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Abstract—The battery energy storage system (BESS) has been 

envisaged as an effective solution for renewable energy 

accommodation in power systems. However, the residual capacity 

and maximum power of large-scale BESS are highly affected by 

thermally-induced incidents such as battery degradation and 

Thermal Runaway (TR) propagation. In the prior-art studies, the 

impacts of thermally-induced incidents on the BESS service 

performance have not been well modeled, resulting in relatively 

over-optimistic reliability estimation of power systems. In this 

paper, the reliability of large-scale grid-connected BESSs as well 

as its impacts on the overall reliability of power systems are 

investigated considering the battery degradation and TR 

propagation. To quantify the time-varying performance of the 

BESS, a multi-state model is constructed. The proposed model 

describes the aging process of batteries inside the BESS, 

incorporating the combined effects of sequential TR and the 

performance degradation of the surrounding batteries due to heat 

absorption. Based on the Monte Carlo method, scenarios that 

reflect the uncertainties of the intermittent wind generation and 

fluctuating loads are simulated. An optimal scheduling model is 

deployed, and a solution algorithm is proposed to calculate the 

scheduling results of the BESS in the real-time performance range 

subject to its thermal conditions. Case studies are conducted to 

validate the effectiveness of the proposed model and technique. 

Index Terms—Battery energy storage system, degradation, 

multi-state system, reliability, thermal runaway propagation. 

NOMENCLATURE 

Indices and Sets 

,i r  Index of batteries. 

j  Index of performance levels. 

b  Index of BESS. 

g  Index of conventional generating units. 

w  Index of wind turbines. 

m  Index of electric nodes. 

 
 

v  Index of iteration number. 

,C m  Set of components at node m . 

,N m  Set of nodes connected to node m . 

Parameters 

Bk  Boltzmann constant. 

cyc

aE  Activation barrier for battery cycle aging. 

refT  Reference temperature. 

ini

iE  Initial capacity of battery cell i . 

end

iE  Capacity of i  at the end of the battery life. 

ini

iP  Initial maximum power output of battery cell i . 

init

iR  Initial ohmic resistance of battery cell i . 

,i rd  Distance between cell i  and cell r . 

,i r  Efficiency of cell i  in transferring heat to r . 

critT  Critical temperature critT  of TR. 

min max/g gP P  Maximum/minimum active power output of 

generator g  at time t . 

min max/g gQ Q  Maximum/minimum reactive power output of 

generator g  at time t . 

,t avl

wP  Maximum active power output of wind turbine

w  at time t . 

/g gRD RU  Ramp-up/ramp-down rates of generator g  at 

time t . 
min max/m m   Maximum/minimum phase at node m . 

min max/m mV V  Maximum/minimum voltage at node m . 

/ms msG B  Conductance/susceptance of line m s− . 

max

msS  Maximum apparent power of line m s− . 

ST  Sampling number of Monte Carlo simulation. 

Variables 

t

iE  Residual capacity of battery cell i  at time t . 

t

iSOC  SOC of battery cell i  at time t . 
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,

t

i rH  Heat absorbed by i  from r  until time t . 

,REL t

iP  Heat release rate of battery cell i  at time t . 

t

iT  Temperature of battery i  at time t . 

t

bE  Residual capacity of BESS b  at time t . 

t

bP  Maximum power of BESS b  at time t . 

/t t

g gP Q  Active/reactive power of generator g  at time t . 

/t t

w wP Q  Active/reactive power of wind turbine w  at t . 

t

mPC  Load curtailment at node m  and time t . 

/t t

m mPD QD  Active/reactive load at node m  and time t . 

t

wP  Wind curtailment of wind turbine w  at time t . 

, ,/t t

b ch b disx x  Indicator for charging/discharging state of BESS 

b  at t . 

, ,/t t

b ch b disP P  Charging/discharging power of BESS b  at t . 

/t t

m mV   Voltage/phase at node m  and time t . 

t

msS  Apparent power of line m s−  at time t . 

t

bRel  Reliability of BESS b  at time t . 

mEENS  Expected energy not supplied at node m . 

mLOLP  Loss of load probability at node m . 

tW  Wind energy curtailment at time t . 

I. INTRODUCTION 

O combat climate change and the energy crisis, the use 

of renewable energy has seen rapid growth in recent 

years [1]. The power industry is moving towards 

alternative forms of energy generation such as wind power 

generation and photovoltaic power generation. It is predicted 

that renewable energy is likely to increase its share of global 

electricity generation from 24% in 2016 to 54% by 2030 [2]-

[3]. Meanwhile, the widespread use of renewable energy poses 

challenges to the operation of power systems owing to its 

variable power generation nature. Issues including more 

frequent outages and larger frequency deviations mandate the 

exploitation of energy storage [4]-[5]. Among various energy 

storage technologies, battery energy storage has become a 

hotspot due to its advantages of fast and steady response, 

adaptability, and controllability [6]. According to the 

International Energy Agency (IEA), global installed storage 

capacity is forecast to expand by 56% to reach over 270 GW by 

2026, and utility-scale batteries are expected to account for the 

majority of global storage growth, with a sixfold increase in 

installed capacity during the forecast period [7]. 

It has been investigated that battery energy storage systems 

(BESSs) have the ability to realize the renewable generation 

accommodation [8], perform peak shaving and valley filling 

[9], provide frequency regulation service [10], which help to 

improve the reliability of the power system. In order to meet the 

application requirements, a large number of battery cells are 

connected in series or parallel in a BESS, and the output 

characteristics of the energy storage system directly determine 

its performance. This structure enables the battery storage to 

meet the needs of utility companies with large-scale storage 

requirements, while at the same time, the aging and failures of 

internal batteries would cause the performance of the battery 

storage to degrade. In the process, the contribution of the BESS 

to improving the reliability of the power system is reduced, 

making it necessary to analyze the reliability of the BESS, so as 

to assess its impact on the power system reliability. 

So far, reliability assessment techniques for BESSs have 

been extensively studied. It has been concluded that the benefits 

of energy storage in improving power system reliability depend 

on different factors such as charging/discharging power, energy 

capacity, and initial energy level of these units [11]-[12]. 

Meanwhile, since the BESS is an energy-limited and time-

dependent resource whose ability to serve the power system 

depends on its prior operation, it is difficult to estimate its 

impact on power system reliability [13]. Related papers mainly 

characterize the BESS as a system with available and 

unavailable states, or further consider its diverse values of the 

state of charge (SOC), where the performance level of the BESS 

was mostly ignored [14]-[15], and there have been few studies 

on the detailed modeling of the BESS considering its internal 

topology. Besides, most of the existing studies do not regard the 

performance degradation of batteries under thermal conditions 

as a key factor to decrease the reliability of BESSs. An 

economic-degradation model has been proposed in [16] to 

demonstrate the effect of operational strategies on the lifespan 

of the energy storage plants. However, the battery degradation 

mentioned refers to the aging of the entire BESS, and the 

degradation of batteries inside has not been modeled separately. 

