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A B S T R A C T   

The Internet of Things (IoT) has become a popular application in recent years. However, it is the wireless 
communication mode. In such a scenario, the user would have to send information either nonlinear or dynamic 
data type in the form of a signal or an image, videos depending on the application. The proposed work is focused 
on this model identification that tends to nonlinear dynamic system identification for IoT applications. An 
Autoregressive Moving Average (ARMA) model represents model for IoT application. To verify the model su-
premacy, an ARMA bench mark system is used. The adaptiveness is proved through variation of weights and can 
be universally used for the next generation. In the first attempt, the Multilayer Perceptron model (MLP) is 
considered as the ARMA system and observed. Further, to improve its accuracy, the Adaptive Neuro-Fuzzy 
system (ANFIS) model is designed for system identification. It is shown in the result section that it identifies 
better than the MLP as well as traditional system identification techniques.   

1. Introduction 

The development of the wireless communication channel has many 
more implications for individuals and the world at large. Due to 
reflection and diffraction, electromagnetic waves travel along different 
paths when they travel through a typical wireless channel. The multi-
path channel lowers the quality of the signal that is received and causes 
serious multipath interference. To solve this problem, we need a good 
wireless channel identification algorithm. Also, in the Internet of Things 
(IoT), many sensors built into different environments put a lot of weight 
on recognising scenarios so that the wireless communication system can 
be designed, deployed, and managed in the right way and have better 
communication performance [1]. Because of this, it is hard to find the 
right wireless channel scenarios to meet the specific requirements of the 
wireless communication process. Urban macrocells, urban satellites, 
indoor hotspots, and other types of propagation environments by 
referring to them as “wireless channel scenarios” [2,3]. The two main 
types of propagation environments are line-of-sight (LoS) and 
non-line-of-sight (NLoS) conditions. Even if two scenarios are in the 
same environment, their wireless channel characteristics are usually 
very different from each other. This motivates the development of a 
wide range of empirical statistical wireless channel models for certain 

types of propagation conditions. In order to estimate the parameters of 
WSN channel, the received signal must be combined with prior knowl-
edge of the transmitted sequence of symbols [4]. During a time period 
where it is expected that the channel will remain constant, block-based 
estimating approaches use a block of received symbols to estimate the 
average channel. In order to create a discrete FIR-channel, the channel’s 
continuous impulse response is sampled in time and in delay. This gives 
snapshots of the channel as it changes over time. The estimation error in 
the channel samples is a function of the measurement noise, the trans-
mitted symbols, the channel parameters, and the estimating technique. 
The goal of parameter estimation is to find, from a given class of models, 
the one that comes closest to the system’s external properties. This is 
done by comparing the input and output data in general. There are two 
ways to figure out the system’s mathematical model: system identifi-
cation and excitation analysis. In the process of exception analysis, the 
task is to analyse and identify the systems in terms of physical and 
chemical laws. The second method is to analyse how the system works 
and how the experimental data is passed. System identification de-
termines a system’s mathematical model from input and output data. It 
is divided into two methods. The first one is parametric identification; 
the second one is non-parametric model identification. The parametric 
model is defined in the form of a mathematical model with differential 
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equations and state equations. The mathematical model with parame-
ters like impulse response, frequency response, and transfer function are 
non-parametric model representations [5,6]. There are several appli-
cations of parameter estimation and identifying the model’s impulse 
response. In order to identify or estimate an unknown parameter or 
several unknown parameters in a massive MIMO WSN, the researchers 
in Refs. [7,8] have created unique and effective signal processing algo-
rithms. The parameters of the Volterra series can be learned. Various 
parameter estimations for WSN channels are presented in Refs. [9–18]. 
Parameter estimation of WSN channel shall be considered as the prob-
lem of nonlinear system identification. Some studies related to nonlinear 
dynamic system identification are presented as the WLMS algorithm 
[19], Adaptive Algorithms [20], Wilcoxon algorithm [21], and FLLWNN 
[22]. Further, by implementing a novel kernel algorithm, system iden-
tification of a nonlinear system is presented in Refs. [23,24], a multi-
layer recursive model [25]. Further, by using Lyapunov stability analysis 
and system identification, it is further presented in Ref. [26]. 

