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Abstract
Genetic algorithm (GA) is a nature-inspired algorithm to produce best possible solution by selecting the fittest individual

from a pool of possible solutions. Like most of the optimization techniques, the GA can also stuck in the local optima,

producing a suboptimal solution. This work presents a novel metaheuristic optimizer named as the binary chaotic genetic

algorithm (BCGA) to improve the GA performance. The chaotic maps are applied to the initial population, and the

reproduction operations follow. To demonstrate its utility, the proposed BCGA is applied to a feature selection task from an

affective database, namely AMIGOS (A Dataset for Affect, Personality and Mood Research on Individuals and Groups)

and two healthcare datasets having large feature space. Performance of the BCGA is compared with the traditional GA and

two state-of-the-art feature selection methods. The comparison is made based on classification accuracy and the number of

selected features. Experimental results suggest promising capability of BCGA to find the optimal subset of features that

achieves better fitness values. The obtained results also suggest that the chaotic maps, especially sinusoidal chaotic map,

perform better as compared to other maps in enhancing the performance of raw GA. The proposed approach obtains, on

average, a fitness value twice as better than the one achieved through the raw GA in the identification of the seven classes

of emotions.
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1 Introduction

The evolutionary algorithms (EAs) have recently shown

promising results in solving multiple optimization prob-

lems. The EAs are powered by their stochastic search

ability in multifaceted environments and are guided by one

(or more) objective functions. This enables them to search

the best possible solution for an optimization problem.

With the advancement in information and communication

technologies, coupled with the data processing and storage

capacity of computing devices in the current era, the size of

the average data generated against multiple activities has

increased by manifolds. This is applicable to both the

number of instances in the data and also the features count.

Selecting the appropriate number and most informative

features from such large datasets enables the various

learning tasks (supervised or unsupervised) to produce

better results. EAs have also been used in the past to select

the informative features by eliminating irrelevant and

redundant features in a high-dimensional space [1–3].

Some of the popular EAs include genetic algorithm (GA),

many objective particle swarm optimization (MOPSO),

particle swarm optimization (PSO), and differential evo-

lution (DE). The common principals in all EAs include

random population initialization, execution until some

termination criteria is met (like number of iterations or

required efficiency), and reproduction operations, to name

a few. In many cases, EAs are stuck in the local optima. It

can be because of inappropriate population size, too few

iterations, or other parameters of the EAs. In most cases,

hybridization is the way to avoid this problem. Several

hybrid methods have been presented in the past literature to

overcome the local optima and to increase convergence

rate [2, 4, 5]. In addition to the utility of hybrid methods,

there are a number of mathematical ways to find the opti-

mum solution. Chaos is one of the mathematical approa-

ches which can be used to increase the performance of the

EAs in terms of convergence rate and finding the

acceptable optima.

Feature selection is considered as a preprocessing step

before applying any computational learning technique such

as classification or clustering. This is because the selection

of informative and relative features improves the perfor-

mance of the learning methods. Feature selection methods,

other than the EA-based techniques, that have been used in

the past include Pearson correlation which is a filter-based

method, recursive feature elimination a wrapper-based

method, and tree-based embedded methods. The feature

selection methods can primarily be categorized into three

types, namely filter-based methods, wrapper-based meth-

ods, and embedded methods. In the filter-based methods,

the feature set is filtered using a predefined metric.

Examples of filter-based methods are correlation and Chi-

square. In the wrapper-based methods, the set of features is

considered as a search space; for example, recursive feature

elimination is a wrapper-based method. Embedded meth-

ods use algorithms that have built-in feature selection

methods like in the random forest (RF) technique.

EAs are also used, for instance, selection and data pro-

duction problems due to their ability to solve global opti-

mization problems and optimize several fitness criteria

simultaneously. The GA has been used since decades to

optimize various problem solutions. GA is also widely used

for feature selection tasks. Performance of the GA depends

on multiple parameters, to name a few: population size,

maximum number of generations, probability of crossover

and mutation, and elitism rate.

1.1 Our contribution

In the past, the algorithms like crow search algorithm

(CSA) and grasshopper optimization algorithm (GOA) are

combined with chaotic maps to accelerate their global

convergence speed and to obtain global optima. However,

there are some limitations in these algorithms such as

limited classification accuracy and their application in real-

world engineering problems needs to be investigated. To

overcome these drawbacks, the present work proposes a

novel feature selection algorithm which combines the GA

[6] with the chaotic maps. The value of each gene in the

chromosomes of the initial population is replaced by binary

value, where 1 s corresponds to selected features and 0 s

shows the otherwise. The binary value of a gene in the

population initialization phase is extracted by using chaotic

sequences. The selected features of solutions are passed to

evaluate the fitness value using a fitness function. In this

work, the fitness function is based on the number of

selected features and classification accuracy. Thus, this

work overcomes the classification error rate and also

decreases the space complexity. Chromosomes with high

fitness value are used as parents for the next generation.

Crossover between selected parents produces child solu-

tions which are evaluated using the fitness function.

Mutation of the child solutions is performed to produce

diversity. Chaotic sequences are used to mutate the genes

of the chromosomes. The proposed binary chaotic genetic

algorithm (BCGA) outperforms chaotic crow search algo-

rithm (CCSA) and other evolutionary algorithms in terms

of accuracy and reduced feature set. The key contributions

of this work are as follows.

• A novel BCGA is proposed for feature selection. The

proposed BCGA enhances the mutation and population

initialization steps of the raw GA using chaotic maps.
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• Random variables’ selection process is replaced with

the chaotic sequence value to improve the quality of the

solution.

• The performances of 10 different chaotic maps are

validated on the proposed BCGA for feature selection

problem.

• The effectiveness of BCGA is demonstrated through a

comparison with different evolutionary algorithms used

for feature selection in the past.

• The significance of BCGA is proved by applying

Wilcoxon’s t test.

The primary novelty of the proposed work is innovating

different chaotic variants of the GA as well as determina-

tion of the various GA parameters using chaos. Further-

more, solving the feature selection problem in the affective

computing domain is validated and it can be applied to

assist researchers in other areas of applications as well.

Emotion detection from neurophysiological signals and

healthcare data is a challenging and an evolving problem

nowadays. Data collected in the form of electroen-

cephalogram (EEG) signals, electrocardiogram (ECG)

signals, and galvanic skin response (GSR) require feature

analysis to detect the affective state and health status of a

person. The AMIGOS (A Dataset for Affect, Personality

and Mood Research on Individuals and Groups) dataset

used in this work is an affective database to detect emo-

tions of persons after watching short and long video clips.

Additionally, this work utilizes two healthcare datasets to

identify important features using the proposed method. As

a case study, this work focuses on the application of the

proposed algorithm in the fields of affective computing and

healthcare; however, in the future, it can be applied in other

domains as well.

1.2 Paper organization

The rest of paper is organized as follows. Section 2 gives a

brief overview of fundamentals, GA, chaotic maps and

presents the problem statement of the present work. The

related work on feature selection using EAs and for

affective computing and healthcare systems is covered in

Sect. 3. The proposed method is explained in Sect. 4.

Section 5 presents the conducted experiments and obtained

results. This section also analyzes illustrating properties of

the proposed algorithm, and its comparison with state-of-

the-art methods is also listed. The discussion on the

obtained results is presented in Sect. 6. Finally, Sect. 7

concludes this work with a few future directions

mentioned.

2 Basics and problem formulation

This section gives an overview of the techniques used in

this work, including the GA and chaotic maps. The section

also formally formulates the problem at hand. Initially, the

basics of GA are covered, followed by the details on

chaotic maps, and then present work’s problem statement.

2.1 Genetic algorithm

In order to design a multimodal emotion detection system,

one needs to have multiple emotions related data from

different types of sources. Ensemble of data to make an

efficient system requires selection of a subset of data fea-

tures which can classify different categories of emotions.

The GA [7] is capable of being used as a feature selection

technique. The GA makes it possible to explore potential

solutions to a problem in a better way that cannot be

achieved through a conventional method. Most organisms

(solutions) are produced naturally or by the

crossover/mutation process. The GA first decides which

chromosome of the population has the potential to survive

in the next generation. Afterward, it determines the mixing

and recombination of genes of their parent chromosomes to

produce new offspring. Selection of the parents is based on

the solutions’ fitness value, if it fails on the fitness criteria,

it gets eliminated, otherwise the solutions are sorted

according to their fitness values, and parents are selected

by one of the available parent selection methods.

2.2 Chaotic maps

Chaotic map is an evolution function that shows chaotic

behavior. Chaotic maps are parameterized by both discrete

time and continuous time behavior. Any change of its

initial condition may lead to nonlinear behavior for the

future. Chaos is used to optimize performance of an

algorithm. They provide fast convergence rate and are used

to avoid the local minima. These solutions are beneficial

for the performance of the evolutionary algorithms [2].

Chaos employs chaotic variables rather than the random

ones. Chaos methods are found in nonlinear dynamical

system which are non-periodic, non-converging, and

bounded. Chaos is dependent on initial conditions and

parameters. Additionally, an enormous number of different

sequences can be generated by changing the initial condi-

tions [4]. A variety of chaotic maps is available for opti-

mization problems. In the present work, ten discrete

chaotic maps are implemented. The mathematical

description of these chaotic maps is given in the following.

