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Abstract

Genetic algorithm (GA) is a nature-inspired algorithm to produce best possible solution by selecting the fittest individual
from a pool of possible solutions. Like most of the optimization techniques, the GA can also stuck in the local optima,
producing a suboptimal solution. This work presents a novel metaheuristic optimizer named as the binary chaotic genetic
algorithm (BCGA) to improve the GA performance. The chaotic maps are applied to the initial population, and the
reproduction operations follow. To demonstrate its utility, the proposed BCGA is applied to a feature selection task from an
affective database, namely AMIGOS (A Dataset for Affect, Personality and Mood Research on Individuals and Groups)
and two healthcare datasets having large feature space. Performance of the BCGA is compared with the traditional GA and
two state-of-the-art feature selection methods. The comparison is made based on classification accuracy and the number of
selected features. Experimental results suggest promising capability of BCGA to find the optimal subset of features that
achieves better fitness values. The obtained results also suggest that the chaotic maps, especially sinusoidal chaotic map,
perform better as compared to other maps in enhancing the performance of raw GA. The proposed approach obtains, on
average, a fitness value twice as better than the one achieved through the raw GA in the identification of the seven classes
of emotions.
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1 Introduction

The evolutionary algorithms (EAs) have recently shown
promising results in solving multiple optimization prob-
lems. The EAs are powered by their stochastic search
ability in multifaceted environments and are guided by one
(or more) objective functions. This enables them to search
the best possible solution for an optimization problem.
With the advancement in information and communication
technologies, coupled with the data processing and storage
capacity of computing devices in the current era, the size of
the average data generated against multiple activities has
increased by manifolds. This is applicable to both the
number of instances in the data and also the features count.
Selecting the appropriate number and most informative
features from such large datasets enables the various
learning tasks (supervised or unsupervised) to produce
better results. EAs have also been used in the past to select
the informative features by eliminating irrelevant and
redundant features in a high-dimensional space [1-3].
Some of the popular EAs include genetic algorithm (GA),
many objective particle swarm optimization (MOPSO),
particle swarm optimization (PSO), and differential evo-
lution (DE). The common principals in all EAs include
random population initialization, execution until some
termination criteria is met (like number of iterations or
required efficiency), and reproduction operations, to name
a few. In many cases, EAs are stuck in the local optima. It
can be because of inappropriate population size, too few
iterations, or other parameters of the EAs. In most cases,
hybridization is the way to avoid this problem. Several
hybrid methods have been presented in the past literature to
overcome the local optima and to increase convergence
rate [2, 4, 5]. In addition to the utility of hybrid methods,
there are a number of mathematical ways to find the opti-
mum solution. Chaos is one of the mathematical approa-
ches which can be used to increase the performance of the
EAs in terms of convergence rate and finding the
acceptable optima.

Feature selection is considered as a preprocessing step
before applying any computational learning technique such
as classification or clustering. This is because the selection
of informative and relative features improves the perfor-
mance of the learning methods. Feature selection methods,
other than the EA-based techniques, that have been used in
the past include Pearson correlation which is a filter-based
method, recursive feature elimination a wrapper-based
method, and tree-based embedded methods. The feature
selection methods can primarily be categorized into three
types, namely filter-based methods, wrapper-based meth-
ods, and embedded methods. In the filter-based methods,
the feature set is filtered using a predefined metric.
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Examples of filter-based methods are correlation and Chi-
square. In the wrapper-based methods, the set of features is
considered as a search space; for example, recursive feature
elimination is a wrapper-based method. Embedded meth-
ods use algorithms that have built-in feature selection
methods like in the random forest (RF) technique.

EAs are also used, for instance, selection and data pro-
duction problems due to their ability to solve global opti-
mization problems and optimize several fitness criteria
simultaneously. The GA has been used since decades to
optimize various problem solutions. GA is also widely used
for feature selection tasks. Performance of the GA depends
on multiple parameters, to name a few: population size,
maximum number of generations, probability of crossover
and mutation, and elitism rate.

1.1 Our contribution

In the past, the algorithms like crow search algorithm
(CSA) and grasshopper optimization algorithm (GOA) are
combined with chaotic maps to accelerate their global
convergence speed and to obtain global optima. However,
there are some limitations in these algorithms such as
limited classification accuracy and their application in real-
world engineering problems needs to be investigated. To
overcome these drawbacks, the present work proposes a
novel feature selection algorithm which combines the GA
[6] with the chaotic maps. The value of each gene in the
chromosomes of the initial population is replaced by binary
value, where 1 s corresponds to selected features and O s
shows the otherwise. The binary value of a gene in the
population initialization phase is extracted by using chaotic
sequences. The selected features of solutions are passed to
evaluate the fitness value using a fitness function. In this
work, the fitness function is based on the number of
selected features and classification accuracy. Thus, this
work overcomes the classification error rate and also
decreases the space complexity. Chromosomes with high
fitness value are used as parents for the next generation.
Crossover between selected parents produces child solu-
tions which are evaluated using the fitness function.
Mutation of the child solutions is performed to produce
diversity. Chaotic sequences are used to mutate the genes
of the chromosomes. The proposed binary chaotic genetic
algorithm (BCGA) outperforms chaotic crow search algo-
rithm (CCSA) and other evolutionary algorithms in terms
of accuracy and reduced feature set. The key contributions
of this work are as follows.

e A novel BCGA is proposed for feature selection. The
proposed BCGA enhances the mutation and population
initialization steps of the raw GA using chaotic maps.
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e Random variables’ selection process is replaced with
the chaotic sequence value to improve the quality of the
solution.

e The performances of 10 different chaotic maps are
validated on the proposed BCGA for feature selection
problem.

e The effectiveness of BCGA is demonstrated through a
comparison with different evolutionary algorithms used
for feature selection in the past.

e The significance of BCGA is proved by applying
Wilcoxon’s ¢ test.

The primary novelty of the proposed work is innovating
different chaotic variants of the GA as well as determina-
tion of the various GA parameters using chaos. Further-
more, solving the feature selection problem in the affective
computing domain is validated and it can be applied to
assist researchers in other areas of applications as well.
Emotion detection from neurophysiological signals and
healthcare data is a challenging and an evolving problem
nowadays. Data collected in the form of electroen-
cephalogram (EEG) signals, electrocardiogram (ECG)
signals, and galvanic skin response (GSR) require feature
analysis to detect the affective state and health status of a
person. The AMIGOS (A Dataset for Affect, Personality
and Mood Research on Individuals and Groups) dataset
used in this work is an affective database to detect emo-
tions of persons after watching short and long video clips.
Additionally, this work utilizes two healthcare datasets to
identify important features using the proposed method. As
a case study, this work focuses on the application of the
proposed algorithm in the fields of affective computing and
healthcare; however, in the future, it can be applied in other
domains as well.

1.2 Paper organization

The rest of paper is organized as follows. Section 2 gives a
brief overview of fundamentals, GA, chaotic maps and
presents the problem statement of the present work. The
related work on feature selection using EAs and for
affective computing and healthcare systems is covered in
Sect. 3. The proposed method is explained in Sect. 4.
Section 5 presents the conducted experiments and obtained
results. This section also analyzes illustrating properties of
the proposed algorithm, and its comparison with state-of-
the-art methods is also listed. The discussion on the
obtained results is presented in Sect. 6. Finally, Sect. 7
concludes this work with a few future directions
mentioned.

2 Basics and problem formulation

This section gives an overview of the techniques used in
this work, including the GA and chaotic maps. The section
also formally formulates the problem at hand. Initially, the
basics of GA are covered, followed by the details on
chaotic maps, and then present work’s problem statement.