A WSN channel can be described as a time-varying ARMA or AR- 
process. The collection of random AR processes can be used as a single 
ARMA with the same first and second order statistics through spectral 
factorization. An AR-model can provide a good approximation to the 
dynamics when the channel’s ARMA-model poles are located close to 
the unit circle. In this work, the ANFIS approach is used to build the IoT 
model. The adaptability is shown by the different weights, and it can be 
used by everyone in the next generation. 

The rest of the sections are organised as follows: After introducing 
existing methods in Section 1, Section 2 presents the problem formula-
tion part. In a further section, section 3, the methodology part is dis-
cussed in section. In Section 4 discussion of the suggested method’s 
performance evaluation and comparison with other models is analyzed. 
In the final section, section 5, the conclusion of the work, is presented. 

2. Problem formulation 

2.1. Auto Regressive Moving Average (ARMA) 

In general, physical systems are represented as simultaneous differ-
ential equations, and all of these equations can be summed up into a 
single Auto Regressive Moving Average equation:  

where the notations represented as X(t) is output of the system at time t, 
U(t) is the input of the system, β is difference operator β (t X = X(t)-k), ∇, 
is represented as autoregressive coefficient and δ represented as coeffi-
cient of moving average. Since the inputs U(t) is unknown in the above 
equation, therefore the known outputs X(t) to estimate the system co-
efficients so that squares of U(t), is as low as possible. If we set all the 
values of δ except, δ0 to zero and set, δ0 to one in the above differential 
equation presented as an (AR) equation, 
(
βN +∇N− 1δN− 1 +…+∇1β+∇0

)
Xt (2) 

Similarly, a Moving Average (MA) equation is presented as 
(
δMβM + δM− 1δM− 1 + δM− 2βM− 2 +…+ δ1β+ δ0

)
Ut (3) 

In general, an ARMA model’s system transfer function is a pole-zero 
model, while an AR model’s transfer function is an all-pole model, and a 
Moving average (MA) model’s transfer function is an all-zero model. Let 
another example be considered to predict the ARMA model. where an 

ARMA (p, q) is given as 

∇(t)U(t)= β(t)e(t) (4) 

In another form 

X(t)+ α1X(t)n− 1 + … + αpX(t)n− p = e(t) + b1e(t)n− 1 + … + bqe(t)n− q  

where, e(t)is represented as white noise, variance σ2
e , and ∇(t) is define 

as 

∇(t)= 1 + α1t− 1 + α2t− 2 + ….+ αpt− p (5) 

In the same way, a polynomial β(t) is polynomial, in t− 1 with order q. 
If ∇(t)has no poles for “t” on or outside the unit circle, the process is 
stationary. Model parameters∇(t)

′

and β′

(t) of orders q′andq′ , which are 
not necessarily equal to p and q, are commonly discovered by estimating 
parameters from N observations Xn, n = 1, N; the observations can be a 
realisation of the process (1), but this is not required. With this model, 
future predictions of the process (1) can be formed by substituting those 
estimated parameters into new data U(t), which can be represented as 

β
′

(t)ê(t)=∇(t)
′

U(t) (6)  

where the signal ê(t) is the estimated model’s output with U(n) as the 
input signal; the estimatedβ

′

(t) is employed as the (Autoregressive)AR 
portion and ∇′

(t) as the MA part in this derivation of ̂e(t). The prediction 
error squared PE is defined as the expectation E[ê2

t ]where U(n) is a 
realisation of the process that is independent of the observations X(t) 
used to estimate the parameters. By substituting U(t) with ∇′

(t) and β′

(t)
,the output ê(t) of the model with equation (4) 

ê(t) =
∇

′

(t)
β′

(t)
U(n) =

∇
′

(t)β(t)
∇(t) β′

(t)
e(t) =

D(t)
C(t)

e(t) (7) 

As a result, an ARMA provides the relationship between the model’s 
error output ê(t) and the innovations e(t) (6), that formed the genuine 
process of ARMA p + q′

, p′

+ q processD(t)
C(t) Consider (7) as a filtering 

operation [26]. 

