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Abstract
The edge/fog computing has the potential to gear up the healthcare industry by providing better and faster health services to the
patients. In healthcare systems where every second is crucial, the edge computing can be helpful to reduce the time between data
capture and analytics in a powerful manner. In edge computing, the network edge devices are configured in such a manner that
they can handle critical analysis and make necessary decisions instead of sending the captured health data directly to the cloud.
However, lifetime of the edge network is a critical factor and thus an energy efficient network architecture has to be designed to
achieve the above mentioned goal. In this regard, this research presents a new extremal optimization tuned micro genetic
algorithm (EO-μGA) based clustering technique for the sake of efficient routing and prolonging network lifetime by saving
the battery power of network edge devices. Moreover, a novel fitness function with a set of relevant criteria of edge devices such
as energy factor, average intra-cluster distance, average distance to cluster leader over data analytics center, average sleeping
time, and computational load has been considered for the selection of the cluster leader which will be responsible for managing
intra-cluster and inter-cluster data communication. The simulation results show that the proposed EO-μGA based clustering
model offers a higher network lifetime and a least amount of transmission energy consumption per node as compared to various
state of the art optimization algorithms.
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1 Introduction

IoT has been chosen as the most attractive technology for
healthcare sector to make it more attractive, effective and ro-
bust. It has been applied in numerous medical applications
such as from remote health monitoring to chronic diseases,
and elderly care etc. Moreover, it has the potential to provide
treatment and medication at home through various medical
devices, wearable sensors, diagnostic and imaging devices
(Rahmani et al. 2018; Whitmore et al. 2015). Thus by incor-
porating IoT technology, the traditional healthcare is changing

to be smarter every day and also expected to alleviate costs,
increase the quality of life, and enrich the user’s experience as
well (Verma and Sood 2018). In an e-Healthcare system, IoT
devices and sensors collect the data from various patients and
surroundings about various parameters for analyzing the pa-
tient health condition and take necessary actions against it.
Therefore, the continuous monitoring of patients through nu-
merous sensors and devices is very much necessary. In this
regard, a properly designed network is the most important
factor for improving the lifetime of the IoT network. Thus,
there is an utmost need for an efficient network architecture
that can ensure a long lifetime of an e-Healthcare system. In
this regard, the edge/fog computing has the potential to gear
up the healthcare industry by providing better and faster health
services to the patients (Rahmani et al. 2018; Majumdar et al.
2018). In healthcare systems where every second is crucial,
the edge computing can be helpful to reduce the time between
data capture and analytics in a powerful manner. In edge com-
puting, the network edge devices are configured in such a
manner that they can handle critical analysis and make neces-
sary decisions instead of sending the captured health data di-
rectly to the cloud. However, lifetime of the edge network is a
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critical factor and thus a stable efficient network architecture
has to be designed to achieve the above mentioned goal. So,
clustering of edge devices into distinct clusters can be a pro-
ficient way of improving energy efficiency of the network,
thereby providing health services for a long time (Majumdar
et al. 2019). Cluster head based communication is a common-
ly followed method in wireless sensor network (WSN) for
prolonging the network life time. This paper also addresses
the clustering protocol like WSN but for the edge device net-
work. In WSN the clustering is performed locally in the net-
work where-as clustering in edge network can be considered
as globally in the network. Furthermore, clustering in edge
devices enables distributed edge analytics. It has an added
advantage of having faster and real-time analysis of data in
any large geographical region. This leads to a faster fault re-
sponse time.

In this paper, a fog layer configured e-Healthcare architec-
ture, consisting of a pool of Micro Data Centers (MDC) as
edge devices has been proposed. These MDCs are entrusted
with the responsibility of temporary and frequent processing
of data and are deployed in various areas depending on the
data collection needs. Every MDC is connected with some
smart sensors or devices and are used to acquire health infor-
mation of patients and transmit it to the cloud. As it is battery
operated, there is a chance of network failure and hence may
cause an extremely crucial health data loss. Taking into ac-
count the problems mentioned above, an energy efficient
MDC network has been designed that can prolong the overall
lifetime of the network and reduce the transmission time.

The key contributions of this paper has been given as
follows:

a) A fog layer configured e-Healthcare model and strategy
equipped with energy efficient edge devices has been
designed.

b) A fast hybrid meta-heuristic algorithm named extremal
optimization tuned micro genetic algorithm (EO-μGA)
has also been proposed that partitions the network into
distinct clusters of participating edge devices within the
network in such a way that each cluster will have equally
good fitness. The goodness of the employed strategy over
other state of the art methods for prolonging the edge
network lifetime has also been studied.

c) A novel fitness function associated with all the neces-
sary criteria has been proposed for optimization of the
edge network and selection of most promising edge
devices in each cluster. This process determines the life
of cluster as well as the whole MDC based healthcare
network.

The rest of the paper is organized as follows: Section 2
addresses the background related to this research. Section 3
presents the related research works in the relevant field in

detail. The proposed energy efficient clustering technique
has been presented precisely in Section 4. Section 5 presents
results and analysis part of this research. The paper has been
concluded in Section 6.

2 Background

2.1 Micro Genetic Algorithm (μGA)

In case of binary coded Simple Genetic Algorithm (SGA),
there may be a chance to obtain global optimal solution but
at a slow convergence rate. Hence, in real-world problems
where convergence speed is given priority, SGA cannot be
useful. For example, in online optimization problems, the ob-
jective function may change faster than the SGA reaches to
the optimal solution. In this regard, a faster GA is sincerely
needed to support the online optimization. Micro Genetic
Algorithm (μGA) is a kind of Genetic algorithm with a small
population which was first introduced by Krishnakumar
(Krishnakumar 1990). In μGA, the crossover operation takes
place, but mutation operation is not required to be applied
since enough diversity has already been maintained after con-
vergence of μ population.

