. 6. Market price.  

Table 4 
Solar irradiance profile.  

Hour GHI(W/m2) DNI(W/m2)  
HS CS HC CC HC CS HC CC 

1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 
6 32 0 5 0 166 0 2 0 
7 172 0 71 0 624 0 16 0 
8 388 67 172 12 802 548 27 0 
9 608 251 340 73 893 882 81 1 
10 805 434 381 134 949 979 51 0 
11 959 566 480 187 982 1008 69 2 
12 1049 650 405 221 992 1032 12 2 
13 1080 671 367 237 995 1027 9 0 
14 1061 624 426 196 1003 1027 15 1 
15 960 523 329 146 982 1012 5 1 
16 807 357 225 91 950 925 2 1 
17 617 165 152 22 906 774 1 0 
18 397 34 88 0 821 226 1 0 
19 175 0 24 0 636 0 1 0 
20 34 0 1 0 175 0 1 0 
21 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0  

Table 3 
The forecasted WT.  

Hour WT (kW) 

1 1.785 
2 1.785 
3 1.785 
4 1.785 
5 1.785 
6 0.9140 
7 1.785 
8 1.308 
9 1.785 
10 3.085 
11 8.772 
12 10.413 
13 3.923 
14 2.377 
15 1.785 
16 1.302 
17 1.785 
18 1.785 
19 1.302 
20 1.785 
21 1.302 
22 1.302 
23 0.9140 
24 0.6120  
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4. Uncertainties based on scenario generation 

A number of variables, including load demand, renewable power 
output, and market price, are known to cause fluctuations in the solution 
to the problem. For this reason, this article uses a scenario-based sto-
chastic optimization method [41] to effectively define the unknown 
parameters in the context of a day-ahead operating problem. Here, the 
roulette wheel is used to generate the necessary number of scenarios for 
each parameter’s uncertainty level in the range [0, 1]. Similarly, the PDF 
of the unknown parameter is discretized, and the probability of each 
possible value is calculated. The PDF has been discretized across seven 
intervals. Fig. 2 is a commonly encountered discretized PDF. 

5. Hybrid WOA-PS algorithm 

The pattern search (PS) method has already been introduced as a 

derivative-free technique with straightforward implementation and 
high efficiency. This algorithm utilizes a well-designed operator to 
improve the global and local search capabilities. The points, used by this 
method can either approach the best point or not. The PS algorithm 
starts with using a set of points, named “mesh”, around the initial points, 
generated by the WOA. The mesh is generated by adding the current 
points to a scalar multiple of a set of vectors, named “pattern”. An initial 
point with a more desired value of objective would turn into the initial 
point in the subsequent iteration. After that, the PS algorithm is utilized 
for fine-tuning the most desired solution, obtained from the WOA. The 
values, initially derived from the WOA would be utilized for the 
initialization of the PS. 

5.1. The whale algorithm 

The WOA was first developed by Mirjalili and Andrew Lewis in the 
year 2016, inspired by the hunting technique, used by the humpback 
whales [35,36,42]. This type of whale goes in-depth of around 12 m and 
through a spiral movement toward the surface, producing bubbles of 
different sizes. These bubbles encompass the prey, close to the surface 
and form a concentration of prey. After that, by opening up the mouth, 
the humpback whale eats the food. In this regard, the WOA is based on 
three principles by mimicking the spiral bubble net mechanism, used by 
the whale. The first one is the spiral movement technique, the second 
one is random hunting, and the third one is the encompassment. The net 
of bubbles, produced by the whale to encompass the prey is illustrated in 
Fig. 3. This method is mathematically modeled in the subsequent 
sub-sections. 

5.1.1. Encircling prey 
The humpback whales are capable of remotely locating the prey and 

Fig. 7. Power output for different seasons.  

Table 6 
Comparative results (Hot sunny day).  

Algorithm Best Worst Average Std 

GA 359.6832 394.7913 386.3245 18.4458 
PSO 358.0602 391.4875 382.1487 17.0214 
DE 357.0241 390.1784 380.2478 16.0214 
ICA 355.3221 388.9643 378.1178 14.9514 
SFLA 353.1282 387.3317 .376.9514 14.0741 
Hybrid WOA-PS algorithm 351.1964 385.1351 375.7415 12.2241  

Table 5 
Solar irradiance profile.  