2.1 Genetic algorithm

In order to design a multimodal emotion detection system,
one needs to have multiple emotions related data from
different types of sources. Ensemble of data to make an
efficient system requires selection of a subset of data fea-
tures which can classify different categories of emotions.
The GA [7] is capable of being used as a feature selection
technique. The GA makes it possible to explore potential
solutions to a problem in a better way that cannot be
achieved through a conventional method. Most organisms
(solutions) are produced naturally or by the
crossover/mutation process. The GA first decides which
chromosome of the population has the potential to survive
in the next generation. Afterward, it determines the mixing
and recombination of genes of their parent chromosomes to
produce new offspring. Selection of the parents is based on
the solutions’ fitness value, if it fails on the fitness criteria,
it gets eliminated, otherwise the solutions are sorted
according to their fitness values, and parents are selected
by one of the available parent selection methods.

2.2 Chaotic maps

Chaotic map is an evolution function that shows chaotic
behavior. Chaotic maps are parameterized by both discrete
time and continuous time behavior. Any change of its
initial condition may lead to nonlinear behavior for the
future. Chaos is used to optimize performance of an
algorithm. They provide fast convergence rate and are used
to avoid the local minima. These solutions are beneficial
for the performance of the evolutionary algorithms [2].
Chaos employs chaotic variables rather than the random
ones. Chaos methods are found in nonlinear dynamical
system which are non-periodic, non-converging, and
bounded. Chaos is dependent on initial conditions and
parameters. Additionally, an enormous number of different
sequences can be generated by changing the initial condi-
tions [4]. A variety of chaotic maps is available for opti-
mization problems. In the present work, ten discrete
chaotic maps are implemented. The mathematical
description of these chaotic maps is given in the following.
Sine map The Sine map is defined using Eq. (1).
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Xpp1 = %sin(mcn)7 a=4 (1)

where a is the control parameter whose value lies in the
range [0, 4]. This map generates the chaotic number in the
range [0, 1].

Circle map Circle map belongs to the dynamical systems
on circle. The circle map is defined using Eq. (2).

X,1 = mod (xn +d— (Zi) sin(2mx,), 1), c=0.5,
T
d=0.2
(2)

This map will generate chaotic number in range [0, 1] by
using control parameters ¢ = 0.5 and d = 0.2.

Iterative map The iterative chaotic map is mathematically
defined using Eq. (3).

Xpi1 = sin (C”> c=07 (3)
X

This map generates values in the range of [— 1, 1],
while ¢ is a control parameter with 0.7 as its value.

Chebyshev map Chebyshev map is defined by Eq. (4).

Xpp1 = cos(ncos™!(x,)) (4)
This map generates value in the range [— 1, 1].

Logistic map Logistic map is defined by Eq. (5).

Xnp1 = ax,(1 —x,), a=4 (5)

where a is a controlling parameter with value of 4. This
map generates value in range [0, 1].

Singer map Singer map is defined by Eq. (6).

Xpe1 = 1(7.86x, — 23.31x; + 28.75x, — 13.302875x)),
u=1.07

(6)

where p = 1.07 is a control parameter. Singer map gen-
erates value in the range [0, 1].

Sinusoidal map This map is formulated using Eq. (7).
c=23 (7)

Xppl = cxﬁ sin(7x,,),

where ¢ =2.3 is a control parameter of this map and
sinusoidal map generates numbers in range [0, 1] and ini-
tial value of xo = 0.7.

Tent map The tent map is defined using Eq. (8).

o= Jax for x,, <0.7
n+1 — (1(1 _xn)

for x,, > 0.7 (8)
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where a is the controlling parameter. Tent map gives a
value in the range of [0, 1]. The present work uses a = 1/
0.7 for x,<1/2 and a = 10/3 for x, > %
Gauss map The Gauss map is described mathematically
using Eq. (9).

1, for x, =0

Kntl = otherwise ©)

3

mod(x,, 1)
This map generates chaotic sequences in range [0, 1].

Piecewise map Piecewise map is described mathematically
using Eq. (10).

X
20<x,<a

Xntl =

1—x,

1—a<x, <1

a

where a = 0.4. Summary of ten chaotic maps used in this
work is listed in Table 1.

2.3 Problem statement

The past literature reveals that a significant importance is
given to the feature selection problem for various learning
tasks irrespective of them being supervised or unsupervised
approaches. This is because there are generally many fea-
tures in the underlying data of a learning task and not every
feature is important. Additionally, there may also exist
multiple correlating features that simply add into the
redundancy and biases of the learning process. There is
always a need for an optimal solution for the selection of
best suited subset of features to increase the classification
(or clustering) accuracy (or heterogeneity) and to decrease
the number of selected features. However, some of the
feature selection algorithms in the evolutionary computing
field suffer from weak diversity particularly, when han-
dling high-dimensional tasks and when the search space is
thin causing premature convergence. Addressing these
limitations of the exiting evolutionary computing-based
feature selection methods is the main motivation of this
work. Additionally, this work is motivated by the use of
different chaotic maps with the GA to solve the opti-
mization problem of selecting a suitable feature subset. As
a test bed, this work utilizes affective and healthcare
datasets. The primary aim here is to select the optimum
features from the affective dataset using the proposed
method and later utilize the standard classification methods
to predict the emotion hidden in them. Figure 1
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Table 1 Description of the ten chaotic maps used in this work

Number Name Definition Range
BCGA1 Sine map Xpp1 = §sin(nx,),a =4 [0,1]
BCGA2 Circle map Xap1 = mod (x, +d — (£) sin(2mx,), 1),¢ = 0.5,d = 0.2 [0, 1]
BCGA3 Iterative map Xop1 = sin (%) =07 [—1,1]
BCGA4 Chebyshev map Xpy1 = cos(ncos™!(x,)) [—1,1]
BCGA5 Logistic map Xnp1 = ax,(1 — x,),a =4 [0, 1]
BCGA6 Singer map X1 = p(7.86x, — 233122 +28.75x3 — 13.302875x%), ju = 1.07 [0, 1]
BCGA7 Sinusoidal map X1 = X2 sin(nx,), ¢ = 2.3 [0, 1]
BCGAS Tent map _ ax, fora<1/2 [0, 1]
W= g(1 —x,) fora>1/2
BCGA9 Gauss map 1, X, =0 [0, 1]
— 1
Kl = mod(u, 1) otherwise
BCGA10 Piecewise map o<y <a [0, 1]
a —*n
X, —a
<x,<0.5
. (1) 5,95
n+1 — —a— X,
—— "05<ux, _
054 0.5<x,<1l—a
— 1—a<x, <1

a

demonstrates the higher-level abstraction of the proposed
work. Thus, the problem statement of this work is as
follows.

To develop a novel evolutionary computing-based
feature selection method utilizing the binary chaotic
maps and demonstrate its utility on the affective and
healthcare data.

3 Related works

This section presents the related work done in the domain
of feature selection. The section primarily focuses on the
evolutionary computing-based feature selection methods,
because the solution proposed in this work is an evolu-
tionary algorithm. Additionally, the section also covers a
few of the works related to the feature selection from
affective datasets.