Sine map The Sine map is defined using Eq. (1).
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xnþ1 ¼
a

4
sin pxnð Þ; a ¼ 4 ð1Þ

where a is the control parameter whose value lies in the

range [0, 4]. This map generates the chaotic number in the

range [0, 1].

Circle map Circle map belongs to the dynamical systems

on circle. The circle map is defined using Eq. (2).

xnþ1 ¼ mod xn þ d � c

2p

� �
sin 2pxnð Þ; 1

� �
; c ¼ 0:5;

d ¼ 0:2

ð2Þ

This map will generate chaotic number in range [0, 1] by

using control parameters c = 0.5 and d = 0.2.

Iterative map The iterative chaotic map is mathematically

defined using Eq. (3).

xnþ1 ¼ sin
cp
xn

� �
; c ¼ 0:7 ð3Þ

This map generates values in the range of [- 1, 1],

while c is a control parameter with 0.7 as its value.

Chebyshev map Chebyshev map is defined by Eq. (4).

xnþ1 ¼ cosðn cos�1ðxnÞÞ ð4Þ

This map generates value in the range [- 1, 1].

Logistic map Logistic map is defined by Eq. (5).

xnþ1 ¼ axn 1� xnð Þ; a ¼ 4 ð5Þ

where a is a controlling parameter with value of 4. This

map generates value in range [0, 1].

Singer map Singer map is defined by Eq. (6).

xnþ1 ¼ l 7:86xn � 23:31x2n þ 28:75x3n � 13:302875x4n
� �

;
l ¼ 1:07

ð6Þ

where l ¼ 1:07 is a control parameter. Singer map gen-

erates value in the range [0, 1].

Sinusoidal map This map is formulated using Eq. (7).

xnþ1 ¼ cx2n sin pxnð Þ; c ¼ 2:3 ð7Þ

where c = 2.3 is a control parameter of this map and

sinusoidal map generates numbers in range [0, 1] and ini-

tial value of x0 ¼ 0:7:

Tent map The tent map is defined using Eq. (8).

xnþ1 ¼
axn for xn\0:7
a 1� xnð Þ for xn � 0:7

�
ð8Þ

where a is the controlling parameter. Tent map gives a

value in the range of [0, 1]. The present work uses a = 1/

0.7 for xn\1=2 and a = 10/3 for xn � 1
2
.

Gauss map The Gauss map is described mathematically

using Eq. (9).

xnþ1 ¼
1; for xn ¼ 0

1

modðxn; 1Þ
; otherwise

8<
: ð9Þ

This map generates chaotic sequences in range [0, 1].

Piecewise map Piecewise map is described mathematically

using Eq. (10).

xnþ1 ¼

xn
a
0� xn\a

xn � a

0:5� a
a� xn\0:5

1� a� xn
0:5� a

0:5� xn\1� a

1� xn
a

1� a� xn\1

8>>>>>>><
>>>>>>>:

ð10Þ

where a = 0.4. Summary of ten chaotic maps used in this

work is listed in Table 1.

2.3 Problem statement

The past literature reveals that a significant importance is

given to the feature selection problem for various learning

tasks irrespective of them being supervised or unsupervised

approaches. This is because there are generally many fea-

tures in the underlying data of a learning task and not every

feature is important. Additionally, there may also exist

multiple correlating features that simply add into the

redundancy and biases of the learning process. There is

always a need for an optimal solution for the selection of

best suited subset of features to increase the classification

(or clustering) accuracy (or heterogeneity) and to decrease

the number of selected features. However, some of the

feature selection algorithms in the evolutionary computing

field suffer from weak diversity particularly, when han-

dling high-dimensional tasks and when the search space is

thin causing premature convergence. Addressing these

limitations of the exiting evolutionary computing-based

feature selection methods is the main motivation of this

work. Additionally, this work is motivated by the use of

different chaotic maps with the GA to solve the opti-

mization problem of selecting a suitable feature subset. As

a test bed, this work utilizes affective and healthcare

datasets. The primary aim here is to select the optimum

features from the affective dataset using the proposed

method and later utilize the standard classification methods

to predict the emotion hidden in them. Figure 1
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demonstrates the higher-level abstraction of the proposed

work. Thus, the problem statement of this work is as

follows.

To develop a novel evolutionary computing-based

feature selection method utilizing the binary chaotic

maps and demonstrate its utility on the affective and

healthcare data.

3 Related works

This section presents the related work done in the domain

of feature selection. The section primarily focuses on the

evolutionary computing-based feature selection methods,

because the solution proposed in this work is an evolu-

tionary algorithm. Additionally, the section also covers a

few of the works related to the feature selection from

affective datasets.

3.1 Feature selection methods

Feature selection is an important preprocessing step to

extract informative features for the classification and

clustering problems. However, the method is mostly uti-

lized for classification, i.e., supervised learning tasks. To

select the optimum subset of features from the original

dataset is a non-deterministic polynomial-time hard (NP-

hard) problem. Therefore, the metaheuristics perform bet-

ter than the exact methods. In recent years, hybrid meta-

heuristics have been used in the field of optimization

problems research. Hybrid methods show better perfor-

mance in solving problems like the feature selection task.

The first hybrid metaheuristic algorithm for feature selec-

tion was proposed in [8]. In this algorithm, local search

techniques are merged with the GA to make it more effi-

cient. The work in Majdi et al. [9] presents a hybrid whale

optimization algorithm (WOA) with simulated annealing

for feature selection. The purpose of using simulated

annealing in their work is to exploit most promising

regions located by the WOA algorithm. They evaluate the

proposed algorithm on 18 standard benchmark datasets

obtained from the UCI repository1 and compare with three

wrapper feature selection methods. The work in EzgiZo-

rarpac et al. [10] presents a feature selection method based

on combination of artificial bee colony (ABC) optimization

technique with differential evolution algorithm. The pur-

pose of their method is to address the overfitting problem

which is caused as a result of high dimensionality of the

data [11]. In [3], a modified cuckoo search algorithm with

rough sets is presented for feature selection. The rough sets

theory is included to modify fitness function which takes

the number of selected features, and classification accuracy

is utilized as the fitness criteria. A binary cuckoo search

Table 1 Description of the ten chaotic maps used in this work

Number Name Definition Range

BCGA1 Sine map xnþ1 ¼ a
4
sin pxnð Þ; a ¼ 4 [0,1]

BCGA2 Circle map xnþ1 ¼ mod xn þ d � c
2p

� �
sin 2pxnð Þ; 1

� �
; c ¼ 0:5; d ¼ 0:2 [0, 1]

BCGA3 Iterative map xnþ1 ¼ sin cp
xn

� �
; c ¼ 0:7 [- 1, 1]

BCGA4 Chebyshev map xnþ1 ¼ cosðn cos�1 xnð ÞÞ [- 1, 1]

BCGA5 Logistic map xnþ1 ¼ axn 1� xnð Þ; a ¼ 4 [0, 1]

BCGA6 Singer map xnþ1 ¼ l 7:86xn � 23:31x2n þ 28:75x3n � 13:302875x4n
� �

;l ¼ 1:07 [0, 1]

BCGA7 Sinusoidal map xnþ1 ¼ cx2n sin pxnð Þ; c ¼ 2:3 [0, 1]

BCGA8 Tent map
xnþ1 ¼

axn for a\1=2
a 1� xnð Þ for a� 1=2

�
[0, 1]

BCGA9 Gauss map

xnþ1 ¼
1; xn ¼ 0

1

modðxn; 1Þ
; otherwise

8<
:

[0, 1]

BCGA10 Piecewise map

xnþ1 ¼

xn
a
0� xn\a

xn � a

0:5� a
a� xn\0:5

1� a� xn
0:5� a

0:5� xn\1� a

1� xn
a

1� a� xn\1

8>>>>>>><
>>>>>>>:

[0, 1]

1 https://archive.ics.uci.edu/.
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algorithm is proposed by Douglas et al. [12] for feature

selection. Their method is based on behavior of the cuckoo

bird to find the important information from a given set of

features in an optimization problem.

In [13], a nature-inspired feature selection technique

based on bats behavior is proposed. Their wrapper

approach combines the exploration quality of bats with the

speed of the optimum-path forest classifier to find the

optimum set of features. Experiments are conducted on five

public datasets. Results show that their approach outper-

forms some well-known swarm-based techniques. A hybrid

of binary gravitational search algorithm and mutual infor-

mation is proposed by Bostani et al. [14]. Chaotic GA is

used as a wrapper-based method for global search of the

features. A mutual information (MI)-based approach is

used as filter-based method to compute the gain of a feature

with respect to the feature and also feature with respect to

the class. This combination is used to find the least

redundant features that are most relevant to the target class.

The work in [14] considers two objective functions:

maximizing the detection rate and minimizing the false

positive rate. An improved version of salp swarm algorithm

(SSA) is proposed in [15] to select optimal subset of fea-

tures using a wrapper-based technique. Opposition-based

learning (OBL) is used in the initial phase of SSA to

improve its population diversity in the search space. A new

local search algorithm (LSA) is developed to improve

exploitation capability of the SSA. The improved salp

swarm algorithm (ISSA) is validated on 18 datasets from

UCI repository. A hybrid feature selection approach based

on GA is proposed in [1]. Enhanced GA (EGA) is devel-

oped by modifying the crossover and mutation operators.

Crossover is performed based on chromosomes portioning

with term and document frequencies of the features, while

the mutation procedure is performed based on classifier

performance of the original parents and feature importance.