Hour Diff (W/m2) T ( ◦C)  
HS CS HC CC HC CS HC CC 

1 0 0 0 0 – – – – 
2 0 0 0 0 – – – – 
3 0 0 0 0 – – – – 
4 0 0 0 0 – – – – 
5 0 0 0 0 – – – – 
6 15 0 5 0 24.4 – 27.8 – 
7 35 0 68 0 25.6 – 28.9 – 
8 53 12 162 12 27.8 -18 30 0 
9 70 22 294 73 31.7 -10 31.7 0 
10 84 31 343 134 33.9 -1.7 31.7 0 
11 93 38 419 187 35 -0.6 33.3 0 
12 98 42 393 220 36 1.7 32.8 0 
13 101 49 358 237 37.2 2.2 32.2 0 
14 99 41 411 196 38.3 3.3 32.2 0 
15 93 35 325 145 38.9 1.7 32.8 0 
16 84 31 223 91 39.4 1.1 32.2 − 6 
17 71 20 151 22 39.4 − 3.9 32.2 − 6 
18 53 9 88 0 38.9 – 31.1 – 
19 35 0 24 0 38.3 – 30.6 – 
20 15 0 1 0 36.1 – 29.4 – 
21 0 0 0 0 – – 28.9 – 
22 0 0 0 0 – – – – 
23 0 0 0 0 – – – – 
24 0 0 0 0 – – – –  
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encompassing them to hunt. The WOA supposes that the optimal loca-
tion in the present population is the prey. Then all whales encompass the 
prey and the location is modified by utilizing relationships (10) and 
(11), in which the iteration is shown by t, and the vectors of coefficients 
are shown by A and C and stated as (12) and (13), respectively. It should 
be noticed that the most desired position within the present population 
is denoted by X*(t). 

D = |CX∗(t) − X(t)| (10)  

X(t+ 1) = Xrand − A × D (11)  

A = 2ar1 − a (12)  

C = 2r2 (13) 

Where, the random values r1 and r2 should be within the interval [0 
1]. Besides, α reduces from 2 to zero, while the number of iterations is 
shown by Tmax. 

5.1.2. Spiral bubble-net feeding maneuver 
By using Eq. (14), the spiral movement of the whale toward the 

optimal member is modeled. 

X(t+ 1) = X ∗ (t) + Dpeblcos(2πl) (14) 

It is noted that the distance between the optimal member, shown by 
X, prior to the update and the optimal location, Xbest, is determined by 
Dp = |X*(t) − X(t)|. Furthermore, b shows a constant, modeling the 
spiral movement and l indicates a random value that falls within the 
interval [− 1 1]. The position of every individual whale is specified by 
relationship (14). 

5.1.3. Searching for prey 
The hunting and searching process is carried out in a random way 

based on the location of the whale. The location of each whale is updated 
by using the following equations in the WOA, where the randomly 
chosen vector of whale positions is denoted by Xrand. 

D = CXrand − X(t) (15) 

Fig. 8. (a) and (b). Hourly dispatch results, reported by the HWOA-PS algorithm (Hot sunny day); (c) Battery’s charging/discharging; (d) Mean simulation time.  
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X(t+ 1) = Xrand − A × D (16)  

5.2. Pattern search algorithm (PS) 

5.2.1. Overview 
The PS algorithm is classified into evolutionary ones and it has thus 

far been applied to solve a wide range of optimization problems [43,44], 
with proven efficiency and effectiveness, once combined with other al-
gorithms. The present paper employs this algorithm for the local search 
process, and jointly with the WOA. 

5.2.2. Search mechanism 
The procedure, described below shows the structure of the search 

technique [43]. 

Fig. 8. (continued). 

Table 7 
Comparative results (Cold sunny day).  

Algorithm Best Worst Average Std 

GA 294.6581 371.3715 338.212 40.1542 
PSO 291.7038 366.7519 334.215 32.1232 
DE 290.0982 364.1754 334.0136 30.6548 
ICA 288.0325 363.0451 330.9784 29.8541 
SFLA 287.1478 362.9473 328.7496 28.3349 
Hybrid WOA-PS algorithm 284.2851 360.1147 325.334 27.5147  
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1 Firstly, a set of points, named mesh is generated around the initial 
point, indicated by X0. The vectors of direction are also [1 0], [0 1], 
[− 1 0], [0 − 1].  