3. Methodology  

a. WSN Channel Model 

Two devices communicate through a channel. The input signal ‘U’ 
from the transmitting device appears as ‘X’ for the receiving device. The 
channel acts as a band pass filter, whose transfer function ‘T’ is 
represented 

T =
Uf

Xf
(8) 

Ideally, the channel should be a linear time-invariant system. The 
system or channel here is a natural system and does not behave ideally. 
It is modelled as a dynamic and non-linear system. So, in this work, an 
ARMA model is used to identify the system’s transfer function so that it 
closely approximates the natural channel. 

Fig. 1 is the block diagram representation of the identification pro-
cess. The operator U (t) indicates input to the WSN Channel via a 
transmitter device. The channel is denoted as X (t) through a receiving 

(
βN +∇N− 1δN− 1 +…+∇1β+∇0

)
Xt =

(
δMβM + δM− 1δM− 1 + δM− 2βM− 2 +…+ δ1β+ δ0

)
Ut (1)   
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device. The WSN channel is denoted as P (t). This channel acts as a band 
pass filter and it is designed using the ARMA model. As discussed, the 
WSN channel is a nonlinear system. This inspires us to consider a 
nonlinear system identification problem. where the task is to identify the 
parameters of the unknown system. If prior information about the sys-
tem is known, then the problem shall be considered a control problem. 
Whereas the system parameters are unknown, this shall be considered as 
the system identification problem. To identify the given system or WSN 
channel, a nonlinear ANFIS neural network-based model is designed as a 
replica model. In order to validate the proposed ANFIS model’s output 
response, the WSN system’s parameters are provided to the model. 
Further, the error between the two output has to be reduced using 
certain learning algorithm such as gradient decent, least mean square 
etc, until it tracks perfectly. It is known as the weight updating process. 
From the above figure, U(p)t represents the proposed model and output 
of the model is ÛP(t). P̂(t) is an approximation output of X(t). Therefore, 
the aim is to create a neural network model with the same parameters as 
the WSN model. 

‖X̂ − X‖=‖P̂(X) − P(X)‖,≤ ϵ xεX (9)  

where, ϵ ≤0, and ϵ is some desired value, X̂=P̂ , X= P and ‖.‖is Euclidian 
norm. ‘U’ and ‘X’ are a subset of real number respectively for static 
system. Assuming a Lebesgue integrable function with the interval [0, T] 
or [0 to ∞] defines the bounds of a dynamic system. Error of the model is 
calculated as: 

e=‖X − X̂‖ (10)    

b. Adaptive Neuro-fuzzy 

Each layer of an ANFIS model consists of five sub-models, each of 
which is made up of nodes that stand for the same mathematical oper-
ator. Fuzzification of the input vector X signals is performed by Layer 1. 
This layer, also known as the IF-Part layer, calculates the degrees to 
which each input Ui satisfies each of its fuzzy sets. These degrees are 
commonly referred to as membership degrees. To process the incoming 

Fig. 1. Block diagram representation of Proposed Identification process.  

Fig. 2. Architecture of adaptive neuro-fuzzy process.  
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data, layers 2–3 do separate mathematical processes, layer 4 sends its 
signals to layer 5 and layer 5 adds them altogether. To illustrate the 
foundation of the ANFIS structure take the simple instance of a normal 
fuzzy inference with simply U 1and U 2 as inputs and XANFIS as output. 
Take the straightforward example of a regular fuzzy inference, where 
the inputs are just U 1and U 2 , the output is XANFIS, to demonstrate the 
underlying logic of the ANFIS structure. Fig. 2 depicts the ANFIS model 
is corresponding 5 layers. The notations are defined as IF < Premise>, 
THEN < Conclusion >. In this example two fuzzy IF-THEN rules for 
ANFIS for understanding purpose is presented [27]. According to the 
model requirements the rules shall be designed. 