Reference [17] has introduced a method to evaluate the 

reliability of the battery module considering the state of health 

of the battery cell, but the model has not quantified the 

performance of the BESS, such as its energy storage and power 

output capability. 

Moreover, thermal safety for the BESS has been increasingly 

concerned all around the world because of the occurrence of 

thermal runaway (TR) incidents nowadays [18]. TR is a 

potentially fatal phenomenon in which the battery involved 

enters an uncontrollable, self-heating state. In a BESS 

consisting of a great many cells, after a first runaway, the heat 

released is transferred to the surroundings, which may lead to 

the triggering of TRs in adjacent cells, and may also cause 

secondary disasters such as combustion and explosion. This so-

called TR propagation is a major hazard to the safe and reliable 

operation of the BESS. In reference [19], it is estimated that the 

heat released by all batteries in an electric vehicle can be 

equivalent to a sudden energy output of 198.6 kg TNT when the 

TR is fully propagated. The cause of the Beijing lithium battery 

explosion on April 16, 2021, which killed two firefighters, is 

also believed to be the continuous TR in the BESS [20]. 

There have been significant research efforts on thermal 

reaction theories, TR mechanism, and power system reliability 

with dynamic-security considerations. Some models have been 

established to characterize chemical reactions in TR [21]-[22], 

TR propagation in a large-format battery module has been 

simulated to analyze the influence of module configuration 

T 
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[23], and mitigation techniques have been proposed to help 

overcome the safety concerns of TR [24]. From a reliability 

point of view, cascading effects associated with large 

disturbances may lead to system inadequacy or instability, so it 

is valuable to capture the dynamic aspects of BESS behavior in 

TR propagation [25]-[26]. However, relevant studies have not 

considered the impact of TR propagation on the reliability of 

large-scale BESS, including the degradation of battery 

performance caused by the increase in temperature during TR 

propagation, and the sudden performance drop of the system 

due to successive failure of batteries. 

The negligence of thermally-induced incidents leads to a 

lower-than-expected performance of the BESS. In the case that 

battery energy storage plays an important role in the renewable 

power system, it may cause severe curtailment of renewable 

energy or load, resulting in grid frequency collapse, power 

outages and economic losses. 

To bridge these research gaps, the performance degradation 

of battery cells at different ambient temperatures, SOC values 

and the structure of the battery module are discussed, so that a 

multi-state reliability model of the BESS is established to 

describe its performance levels and corresponding probabilities. 

A TR propagation model is constructed based on relevant 

theories to predict the temporal sequence of batteries reaching 

the critical temperature of TR, and an assessment framework 

for investigating the reliability of large-scale BESS integrated 

power systems is proposed. The main contributions of this 

paper can be summarized as: 

● Considering the thermally-induced degradation and 

complete failure, a multi-state reliability model that 

quantifies the performance of the BESS by its energy 

storage and power output capability is proposed. In 

this model, the degradation behavior of each internal 

cell is described, the universal generating function 

(UGF) method is adopted for aggregating all the 

batteries to obtain the real-time performance of the 

BESS. Moreover, the developed model incorporates 

the combined effects of sequential TR and the 

performance degradation of the surrounding batteries 

due to heat absorption. 

● A reliability assessment framework of renewable 

power systems considering thermal-induced incidents 

of BESSs is established. Based on the Monte Carlo 

method, scenarios that reflect the uncertainties of the 

intermittent wind generation and fluctuating loads are 

simulated, and an optimal scheduling model is used to 

calculate the dispatched power of the BESS within its 

time-varying performance range. The reliability 

indices comprise the expected energy not supplied, the 

loss of load probability and the wind energy 

curtailment, realizing generation-demand 

coordination in reliability assessment. 

● To efficiently solve the temporally coupled optimal 

scheduling model, a solution algorithm is proposed. In 

failure scenarios where no TR incidents occur, some 

linearization and approximation techniques are 

applied to ensure the feasibility of the solution. A 

performance update loop is presented in the solution 

process to invoke the multi-state model if there is TR 

propagation. 

The remainder of the paper is organized as follows. Section 

II analyzes the reliability of BESS integrated renewable power 

systems. The multi-state model of the BESS considering real-

time temperature is established in Section III. Section IV 

introduces the developed framework for reliability assessment 

of renewable power systems. Case studies are given in Section 

V, followed by the conclusions drawn in Section Ⅵ. 

 

Fig. 1. Reliability analysis of BESS integrated renewable power systems. 

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3200952

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Toronto. Downloaded on November 26,2022 at 16:39:47 UTC from IEEE Xplore.  Restrictions apply. 



4 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

II. RELIABILITY ANALYSIS OF BESS INTEGRATED RENEWABLE 

POWER SYSTEMS 

Fig. 1 presents a general overview of the reliability analysis 

of BESS integrated renewable power systems conducted in this 

paper. The intermittency of wind power creates operational 

uncertainty for renewable power systems. For example, high-

yield wind power at night does not coincide with peak loads, 

leading to the load curtailment during peak demand periods and 

the wind energy curtailment when the wind energy is 

oversupplied. The system is at greater risk when conventional 

generating units fail occasionally. The BESS plays an important 

role in the power system with a high proportion of renewable 

energy. It can either provide power to the loads or be charged 

as a load, which is of great significance to maintaining the safe 

and stable operation of the power system. In power system 

scheduling, the dispatchable power of the BESS is restricted by 

its real-time performance, and the contribution of the BESS to 

the power system is often evaluated by reliability indices. 

There are a large number of battery cells in the BESS whose 

states directly determine the performance level of the entire 

system. Throughout the whole lifetime, battery degradation 

continues, limiting its energy storage and power output 

capability. Since both idle time and operating time occupy a 

significant part of the BESS life, calendar degradation and cycle 

degradation of the battery should be considered [27]. Generally, 

a battery degrades with a decrease in capacity and increase in 

resistance, which leads to the battery capacity fade and power 

fade [28]. Therefore, although batteries are usually 

characterized as either normal operation or complete failure in 

conventional reliability analysis, during actual operation, 

batteries need to be described by multiple states representing 

various performance levels. 

It is worth noting that temperature and SOC have a strong 

impact on the aging rate of batteries, and the influencing 

mechanism is complicated. As depicted by the capacity fade 

curves obtained from the calendar aging studies and accelerated 

life tests, battery aging speeds up at certain SOC ranges as well 

as at high temperatures [29]-[31]. 