The work in [1] incorporates six filter-based feature

selection methods with EGA to create hybrid feature

selection approach. A hybrid genetic local search algorithm

(HGA) is proposed in [16] with the k-nearest neighbor (k-

NN) classifier to simultaneously select subset of relevant

features and feature weighting, for particularly medium-

sized datasets. Gravitational search algorithm (GSA) is a

population-based metaheuristic algorithm inspired by the

Newton’s law of gravity. Mohammad et al. [17] propose

the novel GSA algorithm which is based on evolutionary

crossover and mutation rates. Majdi et al. [18] develop six

variants of the ant lion optimization (ALO) method where

each variant employs a transfer function to map a contin-

uous search space to a discrete search space. Their method

is compared with particle swarm optimization (PSO), GSA,

and two existing ALO-based approaches.

3.2 Feature selection methods to predict
emotion

A number of contributions have been made in the past for

the task of feature selection from the affective computing

perspective. Altun et al. [19] address the strategies for

feature selection and multi-class classification for the

problem of emotion detection. Identification of most

informative and discriminative features is more critical

factor according to them in comparison with the classifi-

cation problem. In order to improve the performance of

multi-class SVMs, 58 features are extracted in their work

from Berlin Emotional Speech Database (EmoDB). They

Fig. 1 A higher-level abstraction of the proposed work
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employ four feature selection techniques, namely sequen-

tial forward selection (SFS), least square bound feature

selection (LSBOUND), mutual information-based feature

selection (MUTINF), and R2W2. The work in [19] con-

cludes that prosodic and sub-band energy features are the

most selected ones by all the algorithms in each frame-

work. The framework used in [19] is such that a multi-class

classification problem is decomposed into binary classifi-

cation problem, and then, they perform features selection.

They perform intersection and unification operators to

construct final feature set from each subset. In the final

phase, multi-class classifiers are employed to determine the

emotional state using the final feature set.

The work in [20] presents results that help to select

methods which are efficient to enhance classification per-

formance and reduce computational complexity for emo-

tion detection from EEG data. They use state-of-the-art

methods for feature extraction, feature selection, and

classification algorithms. Database for Emotion Analysis

using Physiological data (DEAP) is used for experiments in

their work. SemEval-2019 Task 3—EmoContext, is pre-

sented in [21], and EmoContext is a contextual emotion

detection system for text data. For this task, textual dia-

logues from user interaction with a conversational agent

are taken and annotated with emotion classes. A training

dataset of 30,160 dialogues and two evaluation datasets

containing 2755 and 5509 dialogues is released to the

participants. The system analyzes that bi-directional long

short-term memory (BiLSTM) is the most used neural

architecture and best detection of emotion is achieved for

sad class, whereas the worst performance is observed for

happy emotion class. Yan et al. [22] propose a feature

selection method based on sparse learning (SL-FS). The

focus of their work is to identify emotions from EEG

signals. By comparing with the traditional feature selection

methods, the SL-FS method improves the correct rate for

classification of five classes of emotions when the number

of the selected features is same.

Sarcasm is the form of sentiment in which people con-

vey criticism and radicalism in a humorous way. Sun-

dararajan et al. [23] detect sarcasm from text, and

additionally, they propose an approach to identify the types

of sarcasm. Finding the sarcasm type is to identify the level

of hurt or the intention behind the sarcasm. Sarcasm in

their work has been classified into four types, namely

polite, rude, raging, and deadpan sarcasm. The overall

accuracy of their proposed ensemble feature selection

algorithm for sarcasm detection is around 92.7%, and

multi-rule approach for the identification of types of sar-

casm achieves an accuracy of 95.98%, 96.20%, 99.79%,

and 86.61% for polite, rude, raging, and deadpan types of

sarcasm, respectively. A review on gray wolf optimizer

(GWO)-based feature selection for classification is given in

[24]. GWO is a recent method belonging to the swarm

intelligence family. The mathematical model of GWO

consists of encircling, hunting, and attacking the prey. The

main step of GWO in solving feature selection problem is

to extract the subset of features in the representation of the

solution. GWO is appropriate for continuous search prob-

lems. Original GWO is converted to its binary version for

the feature selection problem in their work.

3.3 Addressed limitations of the past works

The selection of optimum set of features is an NP-hard

problem. Any single algorithm is not capable of solving all

the optimization problems [25]. Therefore, despite the

advantages of hybrid methods mentioned above there is

always a room to develop new methods. In developing

algorithms for optimization problems, researchers focus to

increase convergence rate and to achieve global optima. In

the last decade, the domain of mathematics has developed

chaos. It has been applied in different optimization

researches [2, 4, 26, 27]. Like most the optimization

problems, GA also has the tendency to get stuck in the

local optima. Most of the past evolutionary computing-

based solutions have also overlooked to explicitly address

this aspect. The present work utilizes the chaos maps to

enhance the capacity of the traditional (or raw) GA. Based

on this, an evolutionary feature selection technique is

developed here that helps in selecting the optimum feature

subset for the classification task. Table 2 lists the key

features of the closely related past works and the solution

presented here.

4 The proposed binary chaotic genetic
algorithm

This section presents the proposed binary chaotic genetic

algorithm. In this work, the chaos is used to initialize GA

population. This proposal replaces the random variables in

mutation procedure of the GA with the chaos variables.

The utilization of chaos in the population initialization

phase and in the mutation procedure influences the search

of an optimal solution. Here, the chaotic sequences are

generated from chaotic maps. For this, ten different chaotic

maps are used for the optimization process as mentioned in

Table 1.

4.1 The binary chaotic GA

The BCGA is an efficient version of the basic GA. The GA

is a nature-inspired algorithm, and it has the ability to solve
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complex optimization problems because of its design. The

traditional GA is categorized as global search heuristic that

uses iterative process to find an optimal solution. Despite of

its advantages, GA has the limitations of requiring a higher

number of iterations and its implementation cost is high. It

does not solve complex constraint problems conveniently.

To account for some of the deficiencies in the raw GA and

employ the uses of GA, an enhanced version of this basic

algorithm is proposed in this work, namely the binary

chaotic genetic algorithm (BCGA).

The steps followed to develop the BCGA are shown in

Fig. 2. Parameter initialization of GA and BCGA is same,

i.e., setting the values of number of chromosomes (M),

maximum number of generations (Gmax), crossover prob-

ability (Pc), mutation probability (Pm), and elitism rate.

Next step is the population initialization using chaos, and

this is followed by the selection of parents to perform the

crossover procedure between the selected parents that

produces a child solution. Next phase is the mutation

operation. For this, the chaotic variable is used. Fitness

evaluation of the produced solutions is done using two

fitness criteria. The first one is the number of selected

features, and second is the classification accuracy. The

present work uses classification of affective and healthcare

data as a case study of the proposed approach. However,

the proposed BCGA can be used to form multiple other

tasks and the fitness function will vary accordingly. The

elites are selected in this work on the bases of elitism rate.

This work sets maximum number of generation as the

stopping criteria for the proposed approach.

In the proposed solution, initialization of the population

and mutation of chromosomes is done using chaotic maps.

The chaotic maps used here are sine, circle, iterative,

Chebyshev, logistic, singer, sinusoidal, tent, Gauss, and

piecewise. Chaotic maps are used to improve performance

of the GA in terms of computational time, number of

selected features, and classification accuracy. In the current

work, BCGA is implemented to select features that can

improve classification accuracy and extract lesser number

of features that are most significant. Initial population is

modified using chaos (Eq. 11). This work generates t

chaos, where t = (number of chromosomes) x (number of

genes in a chromosome).

t ¼ M � N
for i ¼ 1 : t

mi ¼ Ci

C ¼ vector to matrix mð Þ

population:chromosomes:gene ¼
1; Ci;j\randðÞ
0; otherwise

�

ð11Þ

where Ci;j is the chaotic value of the ith chromosome and

jth gene. If value of jth gene of the ith chromosome is less

than a random number, then the jth gene of the ith chro-

mosome is replaced by 1. This means that the feature will

be used in the solution. This is because each gene

Table 2 Key features of the closely related past works and the proposed solution

Works Fitness value Optimization

parameter

Chaos as evolution

function

Computational

intelligence method

Objectives of

optimization

Length of

selected features

Classification

accuracy

Use of

chaos

Number

of chaos

Multi-

objective

Number of

objectives

Madiha et al.

(proposed)

4 4 4 10 BCGA 4 2

Ghareb et al.

[1]

4 4 9 . EGA 4 3

Mafarja et al.

[18]

4 4 9 . BALO 4 2

Taradeh et al.

[17]

4 4 9 . Hybrid GSA 4 3

Tubishat et al.

[15]

4 4 9 . ISSA 4 4

Bostani et al.

[14]

9 4 9 . BGSA 4 2

Nakamura

et al. [13]

9 4 9 . BBA 9 1

Sayed et al. [2] 4 4 4 10 CCSA 4 2
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represents a feature and each chromosome is the set of

features. A value of 1 in the gene means that the feature

represented by the gene is selected and 0 indicates other-

wise. The population, in the BCGA, is initialized using

random number through Eq. (12).

population:chromosomes:gene ¼ rand 2 ½0; 1�f ð12Þ

Mutation operator in the GA is used to mutate the genes

(feature’s index) of the chromosomes (solution). In case of

feature selection task, mutation is used to change the status

of the feature. This means if value of a random number is

less than the mutation probability, then the value of the

gene will be changed using Eq. (13).

population:chromosomes:gene

¼ �Child:gene; randðÞ\Pm

Child:gene, otherwise

�
ð13Þ

Mutation operation is modified by the chaotic maps by

replacing random variable of chaos value using Eq. (14).

child:gene ¼ �Child:gene; C1;k\Pm

child:gene, else

�
ð14Þ

where Pm is the mutation probability, and C1;k is chaotic

value for kth gene.

