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A B S T R A C T   

During surgeries, the amount of used anesthetic depends on the physical conditions of the patient and is 
immensely critical. The conventionally used BIS Quantro machine which measures the Bispectral Index (BIS) 
level in order to help doctors administer anesthesia, is quite expensive. In this paper, an economic, accurate and 
state-of-the-art technique is presented to predict the depth of anesthesia (DoA) via advanced deep learning 
models using 512 Hz Electrocardiogram (ECG) and 128 Hz Photoplethysmography (PPG). The study is conducted 
based on signal collected from 50 patients acquired during surgery at National Taiwan University Hospital 
(NTUH). First, heatmaps of the ECG and PPG signals (individual and combined subplots) are generated using 
MATLAB by filtering 5 s windows to match the frequency of the BIS Quantro Machine which is 0.2 Hz. Then, 
various deep learning models comprising 5, 6, 8, 10 and 19 layered CNNs are trained using data of 40 patients 
and tested using the remaining 10 patients. The heatmap images of ECG and PPG are fed as inputs to the CNN 
models separately and using two input channels. The best accuracy achieved is 86 % which is attained using 10 
layered CNN with Tensorflow backend, with combined ECG and PPG heatmaps as inputs. This study uses 
inexpensive signals, minimum data reconstruction, minimum memory and timing constrains to achieve a decent 
accuracy, and so it can be used by even small hospitals.   

1. Introduction 

Anesthesiologists play a very crucial role in the medical world. 
Anesthesia is one of the most important ingredients of any surgery. It 
enables doctors to perform surgery on patients with unconsciousness 
and painlessness. According to the definition of general anesthesia, 
current practices consist of four main components: hypnosis, analgesia, 
amnesia, and muscle relaxation [1]. A state of general anesthesia is 
produced by anesthetics that act on the spinal cord, and the brain (the 
stem, cortex and thalamus). The precision and accuracy of administering 
the appropriate depth of anesthesia are vital. If the dose is too light, the 
patient may become aware of the surgical stimulus and too deep patients 
are at risk of other complications. However, anesthesiologists have 
multiple inconsistent definitions of the anesthetic state and have no 
standard measurement to assess it. So far, valuation indices like Bis-
pectral Index (BIS), entropy, auditory evoked potential (AEP), surgical 
stress index (SSI) can help give objective reports of general anesthesia 

[2]. Indices like analgesia nociception index (ANI) and surgical pleth 
index (SPI) are measures of pain (nociception) [3]. A heart rate vari-
ability parameter called similarity index (SI) was derived as a con-
sciousness level parameter [4]. 

Earlier, anesthesia used to be administered manually based on the 
patient’s physiological response. However, the quantity of anesthesia to 
be given does not avoid external interference [5]. This inaccuracy may 
be fatal. Lan et al. has said that direct measurements like heart rate, 
blood pressure (BP), respiratory parameters, temperature, blood oxygen 
saturation, cannot provide sufficient information of the autonomic 
nervous system (ANS) and central nervous system (CNS), which are 
related to the depth of anesthesia (DoA), level of surgical stress, and 
nociceptive changes. Although these direct measurements of vital signs 
are available easily, their response is delayed, and precise modeling and 
anesthesia control are very challenging for anesthesiologists. In order to 
reach the proper anesthetic state for surgery, hypnotic and analgesic 
effects are considered as major fundamental pharmacologic 
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components. Under general anesthesia, memory and awareness are 
critical components of DoA. Moreover, the autonomic nervous system 
(ANS) and central nervous system (CNS) are related to the DoA, level of 
surgical stress, and nociceptive changes [2]. In early times, the concept 
of depth of anesthesia was considered illusory, and due to the various 
components of anesthesia it was difficult to expect that a single index 
can be used successfully for measuring the depth of anesthesia in general 
[6,7]. But over the years, a lot of researchers have laid the importance of 
DoA being a reliable and significant index to monitor the change of 
anesthetic drug effects and being a safe and good quality index to 
determine DoA [8–10]. Therefore, predicting DoA with accuracy has 
attracted growing attention since it provides patients a safe surgical 
environment in case of secondary damage caused by intraoperative 
awareness or brain injury [5]. 