In addition to gradual performance degradation, sudden 

failures such as internal short-circuit, battery leakage and TR 

can significantly impair the performance of the battery or cause 

complete failure. Such failures are prone to occur at abnormal 

temperatures. Among them, TR has a great influence on the 

reliability of the BESS due to the characteristic of being able to 

propagate among batteries. As shown in Fig. 1, the heat 

absorption causes the temperature of battery A to increase from 

0T , and the overheating condition results in its accelerated 

aging. After reaching the critical temperature 1T  of TR at time 

0t , battery A completely fails, releases heat, and the TR further 

spreads, which degrades the performance of the BESS quickly. 

To sum up, battery degradation and TR propagation are 

crucial factors affecting the performance of BESSs, which 

cannot be ignored in the reliability assessment of BESS 

integrated renewable power systems. 

III. MULTI-STATE MODEL OF THE BESS CONSIDERING REAL-

TIME TEMPERATURE 

Based on the characteristic it exhibits during operation, 

detailed modeling of battery cell is conducted, as shown in Fig. 

2. In this paper, battery aging is quantified by battery capacity 

loss and associated power changes. Specifically, according to 

the study of battery aging mechanisms, the calculation methods 

of calendar aging rate and cycle aging rate considering 

temperature and SOC are derived. Formulas for capacity loss 

are rewritten in the discrete form to adapt to different working 

conditions of the battery. Moreover, the relationship between 

the maximum output power and the resistance increase is 

summarized to quantify the power fade during battery 

degradation. In the proposed multi-state model, the state 

description of the battery cell can be obtained by using its 

performance distribution law. The UGF method is used for 

aggregating all the batteries to obtain the multi-state model of 

the BESS. 

A. Reliability Description of the Battery Cell 

1) Multiple states of the battery 

To achieve a more accurate representation of the battery cell, 

a multi-state model is established [32], where the capacity of 

the battery is regarded as the performance measure. 

It is assumed that battery cell i  for 1 i n   has iM  

different states, thus the capacity of cell i  is divided into iM  

levels, corresponding to each performance state that occurs 

sequentially during battery degradation. All the battery 

performance levels are represented by the set iG . 

  1 1 1
,,0 ,1, , ,

ii i Mi iG g g g=  (1) 

where 1

,i jg  is an assigned value representing a range of capacity 

 
Fig. 2. Framework for multi-state model of the BESS. 
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values 1_ 1_

, ,[ , ]lower up

i j i jg g . 

Meanwhile, the state probabilities are grouped in the set 

 ,0 ,1 ,, , ,
i

t t t t

i i i i MY p p p= , where 
,

t

i jp  is interpreted as the 

probability of cell i  falling into state j  at time t . 

During battery degradation, the capacities of different cells 

are usually assumed to follow a normal distribution 2( , )N    

at any instant of time except the very beginning [17], and the 

mean value   of the capacity distribution can be obtained from 

the battery capacity loss. 

2) Calculation of capacity fade 

As illustrated in Fig. 3, battery degradation can be divided 

into calendar degradation and cycle degradation. The former 

refers to the aging when the battery is stored without cycling, 

and the latter occurs during charge and discharge cycles [28]. 

The rates of both calendar degradation and cycle degradation 

are affected by temperature and SOC. 

a) Calendar Degradation: Throughout the whole battery life, 

the capacity loss due to calendar degradation 
calE  can be 

expressed by (2) in the form of the Eyring law [30]. This 

equation implies that the capacity fade for every battery cell 

follows the same shape ( )f t , the magnitude of which varies 

with a factor dependent on temperature T  and SOC . 

 
,

( , , ) ( )exp
cal

a SOC

cal SOC

B

E
t T SOC f t

k T
E A

 
  

 
 =  −  (2) 

where Bk  is the Boltzmann constant. Pre-exponential factor 

SOCA  and activation energy ,

cal

a SOCE  change in terms of SOC . 

The chosen ( )f t  can be a power of time 
zt  with a fixed z , 

assigned as 1z =  in [30], which means that the calendar aging 

rate is assumed to be a constant under the reference condition. 

In this paper, the battery capacity loss caused by calendar 

degradation over time period   is calculated by multiplying 

the aging rate by time, considering the effects of temperature 

T  and battery SOC
 at idle. Since the battery may be in a 

changing condition, 
calE  for battery i  up to time t  can be 

obtained using equation (3). 

 
1

,

,

1

exp i

i

cal
t

a SOCt

cal i SOC
B i

E

k T
E A



 



−

=

 
  
 
 

 =  −  (3) 

b) Cycle Degradation: As shown in (4), a power-law 

equation is used to describe the relationship between battery 

capacity loss 
cycE  and equivalent full cycles 

eqN , thereby 

quantifying the cycle degradation at the reference temperature 

refT  and over the reference SOC range [31]. In this equation, 

the values of SOCB  and SOCC  are related to SOC range 

SOC  during cycling and a temperature influence factor Tk  

is included. 

 ( , , ) ( /100) SOCC

cyc eq SOC eq TN T SOC N kE B 

   =  (4) 

 
2

tot
eq nom ini

W
N

U E 
=  (5) 

where is totW  the accumulated energy throughput of the cycled 

cell, 
nomU  is the nominal battery voltage and iniE  is the initial 

battery capacity. 

The Arrhenius equation which gives the dependence of the 

rate constant of a chemical reaction on temperature has a vast 

application in developing battery lifetime models. Based on the 

form of the Arrhenius equation and a large number of 

experimental results, the influence of temperature on the battery 

capacity loss can be expressed as equation (6). 

 
1 1

exp ( )
cyc

a
T

B ref

E
k

k T T

 −
= − 

 
 

 (6) 

where cyc

aE  is the activation barrier for battery cycle aging. 

Considering that battery i  may charge/discharge under 

different operating conditions, its capacity loss due to cycle 

degradation ,

t

cyc iE  to time t  can be rewritten as follows. 

 
1

1 1

, ,

1

( /100)
200

i

t
Tt c

cyc i eq i iinit

norm

Bc k
N P

U E
E


 




−

− −

=


 =  (7) 

where 
iP  is the charging/discharging power of i  at time  . 

On this basis, the mean value t

i  of the capacity distribution 

corresponding to battery cell i  at time t  can be obtained by 

subtracting the total capacity fade from its initial capacity, and 

the standard deviation t

i  is as follows [33]. 

 , ,(1 )t init t t

i i cal i cyc iE E E − −=    (8) 

 
1

6

t ini
t i i
i

E


−
=  (9) 

Therefore, each probability in the set t

iY  can be calculated. 

 1_ 1_

, , ,( ) ( )t up lower

i j i j i jp F g F g= −  (10) 

where F  is the cumulative distribution function of the normal 

distribution 2( , )t t

i iN   . 

3) Quantification of power fade 

In addition to the energy storage capability represented by 

 
Fig. 3. Battery degradation and its quantification. 
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1

, (0 )i j ig j M  , 2

, (0 )i j ig j M   is introduced to reflect the 

power output capability of battery cell i  in different states. 