2.2 Extremal Optimization (EO)

The Extremal optimization is based on self-organized critical-
ity concept in which successive replacement of the most un-
desirable variables in a suboptimal solution is done with new-
ly generated random ones. EO is also inspired by the fact of
physical instinct to optimize, which is generally followed by
its ancestors, such as simulated annealing (SA) or genetic
algorithms (GA) (Boettcher and Percus 2003).

2.3 Analytic Hierarchy Process (AHP)

AHP is a powerful and robust multi-criteria decision mak-
ing (MCDM) technique that has been widely used in mak-
ing and analyzing complex decisions in various applica-
tions. It is basically based on pair-wise comparisons in
which problems are decomposed into a hierarchy of factors
and criteria. It is also treated as an effective tool which helps
in deriving weights for each evaluation criteria using
matrix-oriented methods according to the decision maker’s
pairwise comparisons of the criteria. The higher the weight,
the more important the corresponding criterion. The final
task of alternative ranking involves relative weights aggre-
gation of the decision elements that yields a final score for
each option.
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3 Related Research

This section is divided into two sub-sections which are the use
of Internet of Things and Cloud/Fog computing in the
healthcare domain, and different energy efficient techniques
related to IoT. The first sub-section discusses the IoT and
Cloud/Fog computing-based systems and frameworks in the
healthcare domain. In the second, a survey of different energy
efficient methodologies used for several IoT enabled systems
has been illustrated.

3.1 IoT and Cloud-Based Healthcare

In 2018, Rahmani et al. (Rahmani et al. 2018) implemented a
Smart e-Health Gateway architecture called UT-GATE based
on the amalgamation of Fog computing with IoT. The system
has the potential to offer several higher-level services such as
local storage, embedded data mining, and real-time local data
processing etc. Moreover, the authors have also demonstrated
the fog-assisted system with a medical case study called Early
Warning Scores (EWS) to monitor the patients with acute
illness. In 2018, Majumdar et al. (Majumdar et al. 2018) de-
signed an edge device configured e-Healthcare framework for
remotely classifying the status of a highly epidemic disease
named Kyasanur Forest Disease (KFD). They introduced the
concept of smart edge devices configured with their proposed
classification algorithm named extremal optimization tuned
neural network (EO-NN). EO-NN achieved better perfor-
mance in classification as compared to various state of the
art classification techniques. In 2017, Hossain (Hossain
2017) proposed a scalable and efficient real-time patient mon-
itoring system by using smartphones to acquire voice and
electroencephalogram signals. Additionally, a cloud-
supported appropriate indoor localization of the patients has
also presented in this work by incorporating the concept of
Gaussian mixture modeling. In 2017, Verma and Sood
(Verma and Sood 2018) proposed an IoT equipped disease
diagnosis framework wherein User Diagnosis Results
(UDR) have computed on the server side. Additionally, au-
thors have compared the performance of various classifiers on
the dataset of numerous diseases collected from UCI database
and also established an alert generation mechanism to handle
the disease severity. In 2017, Chen et al. (Chen et al. 2017)
proposed three novel algorithms for three different purposes to
improvise the power management for IoT in E- Healthcare
system. The power level decision (PLD) algorithm and a pow-
er level and packet size decision (PPD) algorithm have been
used to minimize the energy consumption during data trans-
mission and to decide the optimal packet size respectively.
Moreover, a global link decision (GLD) scheme have also
been proposed by the authors to improve factors such as net-
work reliability, delay, and network lifetime. In 2017, Bhatia
and Sood (Bhatia and Sood 2017) established an intelligent

healthcare framework having the potential to analyze real-
time health status and predict undesired health state vulnera-
bility. For the implementation, authors have used various sen-
sors to acquire the health data and also used Artificial Neural
Network (ANN) model for the Prediction. In 2016, Hossain
and Muhammad (Hossain and Muhammad 2016) described a
cloud-assisted Healthcare monitoring system, named as
Industrial IoT (HealthIIoT). This system offered real-time
monitoring and analysis of patient’s health-related data
through mobile devices and sensors to avoid obnoxious cir-
cumstances. Moreover, to provide high-quality service and
make the system secure, the healthcare data have been
watermarked before being sent to the cloud. In 2015, Gelogo
et al. (Gelogo et al. 2015) proposed an IoT based health mon-
itoring application with the support of mobile gateway, named
as u-healthcare. The authors have also presented an ideologi-
cal framework of IoT that works for u-healthcare. In 2015,
Santos et al. (Santos et al. 2015) introduced an IoT based
healthcare system wherein Constrained Application Protocol
(CoAP) and IEEE 11073 standards have been used for sharing
of sensor data among different personal health devices and
mobiles. In 2005, Barger and Brown et al. (Barger et al.
2005) developed a Smart-House system which was mainly
concerned about proactive health monitoring of the elderly
population by deploying remote monitoring technologies in
their homes. The prototype was examined within a subject’s
home to detect behavioral patterns by using basic sensors and
found satisfactory results. In 2015, Hussain et al. (Hussain
et al. 2015) proposed a people-centric sensing framework for
elderly and disabled people. Their methodology aims to pro-
vide a service-oriented emergency response in case of any
abnormal condition of the patient. In 2015, Catarinucci et al.
(Catarinucci et al. 2015) proposed an IoT enabled smart hos-
pital system (SHS) by incorporating different technologies
such as RFID, WSN, and smart mobile. For the data transmis-
sion at different scenarios authors have suggested to use dif-
ferent network infrastructures such as Constrained
Application Protocol (CoAP), IPv6 over low-power wireless
personal area network (6LoWPAN), and representational state
transfer (REST).