Rule 1: IF U 1 is M 1 and U 2is N 1,THEN 

f 1 = α1 × U 1 + β1 × U 2 + C1 

Rule 2: IF U 1 is M 2 and U 2is N 2,THEN 

f 2 = α2 × U 2 + β2 × U 2 + C2  

where,∀i = ε{1,2}, M i represents a fuzzy set for U 1 while N i represents 
a fuzzy set for U 2. At the training phase ANFIS models’ parameters in-
cludes: αi, βi, and Ci, ∀i = ε{1,2}. A Gaussian fuzzy set is used in this 
example. The vector p contains the input fuzzy set membership function 
parameters The elements in p will include the means and standard de-
viations of the Gaussian membership σ functions contained in Miand Ni 
fuzzy sets, for instance, if ∀i = ε{1,2}. In addition, it is not required that 
all inputs have the same number of fuzzy sets. As seen above, each fuzzy 
IF-THEN rule provides a fuzzy implication relation between certain 
input fuzzy sets (such as Mi and Ni in Rule 1) and their associated fuzzy 
outputs (such as f1in Rule 1), such that no two rules have the same 
premise portions. In this example, each input can accept two fuzzy sets, 
so the most fuzzy IF-THEN rules you can have are 2 × 2 = 4. In reality, 
the quest for the ideal ANFIS model along the fewest number of IF-THEN 
rules remains an active topic of study. In contrast, each fuzzy IF-THEN 
rule in ANFIS has a conclusion that is a first-degree polynomial U. IF- 
THEN rules’ parameters, both for the conclusion and the premise’s 
fuzzy sets, are included in the parameters. 

In contrast to classical logic, the context of fuzziness defines the 
degree of membership of an element Ui within a fuzzy set β as a truth 
value between zero and one, denoted by φβUi . Using the given notations 
and the two input signals U1and U2, ANFIS starts by figuring out how 
much U1and U2belong to Miand Ni, respectively. According toφβUi =

e
− (Ui − m)2

2σ2 for a Gaussian membership function with the mean m and the 
standard deviation σ. In addition, the number of the layer from which 
each intermediate output in Fig. 2 originates, is superscripted next to 
each such output. The generating node is shown by the subscript of the 
signal’s output. Then, here are the outputs of layer 1: 

X1
Mi

=φβMi,∀i = ε{1, 2} (11)  

X1
Ni

=φβNi,∀i = ε{1, 2} (12)  

whereφβMi and φβNi , ∀i = ε{1,2} are Gaussian membership functions 
the mean m and During the ANFIS training phase, the standard deviation 
of each of these functions is one of the things that the hybrid learning 
algorithm tunes. At the level of layer 1, the calculations are done. At the 
level of layer 2, the evaluation of the firing strengths per rule node starts 

X2
1 =X1

M1
× X1

N1
(13)  

X2
2 =X1

M2
× X1

N2
(14) 

Then, layer 3 keeps going by adjusting the firing strengths so that: 

X3
1 =

X2
1

∑2

K=1
X2

K

(15)  

X3
2 =

X2
1

∑2

K=1
X2

K

(16) 

Lastly, the outputs of layers 4 and 5 are figured out by using the 
following equations: 

X4
1 =X3

1 × f 1 =X3
1(α1 ×U 1 + β1 ×U 2 +C1) (17)  

X4
2 =X3

2 × f 2 =X3
2(α2 ×U 1 + β2 ×U 2 +C2) (18)  

XANFIS =
∑2

K=1
X4

2 (19) 

ANFIS models cannot be trained until the parameter vector is set up. 
Grid partitioning adds to the curse of dimensionality when an ANFIS 
model has many inputs, hence increasing the amount of fuzzy IF-THEN 
rules [28]. On the other hand, one of the best things about using FCM to 
initialise ANFIS [28,29] tends to make a small number of fuzzy IF-THEN 
rules. 