2 The mesh is constructed when the current point is added to a scalar 
multiple of a set of vectors, named “pattern”. By using the PS algo-
rithm, the vectors of direction are added to the initial point X0 and 
these mesh. By assessing every point in the mesh with respect to the 
value of the objective function, the current point is used as the new 
point for the subsequent generation, provided that the value of the 
objective function is enhanced.  

3 The termination conditions for this approach are as below: 

3.1. The size of mesh becomes smaller than the direction accuracy. 
3.2. Achieving the maximum number of iterations. 

The proposed method is demonstrated in Fig. 4. 

6. Results 

The MG, studied in this paper is equipped with MT, a BEES system, a 
PV, and a WT, besides an FC. Furthermore, as Fig. 5 depicts, the load 
demand comprises three sectors, commercial, industrial, and residential 
loads [28,14]. The period of scheduling is 24 h on an hourly basis and 
the assumptions of the problem are as follows: firstly, only the real 
power generation of assets is considered; secondly, power transaction is 
allowed between the MG and the upstream network. Moreover, the 
unknown parameters, represented in Table 1 have been estimated using 
the Gauss-Seidel approach. The total load demand is 80 kW. 

The techno-economic data of DGs and upstream grid are represented 
in Table 2. The cost of using WT and PV panels is significantly lower than 
other units, which turns them into appropriate options to supply the load 
demand. Also, the hourly forecasts of power outputs of WT and market 
price are indicated in Table 3 and Fig 6 respectively. 

Fig. 9. (a) and (b). Hourly dispatch results, reported by the HWOA-PS algorithm (Cold sunny day); (c) Battery’s charging/discharging; (d) Mean simulation time.  
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Instead of using data from only one day, as has been done in other 
published works, this research analyzes the effects of seasonal weather 
conditions on PV power generation and day-ahead scheduling by using 
data from four days spread over the year. While it is assumed that 
temperature does not change throughout the year, the effects of different 
weather conditions have been analyzed and applied to the problem by 
making use of actual data from the NREL (National Renewable Energy 
Laboratory) [45]. Accordingly, the days are categorized into four 
groups: cold sunny, cold cloudy, hot sunny, and hot cloudy. Tables 4 and 

5 represent the solar irradiance profile for these four days, where GHI 
stands for the global horizontal irradiance, stated as the sum of 
ground-reflected irradiation, direct normal irradiance (DNI), and diffuse 
horizontal irradiation (Diff). Diff is defined as the irradiation compo-
nents that clouds or any other objects transmit. DNI shows the directed 
sunlight. It should be noted that the amount of irradiance, reflected from 
the ground is significantly lower than other items and it can be ignored 
in the calculations. 

It is noteworthy that contrary to the research studies, carried out 
before, considering only one day of the year for characterizing the PV 
power generation, this paper presents a comprehensive simulation by 
modeling the seasonal weather conditions. Accordingly, the PV power 
generation for these four days (hot-sunny (HS), cold-sunny (CS), hot- 
cloudy (HC), and cold-cloudy (CC)) have been obtained and depicted 
in Fig 7. The parameter settings of HWOA-PS as represented in 
Appendix A. 

Fig. 9. (continued). 

Table 8 
Comparative results (Hot cloudy day).  

Algorithm Best Worst Average Std 

GA 263.2377 299.3541 281.3643 16.874 
PSO 261.6141 294.1289 279.6643 15.524 
DE 261.0874 293.8163 276.1278 15.0650 
ICA 258.9579 293.0745 275.2861 14.9572 
SFLA 258.0517 292.3372 274.1080 13.0874 
Hybrid WOA-PS algorithm 256.7912 291.6357 273.1782 12.661  
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6.1. Case 1 

The day-ahead operation problem of the MG is tackled in this section, 
and Table 6 includes the results, obtained for a warm sunny day. The 
results, derived by using the presented HWOA-PS show the more desired 
performance of this hybrid algorithm, compared to the GA, PSO, DE 
[36], ICA [37], and SFLA [38]. In this regard, four indices have been 
employed to make a fair comparison between these methods. As Figs. 8 
(a) and 8(b) illustrate, the MT would contribute less to supplying the 
load demand in this day, mainly because of its relatively high operating 
cost. During time intervals 9 to 17, the decision-maker preferred to 
mitigate the power, absorbed from the upstream system because of its 
relatively high cost, and operate FC and MT at the nominal capacity 
while the PV panel also generates more. As a result, any surplus power 
generation can be injected into the grid. It is also noted that the MT is 
accounted as one of the promising options to supply the peak load de-
mand in comparison with the upstream grid. 