3.1 Feature selection methods

Feature selection is an important preprocessing step to
extract informative features for the classification and
clustering problems. However, the method is mostly uti-
lized for classification, i.e., supervised learning tasks. To
select the optimum subset of features from the original
dataset is a non-deterministic polynomial-time hard (NP-

hard) problem. Therefore, the metaheuristics perform bet-
ter than the exact methods. In recent years, hybrid meta-
heuristics have been used in the field of optimization
problems research. Hybrid methods show better perfor-
mance in solving problems like the feature selection task.
The first hybrid metaheuristic algorithm for feature selec-
tion was proposed in [8]. In this algorithm, local search
techniques are merged with the GA to make it more effi-
cient. The work in Majdi et al. [9] presents a hybrid whale
optimization algorithm (WOA) with simulated annealing
for feature selection. The purpose of using simulated
annealing in their work is to exploit most promising
regions located by the WOA algorithm. They evaluate the
proposed algorithm on 18 standard benchmark datasets
obtained from the UCI repository' and compare with three
wrapper feature selection methods. The work in EzgiZo-
rarpac et al. [10] presents a feature selection method based
on combination of artificial bee colony (ABC) optimization
technique with differential evolution algorithm. The pur-
pose of their method is to address the overfitting problem
which is caused as a result of high dimensionality of the
data [11]. In [3], a modified cuckoo search algorithm with
rough sets is presented for feature selection. The rough sets
theory is included to modify fitness function which takes
the number of selected features, and classification accuracy
is utilized as the fitness criteria. A binary cuckoo search

! https://archive.ics.uci.edu/.
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Fig. 1 A higher-level abstraction of the proposed work

algorithm is proposed by Douglas et al. [12] for feature
selection. Their method is based on behavior of the cuckoo
bird to find the important information from a given set of
features in an optimization problem.

In [13], a nature-inspired feature selection technique
based on bats behavior is proposed. Their wrapper
approach combines the exploration quality of bats with the
speed of the optimum-path forest classifier to find the
optimum set of features. Experiments are conducted on five
public datasets. Results show that their approach outper-
forms some well-known swarm-based techniques. A hybrid
of binary gravitational search algorithm and mutual infor-
mation is proposed by Bostani et al. [14]. Chaotic GA is
used as a wrapper-based method for global search of the
features. A mutual information (MI)-based approach is
used as filter-based method to compute the gain of a feature
with respect to the feature and also feature with respect to
the class. This combination is used to find the least
redundant features that are most relevant to the target class.

The work in [14] considers two objective functions:
maximizing the detection rate and minimizing the false
positive rate. An improved version of salp swarm algorithm
(SSA) is proposed in [15] to select optimal subset of fea-
tures using a wrapper-based technique. Opposition-based
learning (OBL) is used in the initial phase of SSA to
improve its population diversity in the search space. A new
local search algorithm (LSA) is developed to improve
exploitation capability of the SSA. The improved salp
swarm algorithm (ISSA) is validated on 18 datasets from
UCI repository. A hybrid feature selection approach based
on GA is proposed in [1]. Enhanced GA (EGA) is devel-
oped by modifying the crossover and mutation operators.
Crossover is performed based on chromosomes portioning
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with term and document frequencies of the features, while
the mutation procedure is performed based on classifier
performance of the original parents and feature importance.
The work in [I] incorporates six filter-based feature
selection methods with EGA to create hybrid feature
selection approach. A hybrid genetic local search algorithm
(HGA) is proposed in [16] with the k-nearest neighbor (k-
NN) classifier to simultaneously select subset of relevant
features and feature weighting, for particularly medium-
sized datasets. Gravitational search algorithm (GSA) is a
population-based metaheuristic algorithm inspired by the
Newton’s law of gravity. Mohammad et al. [17] propose
the novel GSA algorithm which is based on evolutionary
crossover and mutation rates. Majdi et al. [18] develop six
variants of the ant lion optimization (ALO) method where
each variant employs a transfer function to map a contin-
uous search space to a discrete search space. Their method
is compared with particle swarm optimization (PSO), GSA,
and two existing ALO-based approaches.

3.2 Feature selection methods to predict
emotion

A number of contributions have been made in the past for
the task of feature selection from the affective computing
perspective. Altun et al. [19] address the strategies for
feature selection and multi-class classification for the
problem of emotion detection. Identification of most
informative and discriminative features is more critical
factor according to them in comparison with the classifi-
cation problem. In order to improve the performance of
multi-class SVMs, 58 features are extracted in their work
from Berlin Emotional Speech Database (EmoDB). They
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employ four feature selection techniques, namely sequen-
tial forward selection (SFS), least square bound feature
selection (LSBOUND), mutual information-based feature
selection (MUTINF), and R2W2. The work in [19] con-
cludes that prosodic and sub-band energy features are the
most selected ones by all the algorithms in each frame-
work. The framework used in [19] is such that a multi-class
classification problem is decomposed into binary classifi-
cation problem, and then, they perform features selection.
They perform intersection and unification operators to
construct final feature set from each subset. In the final
phase, multi-class classifiers are employed to determine the
emotional state using the final feature set.

The work in [20] presents results that help to select
methods which are efficient to enhance classification per-
formance and reduce computational complexity for emo-
tion detection from EEG data. They use state-of-the-art
methods for feature extraction, feature selection, and
classification algorithms. Database for Emotion Analysis
using Physiological data (DEAP) is used for experiments in
their work. SemEval-2019 Task 3—EmoContext, is pre-
sented in [21], and EmoContext is a contextual emotion
detection system for text data. For this task, textual dia-
logues from user interaction with a conversational agent
are taken and annotated with emotion classes. A training
dataset of 30,160 dialogues and two evaluation datasets
containing 2755 and 5509 dialogues is released to the
participants. The system analyzes that bi-directional long
short-term memory (BiLSTM) is the most used neural
architecture and best detection of emotion is achieved for
sad class, whereas the worst performance is observed for
happy emotion class. Yan et al. [22] propose a feature
selection method based on sparse learning (SL-FS). The
focus of their work is to identify emotions from EEG
signals. By comparing with the traditional feature selection
methods, the SL-FS method improves the correct rate for
classification of five classes of emotions when the number
of the selected features is same.

Sarcasm is the form of sentiment in which people con-
vey criticism and radicalism in a humorous way. Sun-
dararajan et al. [23] detect sarcasm from text, and
additionally, they propose an approach to identify the types
of sarcasm. Finding the sarcasm type is to identify the level
of hurt or the intention behind the sarcasm. Sarcasm in
their work has been classified into four types, namely
polite, rude, raging, and deadpan sarcasm. The overall
accuracy of their proposed ensemble feature selection
algorithm for sarcasm detection is around 92.7%, and
multi-rule approach for the identification of types of sar-
casm achieves an accuracy of 95.98%, 96.20%, 99.79%,
and 86.61% for polite, rude, raging, and deadpan types of
sarcasm, respectively. A review on gray wolf optimizer
(GWO)-based feature selection for classification is given in

[24]. GWO is a recent method belonging to the swarm
intelligence family. The mathematical model of GWO
consists of encircling, hunting, and attacking the prey. The
main step of GWO in solving feature selection problem is
to extract the subset of features in the representation of the
solution. GWO is appropriate for continuous search prob-
lems. Original GWO is converted to its binary version for
the feature selection problem in their work.

3.3 Addressed limitations of the past works

The selection of optimum set of features is an NP-hard
problem. Any single algorithm is not capable of solving all
the optimization problems [25]. Therefore, despite the
advantages of hybrid methods mentioned above there is
always a room to develop new methods. In developing
algorithms for optimization problems, researchers focus to
increase convergence rate and to achieve global optima. In
the last decade, the domain of mathematics has developed
chaos. It has been applied in different optimization
researches [2, 4, 26, 27]. Like most the optimization
problems, GA also has the tendency to get stuck in the
local optima. Most of the past evolutionary computing-
based solutions have also overlooked to explicitly address
this aspect. The present work utilizes the chaos maps to
enhance the capacity of the traditional (or raw) GA. Based
on this, an evolutionary feature selection technique is
developed here that helps in selecting the optimum feature
subset for the classification task. Table 2 lists the key
features of the closely related past works and the solution
presented here.

4 The proposed binary chaotic genetic
algorithm

This section presents the proposed binary chaotic genetic
algorithm. In this work, the chaos is used to initialize GA
population. This proposal replaces the random variables in
mutation procedure of the GA with the chaos variables.
The utilization of chaos in the population initialization
phase and in the mutation procedure influences the search
of an optimal solution. Here, the chaotic sequences are
generated from chaotic maps. For this, ten different chaotic
maps are used for the optimization process as mentioned in
Table 1.