There are accepted commercial indices like the Bispectral index 
(Aspect Medical Systems, Newton, MA, USA), entropy (GE Healthcare, 
Helsinki, Finland), auditory evoked potential that are used to find the 
level of unconsciousness (depth of anesthesia) [10]. Furthermore, de-
vices that implement BIS are the only ones currently approved by the US 
Food and Drug Administration (FDA) for marketing as monitors of 
anesthetic effect on the brain. The BIS, most popular used in the hospital, 
is a complex parameter derived from analysis in time domain, frequency 
domain and high order statistics [11]. It has been a common measure to 
assess the depth of sedation while administering anesthesia and is rec-
ommended as a guide for the administration of hypnotic drugs during 
anesthesia. BIS is presented as a numerical index ranging from 100 
(awake) to 0 (isoelectric EEG). Values below 60 imply that the patient is 
almost certainly unconscious. The BIS index offers considerable ad-
vantages, most notably extensive clinical validation [12]. Kissin has 
stated that it is possible to conclude that the BIS is most promising as a 
monitor of unconsciousness [7]. The BIS monitor gives us the level of 
DoA, which is a measure of the level of unconsciousness (i.e., hypnosis 
component of anesthesia). The BIS monitor, derived from electroen-
cephalogram (EEG) data, has been used as a statistical predictor of the 
level of hypnosis and has been proposed as a tool to reduce the risk of 
intraoperative awareness [8]. The BIS index is based on the power dis-
tribution of the Fourier transform of the EEG signal and quantifies the 
phase coupling between different EEG frequencies [13]. It is derived 
using a composite of measures from EEG signal processing techniques, 
including bispectral analysis, power spectral analysis, and time-domain 
analysis. These measures were combined via an algorithm to optimize 
the correlation between the EEG states and the clinical effects of anes-
thesia, and to quantify these effects using the BIS monitoring value [14]. 
BIS values between 40 and 60 are recommended for surgery under 
general anesthesia [15]. In fact, there is a research paper by Kreuer S 
et al. where a new device (The Narcotrend™) to measure depth of 
anesthesia was investigated based on 14 substages and compared to BIS 
[16]. The FDA cleared BIS monitoring in 1996 for assessing the hypnotic 
effects of general anesthetics and sedatives. The FDA further stated in 
2003 that "A reduction in awareness provides a public health benefit, in 
that BIS technology can now provide anesthesiologists with a way to 
reduce this often debilitating, yet preventable medical error" [14]. 

To determine the depth of anesthesia in recent times, quantitative 
modeling approaches are being replaced by qualitative techniques, 
especially in the field of artificial intelligence. Hybrid models (quanti-
tative/qualitative) and hybrid intelligent algorithms (neural networks, 
fuzzy logic, evolutionary computing) have been applied to anesthesia 
[2]. Convolutional Neural Network (CNN) is a well-known deep learning 
architecture inspired by the natural visual perception mechanism of the 
living creatures. Among different types of deep neural networks, con-
volutional neural networks have been most extensively studied [17]. 
Deep neural networks are computational models consisting of multiple 
processing layers, with each layer being able to learn increasingly ab-
stract, higher-level representations of the input data relevant to perform 
specific tasks. They have dramatically improved the state of the art in 
speech recognition, image recognition, strategy games, and in medical 

applications [18]. CNN models have been deployed to detect diseases 
like arrhythmias from short segments of ECG recordings, REM Behavior 
Disorder (RBD) diagnosis from the EEG, brain seizures & postanoxic 
coma, etc [19–24]. However, the application of deep learning is seldom 
studied on anesthesia. This is because it is not easy for researchers to 
have the patient’s total anesthetic state, apart from the extremely strict 
requirements of CNN on the operating environment [5]. There has been 
prior research on predicting DoA using various vital signs like electro-
encephalography (EEG), electromyography (EMG), heart rate (HR), 
pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), and 
signal quality index (SQI) via artificial neural network (ANN) and has 
produced a less mean absolute error of of 6.54 with 6.69 of standard 
deviation in comparison with BIS which has mean absolute error of 
12.31 and 13.06 of standard deviation, in predicting the DoA [25]. 
There has also been a study of prediction of DoA using EEG Spectrum 
using Convolutional Neural Network which has given the accuracy of 93 
%, interpreted as CNN’s deep learning to approximate the DOA by senior 
anaesthesiologists, which highlights the potential of deep CNN com-
bined with advanced visualization techniques for EEG-based brain 
mapping [5]. Horiguchi and Nishikawa evaluated studies of anesthesia 
based on monitoring the heart rate with the drug propofol [26,27]. 

