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ABSTRACT This paper proposes two electric energy management systems (EMSs) in the context of a
grid-connected residential neighbourhood with electric vehicles (EVs), battery storage, and solar photo-
voltaic (PV) generation. The EMSs were developed to minimize the cost of electricity whilst having no
impact on routine individual energy needs and travel patterns. The EMSs were evaluated using common
sets of real data with the aim to compare the effectiveness of a centralized EMS with decentralized EMS.
The models also accounted for the battery capacity degradation and the associated costs. Simulation studies
and numerical analyses were presented to validate the effectiveness of the proposed EMSs considering a
high-density residential building in Sydney, Australia. The simulation results indicate that the centralized
EMS is more effective compared to the decentralized EMS in terms of cost savings. It is also observed
that the energy management strategies significantly reduce the energy drawn from the grid compared to
un-optimized energy management schemes.

INDEX TERMS Energy management systems, electric vehicles, optimization, centralized, decentralized,
apartment building.

Nomenclature
Indices and Sets
t ∈ T time interval
h ∈ H households

Parameters
A availability matrix
D distance matrix [km]
S status matrix
E energy efficiency [kWh/km]
X set of scenarios for solar PV generation and fixed

load (household/bus depot)
J set of scenarios for distance travelled by electric

vehicles and energy efficiency
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Z set of forecast for solar PV generation and fixed
load (household/bus depot)

π+ day-ahead energy tariff - buy
π− day-ahead energy tariff - sell
χV maximum capacity of EV battery
χB maximum capacity of stationary battery
δV maximum SOC limit of EV battery
δV minimum SOC limit of EV battery
δB maximum SOC limit of stationary battery
δB minimum SOC limit of stationary battery
λ SOC required for distance travel needs
� cumulative SOC required for distance travel needs
ηBc charging efficiency of stationary battery
ηBd discharging efficiency of stationary battery
ηVc charging efficiency of EV
ηVd discharging efficiency of EV
θV unit cost of EV battery capacity degradation

[$/kWh]
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θB unit cost of stationary battery capacity degradation
[$/kWh]

P(V ) maximum charging-discharging power limit for
EVs [kW]

P(B) maximum charging-discharging power limit for
stationary battery [kW]

P maximum grid capacity limit [kW]

Variables
δVt EV battery SOC [%]
δBt Stationary battery SOC [%]
5V EV battery capacity degradation [kWh]
5B stationary battery capacity degradation [kWh]
∂V cost of EV battery capacity degradation [$]
∂B cost of stationary battery capacity degradation [$]
P power flow from/to grid [kW]
K solar PV generation [kW]
L household/fixed depot load [kW]
α binary auxiliary variable for day-ahead energy

market
β binary auxiliary variable for day-ahead energy

market
Vct charging power for EV [kW]
Vdt discharging power for EV [kW]
Bct charging power for stationary [kW]
Bdt discharging power for stationary battery [kW]

I. INTRODUCTION
The residential sector accounts for 27% of the global
energy consumption of which buildings alone are responsi-
ble for three-quarters of total residential energy consump-
tion [1]. Adoption of renewable energy resources is a globally
accepted solution to this problem. However, the installation of
renewable energy resources in high-density apartment build-
ings is usually a challenge due to constraints on the available
space.

While the transport sector accounts for about 40%of global
fuel consumption [2] but is expected to become increasingly
electrified in coming years [3], which may in turn have a
significant impact on the electricity grid if not well managed.
Additional challenges arise when the EVs are located in the
high-density residential buildings. High-density residential
buildings present some significant challenges for i) integra-
tion of renewable energy generation (due to limited space),
and ii) transport electrification (due to limited electrical sup-
ply and potential grid impacts of EV charging). Neverthe-
less, it has recently been shown that the potential negative
impacts of EV charging in residential neighbourhood can
be significantly reduced using charge management strategies
considering local generation and transport needs [4].

A. LITERATURE REVIEW
Many studies have been reported on EMSs designed
for grid-connected domestic consumers, with various

combinations of renewable generation, EVs, stationary bat-
tery storage, etc. Few studies have specifically considered
high density residential buildings. An increasing number of
reports concern EMS for individual households incorporating
EVs. These reports are often differentiated by their particular
emphasis, e.g., on maximizing the synergies between PV
generation and EVs in minimizing the potential negative grid
impacts of EVs [5]–[11], and/or on minimizing total energy
costs [7]–[11] etc. Authors in [12]–[14] presented methods to
minimize the cost of electricity for buildings integrated with
stationary battery storage and solar PV generation. However,
these studies did not account for charging and discharging
of EVs while also ignoring the limitations of distributed
generation capacity installation in high density residential
buildings.