4.1 The binary chaotic GA

The BCGA is an efficient version of the basic GA. The GA
is a nature-inspired algorithm, and it has the ability to solve

@ Springer
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Table 2 Key features of the closely related past works and the proposed solution

Works Fitness value Optimization ~ Chaos as evolution Computational Objectives of
parameter function intelligence method  optimization
Length of Classification Use of  Number Multi- Number of
selected features accuracy chaos of chaos objective  objectives
Madiha et al. ¢ 4 v 10 BCGA v 2
(proposed)
Ghareb et al. (4 v X EGA v 3
(11
Mafarja et al. ¢ v X BALO (4 2
(18]
Taradeh et al. ¢ v X Hybrid GSA v 3
[17]
Tubishat et al. ¢/ v X ISSA v 4
[15]
Bostani et al. X 4 X BGSA v 2
[14]
Nakamura X v X BBA X 1
et al. [13]
Sayed et al. [2] ¢/ v v 10 CCSA v 2

complex optimization problems because of its design. The
traditional GA is categorized as global search heuristic that
uses iterative process to find an optimal solution. Despite of
its advantages, GA has the limitations of requiring a higher
number of iterations and its implementation cost is high. It
does not solve complex constraint problems conveniently.
To account for some of the deficiencies in the raw GA and
employ the uses of GA, an enhanced version of this basic
algorithm is proposed in this work, namely the binary
chaotic genetic algorithm (BCGA).

The steps followed to develop the BCGA are shown in
Fig. 2. Parameter initialization of GA and BCGA is same,
i.e., setting the values of number of chromosomes (M),
maximum number of generations (Gy,x), Crossover prob-
ability (P.), mutation probability (P,,), and elitism rate.
Next step is the population initialization using chaos, and
this is followed by the selection of parents to perform the
crossover procedure between the selected parents that
produces a child solution. Next phase is the mutation
operation. For this, the chaotic variable is used. Fitness
evaluation of the produced solutions is done using two
fitness criteria. The first one is the number of selected
features, and second is the classification accuracy. The
present work uses classification of affective and healthcare
data as a case study of the proposed approach. However,
the proposed BCGA can be used to form multiple other
tasks and the fitness function will vary accordingly. The
elites are selected in this work on the bases of elitism rate.
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This work sets maximum number of generation as the
stopping criteria for the proposed approach.

In the proposed solution, initialization of the population
and mutation of chromosomes is done using chaotic maps.
The chaotic maps used here are sine, circle, iterative,
Chebyshev, logistic, singer, sinusoidal, tent, Gauss, and
piecewise. Chaotic maps are used to improve performance
of the GA in terms of computational time, number of
selected features, and classification accuracy. In the current
work, BCGA is implemented to select features that can
improve classification accuracy and extract lesser number
of features that are most significant. Initial population is
modified using chaos (Eq. 11). This work generates ¢
chaos, where ¢t = (number of chromosomes) x (number of
genes in a chromosome).

t=M=xN
fori=1:¢
m; = Ci
C = vector to matrix(m)
) 1, Cij<rand()
population.chromosomes.gene = .
0, otherwise

(11)

where C;; is the chaotic value of the ith chromosome and
jth gene. If value of jth gene of the ith chromosome is less
than a random number, then the jth gene of the ith chro-
mosome is replaced by 1. This means that the feature will
be used in the solution. This is because each gene
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represents a feature and each chromosome is the set of
features. A value of 1 in the gene means that the feature
represented by the gene is selected and O indicates other-
wise. The population, in the BCGA, is initialized using
random number through Eq. (12).

population.chromosomes.gene = {rand € [0, 1] (12)

Mutation operator in the GA is used to mutate the genes
(feature’s index) of the chromosomes (solution). In case of
feature selection task, mutation is used to change the status
of the feature. This means if value of a random number is
less than the mutation probability, then the value of the
gene will be changed using Eq. (13).

population.chromosomes.gene
| ~Child.gene, rand() <Py,
~ | Child.gene, otherwise

(13)

Mutation operation is modified by the chaotic maps by
replacing random variable of chaos value using Eq. (14).

~ Child.gene, C;;<Pn

child.gene, else (14)

child.gene = {

where Py, is the mutation probability, and C;; is chaotic
value for kth gene.

4.2 Parameter initialization

The proposed solution provides the flexibility to adjust
various parameters depending on the properties of the task
at hand. Here, parameters of the BCGA are adjusted
through the hit and trial strategy in the simulation stage.
Parameter setting used in the experiments is given in
Table 3. In the experiments, this work uses 30 chromo-
somes (M), maximum generations (Gp.x) is set to 50,
crossover probability (P.) is set to 0.8, mutation probability
(P, is 0.01, and elitism rate (E,) is 0.05. For the sake of
fairness, parameter values are kept fixed for all our
experiments to evaluate the performance on different
datasets given under same conditions.

4.3 Fitness function

After each generation, a subset of features is selected for
assessment. To evaluate the fitness of the selected subset of
features, a fitness function is defined. Data are divided into
two different groups, namely training and testing data using
cross-validation through the k-fold method. In this case, the
value of k is set to 10 to check the stability of the results.
To evaluate the proposed algorithm, fitness function pro-
posed in [2] is used. In [2], two objective criteria are used
to evaluate the algorithm, namely classification accuracy
and number of selected features. These two criteria are
combined here using Eq. (15).

Algorithm: Binary chaotic genetic algorithm

Input: Dataset
Output: Optimum feature set

1. Set the initial values of M, Guax, Pe,

Pn and E.

2. Initialize the initial population using chaos

3. Get value of chaotic map for it

population.chromosomes. gene = {

. th
chromosome and " gene

1,Cj <rand()
0, otherwise

4. Evaluate the fitness of initial population
5. for g=2 to Gpax
6. for i=1 to M
7 Evaluate fitness of each individual (M)
8. end
9. for k=1:2:M
10. Select parents from population
11. Crossover between parents to produce children
12. Mutation of each child using chaotic maps
] ) , Cix<B,
child. gene = {Ncmld'genechild.gene, else
13. end
14. for i=1:M
15. Evaluate fitness of each individual of new population
16. end
17. Select elites through elitism form previous and new population
18. End

Return Best chromosome and its fitness value

Algorithm 1. BCGA pseudocode

@ Springer
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v

Fitness evaluation of the new

Set values of M, Gpay, Pe, Pm, and E,

Initialize populations of features
subsets using chaotic maps

I
v

Select parents (in each generation)

population

v

Elite solutions selection to create
new population

v

Fitness evaluation

A

»| Crossover to produce offspring

Mutation on child solution using
chaotic maps

Fig. 2 Flow of the BCGA method

Fitness = accuracy + wg (1 - LS/A) (15)

where wg is the weight factor to combine both objective
functions, L, is the length of the selected features, and L, is
the length of total features. Value of wg lies in the range [0,
1]. It is used to combine two objective functions and to

Table 3 Parameters setting and number of features extracted from
data

Parameter Value
M (number of chromosomes) 30
Max. generations 50
P. (crossover probability) 0.8
P, (probability of mutation) 0.01
E. (elitism rate) 0.05
Data No. of features
ECG 24

EEG 70

GSR 24

ECG + EEG 94

ECG + GSR 48

GSR + EEG 94

All 118

@ Springer

No

Generation no. is =
Gmax?

v

Terminate and return optimum
features

give importance to the number of selected features with
accuracy.