According to the impedance model of battery, as the cell 

ages, its polarization resistance does not change significantly, 

whereas the ohmic resistance increases, causing the battery 

power to fade. The state of health (SOH) can be used to quantify 

the degradation severity of the battery cell, and the relationship 

between ohmic resistance and SOH has been found [34]: 

 
t end

t i i
i init end

i i

E
SOH

E

E E

−
=

−
 (11) 

 ( )1 (1 )t ini t

i i r iR R k SOH= + −  (12) 

where t

iE  is the residual capacity of cell i  at time t , endE  is 

the capacity at the end of the battery life, t

iR  is the ohmic 

resistance of cell i  at time t , ini

iR  represents the initial ohmic 

resistance of cell i , and rk  is the regression coefficient for the 

linear relationship between ohmic resistance and SOH. 

During battery charging, the maximum power can be reached 

when the voltage reaches its maximum value [35]. Then, the 

maximum power of the battery cell is supposed to be inversely 

proportional to its internal resistance. Combining the equations 

above, the power output capability 2

,i jg  of cell i  in state j  can 

be derived. 

 
2

, 1

,
1 1

ini

i
i j end

i j i

r init end

i i

P
g

g
k

E

E E

=
 −

+ −  − 

 (13) 

Therefore, the corresponding UGF used to represent the 

multi-state model of battery cell i  at time t  is defined as [36]: 

 
1 2
, ,( , )

, ,

1

( )
i

i j i j

M
g gt

i t i j

j

u z p z
=

=   (14) 

B. Thermal Runaway Propagation Procedure of the BESS 

Once a battery cell in the BESS experiences TR and releases 

heat, the heat is absorbed by surrounding batteries with 

different transfer efficiencies. Temperatures of corresponding 

batteries increase, accelerating the rates of side reactions, 

causing the batteries to decay faster, and further triggering a 

series of TR when a certain temperature is reached. Fig. 4 

illustrates the process of TR propagation in the BESS. 

1) Factors Influencing TR Propagation 

Regarding the influencing factors of TR propagation, 

relevant research has been carried out, and there is evidence that 

factors such as cell-to-cell spacing, SOC and battery pack 

topology affect the heat transfer between batteries. The factors 

considered in this paper are shown in Table Ⅰ. 

2) TR Propagation Analytics Based on Battery Thermal 

Dynamics 

During TR propagation, heat transfer occurs between any 

two battery cells within the effective range. To describe the 

process, the exothermic and endothermic behavior of each cell 

in the BESS needs to be modeled. 

First, battery cell i  on performance level j  triggers initial 

TR with probability ,

TR

i jp , which varies with time. After that, the 

potential risk of TR is transmitted within the BESS, and the heat 

energy ,

t

i rH  absorbed by the nearby cell r  from cell i  is 

written as follows. 

 
0

,

, ,

1

it t
t REL

i r i i rH P 



 
−

=

=    (15) 

where ,REL

iP   represents the heat release rate of battery cell i  at 

time  , 
,i r  represents its efficiency in transferring heat to r , 

and 0it  is the moment at which battery i  triggers TR. 

Considering various influencing factors comprehensively, 

the heat release rate of battery i  and the heat transfer efficiency 

between batteries can be determined based on Table Ⅰ. 

 0 0, , i it tREL t REL t REL

i i i iP P SOC n k=    (16) 

 

3

, , , 0

,

, 0

,

0,

thc i r thr i r i r

i r

i r

d d d d

d d

 


 + 
= 



 (17) 

where ,REL tP  is the heat release rate at time t  corresponding to 
 

Fig. 4. The process of TR propagation in the BESS. 

TABLE I 

FACTORS INFLUENCING TR PROPAGATION 

Factor Specific Impact Ref 

cell-to-

cell 

spacing 

Determines the spatial extent in which heat transfer 

occurs. In the process of TR propagation, the 
contribution of thermal convection is not significant, 

the main forms of heat transfer are thermal conduction 

and thermal radiation, and the heat transfer efficiency 
between battery cells decreases with the increase of 

their spacing. 

[37] 

SOC 

Affects the severity of TR. When TR is triggered, the 
energy released by the battery is related to its SOC. It 

has been proved that the heat released by lithium iron 

phosphate battery during TR is in a range, and its value 
is positively correlated with the SOC. 

[38] 

battery 

pack 

topology 

Determines the different distances between cells, 

resulting in differences in heat transfer efficiency. In 
addition, the battery in the parallel branch acts as a 

short-circuit load after TR happens, and normal 

batteries of the external circuit input electrical energy 

to it to generate Joule heat, which accelerates heat 

release and increases the maximum temperature of TR. 

[39] 
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the typical TR heat release rate curve of this type of lithium-ion 

battery, 0it

iSOC  represents the SOC of battery i  when TR is 

triggered. At this time, the current from 0it

in  normal parallel 

branches in the BESS flows through the failed battery cell i , 
REL

ik  is a constant, 
,i rd  is the distance between battery i  and 

battery r , thc  and thr  are constants, respectively, as the 

reference efficiencies of heat conduction and heat radiation in 

the given environment. 

With the absorption of heat, the temperature of the battery 

gradually increases, and the criterion for the battery to trigger 

TR is that its temperature reaches the critical temperature critT  

of TR. 

 0 ,
, { 1}i

t

i rtt t

r t i

i r r

H
T T i u

c m
= +  =  (18) 

 
( )1max ,0 ,   

1,  

t t

r r critt

r
t

r crit

u T T
u

T T

− 
= 



 (19) 

where t

rT  represents the temperature of battery r  at time t , 

t

ru  is used to indicate whether TR occurs in battery r  at time 

t , with a value of 1 indicating that TR is triggered at this time 

and 0 representing no TR. rc  and rm are specific heat capacity 

and mass of battery r , respectively. 

C. Multi-State Model of the BESS 

In the process of TR propagation, batteries that are triggered 

into TR enter the state of complete failure, and temperatures of 

surrounding batteries rise, resulting in an abnormal operating 

condition of overheating, which may trigger a series of failures 

while accelerating degradation. Therefore, the distribution of 

battery capacity at this time is different from that under normal 

conditions. 

For a BESS with N  batteries, 
1 2[ , , , ]t t t

t NT T T T=  contains 

the temperatures of all battery cells at time t . The mean value 

(1 )t

i i N    and standard deviation (1 )t

i i N    of the 

capacity distribution corresponding to each battery at this time 

can be calculated according to equations (8) and (9), 

respectively. 

On this basis, the probabilities that each battery cell falls in 

different performance states are calculated, and the 

performance probability vector tP  of the batteries is obtained. 