A state of general anesthesia is produced by anesthetics that act on 
the spinal cord and the stem and cortex of the brain; monitoring of EEG 
patterns is therefore useful [28–30]. Indices derived from EEG have been 
widely used to quantify DoA. The BIS is EEG-based and EEG has a 
reducing anesthetic drug consumption and resulting in faster wake-up 
and recovery from anesthesia, hence it gives accurate measures in 
many cases [13]. However, EEG signals are known to be inaccurate 
under certain conditions. Although EEG-based spectral indices have 
been applied commercially for nearly 20 years, they are still not part of 
standard anaesthesiology practice, and the reasons for this are complex 
[10]. EEG signals developed from adult patient cohorts, and are not 
strictly relevant to infants or younger patients, thereby providing lower 
accuracy [31]. EEG cannot generate precise DoA measurements for 
certain drugs [32,33], especially when ketamine and nitrous dioxide are 
used. EEG signals are sensitive to noise, and therefore more complex 
algorithms and resources for noise filtering are required. Disposable EEG 
electrodes is much more expensive than using other physiological signal 
sensors [10]. Alternatively, heart rate variability has been widely 
accepted as a potentially good predictor of anesthetic depth. An HRV 
related unconsciousness SI was derived by Huang et al. and its value was 
observed at both conscious and anesthetized state during isoflurane 
anesthesia. Electrocardiography (ECG) proved to be good alternative for 
measuring the HRV, instead of EEG [4]. 

ECG and PPG signals are widely used to measure the cardiac cycle 
and monitor heart rate are ECG and Photoplethysmography (PPG) 
[34–36]. Byeon et.al conducted a comparative analysis of deep models 
in biometrics using scalograms of an electrocardiogram and has got good 
results [37]. The ECG provides important clinical physiological signals 
and is highly recommended for continuous monitoring and ensuring 
international standards for the safe practice of anesthesia [38]. Different 
anesthetics affect the Q wave and T wave interval of an ECG during 
anesthetic induction, and rhythmic-to-non-rhythmic observations from 
the ECG can provide anesthetic information [39,40]. The PPG is a 
non-invasive and inexpensive waveform that contains information 
related to the balance (or analgesia level) between nociception and 
anti-nociception undergoing general anesthesia, which has been ascer-
tained to result in physiological reactions of the autonomic nervous 
system (ANS) [41–43]. A study conducted by Zhang et al. shows that 
photoplethysmography-derived parameters appear to be more suitable 
in monitoring the nociceptive component of balanced general anesthesia 
[44]. Therefore, with ECG and PPG monitoring, we can get a balanced 
state of general anesthesia. In addition, several studies have shown that 
ECG and PPG help in calculating various standard pain indices like ANI, 
SPI and SSI. ANI derived from the heart rate variability is based on ECG 
data derived from two single-use ANI electrodes. Promising results of an 
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SPI index based on heartbeat interval and pulse wave amplitude of the 
finger-PPG signal were reported [3]. Huiku et al. proposed the SSI [45], 
which is a simple numerical measure of the surgical stress level under 
anesthesia. Two continuous variables, the interval between successive 
hearts beats and PPG are used to calculate SSI. Also, ECG and PPG are 
easy and cheap to acquire. All hospitals can afford to get these signals 
from patients. On the other hand, the process of EEG signals is complex 
and expensive. Although the accuracy using ECG and PPG signals may 
be a bit lower than the accuracy of EEG signals, the former signals can be 
used in smaller hospitals where EEG detection is not feasible due to the 
cost. The relation between BIS values and ECG and PPG signals has not 
been studied much via deep learning, and thereby the research of pre-
dicting the depth of anesthesia using ECG and PPG signals is quite new. 

In this paper, we present research on predicting DoA using the vital 
signs ECG and PPG with deep learning models. Based on the BIS values 
attained every 5 s, the 512 Hz ECG signal and 128 Hz PPG signal are 
filtered and heatmaps are generated for every 5 s of the surgery dura-
tion. CNN models are designed and trained to predict the DOA levels 
from ECG and PPG heatmaps, which presents an intuitive mapping 
process with decent efficiency and reliability. Through our research, we 
have proposed a cost-effective solution with a decent accuracy to help 
predict the depth of anesthesia. 