4.2 Parameter initialization

The proposed solution provides the flexibility to adjust

various parameters depending on the properties of the task

at hand. Here, parameters of the BCGA are adjusted

through the hit and trial strategy in the simulation stage.

Parameter setting used in the experiments is given in

Table 3. In the experiments, this work uses 30 chromo-

somes (M), maximum generations (Gmax) is set to 50,

crossover probability (Pc) is set to 0.8, mutation probability

(Pm) is 0.01, and elitism rate (Er) is 0.05. For the sake of

fairness, parameter values are kept fixed for all our

experiments to evaluate the performance on different

datasets given under same conditions.

4.3 Fitness function

After each generation, a subset of features is selected for

assessment. To evaluate the fitness of the selected subset of

features, a fitness function is defined. Data are divided into

two different groups, namely training and testing data using

cross-validation through the k-fold method. In this case, the

value of k is set to 10 to check the stability of the results.

To evaluate the proposed algorithm, fitness function pro-

posed in [2] is used. In [2], two objective criteria are used

to evaluate the algorithm, namely classification accuracy

and number of selected features. These two criteria are

combined here using Eq. (15).
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Fitness ¼ accuracyþ wG 1� Ls=Lt

� �
ð15Þ

where wG is the weight factor to combine both objective

functions, Ls is the length of the selected features, and Lt is

the length of total features. Value of wG lies in the range [0,

1]. It is used to combine two objective functions and to

give importance to the number of selected features with

accuracy.

As accuracy is more important for a classification

problem, therefore, its weight value is set close to 1, i.e.,

0.8. The best solution is that it has the higher accuracy and

less number of selected features. Accuracy is calculated by

dividing the number of correctly classified instances with

the total number of test instances. To classify the test

instances, k-nearest neighbor (k-NN) classifier is used. The

value of k is set to 3 using the hit and trial procedure. The

k-NN is a supervised learning classifier which assigns a

class to the test sample from the group of training samples

having the nearest distance.

4.4 Termination criteria

The termination condition is an important parameter of an

evolutionary computing-based approach. It is usually set to

the maximum number of iterations (generations), or the

algorithm is set to stop when objectives are achieved with

high efficiency. In this work, termination criteria are the

number of generations which is set to 50 in all experiments.

The pseudocode of proposed algorithm is listed in Algo-

rithm 1.

Figure 3 shows the overall working of the proposed

solution. The proposed BCGA method is implemented here

as a feature selection algorithm of a wrapper-based method.

In BCGA, a chaotic sequence is embedded in its population

Fig. 2 Flow of the BCGA method

Table 3 Parameters setting and number of features extracted from

data

Parameter Value

M (number of chromosomes) 30

Max. generations 50

Pc (crossover probability) 0.8

Pm (probability of mutation) 0.01

Er (elitism rate) 0.05

Data No. of features

ECG 24

EEG 70

GSR 24

ECG ? EEG 94

ECG ? GSR 48

GSR ? EEG 94

All 118
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initialization and mutation phases. The optimum subset of

features describing the affective dataset is selected using

the BCGA. The purpose of the proposed algorithm here is

to extract the optimal features of neurophysiological sig-

nals of emotions and also from a healthcare data, to reduce

the computational cost and to increase the classification

accuracy. However, it is applicable to multiple other

problems as well

5 Experiments and results

The proposed BCGA is evaluated on an affective dataset

and also on healthcare data to evaluate its application in

these domains. This work chose neurophysiological signals

of AMIGOS dataset which consists of data for affect,

personality, and mood research on individuals and groups.

Description of datasets is given in Sect. 5.1. To compare

the performance of BCGA with other evolutionary algo-

rithms, this work executes GA, particle swarm optimiza-

tion (PSO), ant colony optimization (ACO), simulated

annealing (SA), and differential evolution (DE) on the

neurophysiological signals of AMIGOS. A state-of-the-art

method which is used for feature selection and works with

chaos, i.e., chaotic crow search algorithm (CCSA) [2], is

also implemented to compare its performance on the

affective dataset. Results and details of the experiments are

given in this section.

5.1 Dataset description

The proposed algorithm is validated on a large benchmark

dataset consists of mood, affect, and personality research

data obtained by individuals and groups (AMIGOS) [28].

This dataset consists of participants’ profile, rating by the

participants, external annotations, neurophysiological

recordings, and video recordings. The data are resultant of

two experiments based on emotion induction through short

and long videos. In short videos experiment, 40 partici-

pants watched 16 short affective videos. Participants indi-

vidually rated each video in valence, arousal, dominance,

familiarity, and liking. Afterward, they label each video

Fig. 3 Overall working of the proposed solution
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with one of the basic emotions (i.e., neutral, happiness,

surprise, sadness, fear, anger, or disgust). In case of long

videos experiment, 37 participants watched four long

videos related to various emotions chosen from the movies.

Seventeen participants perform this experiment individu-

ally, while the other 20 participants watched it in groups of

four individuals. Each participant rates videos in arousal,

valence, dominance, liking, and familiarity. As in case of

the short videos, the participants select one of the basic

emotions against each video. Finally, the videos are

annotated by three annotators on the scales of valence and

arousal. We evaluated our algorithm on data obtained by

using short videos.

Two healthcare datasets are also used in this work for

experiments. The first healthcare dataset is the lung cancer

dataset2 obtained from the UCI machine learning reposi-

tory. In this data, pathological types of lung cancer are

classified into three classes having 56 attributes. Fifth and

39th attributes of the dataset have missing values due to

which they are discarded from data. The second healthcare

dataset is the Parkinson disease (PD) classification data.3

The data were gathered from 188 patients with PD out of

which 107 were men and 81 were women with age ranging

from 33 to 87 at the Istanbul University. In the data col-

lection phase, the microphone is set to 44.1 kHz. The

sustained phonation was collected from each subject with

three repetitions. Features extracted from PD dataset

include time–frequency features, Mel frequency cepstral

coefficients, wavelet transform-based features, and vocal

fold features. There are total 756 samples and 754 attri-

butes in the dataset.

5.2 Preprocessing and feature extraction of EEG,
ECG, and GSR data

Experiments in this work are performed on the prepro-

cessed data of the EEG, ECG, and GSR signals. EEG data

were recorded using EMOTIV epoch, with sampling fre-

quency of 128 Hz, the data were averaged to the common

reference, and band-pass filter was applied with the fre-

quency range of 4.0–45.0 Hz. EEG data are extracted from

14 channels. ECG data were recorded using the shimmer

platform with a sampling frequency of 256 Hz. ECG sig-

nals are captured from right and left arm. Low pass filter

was applied with cutoff frequency of 60 Hz. GSR data

were recorded and filtered with low pass filter with cutoff

frequency of 60 Hz. This work considered only the data

obtained by short videos for experiments. As 40

participants watched 16 short videos, this resulted in a total

of 640 samples.

The neurophysiological data of EEG, ECG, and GSR are

used here to record the emotions of the participants. In this

section, features extracted from these modalities are

described. The summary of the features is listed in Table 4.

To extract features from the EEG data, EEG signals are

rescaled between - 1 and 1. NaN (not a number) values

are replaced with zero. The signals are filtered using high

pass filter with a frequency of 0.2 Hz. Welch’s power

spectral density method is applied to extract the power

spectral density (PSD) of each channel of the signal. Theta,

slow alpha, alpha, beta, and gamma bands are extracted

from the preprocessed signal. PSDs were averaged on theta

band over the frequency range of 4–7.9 Hz, slow alpha

band over the frequency range of 7.9–10 Hz, alpha band

over the frequency range of 10.1–12.9 Hz, beta band over

the frequency range of 13–17.9 Hz, and gamma band over

the frequency range of 18–27.9 Hz. Logarithm of averaged

signals is used as features of 14 channels of EEG signal of

each sample.

The ECG data are preprocessed by rescaling it between

the range [- 1, 1]. Low pass filter is applied with 0.2 Hz

and 0.08 Hz frequency. ECG signals show patterns that are

not intrinsic to the data, and thus, these trends hinder the

data analysis. Filtered signal is determined to remove

trends of the ECG. Statistical features (like, minimum

value, maximum value, standard deviation, variance,

median, and root mean square) are extracted from the

preprocessed ECG data. Frequency domain features are

extracted from the ECG data using Fourier transform. The

two-sided spectrum is determined by dividing magnitude

of Fourier transform by the total length. Afterward, its

single-sided spectrum is computed to extract the statistical

features (i.e., mean, minimum value, maximum value,

median, variance, and root mean square). For wavelet

analysis, discrete wavelet transform-based features are

determined from the ECG data. Statistical features (mean,

minimum, maximum, median, variance, root-mean-square

values) are extracted from approximated coefficients and

detailed coefficients of discrete wavelet transform of the

data. Preprocessing and features of GSR data are the same

as that of the ECG data.