 
11 1,0 1, ,0 ,[ ,..., ] [ , , ,..., , , ]

N

t t t t t t

t N M N N MP Y Y p p p p= =  (20) 

The performance level and state probability of the BESS are 

based on the characteristics of constitutive battery cells. For a 

parallel structure, the overall performance level is equal to the 

sum of the performance levels of all components. For a series 

structure, the total maximum power is equal to the sum of the 

maximum power of all the cells in it, and the total residual 

capacity is determined by the worst cell. Using the UGF 

method, the composition operator   considering the topology 

of the battery pack is defined, and the performance states and 

corresponding probabilities of battery cells are mapped to the 

performance distribution of the BESS. In this way, the multi-

state model of the BESS is established. 

 

( )

( )1 1 2 1 2
1, 1, , ,1 1

1, 1

1

1 2
, ,

, 1, 2, ,

( , ), ,( , )

,

0 0

( , )

,

1

( ) ( ), ( ), , ( )

=

N
j j N j N jN N

j N

N

b

b j b j

b t t t N t

MM
g g g gt t

N j

j j

M
g gt

b j

j

u z u z u z u z

p p z

p z





= =

=

= 

= 



 (21) 

1

1

1

,1 1
11, ,

1 1

1, ,

,
( , , )

min( , , ),

i

N

N

N

i j

ij N j

j N j

g cells in parallel
g g

g g cells in series

=




 = 




 (22) 

 
1

2 2 2

1, , ,

1

( , , )
N i

N

j N j i j

i

g g g
=

 =  (23) 

where 1 2

, , ,( , )b j b j b jg g g=  and ,

t

b jp  are the performance states 

and corresponding probabilities of the BESS, respectively, and 

bM  is its number of performance states. 

Therefore, the residual capacity and maximum power of the 

BESS b  at time t  are denoted as t

bE  and t

bP , respectively. 

 
1

, ,

1

bM
t t

b b j b j

j

E p g
=

=  (24) 

 
2

, ,

1

bM
t t

b b j b j

j

P p g
=

=  (25) 

An example of using the multi-state model to represent a 

BESS is given in Fig. 5. To obtain the performance of the BESS 

at time 1 1t + , the degradation of internal battery cells should be 

analyzed first. Based on the temperature, SOC value and 

operating data of each battery in each period, the capacity loss 

up to time 1 1t +  can be calculated separately using equations (3)

-(7). It is worth noting that the proposed TR propagation model 

is used to get the real-time temperature of the battery cell in case 

of a TR incident. The mean value 1 1t

i
+  and standard deviation 

 
Fig. 5. Example of using the multi-state model. 
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1 1t

i
+  of the capacity distribution for each cell can then be 

obtained to calculate the probabilities that they are in different 

states. When the UGFs of battery cells are generated, the time-

dependent performance of the BESS can be determined by the 

use of the UGF method considering the topological structure of 

the battery module. 

IV. RELIABILITY ASSESSMENT FRAMEWORK OF BESS 

INTEGRATED RENEWABLE POWER SYSTEMS 

In order to investigate the reliability of renewable power 

systems considering thermally-induced incidents of large-scale 

battery energy storage, an assessment framework is created. On 

the basis of constructing models to describe conventional 

generating units, wind turbines and the BESS, this paper 

proposes a Monte Carlo simulation-based algorithm, in which 

an optimal scheduling model is deployed. In each simulated 

power system operating scenario, the wind power output and 

the failure of each unit are randomly generated based on 

statistical data. The dispatched power of generating units and 

the charging/discharging power of the BESS are optimally 

scheduled in each period, thereby the proposed reliability 

indices can be calculated. 

A. Optimal Scheduling of the BESS 

Failures of generating units and the BESS, and the 

uncertainty characteristics of wind power lead to a decrease in 

the operational reliability of the power system. To illustrate the 

impact of BESS performance on the system reliability, an 

optimal scheduling model considering battery performance 

degradation and TR propagation in BESS is built. 

In this paper, each generating unit is modeled as a two-state 

component that enters a failure state with a certain probability, 

the BESS is depicted with the multi-state reliability model, and 

the wind generation model is referred to [40]. The objective of 

the scheduling model is to minimize the total system cost over 

the studied horizon, as denoted in (26). In the objective 

function, the first two terms ( )t

g gC P  and ( )t

w wC P  represent the 

generation costs of conventional units and wind turbines, 

respectively. ( )t

b bC P  is the operation cost of BESS, in which 

t t t

b ch disP P P= −  is the absolute value of the charge/discharge 

power. , ( )t

m l mC PC  denotes the compensation cost of load 

curtailment and ( )t

p wC P  is the penalty for wind curtailment. 

( )
1 1 1

1 1

,

1

( ) ( )

 

( ) ( )

m m m

T M

m

NG NW NB
t t t

g g w w b bN N
g w b

NW
t m t t

m l m p w

w

C P C P C P

Min f

C PC C P

= = =

= =

=

 
+ + 

 =
 
 + + 
  

  




 (26) 

where TN  is the number of time steps in the studied period, 

MN  is the number of nodes, mNG , mNW  and mNB  are 

numbers of conventional generating units, wind turbines and 

BESSs at node m  respectively. 

The objective function is subject to the following constraints. 

Generating unit constraints: 

 min max ,,   0t t t avl

g g g w wP P P P P     (27) 

 min max min max,   t t

g g g w w wQ Q Q Q Q Q     (28) 

 1t t t

g g g g gP RD P P RU++   +  (29) 

Equations (27) and (28) restrict the power output bounds of 

conventional generating units and wind turbines. The ramp-up 

and ramp-down constraints are presented in (29). 

BESS constraints: 

 
, ,0 1t t

b ch b disx x +   (30) 

 
, , , ,0 ,   0t t t t t t

b ch b ch b b dis b dis bP x P P x P     (31) 

 
,1 1

,

t

b dist t t t t

b b b b b b ch

b

P t
SOC E SOC E P t



+ +


 =  +  −  (32) 

 min maxt

b b bSOC SOC SOC   (33) 

 0 TN

b bSOC SOC=  (34) 

where ,

t

b chx  and ,

t

b disx  are binary variables, , 1t

b chx =  and 

, 1t

b disx =  indicate that BESS b  is in charging and discharging 

states at time t , respectively. ,

t

b chP  and ,

t

b disP  represent the 

optimized charging and discharging power of the BESS at time 

t , respectively. b  is the charging/discharging efficiency of 

the BESS, t

bSOC  is the SOC of BESS b  at time t , min

bSOC  

and max

bSOC  are the minimum and maximum SOC of the BESS 

in the set range. 0

bSOC  and TN

bSOC  in (34) denote the SOC 

value at the beginning and end of the scheduling period, 

respectively. 