As accuracy is more important for a classification
problem, therefore, its weight value is set close to 1, i.e.,
0.8. The best solution is that it has the higher accuracy and
less number of selected features. Accuracy is calculated by
dividing the number of correctly classified instances with
the total number of test instances. To classify the test
instances, k-nearest neighbor (k-NN) classifier is used. The
value of k is set to 3 using the hit and trial procedure. The
k-NN is a supervised learning classifier which assigns a
class to the test sample from the group of training samples
having the nearest distance.

4.4 Termination criteria

The termination condition is an important parameter of an
evolutionary computing-based approach. It is usually set to
the maximum number of iterations (generations), or the
algorithm is set to stop when objectives are achieved with
high efficiency. In this work, termination criteria are the
number of generations which is set to 50 in all experiments.
The pseudocode of proposed algorithm is listed in Algo-
rithm 1.

Figure 3 shows the overall working of the proposed
solution. The proposed BCGA method is implemented here
as a feature selection algorithm of a wrapper-based method.
In BCGA, a chaotic sequence is embedded in its population
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Fig. 3 Overall working of the proposed solution

initialization and mutation phases. The optimum subset of
features describing the affective dataset is selected using
the BCGA. The purpose of the proposed algorithm here is
to extract the optimal features of neurophysiological sig-
nals of emotions and also from a healthcare data, to reduce
the computational cost and to increase the classification
accuracy. However, it is applicable to multiple other
problems as well

5 Experiments and results

The proposed BCGA is evaluated on an affective dataset
and also on healthcare data to evaluate its application in
these domains. This work chose neurophysiological signals
of AMIGOS dataset which consists of data for affect,
personality, and mood research on individuals and groups.
Description of datasets is given in Sect. 5.1. To compare
the performance of BCGA with other evolutionary algo-
rithms, this work executes GA, particle swarm optimiza-
tion (PSO), ant colony optimization (ACO), simulated

o
>> Logistic 3
o
=4
. . >> Singer 3
’ Reproduction operations ‘ §
)) Sinusoidal
>> Tent
» Gauss

» Piecewise

Optimized solution

annealing (SA), and differential evolution (DE) on the
neurophysiological signals of AMIGOS. A state-of-the-art
method which is used for feature selection and works with
chaos, i.e., chaotic crow search algorithm (CCSA) [2], is
also implemented to compare its performance on the
affective dataset. Results and details of the experiments are
given in this section.

5.1 Dataset description

The proposed algorithm is validated on a large benchmark
dataset consists of mood, affect, and personality research
data obtained by individuals and groups (AMIGOS) [28].
This dataset consists of participants’ profile, rating by the
participants, external annotations, neurophysiological
recordings, and video recordings. The data are resultant of
two experiments based on emotion induction through short
and long videos. In short videos experiment, 40 partici-
pants watched 16 short affective videos. Participants indi-
vidually rated each video in valence, arousal, dominance,
familiarity, and liking. Afterward, they label each video

@ Springer
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with one of the basic emotions (i.e., neutral, happiness,
surprise, sadness, fear, anger, or disgust). In case of long
videos experiment, 37 participants watched four long
videos related to various emotions chosen from the movies.
Seventeen participants perform this experiment individu-
ally, while the other 20 participants watched it in groups of
four individuals. Each participant rates videos in arousal,
valence, dominance, liking, and familiarity. As in case of
the short videos, the participants select one of the basic
emotions against each video. Finally, the videos are
annotated by three annotators on the scales of valence and
arousal. We evaluated our algorithm on data obtained by
using short videos.

Two healthcare datasets are also used in this work for
experiments. The first healthcare dataset is the lung cancer
dataset’ obtained from the UCI machine learning reposi-
tory. In this data, pathological types of lung cancer are
classified into three classes having 56 attributes. Fifth and
39th attributes of the dataset have missing values due to
which they are discarded from data. The second healthcare
dataset is the Parkinson disease (PD) classification data.’
The data were gathered from 188 patients with PD out of
which 107 were men and 81 were women with age ranging
from 33 to 87 at the Istanbul University. In the data col-
lection phase, the microphone is set to 44.1 kHz. The
sustained phonation was collected from each subject with
three repetitions. Features extracted from PD dataset
include time—frequency features, Mel frequency cepstral
coefficients, wavelet transform-based features, and vocal
fold features. There are total 756 samples and 754 attri-
butes in the dataset.

5.2 Preprocessing and feature extraction of EEG,
ECG, and GSR data

Experiments in this work are performed on the prepro-
cessed data of the EEG, ECG, and GSR signals. EEG data
were recorded using EMOTIV epoch, with sampling fre-
quency of 128 Hz, the data were averaged to the common
reference, and band-pass filter was applied with the fre-
quency range of 4.0-45.0 Hz. EEG data are extracted from
14 channels. ECG data were recorded using the shimmer
platform with a sampling frequency of 256 Hz. ECG sig-
nals are captured from right and left arm. Low pass filter
was applied with cutoff frequency of 60 Hz. GSR data
were recorded and filtered with low pass filter with cutoff
frequency of 60 Hz. This work considered only the data
obtained by short videos for experiments. As 40

2 http://archive.ics.uci.edu/ml/datasets/Lung+Cancer.

® http://archive.ics.uci.edu/ml/datasets/Parkinson%
27s+Disease+-Classification.
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participants watched 16 short videos, this resulted in a total
of 640 samples.

The neurophysiological data of EEG, ECG, and GSR are
used here to record the emotions of the participants. In this
section, features extracted from these modalities are
described. The summary of the features is listed in Table 4.
To extract features from the EEG data, EEG signals are
rescaled between — 1 and 1. NaN (not a number) values
are replaced with zero. The signals are filtered using high
pass filter with a frequency of 0.2 Hz. Welch’s power
spectral density method is applied to extract the power
spectral density (PSD) of each channel of the signal. Theta,
slow alpha, alpha, beta, and gamma bands are extracted
from the preprocessed signal. PSDs were averaged on theta
band over the frequency range of 4-7.9 Hz, slow alpha
band over the frequency range of 7.9-10 Hz, alpha band
over the frequency range of 10.1-12.9 Hz, beta band over
the frequency range of 13—17.9 Hz, and gamma band over
the frequency range of 18-27.9 Hz. Logarithm of averaged
signals is used as features of 14 channels of EEG signal of
each sample.

The ECG data are preprocessed by rescaling it between
the range [— 1, 1]. Low pass filter is applied with 0.2 Hz
and 0.08 Hz frequency. ECG signals show patterns that are
not intrinsic to the data, and thus, these trends hinder the
data analysis. Filtered signal is determined to remove
trends of the ECG. Statistical features (like, minimum
value, maximum value, standard deviation, variance,
median, and root mean square) are extracted from the
preprocessed ECG data. Frequency domain features are
extracted from the ECG data using Fourier transform. The
two-sided spectrum is determined by dividing magnitude
of Fourier transform by the total length. Afterward, its
single-sided spectrum is computed to extract the statistical
features (i.e., mean, minimum value, maximum value,
median, variance, and root mean square). For wavelet
analysis, discrete wavelet transform-based features are
determined from the ECG data. Statistical features (mean,
minimum, maximum, median, variance, root-mean-square
values) are extracted from approximated coefficients and
detailed coefficients of discrete wavelet transform of the
data. Preprocessing and features of GSR data are the same
as that of the ECG data.