5.3 Performance metrics

To evaluate the performance of the proposed algorithm,

standard metrics and a few statistical measures are utilized

here. These metrics are: best fitness value using Eq. (14),

worst fitness value using Eq. (15), mean of fitness values

using Eq. (16), standard deviation of fitness values using

Eq. (17), computational time, number of selected features,

and P-value from the Wilcoxon’s rank test [29]. The rank

2 http://archive.ics.uci.edu/ml/datasets/Lung?Cancer.
3 http://archive.ics.uci.edu/ml/datasets/Parkinson%

27s?Disease?Classification.
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test is necessary to compare the performance of the pro-

posed algorithm with the traditional GA. The Wilcoxon’s

rank sum test is a nonparametric statistical test between

two independent samples. It considers proportionality of

differences between two samples. It gives the sum of the

ranks of positive differences between the observations in

the two samples. The best value of P is obtained when

P\ 0.05. The abovementioned performance metrics are

defined mathematically in the following.

Best Fitness value ¼ max
i¼1 toGmax

FVi ð14Þ

Worst Fitness value ¼ min
i¼1 toGmax

FVi ð15Þ

Mean Fitness value ¼ 1

Gmax

XGmax

i¼1

FVi ð16Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPGmax

i¼1 ðFVi � lFVÞ2

Gmax

s
ð17Þ

The best fitness value is evaluated using (14), where FVi

is the fitness value of ith solution and i ranges from 1 to the

maximum number of generations (Gmax). The worst fitness

value is calculated through (15), where FVi is the fitness

value of the ith solution. The mean fitness value is calcu-

lated by dividing the sum of fitness values of i solutions

with the total number of generations (Gmax). Standard

deviation of fitness values for i number of generations is

calculated by using (17), where FVi is the fitness value of

ith solution, and lFV is the mean fitness value.

5.4 Performance of BCGA with different chaotic
maps for seven basic emotions

This section analyzes the results obtained by experiments

on the AMIGOS dataset for seven basic emotions. Ten

discrete chaotic maps of BCGA are evaluated on the EEG

signals, ECG signals, and GSR data. Evaluation is per-

formed on these individually and in all possible combina-

tions as well (i.e., EEG, ECG, GSR, EEG ? ECG,

EEG ? GSR, GSR ? ECG, and all). Table 5 compares

BCGA with 10 chaotic maps with the GA. Results obtained

using the proposed BCGA and GA for seven basic classes

of emotions are given in the table in terms of worst value,

best value, mean fitness value, standard deviation in fitness

values, P-value of BCGA, computational time, and the

number of selected features. It can be seen that for multi-

modal signals (ECG ? EEG ? GSR), BCGA with sinu-

soidal chaotic map obtains highest fitness value which is

also greater than the one obtained by GA, and its compu-

tational time is also better than what is obtained by GA.

The P-value obtained for the sinusoidal chaotic map is

0.0056. It can be seen from the results that for all models,

in most of the cases, GA with sinusoidal chaotic map gives

best fitness values and with Gauss chaotic map, it has the

worst results.

5.5 Performance of BCGA with different chaotic
maps for HAHV, HALV, LAHV, LALV

The proposed chaotic genetic algorithm is implemented on

AMIGOS for classification of high arousal high valence,

high arousal low valence, low arousal high valence, and

low arousal low valence. Table 6 compares BCGA for four

classes with different chaotic maps in terms of worst, best,

mean, standard deviation of fitness value. P-value is cal-

culated between BCGA and the GA. The number of

selected features and computational time is extracted from

experiments. The experiments are evaluated for seven data

models (i.e., ECG, EEG, GSR, EEG ? ECG, ECG ?

GSR, EEG ? GSR, and all) of physiological signals of

AMIGOS. BCGA1 through BCGA10 are binary chaotic

GAs with 10 chaotic maps as given in Table 1. The time

here is reported in seconds. It can be observed from

Table 6 that for hybrid data model of ECG ? EEG ?

GSR, GA with sinusoidal chaotic map gave the highest

fitness value in comparison with others. Its computational

time is also less than others. It can be observed that in all

data models, the proposed BCGA performed better than the

traditional GA.

Table 4 Summary of features extracted from EEG, ECG, and GSR data

Modality Features

EEG Five bands (theta, slow alpha, alpha, beta, and gamma) are extracted from PSD of signals of 14 channels. Log of average of each band

of each channel is used as a feature

ECG Statistical features of ECG data, statistical features of Fourier transform of the data, and statistical features of discrete wavelet

transform of the data

GSR Statistical features of ECG data, statistical features of Fourier transform of the data, and statistical features of discrete wavelet

transform of the data
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5.6 Comparison with the state-of-the-art
methods

This section provides a comparison of the proposed

approach with two state-of-the-art methods, namely CCSA

for feature selection [2] and evolutionary algorithm for

features selection of EEG-based signals [30]. The state-of-

the-art methods chosen from the literature are the opti-

mization algorithms for feature selection [2, 30]. Hassanien

et al. [2] present a feature selection method based on

chaotic crow search algorithm (CCSA). They use 10

chaotic maps to optimize the crow search algorithm (CSA).

Their work has low convergence rate and may stuck in

local optima, while these problems are addressed in the

CCSA. In this work, for the comparison purpose, their

approach is applied on the AMIGOS dataset to compare the

results. Evaluation criteria used in [2] are based on fitness

value which measures the accuracy and the number of

features [31–33]. Fitness score and computational time

obtained by CCSA on the proposed models in this work are

given in Table 7. Values of parameters in CCSA are:

maximum number of iterations (M) which is set to 50 here,

Awareness Probability (AP) that is set at 0.1, flight length fl

which is assigned a value of 2, lower bound set at 0, upper

bound set at 1, maximum iterations (tMax) assigned a value

of 50, and D that is same as total number of features in

original database. Nakisa et al. [3] used evolutionary

computation algorithms to select features of EEG signals

for emotion recognition using mobile sensors. Here, the

approach in [30] is implemented on EEG signals of

AMIGOS dataset to compare their approach with the pro-

posed method. The experimental setup used in [30] consists

of feature extraction from time domain, frequency domain,

and time–frequency domain. Evolutionary algorithms, GA

[34, 35], particle swarm optimization (PSO), ant colony

optimization (ACO), simulated annealing (SE), and dif-

ferential evolution (DE), are used to select the optimal

subset of features. For the ACO algorithm, the number of

ants is 20, evaporation rate is 0.05, and initial pheromone

and heuristic value is 1. For the SA algorithm, initial

temperature is 10, cooling ratio is 0.99, and maximum

number of iteration in each temperature state is 20. For the

GA, crossover percentage is 0.7, mutation percentage is

0.3, mutation rate is 0.1 and selection pressure is 8. For the

PSO algorithm, construction coefficient is 2.05, damping

ratio is 0.9 and particle size is 20. For the DE algorithm,

population size is 20, crossover probability is 0.2, lower

bound of scaling factor is 0.2 and upper bound of scaling

factor is 0.8. By using features and feature selection

methods of [30], we get the results given in Table 8. It can

be seen from the results obtained for [2, 30] that the current

proposal performs better. It can be seen in Table 7 that

Ta
bl
e
5
(c
o
n
ti
n
u
ed
)

E
C
G

?
G
S
R

?
E
C
G

(a
ll
)

E
C
G

W
o
rs
t

B
es
t

M
ea
n

S
D

P
-v
al
u
e

T
o
ta
l
fe
at
u
re
s

S
el
ec
te
d
fe
at
u
re
s

T
im

e
(s
)

W
o
rs
t

B
es
t

M
ea
n

S
D

P
-v
al
u
e

T
o
ta
l
fe
at
u
re
s

S
el
ec
te
d
fe
at
u
re
s

T
im

e
(s
)

B
C
G
A
1
0

0
.9
0
5

1
.0
1
1

0
.9
6
0

0
.0
2
4

0
.7
5
2

9
4
.0
0
0

2
6
.0
0
0

1
3
7
.0
1
2

0
.9
5
9

1
.0
1
9

0
.9
8
7

0
.0
1
4

1
.0
0
0

2
4
.0
0
0

4
.0
0
0

1
2
6
.0
0
6

G
S
R
?

E
E
G

G
A

0
.8
6
8

1
.0
2
4

0
.9
4
7

0
.0
3
7

–
9
4
.0
0
0

2
2
.0
0
0

1
3
6
.2
9
0

B
C
G
A
1

0
.8
7
2

0
.9
8
0

0
.9
3
2

0
.0
2
5

1
.0
0
0

9
4
.0
0
0

3
0
.0
0
0

2
0
7
.0
5
1

B
C
G
A
2

0
.9
2
3

0
.9
8
9

0
.9
5
5

0
.0
2
1

0
.1
9
4

9
4
.0
0
0

3
1
.0
0
0

1
4
3
.2
5
2

B
C
G
A
3

0
.8
4
6

0
.9
5
1

0
.8
9
2

0
.0
2
4

0
.8
6
9

9
4
.0
0
0

3
2
.0
0
0

1
3
4
.1
6
2

B
C
G
A
4

0
.9
6
9

1
.0
5
7

1
.0
0
2

0
.0
2
3

0
.2
7
3

9
4
.0
0
0

2
5
.0
0
0

1
3
2
.4
0
8

B
C
G
A
5

0
.9
1
8

0
.9
8
9

0
.9
5
2

0
.0
1
7

0
.6
5
5

9
4
.0
0
0

2
8
.0
0
0

1
3
0
.3
9
5

B
C
G
A
6

1
.0
0
8

1
.0
9
2

1
.0
5
7

0
.0
1
9

0
.0
4
2

9
4
.0
0
0

1
8
.0
0
0

1
2
7
.5
7
2

B
C
G
A
7

1
.0
2
6

1
.1
0
8

1
.0
6
9

0
.0
2
0

0
.0
7
8

9
4
.0
0
0

2
0
.0
0
0

1
2
6
.7
4
8

B
C
G
A
8

0
.9
8
2

1
.0
6
6

1
.0
2
8

0
.0
2
3

0
.1
1
7

9
4
.0
0
0

2
2
.0
0
0

1
3
3
.9
2
8

B
C
G
A
9

0
.5
3
1

0
.7
8
6

0
.6
3
3

0
.0
6
6

0
.0
1
4

9
4
.0
0
0

4
9
.0
0
0

1
4
9
.4
0
0

B
C
G
A
1
0

0
.9
3
6

1
.0
3
3

0
.9
7
7

0
.0
2
4

0
.6
2
2

9
4
.0
0
0

2
8
.0
0
0

1
3
6
.4
5
1

Neural Computing and Applications

123



Ta
bl
e
6

P
er
fo
rm

an
ce

ev
al
u
at
io
n
o
f
B
C
G
A

fo
r
H
A
H
V
,
H
A
L
V
,
L
A
H
V
,
L
A
L
V

E
C
G

?
G
S
R
?