Load curtailment constraints: 

 0 t t

m mPC PD   (35) 

Power system operation constraints: 

 
,

,

, ,

( ) ( )

cos( ) sin( )

C m

N m

t t t t t

g w b m m

g w b

t t t t t t

m s ms m s ms m s

s

P P P PD PC

V V G B   





+ + − −

 = − + − 




 (36) 

 
,

,

, ,

( )

sin( ) cos( )

C m

N m

t t t t

g w b m

g w b

t t t t t t

m s ms m s ms m s

s

Q Q Q QD

V V G B   





+ + −

 = − + − 




 (37) 

 min maxt

m m mV V V   (38) 

 min maxt

m m m     (39) 

 
maxt t t

ms ms ms msS P jQ S= +   (40) 

Equations (36) and (37) denote the power balance constraints 

considering active and reactive power. Equations (38) and (39) 

specify the nodal voltage and angle bounds, respectively. In 

equation (40), a capacity limit is imposed on each transmission 

line. 

B. Reliability Indices 

Generally, the reliability of a multi-state system is defined as 

the probability that the performance level of the system is 

higher than the required [42]. Assuming that the minimum 
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performance requirement of the BESS is  , its reliability t

bRel  

at time t  can be obtained from (41) after the performance states 

and corresponding probabilities of the system are calculated. 

 

,

,

b j

t t

b b j

g

Rel p


=   (41) 

To evaluate the risk of power system, the expected energy 

not supplied ( mEENS ) and the loss of load probability 

( mLOLP ) are introduced [43], and the wind energy curtailment 

( tW ) is also proposed in this paper to reveal the renewable 

energy accommodation capability of the system. 

After calculating the load curtailment t

mPC  of node m  and 

the wind curtailment t

wP  of wind turbine w  at time t , the 

reliability indices mEENS , mLOLP  and tW  can be calculated 

as: 

 
1 1

TNST
t

m m

st t

EENS PC ST
= =

=  (42) 

 
1 1

1 0)
TNST

t

m m

st t

LOLP PC ST
= =

 
=  

 
   (43) 

 
1 1 1

mM NWNST
t

t w

st m w

W P ST
= = =

 =   (44) 

C. Procedure Stages and Solution Methodology 

The reliability assessment procedure for renewable power 

systems can be divided into three main steps. The first is to 

initialize the system parameters, the second is to simulate the 

operation of the power system within the studied period for a 

specified number of times using the Monte Carlo method. On 

this basis, the reliability indices are calculated in the third step. 

In order to efficiently solve the multi-state model of BESS 

within the time-coupled optimal scheduling model, a solution 

algorithm is proposed. 

As shown in Fig. 6, according to the performance change 

characteristics of the internal batteries, this paper divides the 

failure scenarios of the BESS into two categories based on 

whether the TR propagation occurs or not. If there is no TR 

incident during the scheduling period, it can be considered that 

the hourly capacity change rate of a single battery and the entire 

BESS is consistent. That is, after obtaining the initial value of 

BESS performance based on operating data and the multi-state 

model, the optimal scheduling model uses the time coupling 

relationship between the dispatched power and the overall 

performance of the BESS rather than the performance of each 

battery. Besides, some linearization and approximation 

techniques are applied to ensure the feasibility of the solution. 

The details are as follows. 

At the beginning of the studied period, generate the UGF of 

each battery cell and calculate the residual capacity 0

bE  and 

maximum power 0

bP  of the BESS by equations (3)-(25). In the 

optimal scheduling model, equation (31) that enforce the BESS 

charging/discharging power constraints can be linearized by the 

big-M method as (45) [44]. 

 
, , ,

, , ,

0 ,    

0 ,   

t t t t

b ch b ch b ch b

t t t t

b dis b dis b dis b

P x M P P

P x M P P

  

  
 (45) 

where M  is a large constant. 

Referring to the battery degradation equations derived in 

Section III, the hourly residual capacity of BESS can be 

obtained by (46), and the calculation of t

bP  can be linearly 

approximated by Taylor expansion. 

 0

, ,(1 )t t t

b b cal b cyc bE E E E− −=    (46) 

2
0 0

0 0

0
( ) 1 1

end
t t b r b i

b b b b r init end

b i i

P k E
P P E E k

E

E

E E

−   −
 + −  + −    −   

=  (47) 

The time-coupled optimal scheduling model defined by (26)

-(30), (32)-(40) and (45)-(47) is denoted as the original 

scheduling model, and its solution is ,1 [ , , ]t t t t

g w bP P P=P . 

However, in the TR incident, the performance changes of 

internal batteries are inconsistent, making it impossible to 

update the state of the BESS as a whole. Then, a performance 

update loop is presented in the solution process. 

The first-round input to the BESS multi-state model is the 

hourly dispatched power of the BESS obtained by solving the 

original scheduling model, assuming no TR incidents occur. 

The performance update loop represents the interaction 

between the multi-state model and the simplified scheduling 

model, the latter being distinguished from the original 

scheduling model in that the hourly performance of the BESS 

is preset by the multi-state model. The two problems are 

calculated iteratively until the convergence is achieved. The 

convergence criterion is based on the iterative variation in 

system scheduling, which can be expressed as (48). 

, , 1 , , 1 , , 1

1 1 1 1 1

m m mT M NG NW NBN N
t v t v t v t v t v t v

g g w w b b

t m g w b

P P P P P P − − −

= = = = =

 
− + − + −  

 
   

  (48)  
Fig. 6. Structure of the solution methodology. 
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where ,t v

gP , ,t v

wP  and ,t v

bP  are respectively the dispatched 

active power of generator g , wind turbine w  and BESS b  at 

time t  in iteration v .   is a small tolerance. 

The detailed solution algorithm is listed in Algorithm 1, and 

the calculation is accomplished by MATLAB R2018b. Using 

linearization techniques, the optimal scheduling model is 

transformed into a linear programming (LP) problem that can 

be solved by the CPLEX solver. 

V. CASE STUDIES 

Case studies are conducted to validate the reliability 

assessment method of renewable power systems considering 

thermally-induced incidents of large-scale BESS. Firstly, the 

energy storage and power output capability of the BESS is 

evaluated by the multi-state model. Then, the impact of battery 

degradation and TR propagation upon the reliability of the 

BESS integrated power system is verified by the reliability 

assessment framework. Simulations are performed at different 

ambient temperatures and SOC values to reveal the relationship 

between these two factors and the service performance of the 

BESS. Furthermore, computational performance for larger 

systems are presented to justify the practical utility of the 

conducted research on large-scale systems. 

The modified IEEE 30-bus system with 4 conventional 

generating units, 4 wind turbines and a BESS is reconstructed, 

as depicted in Fig. 7. The total generation capacity of wind 

turbines at nodes 2, 11, 20 and 28 is 75 MW, accounting for 

41.28% of the installed capacity of the system. It is assumed 

that the BESS contains four identical battery modules in parallel. 