Some of the latter works include extensions to an aggre-
gated EMS, e.g., for a neighbourhood [15], whilst others
focus solely on the design and performance of aggregated
EMSs for an office building [16], [17] or apartment block
[4]. These EMS are also usually optimized with respect to
a specific metric of interest, e.g., to minimize aggregated
grid impacts and/or energy costs [10], but few consider the
scenario-based travel and charging patterns. The authors in
[18] developed the optimal framework for aggregated par-
ticipation of smart buildings integrated with energy storage
units, solar PV and EVs, in the day-ahead energy and reserve
markets. Notably, most of the studies (except for [4], [16],
[18], [19]) allowed for bidirectional charging of the EVs,
i.e., vehicle-to-grid (V2G) and/or vehicle-to-building (V2B)
capabilities.

Authors in [4] investigated the charging strategies of mul-
tiple plug-in hybrid EVs in high density residential building
integrated with solar PV generation. Authors in [20] pre-
sented a model for charge-discharge scheduling of EVs to
minimize cost. Energy management systems were presented
by authors in [21], [22] for the high-density residential build-
ing with vehicle-to-home (V2H) flexibilities. A home energy
management system was presented by authors in [23], using
the battery of an EVs. None of the studies discussed above
included stationary battery storage flexibilities.

The authors in [24] presented vehicle-to-grid (V2G) coor-
dination schemes for office buildings equipped with EV
charging stations. The authors in [25] analysed the impact of
solar PV systems on stationary battery storage and EVs in
micro-grids. The authors in [7] proposed the EV and station-
ary battery scheduling for a number of interconnected grids
and proposed optimal commitment of the resources. How-
ever, these studies were based on non-residential buildings
where the vehicle availability patterns are more predictable
compared to residential buildings.

An aggregated energy management service was proposed
by authors in [19] for energy consumers and distributed
energy resource owners in high density residential buildings.
The service consists of a business model for billing and
distribution of the benefits of aggregation, and a model pre-
dictive control algorithm formanaging and optimizing energy
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resource operations. The aggregator service is expected to
reduce the pay-back period of the investment. However,
the model did not include variable demand related to travel
patterns of the EVs.

Of the referenced works, only [17] provides a direct com-
parison between centralized and decentralized bi-directional
EV charger control systems. The latter study was in the con-
text of a smart office building in which the EMS is optimized
to minimize the peak-to-average-power-ratio (PAPR). It was
shown that centralized management also reduced total energy
consumption and costs, however the system did not consider
battery degradation and did not include PV generation or
stationary battery storage.

B. CONTRIBUTIONS
This paper addresses the challenges in energy management
that arise in high density residential apartment buildings
with a limited supply of intermittent renewable generation,
together with stationary battery storage and a high con-
centration of vehicle-to-grid (V2G) capable EVs [26]. This
paper presents two energy management strategies, namely
a customer-based-strategy (CBS) [26] and an aggregator-
based-strategy (ABS) [27], with the aim to minimize the cost
of energy consumption for each consumer without compro-
mising their comfort or travel requirements. The research
investigates, demonstrates, and compares the cost reduction
and other benefits of two distinct EMSs. Constrained opti-
mization of each EMS i.e., CBS and ABS, was undertaken
considering energy tariffs, travel needs, and battery degrada-
tion. The optimized strategies were evaluated and compared
with respect to their cost. The key contributions of this paper
are to:

1) design a centralized EMS i.e. ABS, for coordinated
management of EVs to minimize cost for the
aggregator and EV owners,

2) develop a decentralized EMS i.e., CBS, for
charge-discharge scheduling of EVs to minimize cost
for EV owners,

3) present an economic analysis to compare the
centralized and decentralized EMS strategies,

4) model the battery capacity degradation in EMSs to
account for excessive charge-discharge cycles.

The paper is organized as follows: the system architecture
of the proposed energy management framework is presented
in section II, followed by the details of mathematical mod-
elling of the proposed energy management systems in section
III, the numerical validation is presented in section IV, results
are presented in section V, discussion on the results is pre-
sented in VI, and VII concludes this paper.