E
C
G

(a
ll
)

E
C
G

W
o
rs
t

B
es
t

M
ea
n

S
D

P
-v
al
u
e

T
o
ta
l
fe
at
u
re
s

S
el
ec
te
d
fe
at
u
re
s

T
im

e
(s
)

W
o
rs
t

B
es
t

M
ea
n

S
D

P
-v
al
u
e

T
o
ta
l
fe
at
u
re
s

S
el
ec
te
d
fe
at
u
re
s

T
im

e
(s
)

G
A

0
.8
2
7

0
.9
6
5

0
.9
1
3

0
.0
3
5

–
1
1
8
.0
0
0

3
0
.0
0
0

4
6
.6
9
8

0
.8
3
4

1
.0
6
1

0
.9
6
3

0
.0
6
7

–
2
4
.0
0
0

2
.0
0
0

4
3
.1
5
8

B
C
G
A
1

0
.8
2
0

0
.9
6
2

0
.8
9
8

0
.0
3
3

1
.0
0
0

1
1
8
.0
0
0

3
8
.0
0
0

4
2
.7
2
2

0
.8
8
6

1
.0
5
3

0
.9
8
3

0
.0
4
0

1
.0
0
0

2
4
.0
0
0

3
.0
0
0

3
9
.4
6
1

B
C
G
A
2

0
.7
9
2

0
.8
8
8

0
.8
4
8

0
.0
2
4

0
.1
9
9

1
1
8
.0
0
0

4
7
.0
0
0

4
4
.1
2
3

0
.9
4
0

1
.0
3
3

0
.9
9
3

0
.0
2
7

0
.6
8
8

2
4
.0
0
0

4
.0
0
0

3
9
.2
1
7

B
C
G
A
3

0
.8
3
9

0
.9
4
7

0
.8
8
7

0
.0
2
7

0
.4
8
4

1
1
8
.0
0
0

4
3
.0
0
0

4
9
.3
4
6

0
.9
5
7

1
.1
1
0

1
.0
4
0

0
.0
4
6

1
.0
0
0

2
4
.0
0
0

3
.0
0
0

3
9
.7
6
4

B
C
G
A
4

0
.8
5
2

0
.9
5
4

0
.8
9
9

0
.0
2
7

0
.5
1
5

1
1
8
.0
0
0

4
3
.0
0
0

4
9
.9
7
8

0
.8
9
1

1
.0
6
4

0
.9
7
5

0
.0
4
0

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

4
3
.6
0
5

B
C
G
A
5

0
.8
9
4

1
.0
2
6

0
.9
5
7

0
.0
3
1

0
.2
1
7

1
1
8
.0
0
0

3
0
.0
0
0

4
5
.1
1
6

0
.9
2
5

1
.0
4
8

1
.0
0
0

0
.0
2
8

0
.6
8
8

2
4
.0
0
0

4
.0
0
0

3
9
.6
8
4

B
C
G
A
6

0
.9
1
3

1
.0
1
0

0
.9
5
7

0
.0
2
6

0
.5
5
5

1
1
8
.0
0
0

3
4
.0
0
0

4
1
.2
8
2

0
.9
7
8

1
.0
8
3

1
.0
3
0

0
.0
3
2

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

3
8
.7
6
8

B
C
G
A
7

1
.0
1
8

1
.1
3
0

1
.0
7
3

0
.0
2
5

0
.0
0
2

1
1
8
.0
0
0

1
8
.0
0
0

4
0
.4
8
3

1
.0
2
9

1
.1
0
5

1
.0
6
9

0
.0
2
1

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

3
9
.5
3
5

B
C
G
A
8

0
.8
2
0

0
.9
1
3

0
.8
7
2

0
.0
2
1

0
.7
8
2

1
1
8
.0
0
0

4
0
.0
0
0

4
2
.0
6
6

0
.9
7
8

1
.0
6
6

1
.0
2
7

0
.0
2
1

1
.0
0
0

2
4
.0
0
0

3
.0
0
0

3
9
.1
7
7

B
C
G
A
9

0
.5
5
1

0
.7
3
8

0
.6
2
0

0
.0
4
7

0
.0
0
1

1
1
8
.0
0
0

6
0
.0
0
0

4
6
.7
7
6

0
.5
7
4

0
.8
5
6

0
.7
6
0

0
.0
6
9

0
.0
2
2

2
4
.0
0
0

1
0
.0
0
0

3
8
.0
7
0

B
C
G
A
1
0

0
.8
0
1

0
.9
1
5

0
.8
6
7

0
.0
3
0

0
.4
8
4

1
1
8
.0
0
0

4
3
.0
0
0

5
4
.4
2
9

0
.9
5
0

1
.1
2
0

1
.0
3
5

0
.0
3
6

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

4
9
.8
3
5

E
E
G

E
C
G

?
G
S
R

G
A

0
.8
1
9

0
.9
9
8

0
.8
9
7

0
.0
4
7

–
7
0
.0
0
0

1
8
.0
0
0

4
9
.1
8
7

0
.7
7
1

0
.9
6
8

0
.8
7
3

0
.0
4
9

–
4
8
.0
0
0

1
1
.0
0
0

4
6
.4
0
9

B
C
G
A
1

0
.8
6
9

0
.9
8
1

0
.9
3
5

0
.0
3
2

0
.6
0
2

7
0
.0
0
0

2
1
.0
0
0

4
3
.1
4
9

0
.8
5
9

0
.9
7
5

0
.9
2
6

0
.0
3
2

1
.0
0
0

4
8
.0
0
0

1
1
.0
0
0

3
7
.4
6
3

B
C
G
A
2

0
.7
7
5

0
.8
9
9

0
.8
2
8

0
.0
4
1

0
.0
5
9

7
0
.0
0
0

2
8
.0
0
0

4
0
.1
8
4

0
.8
0
0

0
.9
0
5

0
.8
4
3

0
.0
2
6

0
.2
7
5

4
8
.0
0
0

1
6
.0
0
0

3
8
.2
3
2

B
C
G
A
3

0
.9
1
9

1
.0
1
2

0
.9
6
6

0
.0
2
3

0
.7
1
5

7
0
.0
0
0

2
0
.0
0
0

3
9
.3
2
2

0
.8
6
8

0
.9
6
8

0
.9
2
4

0
.0
2
9

0
.8
0
8

4
8
.0
0
0

1
2
.0
0
0

3
7
.9
2
2

B
C
G
A
4

0
.9
2
8

1
.0
0
5

0
.9
5
0

0
.0
1
8

0
.4
5
0

7
0
.0
0
0

2
2
.0
0
0

4
3
.0
2
7

0
.7
9
0

0
.9
7
5

0
.9
0
8

0
.0
4
6

0
.6
7
0

4
8
.0
0
0

1
3
.0
0
0

3
7
.8
6
2

B
C
G
A
5

0
.9
0
9

1
.0
1
0

0
.9
6
1

0
.0
2
7

1
.0
0
0

7
0
.0
0
0

1
8
.0
0
0

4
1
.9
9
0

0
.8
8
5

1
.0
4
9

0
.9
6
2

0
.0
4
7

0
.6
3
7

4
8
.0
0
0

9
.0
0
0

3
8
.0
8
0

B
C
G
A
6

0
.9
6
2

1
.0
2
5

0
.9
9
2

0
.0
1
8

0
.8
3
5

7
0
.0
0
0

1
9
.0
0
0

4
0
.1
1
3

1
.0
1
2

1
.0
8
7

1
.0
5
4

0
.0
1
8

0
.3
0
2

4
8
.0
0
0

6
.0
0
0

4
1
.8
3
1

B
C
G
A
7

0
.9
9
8

1
.1
1
2

1
.0
4
6

0
.0
2
7

0
.0
8
8

7
0
.0
0
0

1
0
.0
0
0

3
8
.4
7
6

1
.0
6
5

1
.1
5
0

1
.1
0
4

0
.0
1
9

0
.1
1
9

4
8
.0
0
0

4
.0
0
0

3
9
.4
6
2

B
C
G
A
8

0
.9
3
7

1
.0
5
7

0
.9
8
6

0
.0
2
3

0
.5
6
4

7
0
.0
0
0

1
5
.0
0
0

3
8
.5
8
0

0
.9
3
1

1
.0
6
3

1
.0
0
3

0
.0
4
2

0
.3
4
6

4
8
.0
0
0

7
.0
0
0

3
8
.4
6
0

B
C
G
A
9

0
.5
1
9

0
.7
8
8

0
.6
6
2

0
.0
7
0

0
.0
0
0

7
0
.0
0
0

3
8
.0
0
0

4
3
.1
7
2

0
.4
7
9

0
.8
1
3

0
.5
8
7

0
.0
8
1

0
.0
3
3

4
8
.0
0
0

2
1
.0
0
0

3
9
.7
4
0

B
C
G
A
1
0

0
.8
2
9

0
.9
5
1

0
.8
9
3

0
.0
3
2

0
.1
5
7

7
0
.0
0
0

2
6
.0
0
0

5
2
.0
0
9

0
.8
9
0

0
.9
9
5

0
.9
4
9

0
.0
3
1

0
.8
0
8

4
8
.0
0
0

1
0
.0
0
0

4
6
.6
8
1

E
C
G

?
E
E
G

G
S
R

G
A

0
.7
8
5

0
.9
5
2

0
.8
8
3

0
.0
4
1

–
9
4
.0
0
0

2
7
.0
0
0

4
9
.2
7
4

0
.8
1
7

1
.0
9
5

0
.9
7
7

0
.0
7
7

–
2
4
.0
0
0

3
.0
0
0

4
3
.9
3
3

B
C
G
A
1

0
.8
3
6

0
.9
2
5

0
.8
7
3

0
.0
1
7

0
.1
4
9

9
4
.0
0
0

3
7
.0
0
0

4
0
.8
0
5

0
.9
2
1

1
.0
9
8

1
.0
2
0

0
.0
4
6

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

3
9
.2
9
3

B
C
G
A
2

0
.8
0
0

0
.9
1
7

0
.8
6
3

0
.0
2
5

0
.2
1
7

9
4
.0
0
0

3
5
.0
0
0

4
1
.9
4
4

0
.9
0
5

1
.0
1
8

0
.9
6
6

0
.0
2
5

0
.6
2
5

2
4
.0
0
0

5
.0
0
0

3
9
.1
1
2

B
C
G
A
3

0
.8
4
3

0
.9
3
0

0
.8
9
1

0
.0
2
4

0
.3
5
5

9
4
.0
0
0

3
3
.0
0
0

4
0
.5
3
9

0
.9
4
2

1
.0
7
0

1
.0
0
0

0
.0
2
9

1
.0
0
0

2
4
.0
0
0

4
.0
0
0

3
9
.8
6
1

B
C
G
A
4

0
.8
9
1

0
.9
5
7

0
.9
2
3

0
.0
1
8

0
.3
4
3

9
4
.0
0
0

3
3
.0
0
0

4
8
.4
1
5

0
.9
9
9

1
.0
7
9

1
.0
4
0

0
.0
2
0

1
.0
0
0

2
4
.0
0
0

4
.0
0
0

4
5
.6
7
7

B
C
G
A
5

0
.8
8
0

0
.9
8
8

0
.9
3
6

0
.0
3
0

0
.8
6
6

9
4
.0
0
0

2
6
.0
0
0

4
0
.3
8
1

0
.9
4
6

1
.0
8
8

