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ABSTRACT Electrification of the transportation sector can play a vital role in reshaping smart cities. With
an increasing number of electric vehicles (EVs) on the road, deployment of well-planned and efficient
charging infrastructure is highly desirable. Unlike level 1 and level 2 charging stations, level 3 chargers
are super-fast in charging EVs. However, their installation at every possible site is not techno-economically
justifiable because level 3 chargers may cause violation of critical system parameters due to their high power
consumption. In this paper, we demonstrate an optimized combination of all three types of EV chargers for
efficiently managing the EV load while minimizing installation cost, losses, and distribution transformer
loading. Effects of photovoltaic (PV) generation are also incorporated in the analysis. Due to the uncertain
nature of vehicle users, EV load is modeled as a stochastic process. Particle swarm optimization (PSO) is
used to solve the constrained nonlinear stochastic problem. MATLAB and OpenDSS are used to simulate
the model. The proposed idea is validated on the real distribution system of the National University of
Sciences and Technology (NUST) Pakistan. Results show that an optimized combination of chargers placed
at judicious locations can greatly reduce cost from $3.55 million to $1.99 million, daily losses from 787kWh
to 286kWh and distribution transformer congestion from 58% to 22% when compared to scenario of
optimized placement of level 3 chargers for 20% penetration level in commercial feeders. In residential
feeder, these statistics are improved from $2.52 to $0.81 million, from 2167kWh to 398kWh and from 106%
to 14%, respectively. It is also realized that the integration of PV improves voltage profile and reduces
the negative impact of EV load. Our optimization model can work for commercial areas such as offices,
university campuses, and industries as well as residential colonies.

INDEX TERMS Charging stations placement, distribution system, electric vehicles (EVs), optimization.

NOMENCLATURE
SETS
N Set of buses in the system
T Set of time periods
M Set of line sections
O Set of types of chargers
E Set of electric vehicles

INDICES
i Index of bus number
t Index of time period
j Index of line section
l Index of level of charging station
e Index of electric vehicle

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiyi Li .

PARAMETERS
Pj,loss Power loss of jth line section
C Charging power of a charger
SOCinit Initial state of charge of a battery
c Cost of a charger
cp,l Per unit electrical energy cost
Sj,max Maximum transfer capacity of line section j
ηch Charging efficiency of EV
dmax Maximum range when EV is fully charged

VARIABLES
n Number of charging station
Vi,t Voltage magnitude of bus i at time interval t
Sj,t Power flow through line section j at time

interval t
disttrav,e Travelled distance by electric vehicle e
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I. INTRODUCTION
Economic and environmental problems of fossil fuel trans-
portation havemotivated the electrification of vehicles world-
wide. The market share of electric vehicles (EV) has already
reached 28.8% in Norway, 6.4% in the Netherlands and
1.4% in China, whereas many countries have set targets to
reach 100% EV penetration in the foreseeable future [1].
By 2022, the number of EVs is expected to surpass 35 million
globally [2]. The growing EV industry implies a potential of
zero-emissions when powered by renewable energy. In fact,
it is necessary to power these EVs by renewable energy as
much as possible because these high charging loads will have
adverse effects on the environment if powered by fossil fuel
power plants [3].

In context of above mentioned framework, need of opti-
mal planning for EV charging stations has been significantly
increased. It is important to analyze the impacts of EV on
power system as EV integration increases the demand of
system. For a typical distribution system, 10% penetration of
EVs has proved to increase peak load by 17.9% while 20%
penetration increases peak load by 35.8% [4]. The impact
of plug-in hybrid EVs on grid load is studied and analyzed
in [5] and EV load was measured and used in this study.
Higher peak load caused by EV increases power losses and
voltage deviations. It can also cause thermal limit violations
of transformers and lines [8], [9]. A solution is proposed
in [8] to lower distribution system losses by coordinated
charging scheme. Calculations are based on an assumed EV
load model. In [9], coordinated charging is proved to achieve
a smooth voltage profile while also reducing power losses.
It is also proved to avoid the overloading of the distribution
system in [10]. When vehicles are charged in a coordinated
manner, peak load can be managed to remain within allow-
able limits. However, the uncertain behavior of the vehicle
owner can make it difficult to implement coordinated charg-
ing. To overcome these problems, optimal placement and
sizing of charging station were proposed in [11] where a
probability distribution was used to model EV load and a
heuristic algorithm was employed to solve the siting and
sizing problem.