4. Result and discussion 

A benchmark model for identification is used to measure the effec-
tiveness of the proposed method. In this section, a nonlinear system 
example is taken for identification and its performance is compared with 
the proposed model and the basic MLP model. The comparison between 
different models is done based on a differential matrix of Mean squared 
error (MSE) and Root Mean squared error, which is formulated as: 

MSE =
1
N

∑N

i=1
(Ti − pi)

2 (20) 

A differential equation with input and output relationships of a 
complex plant with relative degree − 3 is given as [30]: 

X(t+ 1)
X(t)X(t − 1)X(t − 2)U(t − 1)(X(t − 2) − 1) + U(t)

1 + X2(t − 2) + X2(t − 1)
(21) 

During training stage, the model considered an input having value 
uniformly distributed in an interval [− 1,1]. 500 samples of data were 
generated using the plant model in simulation. With an input signal U at 
random and uniformly distributed in [− 1.5, 1.5]. Five fuzzy rules are 
taken to construct the initial model of ANFIS using clustering the data U 
× X. 100 learning epochs are used to train the model. The MATLAB 
Fuzzy Logic Toolbox (MATLAB, 2020) is used to generate the fuzzy 
rules: 

If U is A′

1 THEN X = 4.12U+ 0.035 
If U is A′

2 THEN X = 3.22U+ 0.085 
If U is A′

3 THEN X = − 3.27U+ 1.053 
If U is A′

4 THEN X = 0.27U − 6.065 
If U is A′

5 THEN X = 5.27U+ 0.065 
In total, the proposed rule extraction process has 5 rules, each having 

5 Gaussian membership functions (MFs). 
Fig. 3 represents the actual ARMA model for identification. The total 

number of samples are 1000, Among them 500 samples were used to 
train the model, and the remaining 500 samples were used for testing the 
model. After the training process of 100 epochs, the testing signal is used 
to determine the identification results. 

X(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1 sin
(

2πn
250

)

+ 0.5 cos
( n

25

)
if k⩽300

0.02 sin
(

2πn
25

)

+ 0.3 cos
(

2πn
250

)

if 300 < k⩽700

0.2 sin
(

2πn
125

)

if 700 < k⩽1000

(22) 
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Fig. 3. Actual ARMA model.  

Fig. 4. Tracking of the MLP model over the actual model (Training output). The solid line represents the actual model and the dotted line represents the MLP 
estimated model. 

Fig. 5. Tracking of MLP model over actual model (Testing output). Circle represent the actual model and dotted line represent the MLP estimated model.  
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Fig. 6. Cost function of MLP model after Testing with max epoch of 100.  

Fig. 7. Tracking of the ANFIS model over the actual model (Training output). The straight line represents the actual model and the diamond line represents the 
ANFIS estimated model. 

Fig. 8. Tracking of the ANFIS model over the actual model (Testing output). The straight line represents the actual model and the dotted line represents the ANFIS 
estimated model. 
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To verify the supremacy of the proposed model, the data was applied 
to multi-layered perceptron’s. In the case when 40 epochs are used 
initially however the tracking result is not satisfactory, the number of 
epochs is increased linearly up to 100.Fig. 4 represents the identification 
of the actual model over the MLP model. The tracking of the two models 
is closer to each other. 

Fig. 5 represents the testing output of the MLP model. At epoch 30, 
the model archives 0.0032 MSE at training and 0.0045 MSE at testing. 
The model performance also increased linearly after increasing the 
epoch size to 100. At epoch 100, the model achieve 0.00021 MSE as 
training and 0.00017 as testing MSE. The cost function of the model is 
depicted in Fig. 6 where the training and testing errors are plotted. 

Fig. 7 represents the actual versus proposed ANFIS estimated model. 
The model is trained well, and the tracking of the two models is seen 
from the figure. 

Fig. 8 represents the testing output of the proposed model. Five 
hundred samples were taken for model validation. The effectiveness of 
the model is evaluated after 20 training epochs are given. The model 
achieves 0.00061 MSE. The epoch size is extended to 100. After running 
for 100 iterations, the best result obtained is an MSE of 0.000012. 