2. Materials and methods 

This study has been approved by the Research Ethics Committee, 
National Taiwan University Hospital (NTUH) in Taiwan. Furthermore, 
written informed consent was received for permission by the patients. In 
total, a dataset of 50 patients during surgical operation was used for the 
evaluation. The research has been divided into three major parts, 
namely data collection, data preprocessing and finally deep learning. 
The data (several vital signs like ECG, PPG, EEG, heart rate, blood 
pressure, etc) was collected from the surgical operation room at NTUH 
in Taipei, Taiwan using the techniques demonstrated in [46]. To eval-
uate the model and compare it to the BIS signal, whose sampling rate is 
also 0.2 Hz, the raw 128 Hz PPG signal and 512 Hz ECG signal are 
filtered and analyzed every 5 s, 640 and 2560 points respectively. 
Heatmaps are then generated and segregated as per the BIS and SQI 
values. These heatmaps are used as inputs for the CNN model. Various 
CNN models were implemented to maximize prediction accuracy. The 
deep learning part of DoA was divided into three categories as shown in 
Fig. 1. 

The signals were processed and the heatmaps were generated using 
MATLAB R2020a. Deep learning using various CNN models were codes 
using Python3 and implemented on Google Colab. A total of 50 patients’ 
data was used. 

2.1. Data collection process 

As per [46], the equipment that were used to collect data are the 
physiological monitor Phillips IntelliVue MP60, BIS Quatro Sensor 
module, and a laptop for data-logging. First, the data measurements of 
vital signs like heart rate, blood pressure, SPO2 are collected through an 
MP60 monitor. ECG and PPG signals are also measured. The monitor is 
connected to NPort through UART serial communication port and it uses 
TCP/IP protocol for transmission. The NPORT transmits the data 
received wirelessly to the repeater. The data received from the repeater 
is then transmitted to the PC. The connection is verified using ping and 
handshake; when the connection is released, the transmission stops. 

The logged data consists of continuous as well as discrete data. The 
continuous signal data that are used for this study are 512 Hz ECG signal 
and 128 Hz PPG signal recorded for the whole duration of the surgery of 
each patient. The discrete data used are the BIS value and SQI. These are 
recorded with a 0.2 Hz frequency. The BIS values attained from the BIS 
Quantro sensor module are categorized as Anesthesia Deep, Anesthesia 
Light, and Anesthesia Ok. Anesthesia Deep implies that the patient is in a 
state of unconsciousness and too deep. Anesthesia ok implies that the 
patient is suitable for surgery. While anesthesia light implies that the 
patient is awake, and surgery cannot proceed. Table 1 shows the range of 
BIS values for each category. The signal quality index (SQI) is also sig-
nificant to determine whether a signal is contaminated with noise or not. 
The SQI of a Good Quality signal must be at least 40. An SQI below 40 
signifies Low Quality. Based on the SQI of each BIS value attained in a 5- 
second interval, the signal is categorized it into low signal quality or 
good signal quality. Thereby, only the ECG and PPG signals are 
considered which fall under good signal quality for analysis. 

Most of the medical datasets are unbalanced, that is, the number of 
conventional samples is much larger than the number of unconventional 
instances. In this case, it was observed that the percentage of samples in 
the category of anesthesia deep was relatively higher than that of the 
other two categories. Although it is peculiar that in our dataset as shown 
in Table 2, over 50 % of the data lies in Anesthesia Deep category, we 
have calculated the average BIS values of each category and it was seen 
that the average BIS values of the ‘Anesthesia Deep’ category is 
approximately 36.8 ± 4.6, which is close to the BIS values of Anesthesia 
OK (BIS range 40–60). It is fully coincidental that the Anesthesia Deep 
Category has more data than Anesthesia OK in the samples that we 
considered. Moreover, we have balanced the dataset while training our 
model, i.e. we used data augmentation techniques to ensure that we 
have equal number of data from each category to predict the depth of 
anesthesia. 

To generate input images for Deep Learning, the raw signals of ECG 
and PPG are converted into images format (2D matrix) in jpg format and 
stored in specific folders. This was done using MATLAB. 

2.2. Data preprocessing 

The first cardinal step for analysis is data preprocessing. Here, the 
data accumulated needs to be converted to an image like format so that 
we can apply deep learning models. This is done by creating matrices. To 
do this, we first filter 5 s of raw ECG signal (512 Hz) and raw PPG signal 
(128 Hz) which gives us 2560 samples of ECG and 640 samples of PPG Fig. 1. Deep Learning Block Diagram.  

Table 1 
BIS Value Categorization.  