Optimal planning of EV charging stations has been done
with different approaches and objectives. The usage of EVs
as a spinning reserve to supply peak load and enhance system
performance can contribute to optimal planning of charg-
ing stations. Therefore, EVs can help us in achieving better
economics and critical parameter improvement such as loss
reduction and voltage deviation minimization [12]. Particle
swarm optimization is used in [13] to solve location problem
of charging stations. CO2 emission has been incorporated by
authors in [14] for planning of EV charging stations. Profit
maximization of a parking lot owner is achieved in [15] by
optimizing interaction among parking lots using K-means
clustering technique. Moreover, minimization of power loss
and voltage deviation as well as maximization of network
reliability is achieved by optimally allocating parking lots
with charging stations. An interesting approach in [16] is

to mitigate negative effects of high photovoltaic penetration
and charging stations by optimal siting and sizing of both.
Similarly, the ability of solar photovoltaic generation to
improve voltage profile has been used to reduce negative
impacts of EV parking in [17].

A well-planned charging infrastructure is therefore
required to facilitate users in order to increase penetration
of EVs. The three types of chargers used to recharge EVs are
given in Table 1. Level 1 chargers are low power chargers and
are usually used in residential areas. To reduce charging time,
level 2 chargers are preferable than level 1 chargers. However,
level 2 chargers require protection upgrade if used inside
a residential house [18]. For use at the commercial-level,
level 3 chargers are designed that can fully charge an EV
battery within one hour. Because of their reduced charging
time, these fast-charging stations are getting more attention.
Nevertheless, their cost is very high and if proper planning
is neglected, then they can overload the electrical power
system [1]. In [19], fast-charging station planning is done
considering cost and traffic in a distribution network. Nash
bargaining theory is used to optimize the profit of operators
by optimally placing and sizing fast-charging stations in [20].
A comprehensive plan for optimally locating and sizing
fast-charging stations on urban roads is presented in [21].
It includes EV and power grid loss in planning and identifies
them as important factors for determining siting and sizing of
charging stations.

TABLE 1. Charger types [5].

Nevertheless, none of the reviewed papers has considered
optimizing and analyzing the benefits of using more than one
type of charging station. Significant effect of level 3 charg-
ers on increased system losses and loading of distribution
transformers is also not studied in detail in reviewed papers.
In addition, the benefit of photovoltaic (PV) generation in
maintaining voltage of the distribution system in the presence
of charging stations is not fully explored.

In this paper, placement and number of all three different
types of charging stations are optimized and analyzed in an
active distribution system. Extensive planning is done to sat-
isfactorily charge EVs while minimizing the installation cost
of charging stations and system losses. Capital costs of level 1
and level 2 chargers are less than the cost of level 3 chargers.
However, level 1 and level 2 chargers take a longer time to
charge EVs. An optimized mix of these types of chargers
can meet EV load with reduced installation costs. To the
best of the authors’ knowledge, this aspect has not attracted
sufficient attention in the past. In addition, the impact of
level 3 chargers on system losses and transformer utilization
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is presented in detail. The effect of PV on the voltage profile
of the distribution system in the presence of a charging load
is also studied. A stochastic model is developed to estimate
hourly EV load from arrival time, departure time and distance
traveled. In contrast to many other studies that use a general
probability distribution model, input data of this model is
gathered by a survey in the test case system to include the real
behavior of vehicle owners. Simulations are done considering
dynamic generation and load unlike many studies that assume
only static generation and load. This paper presents a more
realistic and comprehensive planning for the integration of
EV charging stations in an active distribution system keeping
in view electrical and geographic constraints.

The remaining part of the paper is organized as follows.
Methodology is explained in section II, results are presented
in section III and research is concluded in section IV.

II. METHODOLOGY
Methodology is elaborated by introducing stochastic EV load
modeling in subsectionA, PV generationmodeling in subsec-
tion B, overall formulation of stochastic non-linear problem
by PSO using MATLAB in subsection C and modeling of
distribution system for power flow analysis using OpenDSS
in subsection D.