The overall comparison between the two models is depicted in Fig. 9. 
The mean squared error (MSE) of the proposed model is the closest it 
gets to being zero, as shown in the figure. The MLP model is an excellent 
training model, but the proposed model improves upon it by including 
adaptive learning approaches and efficient weight updates. Compared to 
other models, the proposed ANSFIS model’s performance is shown in 
Table 1. Based on these results, the MLP model in Ref. [28] has a training 
error of 0.00056 and a testing error of 0.00026, while the RBF model in 
Ref. [29] has these values at 0.0037 and 0.0015, respectively. In its 
training phase, the NARAX model [31] records an MSE of 0.000082, and 
in its testing phase, it records an MSE of 0. 00043.The input and output 
parameters of the nonlinear system used for performance analysis of 
different models have also been use to verify and test the output of the 
proposed model. First, the MLP model requires use of the input and 
output data. Training MSE records at 0.00021 and testing MSE records at 
0.000156. The ANFIS model is then given the input output data. The 
model achieves training MSE of 0.000039 and a testing MSE of 0.00012. 
In the ANFIS architecture, the first and fourth layers both have nodes 
that can change based on what they see. To optimise this parameter, one 
needs an algorithm for learning. There are two learning algorithms. Jang 
et al. [32] came up with hybrid learning. backpropagation, and algo-
rithms. The least-squares method and the gradient descent method are 
both parts of the hybrid learning algorithm. This method has two steps: 
moving forward and moving backward. During the forward movement, 
the network input will move forward until the fourth layer. At that point, 
a least-squares method will be used to figure out the resulting parame-
ters. In the backwards movement step, the error signal will be generated 
after computing the error. Backward propagation will fix the premise 
parameters by utilising a gradient descent technique. 

5. Conclusion 

A dynamic nonlinear WSN channel model based on the ARMA model 
is implemented in this work. The neural network model’s dependence on 
the sensor model and network structure is analyzed. The objective of the 
work is to design an ANFIS neural network model to identify the pa-
rameters of the WSN channel. A standard benchmark ARMA nonlinear 
model is used to verify the model performance. To measure the effec-
tiveness of a model, the mean squared error (MSE) is employed. The 
following table provides a comparison of different models such as the 
MLP, RBF, and NARAX. The ANFIS model achieve 0.000012 MSE in 
testing and 0.000039 MSE in training, according to the comparison 
table. The above analysis shows the performance of the proposed model 
is better compared to other models. In future the performance of more 
complex nonlinear plants would be analyzed. 

CRediT authorship contribution statement 

Rakesh Kumar Pattanaik: is the research scholar pursuing his Ph. 
D. work, He is working in the area of Signal Processing, So, his contri-
bution in this paper is to execute the program and experiments with the 
guide. Srikanta Kumar Mohapatra: has verified with other algorithm. 
Mihir Narayan Mohanty: is supervising the scholar, His contribution in 
this work is to formulate the problem, Simultaneously observed the 
execution part of the work and finalised the paper from the work. Binod 
Kumar Pattanayak: has written the manuscript skeleton. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

References 

[1] L. Xu, W. He, S. Li, Internet of Things in industries: a survey, IEEE Trans. Ind. Inf. 
10 (4) (2014) 2233–2243. 

[2] K. Guan, B. Ai, B. Peng, D. He, G. Li, J. Yang, Z. Zhong, and T. Kurner, ‘‘Towards 
realistic high-speed train channels at 5G millimeterwave Band-Part I: Paradigm, 
significance analysis, and scenario reconstruction,’’ IEEE Trans. Veh. Technol, vol. 
67, no. 10, pp. 9112-9128, 2018. 

[3] T. Zhou, C. Tao, S. Salous, and L. Liu, ‘‘Geometry-based multilink channel modeling 
for high-speed train communication networks,’’ IEEE Trans. Intell. Transp. Syst, 
vol. 21, no. 3, pp. 1229-1238, 2020. 

Fig. 9. Performance Analysis of the Models shows the MSE error between the 
two models. 

Table 1 
Performance evaluation of the proposed model.  