5.3 Performance metrics

To evaluate the performance of the proposed algorithm,
standard metrics and a few statistical measures are utilized
here. These metrics are: best fitness value using Eq. (14),
worst fitness value using Eq. (15), mean of fitness values
using Eq. (16), standard deviation of fitness values using
Eq. (17), computational time, number of selected features,
and P-value from the Wilcoxon’s rank test [29]. The rank


http://archive.ics.uci.edu/ml/datasets/Lung%2bCancer
http://archive.ics.uci.edu/ml/datasets/Parkinson%2527s%2bDisease%2bClassification
http://archive.ics.uci.edu/ml/datasets/Parkinson%2527s%2bDisease%2bClassification

Neural Computing and Applications

Table 4 Summary of features extracted from EEG, ECG, and GSR data

Modality Features

EEG Five bands (theta, slow alpha, alpha, beta, and gamma) are extracted from PSD of signals of 14 channels. Log of average of each band
of each channel is used as a feature

ECG Statistical features of ECG data, statistical features of Fourier transform of the data, and statistical features of discrete wavelet
transform of the data

GSR Statistical features of ECG data, statistical features of Fourier transform of the data, and statistical features of discrete wavelet

transform of the data

test is necessary to compare the performance of the pro-
posed algorithm with the traditional GA. The Wilcoxon’s
rank sum test is a nonparametric statistical test between
two independent samples. It considers proportionality of
differences between two samples. It gives the sum of the
ranks of positive differences between the observations in
the two samples. The best value of P is obtained when
P < 0.05. The abovementioned performance metrics are
defined mathematically in the following.

Best Fitness value = max FV; (14)
i=1 toGax
Worst Fitness value = 1mnG1 FV; (15)
i=1 10Gma
Gmax
Mean Fitness value = Z FV; (16)
max ;|
G 2
“max FV, _
SD = \/Z[—l (G #FV) (17)

The best fitness value is evaluated using (14), where FV;
is the fitness value of ith solution and i ranges from 1 to the
maximum number of generations (Gp,.x). The worst fitness
value is calculated through (15), where FV; is the fitness
value of the ith solution. The mean fitness value is calcu-
lated by dividing the sum of fitness values of i solutions
with the total number of generations (Gpa.x). Standard
deviation of fitness values for i number of generations is
calculated by using (17), where FV; is the fitness value of
ith solution, and pgy is the mean fitness value.

5.4 Performance of BCGA with different chaotic
maps for seven basic emotions

This section analyzes the results obtained by experiments
on the AMIGOS dataset for seven basic emotions. Ten
discrete chaotic maps of BCGA are evaluated on the EEG
signals, ECG signals, and GSR data. Evaluation is per-
formed on these individually and in all possible combina-
tions as well (i.e., EEG, ECG, GSR, EEG + ECG,
EEG + GSR, GSR + ECG, and all). Table 5 compares

BCGA with 10 chaotic maps with the GA. Results obtained
using the proposed BCGA and GA for seven basic classes
of emotions are given in the table in terms of worst value,
best value, mean fitness value, standard deviation in fitness
values, P-value of BCGA, computational time, and the
number of selected features. It can be seen that for multi-
modal signals (ECG + EEG + GSR), BCGA with sinu-
soidal chaotic map obtains highest fitness value which is
also greater than the one obtained by GA, and its compu-
tational time is also better than what is obtained by GA.
The P-value obtained for the sinusoidal chaotic map is
0.0056. It can be seen from the results that for all models,
in most of the cases, GA with sinusoidal chaotic map gives
best fitness values and with Gauss chaotic map, it has the
worst results.

5.5 Performance of BCGA with different chaotic
maps for HAHV, HALV, LAHV, LALV

The proposed chaotic genetic algorithm is implemented on
AMIGOS for classification of high arousal high valence,
high arousal low valence, low arousal high valence, and
low arousal low valence. Table 6 compares BCGA for four
classes with different chaotic maps in terms of worst, best,
mean, standard deviation of fitness value. P-value is cal-
culated between BCGA and the GA. The number of
selected features and computational time is extracted from
experiments. The experiments are evaluated for seven data
models (i.e., ECG, EEG, GSR, EEG + ECG, ECG +
GSR, EEG + GSR, and all) of physiological signals of
AMIGOS. BCGA1 through BCGAI10 are binary chaotic
GAs with 10 chaotic maps as given in Table 1. The time
here is reported in seconds. It can be observed from
Table 6 that for hybrid data model of ECG + EEG +
GSR, GA with sinusoidal chaotic map gave the highest
fitness value in comparison with others. Its computational
time is also less than others. It can be observed that in all
data models, the proposed BCGA performed better than the
traditional GA.
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Table 5 (continued)

ECG

ECG + GSR + ECG (all)

P-value Total features Selected features Time (s)

Mean SD

Best

Time (s) Worst

Selected features

P-value Total features

Mean SD

Best

Worst

126.006

4.000

24.000

1.000

1.019 0.987 0.014

0.959

137.012

26.000

94.000

1.011 0960 0.024 0.752

BCGA10 0.905

GSR + EEG

0.868

136.290
207.051

22.000
30.000
31.000
32.000
25.000
28.000

94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000

1.024 0.947 0.037

GA

1.000
0.194

0.872  0.980 0.932 0.025

0.923

BCGAL1
BCGA2
BCGA3
BCGA4
BCGAS
BCGA6
BCGA7
BCGAS
BCGA9

143.252
134.162

0.989 0.955 0.021

0.892 0.024 0.869
1.002 0.023 0.273

0.846  0.951

132.408
130.395
127.572
126.748
133.928
149.400
136.451

1.057
0918 0.989 0.952 0.017 0.655

0.969
1.008
1.026
0.982

18.000
20.000
22.000
49.000
28.000

1.057 0.019 0.042
1.069 0.020 0.078
1.028 0.023 0.117

1.092
1.108
1.066

0.786 0.633 0.066 0.014
1.033 0977 0.024 0.622

0.531

BCGAI10 0.936

5.6 Comparison with the state-of-the-art
methods

This section provides a comparison of the proposed
approach with two state-of-the-art methods, namely CCSA
for feature selection [2] and evolutionary algorithm for
features selection of EEG-based signals [30]. The state-of-
the-art methods chosen from the literature are the opti-
mization algorithms for feature selection [2, 30]. Hassanien
et al. [2] present a feature selection method based on
chaotic crow search algorithm (CCSA). They use 10
chaotic maps to optimize the crow search algorithm (CSA).
Their work has low convergence rate and may stuck in
local optima, while these problems are addressed in the
CCSA. In this work, for the comparison purpose, their
approach is applied on the AMIGOS dataset to compare the
results. Evaluation criteria used in [2] are based on fitness
value which measures the accuracy and the number of
features [31-33]. Fitness score and computational time
obtained by CCSA on the proposed models in this work are
given in Table 7. Values of parameters in CCSA are:
maximum number of iterations (M) which is set to 50 here,
Awareness Probability (AP) that is set at 0.1, flight length f]
which is assigned a value of 2, lower bound set at 0, upper
bound set at 1, maximum iterations (#yj.x) assigned a value
of 50, and D that is same as total number of features in
original database. Nakisa et al. [3] used evolutionary
computation algorithms to select features of EEG signals
for emotion recognition using mobile sensors. Here, the
approach in [30] is implemented on EEG signals of
AMIGOS dataset to compare their approach with the pro-
posed method. The experimental setup used in [30] consists
of feature extraction from time domain, frequency domain,
and time—frequency domain. Evolutionary algorithms, GA
[34, 35], particle swarm optimization (PSO), ant colony
optimization (ACO), simulated annealing (SE), and dif-
ferential evolution (DE), are used to select the optimal
subset of features. For the ACO algorithm, the number of
ants is 20, evaporation rate is 0.05, and initial pheromone
and heuristic value is 1. For the SA algorithm, initial
temperature is 10, cooling ratio is 0.99, and maximum
number of iteration in each temperature state is 20. For the
GA, crossover percentage is 0.7, mutation percentage is
0.3, mutation rate is 0.1 and selection pressure is 8. For the
PSO algorithm, construction coefficient is 2.05, damping
ratio is 0.9 and particle size is 20. For the DE algorithm,
population size is 20, crossover probability is 0.2, lower
bound of scaling factor is 0.2 and upper bound of scaling
factor is 0.8. By using features and feature selection
methods of [30], we get the results given in Table 8. It can
be seen from the results obtained for [2, 30] that the current
proposal performs better. It can be seen in Table 7 that
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Table 6 (continued)