A. EVs LOAD MODELING
Most of the power systems in developing countries lack EV
load data. It is really important to model this load for the
planning of EV integration. EV load depends on number
of EVs, arrival and departure times at particular stations,
charging characteristics, and traveling distance. These are
probabilistic variables which can be used to estimate EV
load [16]. A survey is conducted with a 300 sample size to
gather information about behavior of vehicle owner. Ques-
tions were asked about their daily routine including arrival
time, departure time and traveled distance. MATLAB was
used to find the best fitting probabilistic distribution for this
survey data. The resulting probability distribution functions
and selected parameters are listed in Table 2. Two probability
distributions are used to represent the arrival and departure of
vehicles in the commercial feeder to incorporate morning and
evening shifts. The EV load estimation approach is depicted
in Figure 1.

The arrival time of EVs determines the starting time of
charging. From the probabilistic distribution, the number of
EVs arriving every hour can be inferred. Traveled distance
indicates an initial state of charge of EV’s batteries. This vari-
able directly affects the amount of energy required to charge
EV. Initial state of charge (SOCinit) is related to traveled
distance as [22]:

SOCinit,e = 1−
(
disttrav,e
dmax

)
∀e ∈ E (1)

where disttrav,e is the traveled distance by vehicle and dmax is
the range of particular EV, i.e. maximum distance it can cover
when fully charged.

TABLE 2. Vehicle user data and fitted probability distribution parameters.

FIGURE 1. EV load estimation.

Arrival and departure times of vehicles determine available
time to charge EVs. Most of the users would like to fully
charge their vehicles in minimum time. However, this is
limited by technical and economic constraints. The time of
charging varies according to the charging level being used to
charge a vehicle.

B. PHOTOVOLTAIC (PV) GENERATION INTEGRATION
Planned and installed PV at different nodes of the distribution
system are also considered. PV in the distribution system
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is proved to reduce system losses and to improve voltage
profile. Real insolation and temperature data obtained from
high precision measurement system [23], installed at the
same location as case study system, is used to estimate PV
generation. It can be related as:

PPV = 0.995× η × A× I × (Tm − TRef) (2)

where
η = Panels efficiency
A = Area of panel (m2)
I = Irradiance (kW/m2)
Tm =Measured temperature in degree Celsius
TRef = 25◦C
Per kW solar panels’ generation is based on real data and

is presented in Figure 2.

FIGURE 2. Per kW solar panels generation.

C. PROBLEM FORMULATION
To optimally locate different numbers of level 1, level 2,
and level 3 chargers while reducing installation cost and
cost of power losses in the distribution system, the following
objective function is devised:

f = min
n1,i,n2,i,n3,i

 N∑
i=1


(
n1,ic1 + n2,ic2 + n3,ic3

)
+
(
Sgn(n1,i)||

(
Sgn(n2,i)

)
||
(
Sgn(n3,i)

))
cp,i


+ cp.l

T∑
t=1

M∑
j=1

Pj,loss

 (3)

where optimization variables n1,i, n2,i and n3,i are number of
level 1, level 2 and level 3 chargers respectively at node i, N is
the total number of nodes in the systemwhile c1, c2 and c3 are
total cost coefficients (hardware cost + installation cost) as
given in [24]. Sgn is signum function, || is or operator and cp,i
is the parking availability coefficient to include geographic
constraint. Its value is 0 when parking is available at an
electrical node and a penalty cost when there is no parking
available at the node. The cost of power loss per kWh is cp,l
and its value is $0.092/kWh [25] while M represents total
number of lines in the distribution system. T is the total num-
ber of hours for which the system is simulated. Time step of
optimization is 1 hour. The first part of the objective function
calculates the total cost of installation of different types of
chargers and includes parking availability cost. The second

part calculates losses of all elements for the total time of the
simulation. Losses are calculated by the difference of power
in and out of each element. As the number and location of
different types of chargers are changed, the current through
and the voltage across an element can change resulting in
a different value of loss. This provides one of the criteria
on which optimizer finalizes its solution containing location,
number and type of chargers.

The above-mentioned objective function is subjected to the
following constraints:

Vmin ≤ Vi,t ≤ Vmax ∀i ∈ N , ∀t ∈ T (4)

The maximum and minimum voltage limit constraint ensures
voltage lies within permissible limits (±10%) [9]. Any com-
bination of charging stations resulting in voltage violating this
range is rejected by the optimizer.