II. SYSTEM ARCHITECTURE
Two strategies are developed for high density residential
apartment buildings, the centralized strategy, and the decen-
tralized strategy. In the centralized strategy referred here
as the aggregator-based strategy (ABS), the aggregator is
responsible for the fundamental data transactions between the

FIGURE 1. System architecture of the CBS.

individual household and the grid. Whereas, in the decentral-
ized strategy, referred as the customer-based strategy (CBS),
the individual household owner processes all energy transac-
tions with the grid. However, the individual customer in CBS
and the aggregator in ABS, do not take part in the energy
market operations. The aggregator in ABS and the customers
in CBS only provide grid support services. The energymarket
mechanism is beyond the scope of this study. An overview
of the proposed EMS strategies is presented in figs. 1 and
2 for ABS and CBS, respectively. The architecture details
of the proposed strategies are discussed in the following
sub-sections.

A. CUSTOMER-BASED-STRATEGY
The objective for the customer-based-strategy (CBS) is to
minimize the cost of electricity for the individual household
energy consumers by optimally utilizing the flexibility of
energy resources. It is assumed that each household has a
separate smart meter installed which is capable of monitoring
and controlling the flow of energy. Each household possess its
own solar PV system, stationary battery, and an EV.

The energy and information flow process for the CBS is
presented in fig. 1. The smart meter for respective household
is capable of monitoring and controlling the energy flow
based on the proposed CBS. Each smart meter communi-
cates directly with the grid and optimizes the associated
energy resources to minimize the cost of energy consumption
for respective household. The day-ahead travel preferences
of the EV owner is set in the EMS controller for each
household. The EMS predicts the day-ahead load profiles
of the household consumer and weather inputs for solar
PV generation based on the historical time series dataset.
Based on this information, the EMS determines the optimized
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FIGURE 2. System architecture of the ABS.

charge-discharge schedules for the EV of individual house-
hold. The proposed CBS assumes that each residential house-
hold is managed by an independent EMS. The functionality
for EV charge-discharge scheduling model is implemented
on the individual EMS.

B. AGGREGATOR-BASED-STRATEGY
An aggregator is a grouping of agents in an electric power
system to act as a single entity when engaging in energy mar-
kets or selling services to the grid operator [28]. Aggregators
are capable of performing demand response operations and
are responsible for the installation of respective monitoring
& control systems (i.e., smart meters) and in some cases also
the energy resources (i.e., solar PV, stationary batteries etc.)
at end-user premises [29]. In this paper, the aggregator-based-
strategy (ABS) is designed to minimize the aggregated cost
of electricity for the apartment buildings unlike the CBS that
minimized the cost for individual households. The aggrega-
tor owns and manages the solar PV and stationary battery
systems.

The energy and information flow process for the ABS is
presented in fig. 2. The aggregator is the central point of
information flow in the proposed ABS, where the aggre-
gator communicates with all the stake holders i.e., the
households, the grid operator, and the energy market oper-
ator. The aggregator prepares the optimized schedule for
charging-discharging of EVs and stationary battery storage
while making the most of the intermittent renewable PV
generation.

EV owners send their day-ahead preferences to the aggre-
gator. The aggregator predicts the day-ahead load pro-
files of all household consumers, EV owners, and weather
inputs for solar PV generation based on the historical time

series dataset. The proposed ABS assumes that each
household is managed by a single aggregator. In addition,
the aggregator has access to the historical time-series dataset
of connected load, EV users travel patterns, and solar PV
generation tomake predictions for day-ahead scheduling. The
aggregator predicts day-ahead household load, solar PV gen-
eration, and EV availability based on historical time-series
datasets. The aggregator then dispatches the charge-discharge
scheduling of EVs based on mixed-integer programming
model subject to grid constraints.

III. PROPOSED MODELS
The proposed EMSs schedule the charge-discharge of EVs
in day-ahead stages and determines the energy supply and
demand to minimize the cost of electricity. The proposed
EMSs predict the household load, expected solar PV gen-
eration, EV distance travelled and EV availability using
the prediction model presented in section III-A. The pre-
dicted parameters are then processed through the optimiza-
tion model presented for both the strategies in section III-C.
Figure 3 presents the process flow of the proposed method-
ology and the details of the proposed energy management
strategies are presented in the following subsections.

A. PREDICTION MODEL
The day-ahead prediction of household load, solar generation
and travel patterns allow optimal scheduling for charg-
ing/discharging of all energy storage units including station-
ary battery and the EV batteries. The day-ahead predictions
are fed in the optimization model as input parameters to for-
mulate the optimal schedule for charging and discharging of
energy storage units considering all energy and travel demand
constraints. This section presents the details of the methods
used for predicting the input parameters for the optimization
model of both strategies.