ECG

ECG + GSR + ECG (all)

P-value Total features Selected features Time (s)

Mean SD

Best

Time (s) Worst

Selected features

P-value Total features

Mean SD

Best

Worst

48.569

2.000

1.000 24.000

1.000 0.030

0.953  1.066

52.478

29.000

94.000

BCGAI10 0.899 0.987 0.940 0.025 0.715

GSR + EEG

0.838

50.510
43.383
42.546
41.993
40.967
43.450
38.968
38.592
39.929
46.008
47.189

30.000
35.000
45.000
36.000
30.000
36.000
22.000
14.000
26.000
59.000
31.000

94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000
94.000

0.898 0.033

0.961

GA

0.920 0.866 0.028 0.435

0.815

BCGAL1
BCGA2
BCGA3
BCGA4
BCGAS
BCGA6
BCGA7
BCGAS
BCGA9

0.870 0.795 0.027 0.019

0.751

0.814 0.902 0.850 0.019 0.330

1.000
0.818 0919 0.862 0.025 0.355

0.960
0.990

0.884 0.982 0.930 0.022
0.931

1.015 0.025 0.194
1.048 0.026 0.005

1.036 0.990 0.029 0.480

1.063
1.103

0.000

0469 0.726 0.588 0.061

BCGAI10 0.844 0925 0.887 0.022 0.882

BCGA gives higher score than CCSA in all combinations
of data. CCSA gives 1.0233 score value for hybrid com-
bination of EEG, ECG, and GSR signals, while BCGA
gives 1.1557 score value for the same combination. Score
for all competing methods is extracted using the same fit-
ness function used in this work. Although computational
time of CCSA is less than BCGA, however, that is because
of the basic architecture of GA. Similarly, Table 8 shows
scores obtained by feature selection techniques used in
[30], GA, PSO, ACO, SA, and DE. Each technique is
validated for 15, 25, 45, and 100 iterations on AMIGOS
dataset. Average fitness score is calculated for each feature
selection technique. The average fitness score obtained by
GA is 0.6784, by PSO is 0.8971, by ACO is 0.9067, by SA
is 0.9017 and by DE is 0.8925. EEG signals are used in
[30] for experiments; therefore, here only EEG data of
AMIGOS dataset are utilized for a fair comparison. By
using proposed BCGA on EEG data, a fitness score of
1.1496 is obtained which is higher than the methods pre-
sented in [30].

The proposed algorithm in this work is used in an
optimization problem to overcome the limitations of the
raw GA. BCGA increases the convergence rate, gives more
significant and less number of features, and achieves the
global optima. It can be seen from results given in Table 5
that for 7 basic classes of emotions, a score value of 1.1557
is obtained on hybrid data of all signals (i.e., EEG, ECG,
and GSR) with 16 selected features out of 118 and com-
putational time is 127.042870 s, standard deviation is
0.0177, worst value is 1.0843 and average value is 1.1216.
Table 6 shows that for four dimensions of emotions, this
work obtained 1.1295 best score value on hybrid data of
EEG, ECG, and GSR with 18 selected features out of 118
and computational time is 40.482767 s, standard deviation
in fitness values is 0.0253, worst value is 1.0181, and
average value is 1.0730. In both the cases, BCGA7 (binary
chaotic GA with sinusoidal chaotic map) performs better as
compared to others, whereas BCGA9 produces worst
results for both, 7 classes of emotions and 4 dimensions of
emotions by giving 0.5429 score value for 7 classes and
0.5508 score value for four-dimensional data.

5.7 Experiments with healthcare data

Results obtained for BCGA on the lung cancer dataset are
shown in Table 9. It can be seen from the results that the
best fitness value is obtained using BCGA7, i.e., by using
sinusoidal map, and worst results is observed for BCGA9,
i.e., by using the Gauss map. Computational time taken by
BCGA7 is 136.842090 s which is less than the time taken
by the raw GA. BCGA7 selects 10 features, while simple
GA selected 16 features. Table 9 also shows the results
obtained for PD classification dataset. It can be seen from
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Table 7 Performance comparison of proposed BCGA with CCSA [2]

Features CCSA BCGA

Score Time Score Time
All 1.0223 36.766941 1.1557 127.04287
ECG 1.0484 24.186268 1.1876 124.5133
GSR 1.0484 27.996435 1.1445 124.673728
EEG 1.079 24.422253 1.1496 131.467387
ECG + GSR 1.0353 24.521543 1.1308 123.710654
EEG + GSR 1.0677 24.703019 1.1076 126.747508
EEG + ECG 1.0698 25.027313 1.1735 123.696552

the results that best fitness value is obtained for BCGA7,
i.e., by suing sinusoidal map, while the worst value is
obtained using BCGA9. Computational time taken by
BCGA7 is 167.011444 s which is less than the time taken
by the raw GA, i.e., 238.037346 s. BCGA7 selects 185
features, while simple GA selects 312 features. These
results show better performance of the proposed method on
healthcare datasets as well, thus suggesting the general
applicability of the proposed approach.

6 Discussion

This work presented a novel feature selection algorithm by
enhancing the raw GA through chaotic maps. Two datasets
from affective computing [36] and healthcare domains

[37-40], namely AMIGOS, lung cancer and Parkinson’
disease, were selected to assess the proposed algorithm.
Ten different chaotic maps (namely sine, circle, iterative,
Chebyshev, logistic, singer, sinusoidal, tent, Gauss, and
piecewise) were used to increase the efficiency of the tra-
ditional GA in terms of classification accuracy and number
of selected features. The AMIGOS dataset consisted of
data obtained by the ECG signals, EEG signal, and GSR
signals for the detection of seven basic categories of
emotions (namely neutral, happiness, surprise, sadness,
fear, anger, and disgust) and 4 dimensions of emotions
(high valence high arousal, low valence high arousal, high
valence low arousal, and low valence low arousal). Results
obtained suggested that for all kinds of data of AMIGOS
(i.e. ECG + EEG + GSR), BCGA7 had best fitness value
of 1.156, while GA gave 1.00 with p-value of 0.006.
BCGA7 selected 16 features, while GA selected 35 fea-
tures, which depicted the efficiency of BCGA7 over the
raw GA. For ECG data, BCGA6 had a fitness value of
1.188, while GA had 1.127 fitness score, and BCGAG6
selected 3, while GA selected 2 features. For EEG data,
BCGA7 had 1.150 fitness value, while GA had a value of
1.092. The BCGA7 selected 11, while GA selected 14
features. For GSR data, BCGA1 gave 1.145 fitness value,
while GA had a value of 1.139. The BCGAI1 selected 2,
while GA selected 3 features. For ECG + GSR data,
BCGAY7 fitness was 1.131, while GA had 1.002 as the fit-
ness value. The BCGA7 selected 3, while GA selected 9
features. For ECG + EEG data, BCGA7 obtained 1.174 as

Table 8 Results achieved by

other optimization methods [30] Method No. of iterations Time (s) Accuracy Fitness score Avg. fitness score
GA 15 991.42039 29.42 0.683 0.6784
25 298.902322 28.01 0.6839
45 520.532768 28.01 0.6789
100 1172.74298 28.06 0.6679
PSO 15 1717.50948 28.17 0.8939 0.8971
25 3078.92019 28.01 0.8923
45 5568.09036 27.86 0.8908
100 14252.6113 2991 09113
ACO 15 994.622346 29.01 0.9011 0.9067
25 1723.76188 29.13 0.9035
45 2889.45185 30.20 0.9142
100 6371.96398 29.60 0.9082
SA 15 417.679116 29.13 0.9035 0.9017
25 677.23834 28.48 0.897
45 1277.92451 28.95 0.9017
100 5251.96398 29.26 0.9049
DE 15 72.541351 28.79 0.9002 0.8925
25 120.773407 28.50 0.8973
45 216.571631 27.86 0.8908
100 482.449023 26.95 0.8817