Each battery module consists of 50 parallel strings with 110 

cells in series in each string, reaching a total capacity of 3.96 

MWh. The maximum output power of the BESS is supposed to 

be 11.88MW. Each battery cell in the BESS is a high capacity 

lithium-ion battery and is modeled as a six-state component, 

whose parameters are given in Table Ⅱ. 

A. Energy Storage and Power Output Capability of the BESS 

Each battery in the BESS is assumed brand-new at the 

beginning. Referring to the capacity fade curve fitted by the 

experimental results in [29]-[31], set the value of parameters in 

equations (3) and (7), so as to obtain the calculation formula of 
t

i  that conforms to the realistic degradation process of the 

battery. The simulation parameters are given in Table Ⅲ. 

Assuming that the number of charging/discharging cycles of 

the BESS is 1.5 times per day. The variations in residual 

capacity and maximum power (when 100%bSOC = ) of the 

TABLE Ⅱ 

PARAMETERS OF BATTERY CELL 

 0g  
1g  2g  3g  4g  5g  

Performance 

(p.u) 

[0.0, 

0.1] 

[0.1, 

0.3] 

[0.3, 

0.5] 

[0.5, 

0.7] 

[0.7, 

0.9] 

[0.9, 

1.0] 

Assigned 
value 

0.0 0.2 0.4 0.6 0.8 1.0 

 

 
Fig. 7. Network topology of the modified 30-bus system. 

TABLE Ⅲ 

BESS MODELING PARAMETERS 

Parameters Descriptions Values Units 

nom

iU  Nominal voltage of cell 6 V 

ini

iE  
Initial capacity of cell 120 Ah 
Initial capacity of BESS 15.84 MWh 

ini

iP  
Initial maximum power of cell 0.54 kW 

Initial maximum power of BESS 11.88 MW 

refT  Reference temperature 25 ℃ 

ambT  Ambient temperature 25 ℃ 

SOC  Battery SOC at idle 50 % 

A  Coefficient of calendar aging 3.115·1011 / 

cal

aE  Activation energy for calendar aging 4.557·10-17 eV 

SOC  SOC range during cycling 20-80 % 

cyc

aE  Activation barrier for cycle aging 0.380 eV 

B  Coefficient of cycle aging 3.708 / 

C  Coefficient of cycle aging 0.452 / 

 

Algorithm 1: Solution of the Optimal Scheduling Model 

Input: parameters of components in the power system 

1: Generate 0 0( , )b bE P  using (3)-(25) 

2: for st = 1 to ST do 

1: Generate the wind power scenario and failure scenario 

2: 1v  , assuming there is no TR incidents, calculate the 

hourly schedule ,t vP  using the original scheduling 

model 

3: if TR incident occurs during the scheduling period do 

while convergence criterion (48) is not satisfied do 

1. Update the BESS performance , ( , )t v t t

b bE P=G  

by ,t vP  

2. Update the hourly schedule , 1t v+P  by ,t vG  using 

the simplified scheduling model 

3. 1v v +  

          end while 

end if 

     end for 

3. Calculate the reliability indices by (41)-(44) 

Output: reliability indices t

bRel , mEENS , mLOLP  and tW  
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BESS versus time are plotted by the dotted lines in Fig. 8. From 

the figure, it can be seen that as the batteries decay during 

operation, the overall performance of the BESS also 

continuously declines, impairing its ability to provide services 

to the power system. 

During the charging and discharging of a battery, abuse 

conditions and self-induction may lead to TR, and the rate of 

such an accident is assumed to be 
85 10 −=   in this paper [45]. 

The product of the mass and specific heat capacity of the battery 

cell is supposed to be 1650 
-1J K  and the critical temperature 

critT  of TR is set to 260℃ [46]. The occurrence of TR causes 

the performance level of the corresponding battery to 

immediately drop to 0 and cannot be repaired. The heat release 

speed of TR refers to typical heat release curve of lithium ion 

battery in [47]. 

Considering TR propagation, the degradation of the BESS 

over time is quantified by simulating its operating scenarios, as 

shown by the solid lines in Fig. 8. Since the available power is 

dependent on the battery SOC, in addition to the results at 

100%bSOC = , Fig. 8 also demonstrates the available charging 

power of the BESS at different SOC values at the SOH 

corresponding to 
41 10t h=  . It can be observed that, 

compared with the assessment results without the consideration 

for TR and its propagation, the system performance in all 

periods decreases. This is mainly because that the heat transfer 

between batteries during TR propagation causes the spread of 

failures, and the decay of a large number of cells results in the 

sudden decline in the system performance. Therefore, the 

reliability of the BESS is overestimated in conventional models, 

illustrating the necessity of considering TR propagation in the 

reliability assessment of the BESS. 

To further show the impact of TR propagation on the 

reliability of the BESS, an accident scenario is randomly 

selected, and the reliability t

bR  of the BESS and the TR 

propagation path are given in Fig. 9. Assuming a performance 

threshold of 0.8t ini

b bE E   for the BESS, the reliability of the 

system decreases obviously with the aggravation of the TR 

incident. After the initial TR of battery v  occurs at time 0t = , 

TR first propagates in the series branch due to the smaller 

spacing. The plot which shows the change in temperature of the 

cells in the series and parallel branches adjacent to v  proves it. 

When critT  is reached in succession, the batteries trigger TR one 

by one, and the number of failed cells in the BESS gradually 

increases. After just 250 seconds, the reliability of the system 

drops to about 0.3. It is worth noting that the TR propagation 

path in Fig. 9 illustrates the spread of the accident near battery 

v . Besides, due to the relatively large space between battery 

modules, TR does not propagate to other modules in this 

scenario. 

B. Comparison of System Reliability Assessed by Conventional 

and the Proposed Models 

After a three-year operation of the BESS, simulation tests are 

implemented on the following three cases to assess the 

reliability of the power system. The entire studied period TN  is 

set as 24 hours. 

Case 1: Regardless of the degradation during operation or 

special failures such as TR propagation, the BESS is simply 

modeled to operate in either perfect state or completely failure 

state. Considering the topology, the failure rate of the BESS is 

calculated using probability formulas according to the battery 

failure rate in [45]. 

Case 2: The impact of TR propagation is considered in this 

case regardless of the degradation during operation. In this case, 

the failure rate of the BESS set in case 1 is maintained, but the 

TR scenario is calculated separately. In the TR propagation path, 

 
Fig. 8. Performance of the BESS in real time. 

 

 
Fig. 9. An accident scenario. (a) Reliability of the BESS. (b) 

TR propagation path. 
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the battery reaching critT  is regarded as failure, but the 

degradation of surrounding batteries at high temperature is not 

considered. 

Case 3: The impacts of battery degradation and TR 

propagation on the reliability of the BESS are evaluated in this 

case. In this case, the BESS is modeled as a multi-state system, 

which differs from case 2 by considering the performance 

degradation of batteries during operation and TR incidents. 