Sl. No. MODEL MSE 

1 MLP [28] Train 0.00056 
Test 0.00026 

2 RBF Model [29] Train 0.0037 
Test 0.0015 

3 NARAX [31] Train 0.000082 
Test 0.00043 

4 MLP Train 0.00021 
Test 0.000158 

5 Proposed ANFIS Train 0.000039 
Test 0.000018  

R.K. Pattanaik et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S2665-9174(22)00119-2/sref1
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref1


Measurement: Sensors 24 (2022) 100485

8

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a 
survey, Comput. Network. 38 (4) (2002) 393–422. 

[5] S. Han, Identification in nonparametric models for dynamic treatment effects, 
J. Econom. 225 (2) (2021) 132–147. 

[6] J. Man, M.D. Zielinski, D. Das, P. Wutthisirisart, K.S. Pasupathy, Improving non- 
invasive hemoglobin measurement accuracy using nonparametric models, 
J. Biomed. Inf. 126 (2022), 103975. 

[7] H. Asplund A.A. Glazunov, J.-E. Berg, Statistical analysis of measured short-term 
impulse response functions of 1.88Ghz radio channels in Stockholm with 
corresponding channel model, in: Proc. IEEE 50th Vehic. Tech. Conf. Fall, 1999, 
pp. 107–111. 

[8] J.-K. Hwang, J.H. Winters, Sinusoidal modelling and prediction of fast fading 
processes, in: Proc. IEEE Globecom, vol. 98, 1998, pp. 892–897. 

[9] K.P. Rajput, A. Kumar, S. Srivastava, A.K. Jagannatham, L. Hanzo, Bayesian 
learning-based linear decentralized sparse parameter estimation in MIMO wireless 
sensor networks relying on imperfect CSI, IEEE Trans. Commun. 69 (9) (2021) 
6236–6250. 

[10] H.A. Alobaidy, M.J. Singh, M. Behjati, R. Nordin, N.F. Abdullah, Wireless 
transmissions, propagation and channel modelling for IoT technologies: 
applications and challenges, IEEE Access 10 (2022) 24095–24131. 

[11] A.I. Moustapha, R.R. Selmic, Wireless sensor network modelling using modified 
recurrent neural networks: application to fault detection, IEEE Trans. Instrum. 
Meas. 57 (5) (2008) 981–988. 

[12] R.A. do Prado, F. da Rocha Henriques, D.B. Haddad, Sparsity-aware distributed 
adaptive filtering algorithms for nonlinear system identification, in: International 
Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–8. 

[13] K. Lee, S. Kim, K. You, Iterative regression-based hybrid localization for wireless 
sensor networks, Sensors 21 (no-1) (2021) 257. 

[14] K.P. Rajput, M.F. Ahmed, N.K. Venkategowda, A.K. Jagannatham, G. Sharma, 
L. Hanzo, Robust decentralized and distributed estimation of a correlated 
parameter vector in MIMO-OFDM wireless sensor networks, IEEE Trans. Commun. 
69 (10) (2021) 6894–6908. 

[15] T. Olofsson, A. Ahlén, M. Gidlund, Modelling of the fading statistics of wireless 
sensor network channels in industrial environments, IEEE Trans. Signal Process. 64 
(12) (2016) 3021–3034. 

[16] M. Wei, K. Kim, Intrusion detection scheme using traffic prediction for wireless 
industrial networks, J. Commun. Network. 14 (3) (2012) 310–318. 

[17] Q. Yu, L. Jibin, L. Jiang, An improved ARIMA-based traffic anomaly detection 
algorithm for wireless sensor networks, Int. J. Distributed Sens. Netw. 12 (1) 
(2016), 9653230. 

[18] S. Xu, B. Zeng, Network traffic prediction model based on auto-regressive moving 
average, J. Network. 9 (3) (2014) 653. 

[19] S. Cho, J.W. Park, S.H. Sim, Decentralized system identification using stochastic 
subspace identification for wireless sensor networks, Sensors 15 (4) (2015) 
8131–8145. 

[20] S. Dash, M.N. Mohanty, Analysis of outliers in system identification using WLMS 
algorithm, in: International Conference on Computing, Electronics, and Electrical 
Technologies ICCEET, IEEE, 2012, pp. 802–806. 