@ Springer



Neural Computing and Applications

Table 9 Results obtained using BCGA on healthcare data

Dataset Method Worst Best Mean SD P-value Total features Selected features Time (s)
Lung cancer GA 0.877 1.225 1.048 0.098 - 54 16 139.554
BCGAI1 0.871 1.198 1.065 0.088 0.513 54 20 141.005
BCGA2 0.923 1.268 1.094 0.091 0.297 54 22 144.501
BCGA3 0.983 1.310 1.127 0.096 1.000 54 17 140.082
BCGA4 0.831 1.265 1.074 0.104 0.607 54 20 146.089
BCGA5 0.786 1.104 0.968 0.091 0.144 54 24 140.284
BCGA6 0.998 1.359 1.172 0.075 0.808 54 16 97.020
BCGA7 1.043 1.449 1.272 0.079 0.090 54 10 136.842
BCGA8 0.847 1.335 1.097 0.110 0.314 54 22 141.900
BCGA9 0.578 0.999 0.770 0.098 0.000 54 39 147.216
BCGA10 0.801 1.165 0.962 0.090 0.336 54 22 153.124
Parkinson’s disease GA 1.118 1.186 1.154 0.016 - 754 312 238.037
BCGA1 1.104 1.163 1.137 0.014 0.015 754 354 247.362
BCGA2 1.066 1.118 1.092 0.014 0.000 754 387 272.248
BCGA3 1.138 1.179 1.160 0.013 0.103 754 339 251.588
BCGA4 1.162 1.200 1.181 0.011 1.000 754 308 238.273
BCGA5 1.107 1.254 1.193 0.041 0.055 754 345 247.086
BCGA6 1.223 1.327 1.275 0.029 0.000 754 234 184.881
BCGA7 1.333 1.393 1.369 0.015 0.000 754 185 167.011
BCGAS8 1.138 1.201 1.171 0.016 0.639 754 317 307.956
BCGA9 0.864 0919 0.887 0.012 0.000 754 574 653.906
BCGA10 1.111 1.186 1.144 0.019 0.237 754 330 403.536

the fitness value, whereas GA obtained 1.086 fitness while
selecting 12 and 24 features, respectively. In case of
GSR + EEG, the fitness value obtained by GA was 1.024,
while from BCGA7, it was 1.108, whereas the number of
selected features by GA was 22 and BCGA7 selected 20
attributes. BCGA9 performed the worst for all data
(EEG + ECG + GSR), ECG data, EEG data, GSR data,
ECG + GSR data, ECG + EEG data, and GSR + EEG
data by giving poor fitness values. Figure 4 visually shows
the average fitness values achieved by the 10 variants of the
proposed approach and the raw GA for the seven basic
classes of emotions.

Results obtained by AMIGOS for four-dimensional
categorization of emotions were also computed. It was
observed from the results that for all kinds of data, BCGA7
gave best fitness value of 1.130, while GA obtained 0.965
fitness value with a P-value of 0.002. BCGA7 selected 18
features, while GA selected 30 features, which depicted the
efficiency of BCGA7 over GA. For ECG data, BCGA10
attained a fitness of 1.120, while GA obtained 1.061 score.
Both BCGA10 and GA selected 2 features. For EEG data,
BCGA7 gives 1.112 fitness value, while GA obtained a
fitness of 0.998. The BCGA7 selected 10 features, whereas
the GA selected 18 features. For GSR data, BCGAS

achieved a fitness of 1.054 and the raw GA attained 0.817
fitness. The BCGA8 and GA attained these values while
selecting 2 and 3 features, respectively. For ECG 4+ GSR
data, BCGA7 gave 1.065 fitness, while GA had 0.771 fit-
ness. The BCGA7 and GA selected 4 and 11 features,
respectively. For ECG + EEG data, BCGA7 attained
1.113 fitness while selecting 14 features only and the GA
gave a fitness value of 0.952 with 27 features selected. In
case of GSR + EEGQG, the fitness value obtained by GA was
1.103 with 30 features, while for the BCGA7, it was 0.961.
The BCGAY performed the worst for four-dimensional
categories by yielding poor fitness values. Figure 5 shows
the performance comparison of BCGA and CCSA.

In case of lung cancer data, the results obtained by the
proposed algorithm suggest that BCGA7 gave best fitness
value of 1.449, while GA had a fitness score of 1.225.
Additionally, the BCGA7 selected 10 attributes and the raw
GA selected 16 features. The BCGA9 performed the worst
by obtaining 0.578 fitness value. In case of Parkinson’
disease data, the results showed that BCGA7 attained a
fitness of 1.393, while the raw GA had 1.186 as the fitness
value. The BCGA7 selected 185 features, whereas the raw
GA selected 312 features. Based on this, it can be con-
cluded from the results that BCGA7 performs better among
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Fig. 4 Average fitness values achieved by the 10 variants of the proposed approach and the raw GA
the other given approaches. Other than the novelty and A CCSA Al
1.2

multiple strengths of the proposed work, there are a few
limitations of this work as well. A limitation of the pro-
posed work is that it may require a couple of additional
computations in comparison with the raw GA. However,
these are at the cost of producing better results.

7 Conclusion and future directions

This work presented a novel chaotic genetic algorithm with
binary fitness evaluation criteria named as binary chaotic
genetic algorithm (BCGA). Ten different chaotic maps
were used to increase the performance of the traditional
genetic algorithm addressing its computational time and
number of selected features for a classification problem.
Chaotic maps were selected based on their application in
the scenarios under consideration. To evaluate and analyze
the results, worst value, best value, mean, and standard
deviation of the fitness values were calculated for 50
generations. The count of 50 generations was selected after
hit and trial and was fixed to this number to compare with
all models on the same number of generations. Wilcoxon
test was applied to calculate the P-value of proposed
algorithm compared with the genetic algorithm. The pro-
posed algorithm was evaluated on the AMIGOS (A Dataset
for Affect, Personality and Mood Research on Individuals
and Groups) benchmark and healthcare datasets. Experi-
ments were performed on AMIGOS data collected against
short videos experiment and labeled with seven basic
emotions rated by participants for arousal and valence

@ Springer
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values. Data of three physiological signals, i.e., electroen-
cephalogram, electrocardiogram, and galvanic skin
response, were considered in this work. The proposed work
was also compared with the traditional GA and two state-
of-the-art evolutionary computing-based methods for fea-
ture selection. In the proposed method, i.e., BCGA, chaotic
values were used instead of random number in population
initialization and mutation phase. BCGA was used to select
significant features according to the classification accuracy.
The results obtained suggested better performance of the
proposed solution in comparison with the two state-of-the-
art methods. From the results, it is concluded that the
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BCGA7 variation of the proposed approach performs best
among the ten variants and the BCGA9 variant performs
the worst.

There are several directions for future enhancement in
the present work. In the future, some other discrete chaotic
maps can be used in mutation and population initialization
phases and chaotic maps can be used for different steps of
the raw GA rather than for the two stages utilized here.
Fitness function used in this work can be replaced with a
different version to observe its overall performance.
Parameters such as computational time could be included
in the fitness function to optimize the efficiency trade-off
for large dataset. This work focused on the affective
computing as an application of the proposed method; in the
future, it can be applied and validated in other fields of
computing and engineering. Another future direction of
this work is that new meta-hybrid approaches can also be
considered to address optimization problems, based on the
current work. The experiments and the obtained results
show that the BCGA can become a promising method for
solving multiple real-world problems.
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