3.2 Energy Efficient IoT Network

In 2014, a clear idea of IoT and its various possible applica-
tions was depicted by Gubbi et al. (Jin et al. 2014). The
authors also highlighted the technological perspective of a
need for energy management in IoT application areas.
Moreover, they discussed several possible solutions of energy
sources that can be followed in different applications. Since
then, this topic has been taken as a research challenge by
many researchers and lot of ideas related to this issue have
been suggested till now. In 2016, Akgul et al. (Akgül and
Canberk 2016) proposed a concept of smart and self-
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configured sensors which not only have the ability to opti-
mize and heal itself but also capable of putting itself into
sleep mode whenever necessary. In this way, it confirms a
significant amount of energy saving. In 2014, a tree-based
architecture named “energy-efficient index tree” was pro-
posed to save the energy of a pool of geographically distrib-
uted sensors (Zhou et al. 2014). In this regard, the authors
were concerned about the saving of sensors energy utilized
for data acquisition, aggregation and query handling. In this
approach, all the participating sensors were organized into a
tree structure that manages the query transmission between
sensors and the base station in an energy efficient manner.
Similarly, in 2014, Tang et al. (Tang et al. 2014) presented
another tree-based model in which the IoT region was
partitioned into several grid cells that were organized hierar-
chically to form a tree. They had restricted the data transmis-
sion in such a way that sensors will only transmit data if any
changes occur in the currently detected value as compared to
the previously sent value. Researchers also tried to improve
the battery energy efficiency by configuring the sleep interval
of the IoT devices (Liang et al. 2013). Their approach
allowed the node to keep in sleep mode until an event is
triggered. Moreover, authors also proposed a strategy to max-
imize the sleep interval that helps in energy saving. In 2015,
Kaur et al. (Kaur and Sood 2017) proposed a hierarchical
layer based mechanism for enhancing the IoT energy effi-
ciency. In their approach, the layers exchanged energy-
related information between them for the prediction of sleep
interval of sensors based upon their remaining battery level
and previous usage history. Additionally, during their sleep
mode, the allocated cloud resources to that sensor were re-
provisioned to other sensors for better resource utilization.
The cluster-based approach is one of the most followed ap-
proaches for resolving the energy consumption issue in IoT
network and increasing the network lifetime. By using a suit-
able clustering approach, the average transmission distances
of sensors can be reduced effectively. In 2017, Researchers
also dealt with clustering of IoT devices and cluster heads
selection for the responsibility of data transfer to the base
station (Praveen Kumar Reddy and Rajasekhara Babu
2017). For cluster head selection, they proposed a combina-
torial approach of gravitational search algorithm with artifi-
cial bee colony optimization. Parameters namely, Distance,
energy, delay, load, and temperature of the IoT devices were
considered in their approach. In 2015, Chang (Chang 2015)
proposed a strategy where the residual energy and the center
of gravity among the sensors were considered for the selec-
tion of appropriate cluster heads. In 2015, Shalli et al. (Rani
et al. 2015) recommended a hierarchical network structure for
deployment of IoT devices with high scalability feature.
Moreover, authors introduced a concept of using cluster co-
ordinators for balancing the load on both cluster heads and
coordinators to ensure a better inter-cluster communication.

Additionally, an energy efficient transmission algorithm for
the implementation of an optimal model was also carried out
in their work. In 2016, Antonino Orsino et al. (Orsino et al.
2016) stated that Long Term Evolution-Advanced (LTE-A)
could play a vital role in IoT that can provide large infrastruc-
ture and a broad range of connectivity to the devices. But a
large amount of data transfer consumes an enormous amount
of energy. In this regard, they suggested to use network-
assisted Device-to-Device (D2D) communications as a solu-
tion in which a single IoT device will act as an aggregator of
all data coming from a cluster of devices. For that, they
adopted a modulation and coding scheme for reducing the
transmission power. In 2015, Bagula et al. (Bagula et al.
2015) suggested a role-based clustering model where every
sensor played different roles in the cluster depending upon its
residual energy at a different point in time. Additionally, the
allotted role for a sensing node was also decided as per the
service intensiveness of that node. A similar approach related
to service and energy-aware clustering of sensing nodes were
proposed by another group of researchers (Abidoye and
Obagbuwa 2017). Due to the pervasiveness nature of IoT, it
is necessary to integrate it with the cloud computing (Botta
et al. 2016; Díaz et al. 2016). In 2015, Aazam et al. (Aazam
et al. 2014; Aazam et al. 2015) highlighted different problems
associated with IoT and introduced a term CoT (Cloud of
Things) that use cloud computing mechanism for helping
IoT to attain its goals and resolve the issues. In another ap-
proach, authors also proposed a smart gateway along with the
fog computing based framework for providing better and fast
service provisioning, data trimming and pre-processing
(Aazam et al. 2014). Researchers also used various optimi-
zation algorithms in different ways for the improvement of
energy-related issues in networks. In 2017, Song et al.
(Song et al. 2017) proposed an approach in which by com-
bining quantum particle swarm optimization (QPSO) with
the improved non dominated sorting genetic algorithm
(NSGA-II) an energy efficient IoT network can be formed.
They considered a multi-objective optimization environ-
ment for confirming a better quality of service as well as
an improved network lifetime. NSGA-II was used for the
formulation of the multi-objective objective problem and
QPSO was used for formation of optimum clusters.
Authors suggested a device interaction aware clustering
model that can work well for heterogeneous IoT systems
where all the participating devices were configured with
varied processing capabilities, energy, and bandwidth. In
their approach, the cluster heads were elected by consider-
ing the residual energy along with the proximity to the
devices. Researchers also proposed a genetic algorithm
based energy efficient IoT clustering scheme and compared
its performance with IEEE 802.15.4 protocol. They follow-
ed selection, fitness function, crossover, and mutation steps
in their approach.
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4 Proposed Method