1) HOUSEHOLD LOAD DEMAND AND PV GENERATION
The artificial neural networks (ANN) are used to predict the
parameters like household load and solar PV generation from
historical time-series dataset. ANN is a reliable forecasting
method in many applications including forecasting of house-
hold load, wind speed and weather [30]. A back-propagation
learning algorithms is used in this paper which is commonly
used algorithm in the feed-forwardANN. The forecast values,
Zιt , can be expressed as:

Zιt=
n∑
j=1

ξjf

(
ω0j +

x∑
i=1

ωijZιt−i

)
+%t+ξ0, ∀t ∈ T (1)

where ι ∈ Lt ,Kt represents the household load Lt and solar
PV generation Kt . n is the number of hidden layers in the
ANN model, the weights from the layers are indicated by
ωijand ξj. The %t is a random shock, where ω0jand ξ0 rep-
resent the bias terms of the ANN. The subscript t represents
the time of day.
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FIGURE 3. Process flow of the proposed energy management strategies.

2) EV AVAILABILITY
The historical time series data for EV travel patterns is used
to extract the probability distribution functions (PDFs) for
EV availability, travel distance, and range efficiencies. The
availability is the binary variable that indicates if an EV is
at home for charging or discharging, i.e., it is 0 when EV
is away and 1 when an EV is at home. From the PDF of
EV availability according to historical data, the availability
of a particular EV at time t and day of the week d , can be
estimated as:

At = f (t‖Nt , pt) =
(Nt

pt

)
pt (1− pt )(Nt−t), ∀t ∈ T (2)

where Nt represents the number of scenarios for each
EV to estimate the availability of an EV at home for
charging/discharging and pt is the success probability of
the scenario. The status of the EV is estimated based on
Algorithm 1. Four EV statuses have been identified for the
EMSs: available, not available, departed, and arrived. The
EV status identifies when a particular EV arrives home or
departs from home to assign corresponding statuses. The
status matrix is used to manage charge-discharge scheduling
of EVs for upcoming trips.

3) EV DISTANCE TRAVEL
The daily commute distance of EVs for each household are
estimated based on the PDFs developed from the historical
time series dataset and is presented in eq. (3).

Dt = f (t|‖µt) =
1
µt
e

(
−t|
µt

)
, ∀t ∈ T (3)

where Dt . The mean distance travelled by an EV are
represented by µt respectively.

Algorithm 1 Status Matrix
1: for t ∈ T do
2: if At = 1 then
3: if At−1 = 0 then
4: St = 3 F arrived
5: else
6: St = 3 F available
7: end if
8: else
9: if At−1 = 1 then

10: St = 4 F departed
11: else
12: St = 2 F not available
13: end if
14: end if
15: end for

B. BATTERY MODEL
The operation of EV battery and the stationary battery are
mathematically modelled in the following sub-sections.

1) EV BATTERY SOC MODELLING
The state-of-charge (SOC) of EVs for the day-ahead schedul-
ing are generally modelled in eqs. (4) to (6). Here, δVt rep-
resent the SOC of EV battery for time interval t . At is
the binary availability matrix for EV. λt in eq. (5) is the
SOC consumed due to distance travel by EVs when they are
away from home. χV represent the maximum capacity of
the EV battery. The upper and lower bounds for the SOC
of energy storage units are presented in eq. (11). Dt rep-
resents the aggregated distance travel needs for upcoming
trips and the SOC requirements to meet the travel needs are
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consrtained in eq. (8).

δVt = δ
V
t−1 +

ηVc Vct At1t

χV
−

Vdt At1t

ηVd χ
V , ⇐⇒ At = 1

∀t ∈ T (4)

δVt = δ
V
t−1 − λt , ⇐⇒ At = 0, ∀t ∈ T

λt =
EVDt

χV
, ∀t ∈ T (5)

δV ≥ δ
V
t ≤ δV , ∀t ∈ T (6)

δVt =
EVDt

χV
, ⇐⇒ St = 4, ∀t ∈ T (7)

The state of charge of EV batteries is modelled in eq. (4).
The model considers the lower and upper bounds of bat-
tery state of charge to optimize the effective battery life
eq. (7). EV&Dt represent the efficiency of EV batter-
ies in kWh/km and distance travelled by EVs while they
are away from home, respectively. ηVc &η

V
d represent the

charging-discharging efficiencies of the EV charger, respec-
tively. Themodel also has the flexibility to prioritize the travel
needs of the consumers eqs. (5) and (6).