Moreover, Fig. 8(a) and 8(b), and 8(c) depict the share of each asset 
in supplying the load demand, where the BEES unit absorbs low-price 
power from the grid during hours 0 to 8 and 16 to 20 while it supplies 

merely 1.9% of the demand. 
The proposed optimization algorithm’s computational effectiveness 

has been evaluated in this study, where the Hybrid WOA-PS algorithm’s 
average solution time is contrasted with that of other approaches. The 
results demonstrate that the mean simulation time required by the 
suggested hybrid Hybrid WOA-PS algorithm technique in Case 1 is 
110.34 s, while the time required by the other techniques including GA, 
PSO, DE, ICA, and SFLA approaches is 119.44 s, 117.21 s, 115.64 s, 
114.32 s, and 112.37 s, respectively. As a result, the time needed by the 
Hybrid WOA-PS algorithm is significantly less than that of other ap-
proaches, as depicted in Fig. 8. (d). 

6.2. Case 2 

The problem is solved by using the data of the cold sunny day, where 
the power output of the PV panel shows a smaller amount of power 
generation compared to the hot sunny day mainly due to the lower 
amount of solar irradiance. The results have been shown in Table 7. The 
hourly dispatch of units, reported by the proposed HWOA-PS, is shown 
in Figs. 9(a) and 9(b). Fig. 9(b) shows that the amount of power, 

Fig. 10. (a) and (b). Hourly dispatch results, reported by the HWOA-PS algorithm (Hot Cloudy day); (c) Battery’s charging/discharging; (d) Mean simulation time.  
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absorbed from the utility grid is significantly lower than the warm sunny 
day, leading to reduced operating cost. The battery absorbs low-price 
power to charge over intervals 1 to 7 as shown in Fig. 9(c), while uti-
lizing the MT to supply the charging power of the BEES is reasonable. As 
Fig. 9(a) shows, the battery injects power to the system during intervals 
9 to 16. Furthermore, a smaller amount of energy is delivered to the 
utility grid as the PV panel generates lower power. The MT and FC units 

also have the highest contribution to supplying the load demand. 
Fig. 9 shows how long it took for each algorithm to resolve the case 

study that was provided in Fig. 9(d). This graph shows how the sug-
gested framework takes 4206.911 s to solve the problem in the second 
case study, which is much less time than the GA, PSO, and ICA algo-
rithms, which take 217.14 s, 213.65 s, and 114.32 s, respectively. 

6.3. Case 3 

The data of the hot cloudy day are used in this section to simulate the 
problem and assess the effects of weather conditions on the operation of 
the MG. As Table 8 represents, the HWOA-PS has resulted in a reduced 
cost compared to other methods, and the hourly dispatch of assets is 
illustrated in Figs. 10. Due to the lower amount of solar irradiance, 
available during this cloudy day, the amount of power, produced by the 
PV is considerably low. Besides, the MT is used less, and accordingly, the 
power injected to the upstream grid has become significantly low 
compared to the previous two cases. The BEES unit also delivers power 

Fig. 10. (continued). 

Table 9 
Comparative results, derived from different methods for the cold cloudy day.  

Algorithm Best Worst Average Std 

GA 259.0694 333.2495 273.7717 20.5842 
PSO 257.4357 331.1718 272.3484 18.7612 
DE 255.3791 330.2856 271.9522 16.9641 
ICA 254.9876 328.6418 270.1727 15.3378 
SFLA 254.0784 328.0874 269.9829 14.2297 
Hybrid WOA-PS algorithm 253.135 326.0155 269.3611 13.7215  
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Fig. 11. (a) and (b). Hourly dispatch results, reported by the HWOA-PS algorithm (Cold cloudy day); (c) Mean simulation time.  
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to the system during intervals 9 to 16 shown in Fig. 10(c). As Fig. 10(b) 
depicts, the MT and FC units with the lowest operating costs generate 
more power compared to other assets. 

Fig. 10 shows how long it took for each algorithm to resolve the case 

study that was provided in Fig. 10(d). This chart shows how much faster 
the proposed method, which takes 82.48 s to solve the problem under 
study, is than the GA, PSO, and ICA methods. 