4.1 System Model

The proposed architecture of the energy efficient smart
healthcare system has been depicted in Fig. 1. In the proposed
model, there are five entities: IoT devices, Micro Data Center,
Data Analytic center, cloud server, and Application user.

a) IoT Devices: Internet of Things (IoT) refers to the elec-
tronic devices that are connected to the internet and
capable of capturing or monitoring data and also intel-
ligent enough to be active itself automatically while
triggering of certain events. In healthcare, IoT devices
have been introduced to patients in various forms like
electrocardiograms, temperature monitors or blood glu-
cose levels. It is also responsible for tracking other
health information of patients continuously or at regu-
lar intervals.

b) Micro Data Center: Micro data center is a totally high
enclosed unit which is responsible for temporary and
frequent data processing at the edge of the network.
MDCs are mainly designed for deployments in more
remote locations like disaster-stricken or war-torn areas
of the world (Majumdar et al. 2018). In the proposed
system, each MDC is deployed in the fog layer and
associated with a significant number of IoT devices or
sensors of a geographical area. A Micro Data Center

can be classified as either trigger based or periodic. The
trigger based MDCs wait for a particular event to occur
and transmit data only when an event is fired. On the
other hand, periodic MDCs collect and transmit data at
regular intervals or on arrival of a query.

c) Data Analytic Center: It acts as a data warehouse which
is responsible for big data analysis such as, data mining,
visualization, decision making, etc. In this healthcare
system, the DAC gathers an enormous amount of
health-related data from lots of IoT devices through
edge network. Additionally, it processes further analy-
sis upon it and stores it to the cloud server to provide
valuable insights for future uses. It is also responsible
for the clustering and cluster head selection process in
the edge network. It fetches all the real-time character-
istics of the MDC and performs the optimization to
decide the cluster head for ensuring an energy efficient
network.

d) Cloud server: It deals with the actual storage of elec-
tronic health records (EHR) in a secured manner.
Moreover, a cloud server is responsible for in-depth
analysis of the medical data received from different
sources. It also maintains the authentication of data
used by various users.

e) Application user: Users are those entities who wish to
access a data or any kind of services from the cloud serv-
er. Authorized users are only permitted to access files
from the cloud server. In the proposed system any doctor

Fig. 1 Proposed framework
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or health organization acts as a user and access the EHR
through different healthcare applications.

4.2 Network Model

In this paper, for the simplification of the network model it is
assumed that the network has the following properties:

a. All MDCs are distributed randomly in the geographic
area.

b. Deployment of MDCs are static in the work environment.
Once MDCs have been deployed, they work in the envi-
ronment without movement.

c. The MDCs are homogeneous in that they have equal ca-
pabilities (initial energy, data processing, wireless
communication).

d. All MDCs have power control capabilities and each node
can change the power level and communicate with DAC
directly.

e. DAC is fixed far from the sensor field and it is not energy
constraint and it is placed at the center of the problem
space.

As each edge device contains only limited power supply in
the form of a battery cell, thus, the limited lifetime of the edge
networks is a significant barrier that prevents the growth of
edge networking. Furthermore, sending and receiving data in
an edge network is considered as the most energy-consuming
task of the nodes where the energy consumption is proportion-
al to the distance between the sender and receiver (Kaur and
Sood 2017). For example, closer to the receiver, the lower the
power consumption and vice versa. The popular way to save
device and network energy is to organize the network in the
form of clusters and extending the lifetime of a network there-
by. It comprises a cluster head that collects data from the
cluster members present in its cluster and sends them the cor-
responding data analytic center. Hence, energy is saved by
sending data to the cluster head instead of the data analytic
center directly. However, in a cluster-based edge network, the
network is only useful as long as all the edge devices within a
cluster are acquiring and transmitting data, which is possible
only as long as they have a source of power. Because of cost
constraints, much known renewable sources of energy, such
as solar or wind energy are used rarely. Besides, the edge
devices are deployed over large areas and hostile environ-
ments, making it difficult to replenish or replace the batteries.
Due to these reasons, prolonging the lifetime of an edge net-
work is of utmost importance.

In order to further improve the network lifetime, the
EO-μGA optimization based clustering approach has been
implemented for the optimized clustering of the edge

devices. The simulation results show that the EO-μGA
model has a higher network lifetime concerning first cluster
death and a lesser amount of transmission energy consump-
tion per node as compared to various state of the art opti-
mization algorithms. In this study, the lifetime of the net-
work has been analyzed with respect to death time of first
and the last cluster in the network.

4.3 Proposed EO-μGA Optimization

As the name signifies, the proposed EO-μGA optimization
algorithm is a combination of the traditional extremal opti-
mization and micro genetic algorithm. As discussed earlier,
the μGA operates based on similar principles to the SGA
but differs in the population size, use of elitism, crossover
technique, and population regeneration in place of muta-
tion. The smaller population size allows the μGA to opti-
mize more quickly (Krishnakumar 1990) as each genera-
tion has fewer function evaluations than the SGA, and thus
the μGA skips the mutation step. Despite having a smaller
population size, the μGA requires the use of elitism to op-
erate and continue to approach an optimal solution
(Krishnakumar 1990). However, the small population size
and lack of mutation lead to the μGA often drifting toward
local maxima, which requires the algorithm to restart to
escape a localized solution. In this regard, the extremal
optimization can be used in place of the population gener-
ation of μGA.