2) EV BATTERY CAPACITY DEGRADATION MODELLING
Battery capacity degradation is a phenomenon observed in
rechargeable batteries which causes decrease in the amount of
charge that a battery can deliver at the rated voltage over the
period. This phenomenon is modelled to account for the cost
associated with the capacity degradation, so that the V2G
flexibilities are not exploited. The battery capacity degrada-
tion for EV battery is estimated based on the work done by
authors in [31] and is replicated in eqs. (9) and (10).

5V
t = (γ1ν + γ3ν2 + γ5ν3 + γ7ν4)+ (γ2 + γ6ν)|Vc�d

t |

+
γ4

ν
|Vc�d
t |

2
, ∀t ∈ T (8)

∂Vt = At5
V
t θ

V , ∀t ∈ T (9)

The cost of battery capacity degradation is modelled in eqs.
(9) and (10) for the EV. Here5V

t represents the battery capac-
ity degradation in kWh, θV is the cost of battery degradation
in $/Wh, ν is the battery voltage in volts and γ is the battery
degradation coefficient.

3) STATIONARY BATTERY SOC MODELLING
The SOC of stationary battery for the day-ahead scheduling
are generally modelled in eqs. (11) and (12). Here, δBt repre-
sent the SOC of stationary battery storage for time interval t .
χB represent the maximum capacity of the stationary battery.
The upper and lower bounds for the SOC of stationary energy
storage are presented in eq. (12).

δBt = δ
B
t−1 +

ηBcBct1t
χB

−
Bdt 1t
ηBdχ

B , ∀t ∈ T (10)

δB ≥ δ
B
t ≤ δB, ∀t ∈ T (11)

The state of charge of EV batteries is modelled in eq. (4).
The model considers the lower and upper bounds of battery

state of charge to optimize the effective battery life eq. (7).
ηBc&η

B
d represent the charging-discharging efficiencies of the

stationary battery charger, respectively. The model also has
the flexibility to prioritize the travel needs of the consumers
eqs. (5) and (6).

4) STATIONARY BATTERY CAPACITY DEGRADATION
MODELLING
The battery capacity degradation for the stationary battery
storage is estimated based on the work done by authors in
[31] and is replicated in eqs. (13) and (14).

5B
t = (γ1ν + γ3ν2 + γ5ν3 + γ7ν4)+ (γ2 + γ6ν)|Bc�d

t |

+
γ4

ν
|Bc�d

t |
2
, ∀t ∈ T (12)

∂Bt = 5
B
t θ

B, ∀t ∈ T (13)

The cost of battery capacity degradation is modelled in eqs.
(13) and (14) for the stationary battery. Here 5B

t represents
the battery capacity degradation in kWh, θB is the cost of
battery degradation in $/Wh, ν is the battery voltage in volts
and γ is the battery degradation coefficient.

C. OPTIMIZATION MODEL
The optimization model is designed to minimize the cost
of electricity. The details of optimization modelling are pre-
sented in the following subsections.

1) OBJECTIVE FUNCTION
The objective for both the strategies i.e., ABS and CBS, is to
minimize the cost of electricity for the energy consumers by
optimally utilizing the energy resources. Therefore, the objec-
tive function for both the strategies is same and expressed
mathematically as eq. (15).

min
∑
t∈T

 αtπ
+
t Pt1t︸ ︷︷ ︸

cost(energy bought)

+ βtπ
−
t Pt1t︸ ︷︷ ︸

cost(energy sold)

+ ∂Bt + ∂
V
t︸ ︷︷ ︸

cost(degradation)


(14)

where P is the net power flow from/to the grid during time
interval t . α&β are the auxiliary binary variables. π+t and π−t
are the energy tariffs for buying and selling energy from/to the
grid, respectively. 1t is the time interval.

2) POWER FLOW CONSTRAINTS - CBS
The power balance equation for individual household is
presented in eq. (16).

Pt = Lt + Vct − Vdt + Bct − Bdt −Kt , ∀t ∈ T (15)

where Lt is the household load. Kt represents the solar
PV generation power. Bct&Bdt are the charging-discharging
power of stationary battery storage managed by indi-
vidual household, respectively. Vct &Vdt represent the
charging-discharging power of EV for individual household,
respectively.
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3) POWER FLOW CONSTRAINTS - ABS
The power balance equation for the aggregator is presented
in eq. (17).