1
.0
3
3

0
.0
3
8

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

4
2
.1
3
5

B
C
G
A
6

0
.9
0
3

0
.9
8
4

0
.9
5
0

0
.0
2
2

1
.0
0
0

9
4
.0
0
0

2
7
.0
0
0

4
0
.8
1
5

1
.0
3
2

1
.1
2
0

1
.0
7
4

0
.0
2
1

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

3
8
.7
8
9

B
C
G
A
7

0
.9
9
2

1
.1
1
3

1
.0
5
1

0
.0
3
1

0
.0
2
8

9
4
.0
0
0

1
4
.0
0
0

3
7
.9
6
2

0
.6
6
4

0
.9
2
4

0
.8
3
5

0
.0
5
6

0
.3
4
4

2
4
.0
0
0

7
.0
0
0

3
8
.5
6
6

B
C
G
A
8

0
.9
0
6

1
.0
0
2

0
.9
5
0

0
.0
2
6

0
.8
7
6

9
4
.0
0
0

2
8
.0
0
0

4
1
.2
4
6

1
.0
5
4

1
.1
5
6

1
.1
1
0

0
.0
2
2

1
.0
0
0

2
4
.0
0
0

2
.0
0
0

3
9
.2
0
4

B
C
G
A
9

0
.6
3
5

0
.8
0
0

0
.7
2
2

0
.0
4
1

0
.0
1
1

9
4
.0
0
0

4
5
.0
0
0

4
5
.3
7
1

0
.5
4
6

0
.8
4
4

0
.6
6
4

0
.0
6
3

0
.0
6
5

2
4
.0
0
0

1
0
.0
0
0

3
8
.4
8
9

Neural Computing and Applications

123



BCGA gives higher score than CCSA in all combinations

of data. CCSA gives 1.0233 score value for hybrid com-

bination of EEG, ECG, and GSR signals, while BCGA

gives 1.1557 score value for the same combination. Score

for all competing methods is extracted using the same fit-

ness function used in this work. Although computational

time of CCSA is less than BCGA, however, that is because

of the basic architecture of GA. Similarly, Table 8 shows

scores obtained by feature selection techniques used in

[30], GA, PSO, ACO, SA, and DE. Each technique is

validated for 15, 25, 45, and 100 iterations on AMIGOS

dataset. Average fitness score is calculated for each feature

selection technique. The average fitness score obtained by

GA is 0.6784, by PSO is 0.8971, by ACO is 0.9067, by SA

is 0.9017 and by DE is 0.8925. EEG signals are used in

[30] for experiments; therefore, here only EEG data of

AMIGOS dataset are utilized for a fair comparison. By

using proposed BCGA on EEG data, a fitness score of

1.1496 is obtained which is higher than the methods pre-

sented in [30].

The proposed algorithm in this work is used in an

optimization problem to overcome the limitations of the

raw GA. BCGA increases the convergence rate, gives more

significant and less number of features, and achieves the

global optima. It can be seen from results given in Table 5

that for 7 basic classes of emotions, a score value of 1.1557

is obtained on hybrid data of all signals (i.e., EEG, ECG,

and GSR) with 16 selected features out of 118 and com-

putational time is 127.042870 s, standard deviation is

0.0177, worst value is 1.0843 and average value is 1.1216.

Table 6 shows that for four dimensions of emotions, this

work obtained 1.1295 best score value on hybrid data of

EEG, ECG, and GSR with 18 selected features out of 118

and computational time is 40.482767 s, standard deviation

in fitness values is 0.0253, worst value is 1.0181, and

average value is 1.0730. In both the cases, BCGA7 (binary

chaotic GA with sinusoidal chaotic map) performs better as

compared to others, whereas BCGA9 produces worst

results for both, 7 classes of emotions and 4 dimensions of

emotions by giving 0.5429 score value for 7 classes and

0.5508 score value for four-dimensional data.

5.7 Experiments with healthcare data

Results obtained for BCGA on the lung cancer dataset are

shown in Table 9. It can be seen from the results that the

best fitness value is obtained using BCGA7, i.e., by using

sinusoidal map, and worst results is observed for BCGA9,

i.e., by using the Gauss map. Computational time taken by

BCGA7 is 136.842090 s which is less than the time taken

by the raw GA. BCGA7 selects 10 features, while simple

GA selected 16 features. Table 9 also shows the results

obtained for PD classification dataset. It can be seen fromTa
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the results that best fitness value is obtained for BCGA7,

i.e., by suing sinusoidal map, while the worst value is

obtained using BCGA9. Computational time taken by

BCGA7 is 167.011444 s which is less than the time taken

by the raw GA, i.e., 238.037346 s. BCGA7 selects 185

features, while simple GA selects 312 features. These

results show better performance of the proposed method on

healthcare datasets as well, thus suggesting the general

applicability of the proposed approach.

6 Discussion

This work presented a novel feature selection algorithm by

enhancing the raw GA through chaotic maps. Two datasets

from affective computing [36] and healthcare domains

[37–40], namely AMIGOS, lung cancer and Parkinson’

disease, were selected to assess the proposed algorithm.

Ten different chaotic maps (namely sine, circle, iterative,

Chebyshev, logistic, singer, sinusoidal, tent, Gauss, and

piecewise) were used to increase the efficiency of the tra-

ditional GA in terms of classification accuracy and number

of selected features. The AMIGOS dataset consisted of

data obtained by the ECG signals, EEG signal, and GSR

signals for the detection of seven basic categories of

emotions (namely neutral, happiness, surprise, sadness,

fear, anger, and disgust) and 4 dimensions of emotions

(high valence high arousal, low valence high arousal, high

valence low arousal, and low valence low arousal). Results

obtained suggested that for all kinds of data of AMIGOS

(i.e. ECG ? EEG ? GSR), BCGA7 had best fitness value

of 1.156, while GA gave 1.00 with p-value of 0.006.