In μGA, the population with the best fitness is directly
moved for the next generation (elitism) and the others fol-
low tournament selection strategy to make pairs and per-
form crossover operation to produce new offspring for the
next generation. The proposed EO-μGA is also configured
to deal with small number of populations in each generation
as like as μGA but used ranking selection as selection
criteria and uniform crossover mechanism. However, in
EO-μGA, the elitism property has been slightly changed
where rather than transferring the best population directly
to the next generation, the offspring generated after
performing crossover operation among the best four fittest
population are transferred to the next generation. As a re-
sult, instead of moving the goodness of the best population
only, the goodness of all the four fittest populations is
inherited to their offspring. On the other hand, the extremal
optimization is used here to replace the remaining six pop-
ulations of lower fitness with newly generated random pop-
ulations within the same search space. For maintaining
enough diversity in the population more than half i.e. 60%
of the population have been selected for EO and remaining
40% for the μGA. By using EO with μGA, a better and
widely exploration of the search space is achieved. As a
result, the set of offspring of the best populations along with
the newly generated random populations can achieve an
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incredible diversity in the population. Consequently, the
chances to get the desired solution is also increased, which
leads to the EO-μGA being significantly faster than the
traditional μGA and SGA. This speed enhancement is ad-
vantageous for real-time applications in which optimization
must occur quickly. Moreover, the problem of μGA about
drifting toward local maxima (premature convergence) due
to initialization with an inferior set of populations is re-
solved by EO-μGA. The process is to be continued until
the maximum number of generation has been reached or the
convergence criteria has been satisfied.

4.4 EO-μGA Based Clustering

An optimization problem is the problem of finding the best
solution or highest achievable performance from all feasible
solutions concerning a set of prioritized criteria or constraints.
Similarly, finding the best set of centroids within a search
space that can make an optimized set of clusters of edge de-
vices and guarantee energy efficiency in the edge network also
comes under an optimization problem. In this regard, an opti-
mization algorithm named EO-μGA has been proposed in this
work to perform the task of finding the population having the
best set of centroids that will form a suitable set of clusters.
The detailed working principle of the EO-μGA as an optimi-
zation algorithm for finding the best centroids has been illus-
trated in the section.

In this work, the EO-μGA based energy efficient clustering
strategy has been proposed to form the best set of clusters
based upon the intended fitness function. The graphical rep-
resentation of all the steps involved in this clustering strategy
has been depicted in Fig.2. The whole process of clustering
must undergo a series of repetitive optimization steps that
have been listed in Algorithm 1 in detail.

In this algorithm, firstly, for a specific area, ‘n’ number of
MDCs have been initialized randomly in different positions
with different parametric values. Similarly, the position of the
data analytic center has also been considered at the center of
the defined area. The number of population has been set to be
ten for each generation as the algorithm deals only in μ-scale
of populations like μGA (Chakravarty et al. 2002). For the
first generation, each population has been generated randomly
where each population is comprised of ‘m’ centroid positions
within the predefined region. The distance from each MDC to
each centroid has been calculated and the required number of
clusters have been formed for each population accordingly.
The nearest neighbor method has been used here to make a
distinct set of clusters to reduce the average transmission dis-
tances among MDCs. In this method, all micro data centers
compute the distance from each centroid and join under the
closer one to form a cluster. In this way, all the MDC’s will
come under.

a cluster. Afterward, evaluate the fitness of every MDC
with respect to the fitness function (Eq. (16)). Then the fittest
MDCs within each cluster for that period have been identified
as the corresponding cluster heads. After that, fitness of each
cluster has been calculated by finding the mean fitness values
of all the MDCs present in the respective clusters. Then the

Inf Syst Front



difference between the minimum and maximum fitness values
of clusters present within a population has been calculated and
named as closeness proximity. Lesser cluster proximity value
implies better energy efficiency since a smaller difference be-
tween cluster fitness confirms better balancing of clusters with
respect to energy perspective. Similarly, the closeness prox-
imity for each population has been identified. Subsequently,
all the populations have been ranked as per their closeness
proximity. After that, the best population is to be identified
based on closeness proximity of cluster fitness. It means that
the best population of a combination of ‘m’ clusters is to be
chosen which have equally good fitness. If the newly found
one is better than the previously stored population, then the
new one will be replaced with the stored one and termed as the
best population found so far. Otherwise, based on their ranks,

the four fittest populations have been selected for the modified
μGA operation, whereas the remaining six inferior popula-
tions have been selected for EO operation. In the μGA phase,

Fig. 2 Flowchart of proposed
EO-μGA

Table 1 Significance scale of criteria

Definition Intensity of significance

Equally important 1

Moderately more important 3

Strongly more important 5

Very strongly more important 7

Extremely more important 9

Intermediate 2,4,6,8
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the ranking selection has been applied and the uniform cross-
over operation among the selected population pairs have been
performed. As a result, four new offspring have been intro-
duced. The EO has been performed thereafter to generate new
populations randomly to maintain population diversity. The
resultant offspring from μGA and the newly created random
populations from the EO club together to form the population
for the next generation. This process continues until the max-
imum generation is reached or the final optimal best cluster
combination arrives over all generations. The final optimal
population has been stored for generating the final set of suit-
able clusters of MDC and corresponding cluster-heads. The
necessary modules of this approach such as criteria weight
generation and fitness function generation have been illustrat-
ed in detail in the consecutive sections.