6.4. Case 4 

The cold cloudy day is simulated in this section and the impacts of 
weather conditions of this day have been assessed. The results, obtained 
by using the HWOA-PS are represented in Table 9. As this table shows, 
the presented HWOA-PS has led to a more desired solution, compared to 
other algorithms. Moreover, due to the cloudy weather conditions, the 
amount of power, generated by the PV system is considerably low, as 
shown in Figs. 11. The operating cost, obtained for the cold cloudy day is 
lower compared to other days. During the first eight intervals, the BEES 
unit absorbs power to charge to its nominal capacity, while it delivers 
power until interval 16. The power generation of the MT is maximum 

Fig. 12. Total operating cost.  

Fig. 13. Response time.  

Table 10 
Number of hits to achieve the best solution.  

Algorithms Case 1 Case 2 Case 3 Case 4 

HWOA -PS 37 38 37 37 
SFLA 34 33 31 33 
ICA 31 30 31 31 
DE 33 34 33 32 
PSO 32 31 31 32 
GA 31 32 31 30  
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and other DGs besides the upstream network supply the load demand. 
The major part of the load demand is supplied by the FC and MT, as 
illustrated in Fig. 11(b). 

Fig. 11(c) shows how long it took for each method to solve the given 
case study. As shown in this figure, the proposed method takes 82.48 s to 
solve the problem under study, a period that is significantly less than 
that required by the GA, PSO, and ICA methods. 

Tables 6–9 represent the comparative results in terms of the four 
metrics. It has been found that the operating cost of a hot sunny day 
would be more than the cold sunny day due to the higher PV power 
generation in spring with longer days. Likewise, the clod cloudy day and 
hot cloudy day can also be compared. In general, the cost for the hot 
cloudy day is more than the cold cloudy day due to the higher values of 
solar irradiance with a longer day. Fig. 12 depicts the total operating 
cost for 40 trails. As can be observed, considering the uncertain pa-
rameters has led to increasing the operating cost and Fig. 13 shows the 
time response for 40 trails for the sake of comparison between the 
optimization methods. The results obtained for the single-objective 
optimization problem tackled using the HWOA-PS method, show that 
this method is a highly reliable method. 

The hybrid HWOA-PS algorithm suggested for any of the four cases 
involving 40 trials is evaluated in this section. According to Table 10, the 
number of trails for the HWOA-PS algorithm to find the optimal solution 
is 37 out of a total of 40. Consequently, this algorithm has a success rate 
of 96% in tackling the MG’s day-ahead operation problem. Other 
methods have substantially lower success rates. The obtained results 
indicate that the hybrid HWOA-PS algorithm is associated with superior 
performance, and is computationally prominent and robust. In addition, 
the proposed hybrid HWOA-PS algorithm has a shorter average simu-
lation time than other approaches in tackling the MG’s day-ahead 
resource scheduling problem. This analysis demonstrates that the 
hybrid HWOA-PS method is superior to other approaches. 

7. Conclusion 

The paper investigated the problem of the day-ahead stochastic 
operation of an MG in the presence of BEES system, renewable energies, 
and non-renewable energy resources. There were a PV panel, a WT, an 
FC, and an MT that all contributed to the power generation. A stochastic 
optimization model with a single objective was developed for the 
problem, and the HWOA-PS was presented to be used to solve the 
optimization problem. Furthermore, four different days were simulated 
throughout the year as opposed to single-day modeling to account for 
the fluctuating weather conditions. Operating cost on a warm sunny day, 
was 351.1964 €ct, on a cold sunny day, it was 284.2851 €ct, on a warm 
cloudy day, it was 256.791 €ct, and on a cold cloudy day, it was 253.135 
€ct, as derived by the supplied HWOA-PS. The provided method out-
performed both the GA and the PSO in a comprehensive comparison, 
and it also outperformed the PSO, DE, ICA, and SFLA. Future work in-
vestigates the optimal operation of MGs while implementing demand 
response programs using a robust optimization framework. Further-
more, the influence of EV charging stations would be covered. To pro-
vide a more accurate assessment of the problem, a close-to-real-time 
resource scheduling paradigm will be proposed. 
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Maximum iteration of HWOA-PS=150 for both algorithms. 
Mesh size of 1 
Mesh expansion factor= 2 
Mesh contraction factor =0.5 
All tolerances=10− 6 
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