[21] S. Panda, M.N. Mohanty, Analysis of norms in adaptive algorithm on application of 
system identification, in: Information Systems Design and Intelligent Applications, 
Springer, 2016, pp. 579–588. 

[22] S. Dash, M.N. Mohanty, Variable sign-sign Wilcoxon algorithm: a novel approach 
for system identification, International Journal of Electrical and Computer 
Engineering, IJECE 2 (4) (2012) 481–486. 

[23] M.N. Mohanty, B. Sahu, P.K. Nayak, L.P. Mishra, Non-Linear dynamic system 
identification using FLLWNN with novel learning method, in: International 
Conference on Swarm, Evolutionary, and Memetic Computing, Springer, 2013, 
pp. 332–341. 

[24] R.K. Pattanaik, M.N. Mohanty, Nonlinear system identification using robust fusion 
kernel-based radial basis function neural network, in: 2022 International 
Conference on Emerging Smart Computing and Informatics ESCI, IEEE, 2022, 
pp. 1–5. 

[25] R.K. Pattanaik, B.K. Pattanayak, M.N. Mohanty, Use of multilayer recursive model 
for non-linear dynamic system identification, J. Stat. Manag. Syst. 1 (2022) 12. 

[26] R. Kumar, S. Srivastava, A novel dynamic recurrent functional link neural network- 
based identification of nonlinear systems using Lyapunov stability analysis, Neural 
Comput. Appl. 33 (13) (2021) 7875–7892. 

[27] M. Knaiber, L. Alawieh, Bayesian inference using an adaptive neuro-fuzzy 
inference system, Fuzzy Set Syst. (2022). 

[28] M.B. Priestley, Spectral Analysis and Time Series: Univariate Series”, vol. 1, 
Academic press, 1981. 

[29] H. Liu, J. Chen, D. Hissel, H. Su, Short-term prognostics of pem fuel cells: a 
comparative and improvement study, IEEE Trans. Ind. Electron. 66 (8) (2018) 
6077–6086. 

[30] M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix 
membranes modelling using ANFIs, PSO- ANFIs, GA- ANFIs, Int. J. Hydrogen 
Energy 42 (22) (2017) 15211–15225. 

[31] R. Kumar, S. Srivastava, A novel dynamic recurrent functional link neural network- 
based identification of nonlinear systems using Lyapunov stability analysis, Neural 
Comput. Appl. 33 (13) (2021) 7875–7892. 

[32] J.M.P. Menezes Jr., G.A. Barreto, Long-term time series prediction with the Narx 
network: an empirical evaluation, Neurocomputing 71 (16–18) (2008) 3335–3343. 

R.K. Pattanaik et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S2665-9174(22)00119-2/sref4
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref4
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref5
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref5
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref6
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref6
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref6
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref7
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref7
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref7
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref7
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref8
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref8
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref9
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref9
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref9
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref9
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref10
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref10
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref10
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref11
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref11
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref11
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref12
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref12
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref12
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref13
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref13
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref14
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref14
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref14
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref14
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref15
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref15
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref15
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref16
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref16
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref17
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref17
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref17
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref18
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref18
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref19
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref19
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref19
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref20
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref20
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref20
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref21
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref21
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref21
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref22
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref22
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref22
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref23
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref23
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref23
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref23
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref24
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref24
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref24
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref24
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref25
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref25
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref26
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref26
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref26
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref35
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref35
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref27
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref27
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref28
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref28
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref28
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref29
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref29
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref29
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref30
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref30
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref30
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref33
http://refhub.elsevier.com/S2665-9174(22)00119-2/sref33

	System identification using neuro fuzzy approach for IoT application
	1 Introduction
	2 Problem formulation
	2.1 Auto Regressive Moving Average (ARMA)

	3 Methodology
	4 Result and discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