4.4.1 Fitness Function Derivation

The next step is to calculate the fitness value of each individ-
ual in the clusters according to the proposed novel fitness
function. Survivability of an individual depends upon its fit-
ness value. Fitness value of each individual is calculated ac-
cording to a fitness function. In our work, the fitness function
consists of following five parameters or criteria:

a. Energy factor:

This factor specifies the remaining energy of a node ni over
the initial energy at the time of deployment.

f RE ¼ Ecurr

E0
ð8Þ

Where Ecurr = Current energy of MDC; E0 = Initial energy
of MDC.

a) Average Intra cluster distance:

This factor calculates the average distance between the re-
maining nodes of the cluster Ck from selected cluster member
ni.

f ICD ¼
∑jCk j

j≠i;n j∈Ck
d ni; nj
� �

jCk j ð9Þ

Where |Ck| = Number of members in kth cluster;

b. Average distance to cluster leader over DAC:

This is the factor specifies the ratio or goodness of distance
from nj to selected node ni over distance from nj to the DAC.

f DAC ¼
∑jCk j

j≠i;n j∈Ck
d ni; nj
� �

∑jCk j
j≠i;n j∈Ck

d n j;DAC
� � ð10Þ

Where |Ck| = Number of members in kth cluster;

c. Average Sleeping Time:

This factor depends on the previous history related to
sleeping intervals of a node. In the proposed approach, sleep
interval of each MDC has been set on the basis of emergency
cases or highly suspicious cases. In highly suspicious cases
the sleeping time of anMDCwill be less due to the emergence
of continuous or regular data transmission to monitor the

Table 3 Weight determination of criteria

a) Pairwise comparison matrix for the criteria

Criteria fRE fIDC fDAC fTD fST
fRE 1 5 5 6 7

fIDC 0.2 1 1 3 5

fDAC 0.2 1 1 2 4

fTD 0.166667 0.333333 0.5 1 2

fST 0.142857 0.2 0.25 0.5 1

b) Result obtained from the AHP

Criteria Weights (W) λmax, CI,RI CR

fRE 0.562763 Max. Eigen value
λmax = 5.178908
CI = 0.044727
RI = 1.12

0.03999
fIDC 0.170067

fDAC 0.146832

fTD 0.075185

fST 0.045154

Table 2 Exhibit of Random
Consistency Indices (RI) (Saaty
2005)

No. of evaluated Criteria (N) 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Table 4 Simulation Parameters (Majumdar et al. 2019)

Properties Values

Number of nodes/MDC 100

Number of clusters 5

Initial node energy (E0) 20 kW

Idle state energy (Eidle) 10−4 kW/CL

Data aggregation (EA) 10−5 kW/bit

Amplification energy (Eamp) 10−8 kW/bit/m2

Packet size from member MDC (k) 200 bit
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health of the patient. Moreover, sleeping time of MDC can be
adjusted by considering their sensing coverage and their dis-
tance from the leader-MDC or the DAC.

f ST ¼ ∑t
i¼1Ti

t
ð11Þ

Where, Ti = Sleep interval (in seconds) for ith time interval
of a node; t = Total number of sleep intervals recorded for a
node;

d. Computational Load:

This parameter specifies the computational load or CPU
load at time t. It is measured in percentage.

f CL ¼ CLt nið Þ
100

ð12Þ

Criteria Weight Calculation The next step is to compute the
weight or importance factors of each criterion. Since the most
concerning aim is the energy efficiency of MDC, so, the

energy factor parameter of the MDC is the most important
factor among all. The average intra-cluster distance and the
average distance to cluster leader over DAC are considered as
the two most significant parameters in the proposed network
because they save transmission time and network bandwidth.
As a result of that, energy and the extra communication cost
have been saved in a cloud environment. The remaining two
parameters namely average sleeping time and computational
load also play an essential role in the MDC network since
lower computational load and higher sleep time will save the
energy indirectly.

Herein, the weights of the criteria have been generated by
pair-wise comparisons for each of the chosen criteria using the
Analytic Hierarchy Process (AHP). AHP transforms the com-
parisons, which are most often empirical, into numerical
values that are further processed and compared. The relative
significance scale between two criteria as suggested by Saaty
(Saaty 2005) is the most widely used. Attributing values that
vary from 1 to 9, the scale determines the relative importance
of a criterion when compared with another criterion, as shown
Table 1. The pairwise comparison matrix has now been gen-
erated as shown in Table 3(a) by utilizing the significance
scale listed in Table 1. The complete flow of tasks for weight
generation through AHP is: initial group of criteria → com-
parison matrix for group of criteria → comparison matrix for
group of criteria after normalization → eigenvector calcula-
tion → calculation of maximum eigenvalue (λmax)→ exhibit
of random consistency indices (RI) as shown in Table 2→ the
calculation of the consistency index (CI) using Eq. (13) ° ° the
calculation of the consistency rate (CR) using Eq. (14) demon-
strating the contribution or weights of each criterion to the
goal defined. In order to verify whether the consistency index

Fig. 3 Initial deployment of
Micro data centers

Table 5 EO-μGA parameters

Properties Values

Population 10

Converging Criteria in Accuracy 95%

Generation 120

Crossover Probability 0.5
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(CI) is adequate, it is suggested that the consistency rate (CR),
which is determined by the ratio between the consistency in-
dex and the random consistency index (RI) should be less than
10%. Table 3(b) represents the final weights of each criterion
which has been calculated following the abovementioned pro-
cess of the analytic hierarchy process (AHP) method. The
obtained consistency rate is 0.03999 < 0.1 ~ 10%. Since the
value is less than 10%, the weights can be considered to be
consistent and can be used in further processing.

Consistency Index CIð Þ ¼ λmax−N
N−1

ð13Þ

Where N is the number of evaluated criteria.