BIS Range Consciousness 

0–40 Anesthesia Deep 
40–60 Anesthesia OK 
60–100 Anesthesia Light  
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signal. Two different matrices are created with 2650 and 640 rows 
respectively. Each column of the matrix corresponds to one BIS value 
which is attained for the 5 s. Plots of ECG and PPG signals of each cor-
responding BIS value for each 5-second span of the surgery duration are 
generated. It is observed that each in all the BIS categories and the ECG 
signal follows a PQRST wave pattern. It is pretty hard to differentiate the 
plots of the ECG signals among the 3 categories. On the other hand, it is 

observed that the PPG signal follows its conventional two-peak plot. The 
plots are not enough to feed as input to our deep learning models. Next, 
heatmaps of ECG and PPG signals for each 5-second span of the surgery 
are generated and saved as jpg images. Based on the frequency of the 
two signals, the heatmap size of each ECG signal is 51 × 51 and the 
heatmap size of the PPG signal is 26 × 26. The heatmaps of the 50 pa-
tients were collected and we go a total of around 14,000 images. These 
images were categorized into Training and testing data in the ratio of 
8:2. Fig. 2 shows a sample of ECG plots and heatmaps obtained for each 
BIS category (Anesthesia Deep, Anesthesia Light, Anesthesia Ok) and 
Fig. 3 show the same for PPG Plots. After balancing the dataset, we have 
4715 images in each category (Anesthesia Deep, Anesthesia Light, and 
Anesthesia Ok). In total, there are 14,145 images for analysis. 

2.3. Deep learning 

The images of 50 patients were used for analysis. Several models 

Fig. 2. ECG plots and heatmaps of (a) Anesthesia Ok; (b) Anesthesia Deep; (c) Anesthesia Light.  

Table 2 
The distribution of the images in each category along with their average value 
and standard deviation.  

BIS Category Percentage of images (%) Mean ± SD of BIS Value 

Anesthesia Deep 56 36.8 ± 4.6 
Anesthesia OK 35 45.9 ± 6.3 
Anesthesia Light 9 67.0 ± 11.4  
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with a different number of layers were implemented. AlexNet a five 
convolutional layered model was used with some fine-tuning. Next, 
models with 6, 8, and 10 convolutional layers were used. Finally, VGG 
19 was used with pre-trained weights of the ImageNet dataset. The first 
experiment was CNN performed with different models using the 
following ECG heatmaps and PPG heatmaps separately. Second, a 
combination of ECG&PPG heatmaps was used as inputs to our deep 
learning models. Finally, a two- Stream Multi-channel CNN was 

performed with ECG and PPG heatmap images an input. The output has 
3 classes based on the DoA prediction - Anesthesia OK, Anesthesia Deep, 
Anesthesia Light. Deep learning models were coded in Python and the 
tool Google Colab was used for implementation. High computational 
time and GPU capacity are required for training complex models with 
many layers. Google Colab provides users with free access to Google 
GPU. To reduce the computational cost, filters were incorporated in the 
convolutional layers. Dropouts and Batch Normalization were added in 

Fig. 3. PPG plots and heatmaps of (a) Anesthesia Ok; (b) Anesthesia Deep; (c) Anesthesia Light.  
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Fig. 4. Structure of Deep Learning models.  
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Fig. 5. Layers of Two-channel CNN (a) Convolution layer with ECG input; (b) Convolution layer with PPG input; (c) Concatenation Layer; (d) Fully Connected Layer. 
(‘None’ implies that the batch size is flexible; it is determined during training). 
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the models to prevent overfitting. The models were compiled using 
categorical cross entropy since the output has three categories (Anes-
thesia Ok, Anesthesia Deep and Anesthesia Light). The activation func-
tions used were ReLU and tanh and the optimizer used is Adam. The 
learning rate was varied from 0.001 to 0.0005. For faster computation 
and better accuracy, a learning rate of 0.005 was used. The batch size of 
64, 128, and 256 were experimented. Finally, the best accuracy was 
achieved using a batch size of 64. Each model was trained for 50 epochs. 
Model checkpoint was used to save the weight every epoch for testing. 
Further, the validation loss was checked using ReduceLROnPlateau, that 
is, the learning rate was decreased by a factor of 0.1 whenever the loss 
function remained around the same value for more than 2 epochs. The 
minimum learning rate was kept to 0.00001. Tensorflow was used as the 
backend of the training process. The inputs to the models are the images 
of heatmaps in the RGB format. The VGG and AlexNet models used a 224 
× 224 size of the input images and the rest of the models used 128 × 128 
size. The input and output arrays are a 4D array which consists of the 
batch size, input width, input eight and input depth. The batch size is 

flexible and is fed during the training process. The image width and 
height are 224, 224 or 128, 128 depending on the model. The depth of 
the image is 3 since we have used an RGB image. Finally, Softmax as the 
activation for the fully connected layers since the categorization was for 
three categories. 