Pt = Bct − Bdt −Kt +
∑
t∈T

(
L(t,h) + Vc(t,h) − Vd(t,h)

)
∀t ∈ T ,∀h ∈ H (16)

where L(t,h) is the household load, Kt is the solar PV gen-
eration power. Bct&Bdt are the charging-discharging power
of stationary battery storage respectively, managed by the
aggregator, Vc(t,h)&Vd(t,h) are the charging-discharging power
of EV for individual household, respectively. The subscripts
t&h represent the time interval and individual household,
respectively.

4) AUXILIARY CONSTRAINTS
αt and βt are the auxiliary binary variables for power drawn
from the grid and power supplied back to the grid, respec-
tively. eqs. (18) and (21) are the constraints to optimize the
power drawn by individual household from the grid. P is
positive when α = 1&β = 0 for energy purchase from the
grid. In other case, P is negative when α = 0&β = 1 for
energy sold to the grid.

αt + βt = 1, ∀t ∈ T (17)

αtβt = 0, ∀t ∈ T (18)

αtPt ≥ 0, ∀t ∈ T (19)

βtPt ≤ 0, ∀t ∈ T (20)

IV. NUMERICAL VALIDATION
Simulation studies are conducted to compare and validate the
adequacy of the proposed strategies for minimizing cost of
electricity for energy consumers. This section discusses the
input parameters used for simulation studies.

A. SIMULATION SETUP
The proposed strategy is developed using general algebraic
modelling system (GAMS) and MATLAB. The EV travel
patterns are modelled in MATLAB. The optimization prob-
lem in section III-C is formulated in the GAMS and solved
using a commercially available solver i.e., Baron [32], with
zero relative and absolute optimality gap. The simulation was
setup on an Intel Core i7 2.00 GHz computer with 16 GB
RAM. Data exchange (GDX) is used for communications
between GAMS and MATLAB.

1) ANN PREDICTION MODEL
The prediction model generates day-ahead household load
and solar PV generation for 20 households using the artifi-
cial neural network (ANN). The MATLAB neural network
toolbox (nntool) has been used to train the feed forward
ANNs. MATLAB provides built in transfer functions that
have been used for the hidden and output layers as follows:
hyperbolic tangent sigmoid (tansig) for the hidden neurons;
a pure linear function (purelin) for the output neurons [30].

FIGURE 4. Household load.

The prediction model uses a three-layered feed-forward neu-
ral network trained by the Levenberg-Marquardt (LM) algo-
rithm. LM is most effective in identifying the minimum of
a convex objective function as it combines the robustness of
the steepest-descent method with the quadratic convergence
rate of the Gauss–Newton method. It outperforms gradient
descent and conjugate gradient methods for medium sized
nonlinear models. It was initiated with five neurons in the
hidden layer and repeated by increasing the neurons up to 40.
The best results were produced at 20 neurons in the hidden
layer which is used for getting the forecasts. The historical
data, which is used by the prediction model, is divided into
three subsets; the training set, the validating set and the
testing set. 70% of the total dataset was allocated for training
the model and the remaining 30% was equally divided for
validation and testing purposes.

2) APARTMENT BUILDING LOAD
The proposed strategies are assessed by means of simulations
on a high-density residential building in Sydney, Australia.
The five levels building consists of 20 households in total
with underground parking space. The parameters for pre-
diction model are extracted from the load profile dataset of
a residential neighbourhood in Sydney used by [15]. The
prediction model generates day-ahead household load for
the 20 households. The load profiles for 20 households are
presented in fig. 4.

3) SOLAR PV SYSTEM
The solar PV generation profiles are synthetically generated
using the tool developed by [33]. The peak power of the
solar system for the ABS is assumed to be 45.78 kWp and
2.29 kWp for individual households in case of CBS. The
efficiency for the DC to AC inverter is assumed to be 95%.
The solar PV generation profiles of individual households for
CBS are presented in fig. 5a. The solar PV generation profile
for the aggregator in ABS is presented in fig. 5b.

4) ENERGY TARIFF
The time of use tariff (TOU) and the cumulative household
load are taken from [34] and presented in fig. 6. Cp & Cs
represent the energy tariff for buying and selling energy. HL
represent the cumulative household load.
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FIGURE 5. Solar PV generation profiles.

FIGURE 6. Energy tariff and cumulative household load.

FIGURE 7. EV availability/status matrix for each household.