BCGA7 selected 16 features, while GA selected 35 fea-

tures, which depicted the efficiency of BCGA7 over the

raw GA. For ECG data, BCGA6 had a fitness value of

1.188, while GA had 1.127 fitness score, and BCGA6

selected 3, while GA selected 2 features. For EEG data,

BCGA7 had 1.150 fitness value, while GA had a value of

1.092. The BCGA7 selected 11, while GA selected 14

features. For GSR data, BCGA1 gave 1.145 fitness value,

while GA had a value of 1.139. The BCGA1 selected 2,

while GA selected 3 features. For ECG ? GSR data,

BCGA7 fitness was 1.131, while GA had 1.002 as the fit-

ness value. The BCGA7 selected 3, while GA selected 9

features. For ECG ? EEG data, BCGA7 obtained 1.174 as

Table 7 Performance comparison of proposed BCGA with CCSA [2]

Features CCSA BCGA

Score Time Score Time

All 1.0223 36.766941 1.1557 127.04287

ECG 1.0484 24.186268 1.1876 124.5133

GSR 1.0484 27.996435 1.1445 124.673728

EEG 1.079 24.422253 1.1496 131.467387

ECG ? GSR 1.0353 24.521543 1.1308 123.710654

EEG ? GSR 1.0677 24.703019 1.1076 126.747508

EEG ? ECG 1.0698 25.027313 1.1735 123.696552

Table 8 Results achieved by

other optimization methods [30]
Method No. of iterations Time (s) Accuracy Fitness score Avg. fitness score

GA 15 991.42039 29.42 0.683 0.6784

25 298.902322 28.01 0.6839

45 520.532768 28.01 0.6789

100 1172.74298 28.06 0.6679

PSO 15 1717.50948 28.17 0.8939 0.8971

25 3078.92019 28.01 0.8923

45 5568.09036 27.86 0.8908

100 14252.6113 29.91 0.9113

ACO 15 994.622346 29.01 0.9011 0.9067

25 1723.76188 29.13 0.9035

45 2889.45185 30.20 0.9142

100 6371.96398 29.60 0.9082

SA 15 417.679116 29.13 0.9035 0.9017

25 677.23834 28.48 0.897

45 1277.92451 28.95 0.9017

100 5251.96398 29.26 0.9049

DE 15 72.541351 28.79 0.9002 0.8925

25 120.773407 28.50 0.8973

45 216.571631 27.86 0.8908

100 482.449023 26.95 0.8817

Neural Computing and Applications

123



the fitness value, whereas GA obtained 1.086 fitness while

selecting 12 and 24 features, respectively. In case of

GSR ? EEG, the fitness value obtained by GA was 1.024,

while from BCGA7, it was 1.108, whereas the number of

selected features by GA was 22 and BCGA7 selected 20

attributes. BCGA9 performed the worst for all data

(EEG ? ECG ? GSR), ECG data, EEG data, GSR data,

ECG ? GSR data, ECG ? EEG data, and GSR ? EEG

data by giving poor fitness values. Figure 4 visually shows

the average fitness values achieved by the 10 variants of the

proposed approach and the raw GA for the seven basic

classes of emotions.

Results obtained by AMIGOS for four-dimensional

categorization of emotions were also computed. It was

observed from the results that for all kinds of data, BCGA7

gave best fitness value of 1.130, while GA obtained 0.965

fitness value with a P-value of 0.002. BCGA7 selected 18

features, while GA selected 30 features, which depicted the

efficiency of BCGA7 over GA. For ECG data, BCGA10

attained a fitness of 1.120, while GA obtained 1.061 score.

Both BCGA10 and GA selected 2 features. For EEG data,

BCGA7 gives 1.112 fitness value, while GA obtained a

fitness of 0.998. The BCGA7 selected 10 features, whereas

the GA selected 18 features. For GSR data, BCGA8

achieved a fitness of 1.054 and the raw GA attained 0.817

fitness. The BCGA8 and GA attained these values while

selecting 2 and 3 features, respectively. For ECG ? GSR

data, BCGA7 gave 1.065 fitness, while GA had 0.771 fit-

ness. The BCGA7 and GA selected 4 and 11 features,

respectively. For ECG ? EEG data, BCGA7 attained

1.113 fitness while selecting 14 features only and the GA

gave a fitness value of 0.952 with 27 features selected. In

case of GSR ? EEG, the fitness value obtained by GA was

1.103 with 30 features, while for the BCGA7, it was 0.961.

The BCGA9 performed the worst for four-dimensional

categories by yielding poor fitness values. Figure 5 shows

the performance comparison of BCGA and CCSA.

In case of lung cancer data, the results obtained by the

proposed algorithm suggest that BCGA7 gave best fitness

value of 1.449, while GA had a fitness score of 1.225.

Additionally, the BCGA7 selected 10 attributes and the raw

GA selected 16 features. The BCGA9 performed the worst

by obtaining 0.578 fitness value. In case of Parkinson’

disease data, the results showed that BCGA7 attained a

fitness of 1.393, while the raw GA had 1.186 as the fitness

value. The BCGA7 selected 185 features, whereas the raw

GA selected 312 features. Based on this, it can be con-

cluded from the results that BCGA7 performs better among

Table 9 Results obtained using BCGA on healthcare data

Dataset Method Worst Best Mean SD P-value Total features Selected features Time (s)

Lung cancer GA 0.877 1.225 1.048 0.098 – 54 16 139.554

BCGA1 0.871 1.198 1.065 0.088 0.513 54 20 141.005

BCGA2 0.923 1.268 1.094 0.091 0.297 54 22 144.501

BCGA3 0.983 1.310 1.127 0.096 1.000 54 17 140.082

BCGA4 0.831 1.265 1.074 0.104 0.607 54 20 146.089

BCGA5 0.786 1.104 0.968 0.091 0.144 54 24 140.284

BCGA6 0.998 1.359 1.172 0.075 0.808 54 16 97.020

BCGA7 1.043 1.449 1.272 0.079 0.090 54 10 136.842

BCGA8 0.847 1.335 1.097 0.110 0.314 54 22 141.900

BCGA9 0.578 0.999 0.770 0.098 0.000 54 39 147.216

BCGA10 0.801 1.165 0.962 0.090 0.336 54 22 153.124

Parkinson’s disease GA 1.118 1.186 1.154 0.016 – 754 312 238.037

BCGA1 1.104 1.163 1.137 0.014 0.015 754 354 247.362

BCGA2 1.066 1.118 1.092 0.014 0.000 754 387 272.248

BCGA3 1.138 1.179 1.160 0.013 0.103 754 339 251.588

BCGA4 1.162 1.200 1.181 0.011 1.000 754 308 238.273

BCGA5 1.107 1.254 1.193 0.041 0.055 754 345 247.086

BCGA6 1.223 1.327 1.275 0.029 0.000 754 234 184.881

BCGA7 1.333 1.393 1.369 0.015 0.000 754 185 167.011

BCGA8 1.138 1.201 1.171 0.016 0.639 754 317 307.956

BCGA9 0.864 0.919 0.887 0.012 0.000 754 574 653.906

BCGA10 1.111 1.186 1.144 0.019 0.237 754 330 403.536
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the other given approaches. Other than the novelty and

multiple strengths of the proposed work, there are a few

limitations of this work as well. A limitation of the pro-

posed work is that it may require a couple of additional

computations in comparison with the raw GA. However,

these are at the cost of producing better results.

7 Conclusion and future directions

This work presented a novel chaotic genetic algorithm with

binary fitness evaluation criteria named as binary chaotic

genetic algorithm (BCGA). Ten different chaotic maps

were used to increase the performance of the traditional

genetic algorithm addressing its computational time and

number of selected features for a classification problem.

Chaotic maps were selected based on their application in

the scenarios under consideration. To evaluate and analyze

the results, worst value, best value, mean, and standard

deviation of the fitness values were calculated for 50

generations. The count of 50 generations was selected after

hit and trial and was fixed to this number to compare with

all models on the same number of generations. Wilcoxon

test was applied to calculate the P-value of proposed

algorithm compared with the genetic algorithm. The pro-

posed algorithm was evaluated on the AMIGOS (A Dataset

for Affect, Personality and Mood Research on Individuals

and Groups) benchmark and healthcare datasets. Experi-

ments were performed on AMIGOS data collected against

short videos experiment and labeled with seven basic

emotions rated by participants for arousal and valence

values. Data of three physiological signals, i.e., electroen-

cephalogram, electrocardiogram, and galvanic skin

response, were considered in this work. The proposed work

was also compared with the traditional GA and two state-

of-the-art evolutionary computing-based methods for fea-

ture selection. In the proposed method, i.e., BCGA, chaotic

values were used instead of random number in population

initialization and mutation phase. BCGA was used to select

significant features according to the classification accuracy.

The results obtained suggested better performance of the

proposed solution in comparison with the two state-of-the-

art methods. From the results, it is concluded that the
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BCGA7 variation of the proposed approach performs best

among the ten variants and the BCGA9 variant performs

the worst.

There are several directions for future enhancement in

the present work. In the future, some other discrete chaotic

maps can be used in mutation and population initialization

phases and chaotic maps can be used for different steps of

the raw GA rather than for the two stages utilized here.

Fitness function used in this work can be replaced with a

different version to observe its overall performance.

Parameters such as computational time could be included

in the fitness function to optimize the efficiency trade-off

for large dataset. This work focused on the affective

computing as an application of the proposed method; in the

future, it can be applied and validated in other fields of

computing and engineering. Another future direction of

this work is that new meta-hybrid approaches can also be

considered to address optimization problems, based on the

current work. The experiments and the obtained results

show that the BCGA can become a promising method for

solving multiple real-world problems.
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