Consistency Rate CRð Þ ¼ CI
RI

ð14Þ

Criteria Evaluation and Fitness Function Generation Since the
criteria are different, it is not obvious that all the time the best
solution obtained for one criterion will be desirable for other
criteria also. To overcome this, the concept of multi-objective
introduced and researchers have successfully used Overall
Evaluation Criteria (OEC) method to achieve multi-
objectives (Roy n.d.; Roy 2001; Singh et al. 2016; Wangikar
et al. 2017). The OEC method has been used in this proposed
work to satisfy multi-objective and formulate them into a sin-
gle index (Singh et al. 2016). The data have been normalized
and weighted accordingly. As mentioned earlier, AHP has
been used to calculate the weights of criteria. To observe the
combined effect of the five factors namely Energy factor,
Average Intra cluster distance, Average distance to cluster
l eade r over DAC, Average S leep ing Time and
Computational Load, OEC analysis has been performed. Eq.
(15) shows the formulation of OEC for the responses X and Y
having weight percentages Wxand Wy respectively (Wangikar
et al. 2017).

OEC ¼ X−Xmin

Xmax−Xmin

� �
Wx þ 1−

Y−Ymin

Ymax−Ymin

� �
Wy ð15Þ

The quality characteristic (QC) for X is ‘bigger is the best’
(QC=B) and for Y is ‘smaller is better’ (QC=S). In this

equation, the effect of all the criteria have been converted to
bigger and for this, smaller criteria function have been
subtracted from 1. After scaling the fitness function, we have
fitness function as:

Fitness ¼ W1 f RE þW2 1− f ICDð Þ þW3 1− f DACð Þ
þW4 1− f CLð Þ þW5 1− f STð Þ ð16Þ

Our objective is to maximize the Fitness value. In other
words, higher the fitness value, the better is the population.

5 Simulation Results and Analysis

We performed extensive experiments on the proposed algo-
rithm using MATLAB R2017b. As mentioned earlier, every
member MDC transmit data to the cluster head and for that,
they consume a certain amount of energy. Similarly, each
leader-MDC in each cluster aggregate all the data coming
from the other cluster members and transmit it to the DAC
periodically. As a result, the leader-MDC, consume some ex-
tra energy due to aggregation as well as the bulk data transfer
to the DAC situated at a distant place. Additionally, all the
MDC consume some energy to execute its other computation-
al needs. But, MDC does not enter into sleep mode while it is
idle. The rate of energy consumed per transaction by leader-
MDC or cluster head has been shown in Eq. (17) and same for
the other cluster members has been shown in Eq. (18). All the
network parameter values used for the simulation has been
drawn in Table 4.

Table 6 Comparison between the
algorithms in terms of their best,
worst, average and standard
deviation

PSO HBPSO SGA WOA DA HWPSO EO-
μGA

Best 1.83E-03 1.31E-03 1.22E-03 6.23E-04 7.02E-04 5.40E-04 4.87E-04

Worst 3.27E-03 3.25E-03 3.94E-03 9.33E-04 9.14E-04 5.72E-04 5.14E-04

Average 2.54E-03 2.45E-03 1.94E-03 7.47E-04 7.72E-04 5.55E-04 5.00E-04

Std. Dev. 4.22E-04 6.03E-04 6.82E-04 9.04E-05 6.69E-05 1.08E-05 9.04E-06

Table 7 Friedman’s
statistical test result Algorithm Mean Rank Rank

PSO 6.50 7

HBPSO 6.17 6

SGA 5.32 5

WOA 3.35 3

DA 3.65 4

HWPSO 2.00 2

EO-μGA 1.05 1

Inf Syst Front



Energy loss for cluster head in each transmission:

ECH ið Þloss ¼ Eidle þ EA þ t Eamp

t ¼ Cij j−1ð Þ
�

Where;CH ið Þ∈Ci and
Cij j ¼ number of nodes in ithcluster:

ð17Þ

Energy loss for cluster members in each transmission:

ECM ið Þloss ¼ Eidle þ Eamp

o
Where;CM ið Þ∈Ci

ð18Þ

For observing the convergence rate and other measures in
cluster formation, a performance based comparative analysis

has been performed between EO-μGA and some high
performing state of the art optimization algorithms namely
Particle Swarm Optimization (PSO) (Kennedy and Eberhart
1995), Whale Optimization Algorithm (WOA) (Mirjalili and
Lewis 2016), Human Behavior based PSO (HBPSO) (Hao
et al. 2014), Simple Genetic Algorithm (SGA) (Holland
1992), Dragonfly Algorithm (DA) (Mirjalili 2016), and
Hybrid Whale Particle Swarm optimization (HWPSO)
(Majumdar et al. 2019; Laskar et al. 2019) etc. These algo-
rithms demonstrated better performance when used in case of
benchmark functions and is thus used for comparison with
EO-μGA. Table 5 lists the values of the parameters consid-
ered during the simulation of EO-μGA. The simulations of

Fig. 4 Box plot for 20 number of
runs

Fig. 5 Box plot of HWPSO and EO-μGA for 20 number of runs
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other algorithms have been conducted against the same num-
ber of population and the maximum iteration limit. The initial
deployment ofMDCs has been depicted in Fig. 3 and the same
has also been considered for the simulation of all the optimi-
zation algorithms. Table 6 shows the comparative analysis of
the algorithms in terms of their best, worst, average and stan-
dard deviation for 20 number of runs. From the results obtain-
ed it has been observed that the EO-μGA is more consistent in
terms of a lower standard deviation when compared with other
state of art algorithms.