5) EV SPECIFICATIONS AND TRAVEL PATTERNS
Each household is assumed to have a designated parking
space with a Level-1, bidirectional EV charger at 220 V, 15 A,
3 kW charging/discharging power as used by authors in [35].
For simplicity, a mid-range V2G capable EV is considered
with a rated battery capacity of 24 kWh and a usable battery
capacity of 19.2 kWh (i.e., 80% depth of discharge), as in
[34]. The initial and final SOC of stationary battery and
the EVs are considered the same to model the continuity.
The travel pattern of EVs for each household is presented
in fig. 7 in the form of status matrix.

6) STATIONARY BATTERY STORAGE
Each household is assumed to have installed a stationary
battery with 10 kWh capacity in case of CBS. Each house-
hold have a charger with 3 kW charging-discharging capac-
ity, 230 VAC @ 50 Hz frequency and 50 VDC (internal
battery voltage). However, in case of ABS the aggregator
manages the solar PV generation and stationary battery. The
installed capacity of stationary battery is 200 kWh with
60 kW charging-discharging capacity.

B. ENERGY MANAGEMENT STRATEGIES
In light of the inputs discussed in the previous sections,
the numerical simulations are conducted for the proposed
strategies. Likewise, to compare the effectiveness of the pro-
posed strategies, the outcomes are compared with the respec-
tive uncoordinated charging strategies.

C. UNCOORDINATED (ABS)
The uncoordinated charging strategy for the centralized
energy management scheme i.e., ABS, does not consider
the utilization of EVs for V2G flexibilities. In this strategy,
the EVs are assumed to plug-in for charging as they arrive
home, regardless of the energy tariff. The solar PV generation
is utilized to charge the stationary battery and the grid power
charges the stationary battery in the off-peak load hours only,
when the tariff for buying energy is minimum. The aggregator
does not sell energy back to the grid in this strategy. The
methodology for uncoordinated charging is mathematically
modelled as:

Cost =
∑
t∈T

(
π+t Pt1t + ∂Bt ++∂Vt

)
, ∀t ∈ T (21)

subject to:

Pt = Bct −Kt +
∑
t∈T

(
L(t,h) + Vc(t,h)

)
⇐⇒ ABS

∀t ∈ T ,∀h ∈ H (22)

Equations (4) to (12), eqs. (9) to (14)

D. UNCOORDINATED (CBS)
The uncoordinated charging strategy for the decentralized
energy management scheme i.e., CBS, also does not consider
the utilization of EVs for V2G flexibilities. In this strat-
egy, the EVs are assumed to plug-in as they reach home,
regardless of the energy tariff. The solar PV generation is
utilized to charge the stationary battery and the grid power
charges the stationary battery in the off-peak load hours only,
when the tariff for buying energy is minimum. Energy is not
sold back to the grid in this strategy. The methodology for
uncoordinated charging is mathematically modelled as:

Cost =
∑
t∈T

(
π+t Pt1t + ∂Bt ++∂Vt

)
, ∀t ∈ T (23)

subject to:

Pt = Lt + Vct + Bct −Kt ⇐⇒ CBS

∀t ∈ T (24)

Equations (4) to (12), eqs. (9) to (14)

V. RESULTS
Based on the input data, the EMSs assesses the needs of
individual household and creates a day-ahead optimization
schedule to minimize the cost for individual households in
CBS and for the aggregator in ABS.
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TABLE 1. Aggregated cost and energy summary for energy management strategies.

A. EFFECT OF PROPOSED EMSs ON COST
The results show significant reduction in cost of energy
consumption for both, centralized and decentralized energy
management strategies, through optimal management of the
energy resources. Table 1 presents the summary of cost com-
parison between the proposed strategies and their respective
uncoordinated strategies.

1) OPTIMIZED (ABS) VS UNCOORDINATED (ABS)
It can be noted from table 1 that the optimized (ABS) con-
sumes almost 39% less net energy compared to the unco-
ordinated (ABS), while fulfilling all the EV travel needs.
The cost savings for the optimized (ABS) compared to the
uncoordinated (ABS) are 57%.

2) OPTIMIZED (CBS) VS UNCOORDINATED (CBS)
The results presented in table 1 show that the opti-
mized (CBS) consumes almost 39% less net energy compared
to the uncoordinated (CBS), while fulfilling all the energy
needs of individual households including the EV travel needs.
The cost savings for the optimized (CBS) compared to the
uncoordinated (CBS) are 59%.

3) UNCOORDINATED (ABS) VS UNCOORDINATED (CBS)
It can be noted from the results presented in Table 1, that
the uncoordinated (ABS) and the uncoordinated (CBS), both
strategies consume equal net energy to fulfill the energy
needs of individual households including the EV travel needs.
However, it can be noted that the cost savings for the uncoor-
dinated (ABS) are 12%higher compared to the uncoordinated
(CBS).