Fig. 4 shows the structure of each model used. ‘InputLayer’ repre-
sents the heatmap images that are fed in each model; ‘Conv2d’ repre-
sents the convolution layer; ‘Activation’ represents the activation 
function used in the convolution layer; ‘MaxPooling2D’, ‘Batch 
Normalization’ and ‘Dropout’ are used in each respective Convolution 
layer to prevent overfitting and reduce the computational cost; ‘Flatten’ 
represents the conversion of 2D convolution layers to 1 dimension; 
‘Dense’ represents the fully connected layers. Each blue box represents 
one convolution block, and the orange box represents one Fully con-
nected block. In AlexNet, 5 convolutional layers have been used ac-
cording to the predefined structure with 96, 256, 384, 384 and 256 
kernels respectively. We have fine-tuned the fully connected layers using 
three fully connected layers with 4096, 4096 and 1000 neurons 
respectively. Dropout was used to decrease the number of samples. The 
activation function used was tanh. In the 6 layered CNN, 6 convolutional 
layers have been used with 32, 32, 64, 64, 128, 128 kernels respectively. 
There is one dense layer with 1000 neurons. In the 8 layered CNN, 8 
convolutional layers have been used with 64,64, 96, 96, 256,256, 384 
and 384 kernels respectively. There is one fully connected layer con-
sisting of 1000 neurons. In the 10 layered CNN model, 10 convolutional 
layers have been used with 32, 32, 64, 64, 96, 96, 128, 128, 256, and 
256 filters respectively. There is one dense layer of size 1000. In the 6, 8 
and 10 layered CNN, ReLU activation function is used in the convolution 
blocks. VGG19 is a CNN model with 19 layers - 16 convolutional layers 
and 3 fully connected layers. The convolutional layers were pre-trained 

Table 3 
ECG and PPG accuracy.  

Model Structure Accuracy (%)  

ECG PPG 

AlexNet 72 62 
Six layered model 72 63 
Eight layered model 75 64 
Ten layered model 77 65 
VGG 70 62  

Fig. 6. Accuracy plot of the best model (10 layered CNN) of (a) ECG; (b) PPG.  

Fig. 7. Accuracy plot of the best model (10 layered CNN) – ECG and PPG subplot.  
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using the ImageNet dataset weights, and the fully connected layers are 
fine-tuned according to the model. In this architecture, two fully con-
nected layers of size 512 and 128 neurons are used respectively. 

The last type of structure used is Two Channel CNN. It is a type of 
deep learning structure where we feed in two types of data parallelly. 
The demonstration can be referred to in [47] A similar structure was 
used in our analysis. ECG and PPG heatmaps are used as inputs to our 
model as shown in Figs. 2 and 3. The convolutional layers take place 
individually and the output layers of each input are finally concatenated 
as shown in Fig. 5(a), (b) and (c). After this, the fully connected layers 
are performed as one as shown in Fig. 5(d). Similarly, the rest of the 
models that are described above were performed using two-channel 
CNN, where the convolution layers were performed individually. The 
outputs of the two blocks were concatenated and the fully connected 
layers were performed together. 

3. Results 

In this study, the depth of anesthesia was predicted based on BIS 
values acquired. The heatmaps generated from the signals of PPG and 
ECG were used as inputs data to our model. Various deep learning 
models like AlexNet and VGG19 were used. Besides, a 6 layered, 8 
layered, and 10 layered model were also used. VGG19 model was pre- 
trained using the ImageNet weights and the rest were trained from 
scratch. A total number of 14,145 images were used, and the training 
and testing sets were split in 80 % and 20 %. Each model was trained for 
50 epochs with a batch size of 64. AlexNet and the 6 layered model took 
around 1.5 h for training, the 8 and 10 layered models took around 2 h to 
train. The VGG19 model took 1.5 h for training. First, a smaller dataset 
of 25 patients was used for training, followed by evaluating the complete 
dataset of 50 patients. A significant difference in accuracy was observed, 
probably due to the variance. 

In all the 3 experiments, we observe that the 10 layered model gives 
us the maximum accuracy compared to the other models. In the first 
experiment with ECG and PPG inputs, we get an accuracy of 77 % and 65 
% respectively with this model. With the subplots of ECG and PPG as 
inputs, the accuracy achieved with this model is 86 % and with Two- 
channel CNN we get an accuracy of 75 %. 