Sj,t ≤ Sj,max ∀j ∈ M , ∀t ∈ T (5)

The thermal limit constraint makes sure that line flows are
not exceeding allowable thermal limits of conductors. High
penetration of EV load may increase line flows which might
otherwise violate thermal limits of conductors.

0 < n1,iC1 + n2,iC2 + n3,iC3 ≤ Cmax
1,i + C

max
2,i

+Cmax
3,i ∀ i ∈ N (6)

Limited charging capacity constraint ensures that the charg-
ing capacity of all levels of charger at a node should be less
than aggregated maximum capacity. Besides this, it makes
sure energy is being transferred to vehicles only as vehicle to
grid (V2G) option is not considered in this paper. Maximum
capacity refers to maximum power a specific type of charger
can provide as presented in Table 1.

n1,i + n2,i + n2,i ≤ nmax,i ∀i ∈ N (7)

The limited charger number constraint ensures that total num-
ber of chargers at a node is less than the pre-determined
feasible charging slots available for EV in a given location.

0 ≤ nl,i ≤ 3 ∀l ∈ O, ∀i ∈ N (8)

Constraint 8 is based on the physical limits of allowable
parking slots in any location (assumed to be 3 in this study).
This may vary according to available parking slots for EVs in
any location.

nl,i ∈ I ∀l ∈ O, ∀i ∈ N (9)

Constraint 9 ensures that number of chargers of level 1,
level 2, and level 3 can only be integer numbers.

6 (ηchCe)1tch + SOCinit ≥ SOCmax ∀e ∈ E (10)

ηch is charging efficiency (92%) [26], Cev is EV charging
power which is determined by the type of charger, SOCinit
is the initial state of charge which can be in the range
of 0-1 and 1tch is available time of charging. This constraint
caters to customer satisfaction by ensuring that EV gets
charged to above 80% level within the available time.
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As the objective function uses power flow to calcu-
late losses, it becomes a nonlinear function. Moreover,
constraints involve an initial state of charge SOCinit and avail-
able time (1t) variables which are modeled as probabilistic
as explained in section A. For this nonlinear and stochas-
tic problem, heuristic techniques are well suited. In this
paper, a well-known heuristic technique particle swarm opti-
mization (PSO) is used. PSO was originally developed by
Kennedy and Eberhart in 1995 [24]. It is a metaheuristic and
population-based technique that simulates the social behavior
of a flock of birds. It starts its search by randomly generating
candidate solutions in a large search space and narrows down
to the best solution by iteratively updating its candidate
solutions. This improvement in candidate solutions is guided
by the quality of solutions in each iteration.

D. MODELING OF TEST SYSTEM IN OpenDSS
The distribution system is usually a radial or weak meshed
network having high R/X ratio [27]. Further, the presence
of an unbalanced load makes its behavior different from
the transmission network. As such, conventional power flow
techniques, such as Gauss-Seidel and Newton Raphson,
become slow or may even diverge [27], [28]. For this reason,
many authors prefer techniques based on the application of
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law
(KVL) for load flow in the distribution system. These include
Forward/Backward sweep method and its variants [29], [30]
and some novel techniques as presented in [27], [28], [31].
In this paper, a test case system is modeled in OpenDSS
environment. OpenDSS is developed to simulate active dis-
tribution systems and uses a normal circuit solution technique
which can be written as a fixed-point iterative method:

Vn+1 =
[
Ysystem

]′ IPCVn where n = 0, 1, 2, 3. . . . . (11)

All elements except loads are represented by their primitive
nodal admittance matrix. Loads are modeled by Norton
equivalent which includes constant and linear Norton admit-
tance. This technique builds system primitive admittance
matrix (Ysystem) and starts the process by a random system
voltage vector Vo to calculate compensation currents from
each power conversion element in the circuit to populate IPC
vector. The new Vn+1 is computed using the above equation.
This is an iterative process and repeated until a convergence
criterion is met [32]. Optimizer code based on PSO is devel-
oped in MATLAB and a MATLAB-OpenDSS interface is
created. Based on EV charging placement of a particular
number and type of chargers at different nodes, electrical
loads of nodes are changed, and this data is sent from
MATLAB to OpenDSS. Power flow of distribution system is
done in OpenDSS and results are imported back in MATLAB
to be processed by the optimizer. This process is repeated
iteratively until the optimizer reaches to a converged solution.
PSO is a heuristic technique and can get stuck in local optima.
To overcome this problem, PSO is run multiple times and
the results are analyzed statistically. Although, computational
burden increases with an increase in the number of PSO runs,

chances to hit global optima also increase. The optimization
algorithm is illustrated by a flow chart in Figure 3.