4) OPTIMIZED (ABS) VS OPTIMIZED (CBS)
The results presented in table 1 show that the opti-
mized (ABS) and the optimized (CBS), both strategies con-
sume equal net energy to fulfill all the energy demands
including the EV travel needs. However, it can be noted
that the cost savings for the optimized (ABS) are 8% higher
compared to the optimized (CBS).

B. ECONOMIC ANALYSIS
Economic analysis for the proposed strategies was conducted
and the results are presented in table 2. Here for simplicity,
we have assumed the cost of infrastructure (i.e., solar PV sys-
tem, battery storage etc.) for implementing both the strategies
are same. The pay-back periods for the proposed strategies
were evaluated and it can be seen that the payback period for
the optimized (ABS) proved to be better than the optimized
(CBS). The payback period is less than the life of the solar

TABLE 2. Economic Analysis.

PV and stationary battery storage. Hence, the investment in
the infrastructure will be economically feasible.

VI. DISCUSSION
This paper presents two optimization strategies (i.e., CBS and
ABS). The expected savings resulting from their application
were evaluated numerically for realistic scenarios. The cost of
energy consumption was minimized without compromising
the travel needs of EV owners by optimal utilization of the
available energy resources, which also resulted in a reduction
in energy drawn from the electric power grid. Comparison
of the proposed strategies with their respective un-optimized
strategies and between each other, showed that the centralized
strategy i.e., ABS, is more effective in reducing the cost of
energy than the decentralized strategy i.e., CBS. This is partly
due to the fact that the aggregator has bulk energy available in
terms of aggregated energy storage and has the flexibility to
exploit the energy arbitrage. The proposed strategies not only
reduce the cost of energy consumption but also reduce the
energy drawn from the grid. However, in terms of reducing
the energy demand from the grid, both the strategies show
similar results.

The mathematical formulation of the proposed strategies is
non-linear, that could result in extensive computational time
and can be linearized for scalable solutions, but in the context
presented in this paper it was not appropriate. However, if this
approach is applied to micro-grid with reasonably large num-
ber of energy players, the model could be linearized for time
efficient solutions without having any impact on the main
results. The proposed optimization strategies were validated
using time-of-use (TOU) tariffs, but they are expected to work
equally well with other tariffs, and the centralized strategy,
i.e., ABS, is expected to be superior to the decentralized
strategy i.e., CBS, under all circumstances. Another limita-
tion of the proposed methodology is the lack of uncertainty
modelling for predicted parameters. However, the inclusion
of uncertainty modelling will not change the main conclusion
drawn from this study i.e., the centralized management of
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energy resources (ABS) is more cost effective compared to
the decentralized management of energy resources (CBS).
In addition, the proposed model could also be validated for
seasonal changes in input parameters like household load
profiles, solar PV generation and travel patterns.

The future work will consider uncertainty modelling of the
predicted parameters along with validation of the robustness
of the proposed EMS with seasonal changes in input parame-
ters. The proposed models also lacked a framework for peer-
to-peer (P2P) energy trading. Therefore, the future work will
also focus on developing a comprehensive P2P energy trading
framework for effective management of energy resources.
Nevertheless, the results of current study show enough evi-
dence to claim that the centralized management of energy
resources (ABS) is more effective compared to the decentral-
ized management of energy resources (CBS), in terms of cost
savings and reduction in energy consumption for individual
energy.

VII. CONCLUSION
Two energy management strategies i.e., CBS and ABS, for
EV charge-discharge scheduling were proposed in this paper
tominimize the cost of electricity in a high-density residential
apartment building. The strategies were compared to investi-
gate their effectiveness in terms of cost savings and reduction
in energy demand for energy consumers. The simulation
results indicate that the centralized EMS i.e., ABS, is more
effective compared to the decentralized EMS i.e., CBS,
in terms of cost savings. It is also observed that the energy
management strategies reduce the energy drawn from the
grid by 39% compared to un-optimized energy management
schemes. However, the proposed EMSs lacked in modelling
the expected cost of uncertainty due to predicted parameters
in addition to extensive validation of the proposed EMSs with
the seasonally varying input parameters. Detailed modelling
of energy trading framework is also missing in the proposed
models. Therefore, future work will focus on developing a
comprehensive energy management system that accounts for
P2P energy trading framework, models the expected cost of
uncertainty along with detailed validation with diverse range
of data inputs to account for seasonal variations.
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