The gradient distributions of reliability indices 

(1 30)mEENS m   at different nodes for the three cases are 

shown in Fig. 10, where the background colors of subplots (a), 

(b) and (c) reflect the values of the corresponding indices. It is 

worth noting that only the values of the nodes are calculated in 

the simulation, and the colors of the remaining points are 

obtained by interpolation. 

From a spatial perspective, transmission congestion leads to 

power outages in some regions with different probabilities. The 

deployment of the BESS can realize the electric energy time-

shift. With the stored electrical energy, it provides power to the 

loads when needed, thereby mitigating the risk of load 

curtailment during the peak hours of demand. Comparing the 

three subplots, it can be found that case 3 faces a more serious 

risk of power outages. The value of 2EENS  is 2.03 MW·h in 

case 1, 2.29 MW·h in case 2, and 3.63 MW·h in case 3. The 

value of EENS  for the system over 24 hours increases from 

12.74 MW·h for case 1, 13.23 MW·h for case 2 to 16.12 MW·h 

for case 3. The reason for such differences is that under the 

conditions of case 1 and case 2, the degradation of batteries is 

neglected, resulting in the evaluated performance level of the 

BESS being higher than its actual value, and its ability to 

dispatch power is overestimated. In case 3, the BESS that has 

been in service for a certain period of time and may suffer 

failures is considered unable to provide the nominal 

performance, so severe load curtailment is more likely to occur 

in the power system. 

Table Ⅳ presents the reliability indices mLOLP  at different 

nodes in the above three cases. Similar to the changing trend of 

mEENS  values, the assessment results increase when battery 

degradation and TR propagation are considered, especially in 

the areas with severe power shortage near node 2 and node 5. 

The values of wind energy curtailment (1 24)tW t    are 

illustrated in Fig. 11. Since there is generally an incline in wind 

speed at night, which does not coincide with the peak loads, the 

wind energy curtailment reaches maximum at this time. In a 

power system with a high proportion of renewable energy, the 

BESS is introduced to compensate for the intermittent nature of 

wind power, thus the renewable energy accommodation 

capability of the system can be improved. It can be seen that the 

4W  value of case 1 is 4.07 MW·h, which is 4.21 MW·h in 

case 2, and increases to 4.90 MW·h in case 3. The daily wind 

energy curtailment W  of the power system in case 1, case 2, 

and case 3 is 31.36 MW·h, 33.22 MW·h, and 40.54 MW·h, 

respectively, illustrating that the BESS in case 3 possesses the 

least capacity to store the wind energy that is oversupplied. As 

indicated in the results, considering the impacts of battery 

degradation and TR propagation on the reliability of the BESS, 

its ability to provide services to the power system is impaired. 

TABLE Ⅳ 

RELIABILITY INDICES 
m

LOLP  FOR THE THREE CASES 

Node Case 1 Case 2 Case 3 

2 0.313 0.328 0.490 

5 0.072 0.080 0.182 

12 0.031 0.032 0.040 

15 0.023 0.022 0.026 

17 0.042 0.047 0.120 

21 0.023 0.023 0031 

26 0.025 0.025 0.025 

28 0.000 0.000 0.000 

 

 

Fig. 10. Gradient distribution of the reliability indices mEENS  for the three cases. (a) Case 1. (b) Case 2. (c) Case 3. 

 
Fig. 11. Comparison of the wind energy curtailment. 
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C. Simulation at Different Ambient Temperatures and SOC 

Values 

Furthermore, sensitivity analyses of temperature and SOC 

values are carried out. Different aging rates due to differences 

in ambient temperature, SOC value at idle, and SOC range 

during cycling are quantified, resulting in different performance 

levels of the BESS after a three-year operation. The system 

EENS  and W  over the 24-hour modeling horizon at 

different ambient temperatures and SOC values are given in Fig. 

12. 

Compared to 25℃, an increase in ambient temperature 

impairs the reliability of the BESS due to the accelerated 

degradation of battery cells. Storing and cycling at different 

SOC values also leads to differences in the performance of the 

BESS. The performance reduction then results in larger values 

of EENS  and W , which means higher operational risk. 

From the results in Fig. 12, it can be concluded that operating 

at high temperature shortens the lifespan of the battery energy 

storage to a greater extent. 

D. Computational performance on Larger Systems 

In order to validate the effectiveness of the proposed 

technique on larger test systems, two additional tests involving 

the IEEE 118-bus system and more energy storage systems are 

performed. In the first test, the IEEE 118-bus system is 

modified, with the BESS at node 77. In the second one, two 

BESSs with the same structure as in previous tests are 

connected at node 18 and node 77, respectively. 

The simulations are carried out on a computer with an Intel® 

Core™ i5-7400 processor (3.00GHz) and 8GB memory. The 

computation time of the reliability assessment based on systems 

with different dimensions is presented in Table Ⅴ. It can be 

noted that the computation time of the original test (30-bus 

power system, a BESS with 4 battery modules) is 394.17 

minutes, which becomes about 1.29 times on the 118-bus 

system. It also takes more time to obtain the results for the test 

with more battery energy storage. 

In this paper, the proposed solution algorithm adopts 

linearization and approximation when solving the optimal 

scheduling model, and the TR propagation model only calculate 

the heat transfer of the batteries within the area affected. In this 

way, the computational speed is accelerated, thus achieving 

acceptable performance in real applications [43], [48]. In 

addition, advanced computing infrastructure and 

supercomputing mechanism can also further reduce the 

computation time for reliability assessment of larger systems 

[49]. 

Ⅵ. CONCLUSION 

This paper proposes an assessment method for investigating 

the reliability of renewable power systems considering 

thermally-induced incidents of large-scale BESS. Based on the 

performance of each internal cell during the battery degradation 

process, a multi-state model of the BESS is constructed 

utilizing the UGF method. To accurately determine the states of 

battery cells, a TR propagation model of the BESS is 

established to extract the information on the real-time 

temperatures of battery cells. On this basis, the impact of grid-

connected BESSs is incorporated into the reliability assessment 

of the power system, and a corresponding assessment 

framework is proposed. 

The numerical results show that after the three-year operation 

of the grid-connected BESS, there could be a 26.5% increase in 

the EENS  and a 9.18 MW·h increase in the W  for the 182-

MW system considering thermal effects. Moreover, since the 

degradation process is accelerated at high temperature and 

some SOC ranges, resulting in a shortened lifespan of battery 

energy storage, the service performance of the BESS is highly 

related to temperature and SOC values. 

Therefore, in the reliability assessment of the power system, 

it is necessary to consider the battery degradation and TR 

propagation of battery energy storage to avoid situations where 

the expected performance of the BESS is not achieved. In 

addition, further research could help the structural design and 

life-cycle utilization of the BESS, thereby promoting the 

application of battery energy storage in future power systems. 
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