FIGURE 3. Flow chart of the optimization algorithm.

III. RESULTS
In order to validate the proposed idea, it is simulated on
the real distribution network of the National University of
Sciences and Technology (NUST), Islamabad, Pakistan. It is
an 11/0.4kV radial distribution system where LV side of
network is considered for placement of EV charging stations.
It has three distribution feeders which have many laterals as
shown in Figure 4. Feeders 1 and 2 are commercial whereas
feeder 3 is residential. Loads are modeled as unbalanced
while PV generation is also taken into consideration. The EV
selected for simulation is Nissan Altra with Li-ion battery
of capacity 29.07 kWh. When fully charged, its maximum
range is around 80 miles [4]. Characteristics of this battery
are similar to typical EVs which use Li-ion battery.

Table 3 and Table 4 show the type, location and number of
chargers selected by the optimizer for different penetration
level of EVs for commercial and residential feeders, respec-
tively. Moreover, the tables give the minimum cost of the
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FIGURE 4. Single line diagram of simulated distribution system.

TABLE 3. Simulation results for commercial distribution feeders.

stated objective function. It is clearly depicted in Table 3
and Table 4 that level 1 and level 2 chargers are insufficient
to satisfy EV load at 5% penetration level. To charge EVs

using level 1 and level 2 chargers, the number of chargers
needed is approximately equal to the number of vehicles to
be charged daily. This is due to the fact that these low power
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TABLE 4. Simulation results for residential feeder.

chargers need 6-12 hours to charge an EV and once a vehicle
is plugged in, it may remain connected for most of the time
it is in the parking lot. Therefore, a large number of chargers
are needed to satisfy all EV in limited time available in the
commercial and residential feeder for level 1 and level 2
chargers. It can be a challenge to deploy such a huge number
of level 1 and level 2 chargers in parking lots. This challenge
can be responded by deploying level 3 chargers. As shown in
the table, a lesser number of level 3 chargers can fully satisfy
vehicle load. However, there are certain negative impacts
of level 3 chargers on system parameters. System losses
increase significantly due to high power level 3 chargers.
Moreover, maximum transformation utilization increases by
a large percentage as compared to level 1 and level 2 chargers.
This reduces the spare capacity of system transformers which
may lead to the replacement of existing transformers with
larger capacity transformers. Regarding the type of feeder,
level 3 chargers are proved more uneconomical and techni-
cally infeasible for residential feeders than commercial feed-
ers. This is because residential feeders are low power feeders
and level 3 chargers can increase its losses significantly and
may overload certain transformers. Comparing the proposed
solution of using all types of chargers instead of a single-type
of charger, it is proved that the former satisfies EV load with
minimum cost.

In addition, the losses are around 37% (45%) less than
level 3 chargers in commercial (residential) feeder for 5%
penetration level of EV, as shown in Figure 7. With an
increase of penetration level of EV to 10% (20%), losses for
proposed solutions are 54% (63%) less than system losses for

FIGURE 5. Daily system losses for level 3 chargers and proposed solution.

optimized level 3 chargers for commercial feeders. In case of
residential feeder, the proposed solutions offer 61% (82%)
less losses than level 3 chargers for 10% (20%) penetration.
In case of commercial feeders, maximum transformer utiliza-
tion is 22% for proposed solution as compared to 58% for
level 3 chargers for all 3 penetration levels that were studied.
In residential feeder, maximum transformer utilization for
5%, 10%, and 20% penetration levels is 34%, 60%, and 106%
for level 3 chargers as compared to 11%, 13%, and 14% for
proposed solution, as presented in Figure 6. These statistics
clearly show that the significance of the proposed solution
increases as penetration level of EV increases in the system.

Constant maximum transformer utilization for commercial
feeders is due to the fact that chargers are distributed across
feeders rather than increasing the number of chargers at
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FIGURE 6. Maximum transformer utilization for level 3 chargers and
proposed solution.