VGG19, despite having the maximum number of layers, has given us 
a relatively lower accuracy in all the three experiments conducted. With 
ECG inputs the accuracy is 67 %, with PPG 62 %. With ECG & PPG 
subplots and two-channel CNN, an accuracy of 70 % and 65 % are 
achieved respectively while using VGG19. This was because of the pre- 
trained weights. The GPU constraint restricted us from training such a 
complex model from scratch. 

Overall, in this research focus is on the accuracy when ECG and PPG 
images are fed together, as this gives a good insight of hypnosis com-
ponents of anesthesia. We get an accuracy of 86 % when ECG and PPG 
data are fed as subplots in a 10 layered model. With two-channel CNN, 
the maximum accuracy achieved is 75 %. Again, this was attained while 
using a 10 layered model. 

3.1. ECG and PPG analysis result 

The maximum accuracy was achieved when we used a 10 layered 
model. Table 3 shows the accuracy achieved using different models. It 
was observed that the ECG signals more accurately predict DoA 
compared to the PPG signals. This result matches with previous studies 
conducted. Fig. 6 shows the accuracy plots over 50 epochs during the 
training of the 10 layered model of ECG and PPG signal. 

3.2. ECG and PPG subplot analysis result 

This experiment gives us maximum accuracy. ECG and PPG signal 
heatmaps produced in MATLAB were combined into a single image as a 
subplot and have been used to predict DoA. The heatmap on top rep-
resents the ECG signal, and the plots on the bottom of each image 
represent the PPG signals. The maximum accuracy of 86 % was achieved 
when we used 50 patients’ data with a 10 layered model. The accuracy 
plot of this model over 50 epochs is shown in Fig. 7. Table 4 shows the 
accuracy table with each model implemented. 

3.3. Two-channel CNN analysis result 

In this experiment, we have used ECG and PPG images as described 

Fig. 8. Accuracy Plot of the best model (10 layered CNN) – two channel CNN.  

Table 5 
Two-channel CNN accuracy.  

Model Structure Accuracy (%) 

Alexnet 69 
Six layered model 67 
Eight layered model 73 
Ten layered model 75 
VGG 65  

Table 4 
ECG and PPG subplot accuracy.  

Model Structure Accuracy (%) 

AlexNet 69 
Six layered model 75 
Eight layered model 78 
Ten layered model 86 
VGG 67  
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in Section 2.3. The maximum accuracy of 75 % was achieved when we 
used 50 patients’ data with a 10 layered model. The accuracy plot of this 
model over 50 epochs is shown in Fig. 8. The accuracy of Two-channel 
CNN with all the models described in Section 2.3 is given in Table 5. 

In order to verify the results, normalized confusion matrices of the 
best model, that is the 10 layered CNN, from each experiment are 
plotted. The confusion matrix shows the True Positives, True Negatives, 
False Positive and False Negatives of each category of classification. 
From Fig. 9, it can be concluded that the True Positives of the category 
Anesthesia Ok are the highest in all the cases, whereas Anesthesia Deep 
has the least number of True positive predictions among the 4 experi-
ments conducted. This is because most of the BIS values 36.8 ± 4.6, 
which is very close to the BIS range of Anesthesia Ok. The images of 

Anesthesia Light, on the other hand had the values 67.0 ± 11.4, so the 
models could differentiate it from the other two categories. 

4. Discussion 

In all, we have produced a good result in predicting DoA with ECG 
and PPG signal heatmaps used as a single image. In this research we have 
performed an analysis of ECG and PPG data separately and together 
using subplots and a two-channel CNN, to predict the depth of anes-
thesia (DoA). Table 6 shows a summary of the accuracy of all the ex-
periments conducted. Various complex models were used consisting of a 
different number of layers (5, 6, 8, 10 and 19). The models with 5, 6, 8 
and 10 layers were trained from scratch and 19 layered model VGG19 
was trained using pre-trained weights of the ImageNet dataset due to 
constraints with GPU computational time and memory. Checkpoints 
have been used to store weights with the best validation accuracy after 
every epoch. The validation loss was monitored by reducing the learning 
rate during training to prevent overfitting. MATLAB is used to generate 
the heatmaps and the model was trained on Google Colab, which pro-
vides users with free access to Google GPU and TPU. Hence, smaller 
hospitals also can make use of this free tool to train a CNN model from 
scratch. Moreover, once a model is trained, it is not required to retrain 
the model fully. Instead, fine tuning the fully connected layers will 

Fig. 9. Confusion Matrices of 10 layered CNN with normalized values of (a) ECG; (b)PPG; (c)ECG-PPG Subplot; (d) Two-channel CNN.  