For validating the results obtained by the algorithms,
Friedman statistical test has been performed. It is a non-
parametric test used for ranking algorithms based on per-
formance (Majumdar et al. 2019; Laskar et al. 2019). In the
Friedman’s test, the best performing algorithm has lowest
mean rank while the worst performing algorithm is ranked
highest. The results for the Friedman’s test for the problem
is shown in Table 7. It can be seen that the EO-μGA out-
performs the state of art algorithm with a mean rank of 1.05,
which further validates the result obtained. Figure 4 shows
the box plot for all the considered optimization based clus-
tering algorithms as per the statistical data. From the box
plot statistical analysis it has been observed that EO-μGA
and HWPSO are more consistent in terms of a lower stan-
dard deviation when compared with other state of art algo-
rithms. The detailed box plot analysis for HWPSO and
EO-μGA have been represented in Fig. 5. As seen from
the figure, the optimum values obtained by EO-μGA lie
close to each other having a low standard deviation at ap-
proximately half of the data set.

The convergence point analysis for all the above men-
tioned algorithms has also been conducted. Figure 6 repre-
sents the detailed graphical overview for finding the con-
vergence point in case of all the above mentioned algo-
rithms. In the case of PSO, it has been found stagnant at a
cluster closeness proximity of 0.0018 from the iteration
number 226 onwards. Whereas, in case of HBPSO it has
been found stagnant at 0.0013 from the iteration number
175 onwards. HBPSO outperforms the basic PSO in better
convergence speed and the cluster closeness proximity. The
similar analysis for SGA (with population = 100, crossover
probability = 0.5 and mutation probability = 0.1) has also
been performed and found stagnant at 0.0012 from the iter-
ation number 213 onwards. Moreover, in case of DA, it has
been found stagnant at 0.0007 from the iteration number
183 onwards. For WOA, it has been found stagnant at
0.00067 from the iteration number 170 onwards. Clearly,
WOA performs better with very less cluster closeness prox-
imity value even at less number of iteration as compared to
the HBPSO and SGA and DA. Whereas, HWPSO has been
found stagnant at 0.00054 from the iteration number 41
onwards. Coincidently, EO-μGA has also been found stag-
nant from the iteration number 41 onwards but with a lower
cluster closeness proximity of 0.00046. Hence, clearly
EO-μGA yields better result in faster convergence with
better cluster closeness proximity than the other four
algorithms.

Moreover, an analysis to observe the changes in average
residual energy of each cluster with respect to the number
of data transmission process for all the optimization

Fig. 6 Changes in cluster
closeness proximity with the
number of iteration
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algorithms (up to 10,000 transmissions) has been conduct-
ed. Figure 7(a)-(g) illustrates the clusters residual energy in
each transmission for all the aforementioned algorithms. In
case of PSO, after transmission number 6184 cluster-5 dies
first. For HBPSO, it has been found that after the transmis-
sion number 6889 cluster-2 dies first. Similarly, in case of
SGA cluster-3 dies first after transmission number 7014. It
has also been noticed that in case of WOA cluster-3 dies
first after transmission number 7203. For DA, after trans-
mission number 7099 cluster-3 dies first. In case of
HWPSO cluster-5 dies first after transmission number
7322. Moreover, for EO-μGA cluster-3 dies fast after trans-
mission number 7503. Besides, it can also be noticed that in

case of EO-μGA and HWPSO all the clusters sustain for a
long time as compared to the others. From this analysis, it
has been clearly perceived that the proposed EO-μGA out-
perform the other algorithms in the average network life-
time which is the actual signature requirement for an e-
Healthcare system.

Since the performance of the HWPSO and EO-μGA
based clustering was found close enough to each other so
a comparison between these two in terms of network life-
time has also been observed. The optimized set of clusters
in case of HWPSO and EO-μGA based clustering approach
with their corresponding centroids and cluster heads are
shown in Fig. 8(a) and 8(b) respectively. Whereas

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 7 Clusters residual energy in each transmission in case of (a) PSO (b) HBPSO (c) SGA (d) WOA (e) DA and (f) HWPSO (g) EO-μGA
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Fig. 9(a) and 9(b) depict the position of newly appointed
cluster heads at transmission number 7322 and 7503 for the
HWPSO and EO-μGA based clustering approach respec-
tively. The centroids have been shown as square shaped
icon whereas the cluster heads have been shown as the
encircled star. From this analysis it can be resembled the
fact that even at 7503 number of iteration the EO-μGA
performs effectively to generate the set of clusters which
have an equally good cluster closeness proximity.

6 Conclusions

Due to the technological advancements, it becomes much
easier and effective to monitor, and diagnose many infec-
tious diseases throughout various sensors and devices that
help health sectors in taking necessary preventive

measures. In this paper, a comprehensive framework for
advanced e-Health monitoring system configured with a
set of edge devices has been proposed. Moreover, the pro-
posed EO-μGA algorithm provides a new perspective to
measure the network lifetime which is much suitable for
the online systems like e-Healthcare due to its light weight
and faster convergence nature. Additionally, the proposed
fitness function also claims that the longevity of a network
should not be evaluated only based on the energy on the
devices, but also other important parameters related to dis-
tance and computational status should also be taken under
consideration. This system also confirms the formation of
an efficient cluster-based e-Healthcare network where all
the formed clusters configured with fog layer edge devices
will have almost equally good in every respect that in turn
confirms an organized energy consumption and better e-
Healthcare network lifetime.

Fig. 9 Position of newly appointed cluster heads at (a) 7322 number of transmission in case of HWPSO (b) 7503 number of transmission in case of EO-
μGA

Fig. 8 Initial MDC clustering using centroids and cluster head selection in case of (a) HWPSO (b) EO-μGA
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