FIGURE 7. Cost of installation of charging stations for level 3 chargers
and proposed solution.

particular nodes. However, this cannot be done in every sce-
nario especially when limited parking is available or pene-
tration increases to such an extent that number of chargers
have to be increased at most of the system nodes to satisfy EV
load. Figure 7 shows the importance of the proposed solution
in terms of cost. A solution involving the use of only level 3
chargers is costly while the proposed solution can meet the
requirement in less cost for both commercial and residential
feeders.

A. IMPACT OF PHOTOVOLTAIC (PV) GENERATION ON
VOLTAGE PROFILE
Figure 8 and Figure 9 show the impact of PV on voltage
profile of different nodes at 5% penetration level. 200kW PV
is located at node 19 of feeder 1 whereas 1MWPV is installed
at node 24 of feeder 2. Moreover, node 20 and 41 are end
nodes of commercial feeder 1 and 2, respectively. The graphs
clearly show the importance of PV generation in improving
the voltage profile. At peak load, improvement in voltage at
node 20 is 0.001 per unit while it is 0.005 per unit at node 24
regardless of more charging stations (CS) near node 24. This
is because of the size difference of the PVs in both feeders.
Note that 1MW PV capacity at node 24 is 5 times larger than
the 200kW PV installation at node 19 which is right next to
node 20. Node 41 is the far end of commercial feeder 2 and
voltage drops much lower to 0.93 per unit without PV. Since

FIGURE 8. Daily voltage profile of commercial feeder (a) Daily voltage
profile of commercial feeder node 20 (b) Daily voltage profile of
commercial feeder node 41.

FIGURE 9. Daily voltage profile of commercial feeder node 24.

the charging load may drop the voltage below the acceptable
level, PV generation can be crucial in improving the voltage
profile of system.

B. IMPACT OF PENETRATION LEVEL OF LEVEL 3
CHARGERS AND PROPOSED SOLUTION ON
VOLTAGE PROFILE
Figure 10 and Figure 11 show the significance of the proposed
solution for voltage under different penetration levels of EVs
in the commercial and residential feeders. An increase in
penetration level causes more charging load and therefore
decreases voltage. Especially, deployment of level 3 chargers
causes a significant decrease in voltage for different penetra-
tion levels. The proposed solution is helpful in maintaining
the voltage profile even for the increased penetration level of
EVs. Differences in voltage dips for 24 hours can be seen in
graphs for the commercial and residential feeder. Residential
feeder experiences EV charging load during night whereas
EVs usually remain plugged in during daytime in commercial
feeders. Voltage in commercial feeder drops to less than
0.92 per unit for a 20% penetration level while the proposed
solution maintains it above 0.94 per unit for all penetration
levels. In residential feeder, the proposed solution maintains
voltage at 0.99 per unit while suffering a voltage drop to less
than 0.975 per unit at peak times for a 20% penetration level.
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FIGURE 10. Daily voltage profile of residential feeder node 58 for level 3
chargers and proposed solution.

FIGURE 11. Daily voltage profile of commercial feeder node 41 for level 3
chargers and proposed solution.

A higher voltage drop in the commercial feeder is because
of higher and concurrent building loads and EV charging.
In residential feeder, most of the household load is off at
late night and only vehicles are plugged in for charging. The
demand of the residential colony is also smaller than the rest
of the university campus that makes up the commercial area.
Therefore, voltage drop in the residential feeder is less in
comparison to the commercial feeder.

IV. CONCLUSION
In this paper, a novel strategy was presented for optimal
sizing and siting of different types of EV charging stations
in the active distribution system of commercial and resi-
dential buildings including offices and homes. In addition,
the uncertain behavior of the vehicle owner was modeled
using probabilistic distributions fitted on real data and geo-
graphic constraints of parking were taken into consideration.
PSOwas used to solve the resulting stochastic nonlinear prob-
lem. The results have demonstrated that proposed optimized
solution reduced the cost of EV charging infrastructure by
75% and distribution system losses by 82% as compared
to level 3 charging station, whereas the optimized solution

enabled higher EV load satisfaction when compared with
level 1 and level 2 charging station scenarios. The proposed
solution also ensured that loading on commercial and residen-
tial transformers was minimum and therefore need to install
new transformers was deferred. Furthermore, analysis of the
impact of PV on the voltage profile revealed that distributed
PV generation can support voltage profile despite EV charg-
ing stations in commercial feeders of the distribution system.
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