Table 6 
Summary of accuracy.   

AlexNet 6 layered 
CNN 

8 layered 
CNN 

10 layered 
CNN 

VGG 

ECG 72 % 72 % 75 % 77 % 70 % 
PPG 62 % 63 % 64 % 65 % 62 % 
ECG and PPG 69 % 75 % 78 % 86 % 67 % 
Two-channel 

CNN 
69 % 67 % 73 % 75 % 65 %  
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suffice. This way, the best model can be modified based on new heat-
maps generated with less GPU and timing constraints. 

In [25], the authors have done a study to predict DoA via Artificial 
Neural Network using EMD processed EEG signal combined with other 
mean values of vital signs like EMG, HR, pulse, SBP, DBP, and SQI to 
evaluate the DoA index, and have concluded that ANN has a lower error 
than BIS. In order to get the precise model, computational time 
consideration, due to the large epoch number, was ignored thus 
increasing the memory and timing constraints. The study conducted in 
[5] has achieved a 93.5 % accuracy by using CNN with processed EEG 
signal to predict the DoA with respect to the BIS values. On comparing 
the results with our study, we see that the accuracy in our case is around 
10 % less. This is because basic anesthesia occurs in the brain and spinal 
cord and so EEG signals are intensively used as a measure to administer 
anesthesia. However, ECG and PPG signals overcome various short-
comings of the EEG signal, like better feasibility of ECG & PPG than EEG, 
higher energy levels of ECG signals, better resistance to noise, easy and 
inexpensive acquisition of the former signals while evaluating the DoA. 
EEG signals also require more preprocessing like denoising, Empirical 
Mode Decomposition or short time Fourier Transform, unlike ECG and 
PPG signals which can be used directly. Moreover, the GPU and time 
constraints in [5] and [25] are very high and requires expensive hard-
ware. Overall, our study uses inexpensive signals, minimum data 
reconstruction, minimum memory and timing constrains to achieve a 
decent accuracy of 86 % to categorize the anesthetic levels to Anesthetic 
Deep, Anesthetic Light and Anesthetic Ok. Table 7 shows the compari-
son of our study with the previously done work. Overall, this research 
shows a good potential in future clinical practices. 

With more research into improving the accuracy by using more vital 
signs like electromyography (EMG), pulse, systolic blood pressure (SBP), 
diastolic blood pressure (DBP), etc our model can be deployed as a 
measure of the DoA instead of the currently used BIS Quantro. In the 
future, the aim is to investigate the degree of analgesia using other 
measures like Analgesia Nociception Index machine designed by Mdo-
loris Medical Systems [48] to train this deep learning model via ECG and 
PPG signals as well. Hence, with ECG and PPG being signals which can 
detect hypnosis and analgesia, the right amount of anesthesia can be 

administered to the patient. This can serve as an effective and automated 
tool in the surgical room. The overfitting can be reduced and hence the 
accuracy can be further increased by using more patient data, further 
fine-tuning (Changing learning rates, momentum), train each patient 
separately, and get the best model to test the other patients. Transfer 
learning method can be applied for pre-trained models to speed up the 
training process and hence improve the accuracy. Furthermore, Recur-
rent Neural Networks or LSTMs can also be deployed instead of CNN to 
improve accuracy. In all, this study can be improved by training Deep 
Learning models with a different number of layers and hyperparameters 
from scratch. 

5. Conclusions 

After performing various deep learning models, we can conclude that 
our study has given us significant results. A maximum accuracy of 86 % 
is achieved when a 10 layered model is used. It was observed that ECG 
readings are more important than PPG to predict DoA as the individual 
accuracy was higher in ECG than PPG. However, a combination of ECG 
and PPG as input proves to be more efficient than a single signal. Two- 
channel CNN is an efficient model, however, with more fine-tuning and 
more patient data we can achieve greater accuracy. Pretrained Imagenet 
weights do not work well with our image data and it is better to train 
models from scratch. Being a temporal dataset, better accuracy can be 
achieved with a larger sample size. By modifying the training step, batch 
size, optimizer, activation function, kernel size, learning rates, and 
number of epochs we can have better accuracy. In all, through this 
research we have found a cost-effective and automated way to predict 
the depth of anesthesia. Moreover, the vital signs ECG and PPG are not 
only used to measure the hypnosis aspect of anesthesia, but also the 
analgesic component in the near future. This method will help anes-
thesiologists in future clinical practices. 
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