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a b s t r a c t 

Recent advances in artificial intelligence and wireless communication technologies have 

created great potential to reduce congestion in urban networks. In this research, we de- 

velop a stochastic analytical model for optimal control of communicant autonomous ve- 

hicles (CAVs) at smart intersections. We present the automated network fundamental dia- 

gram (ANFD) as a macro-level modeling tool for urban networks with smart intersections. 

In the proposed cooperative control strategy, we make use of the headway between the 

CAV platoons in each direction for consecutive passage of the platoons in the crossing di- 

rection through non-signalized intersections with no delay. For this to happen, the arrival 

and departure of platoons in crossing directions need to be synchronized. To improve sys- 

tem robustness (synchronization success probability), we allow a marginal gap between 

arrival and departure of the consecutive platoons in crossing directions to make up for op- 

erational error in the synchronization process. We then develop a stochastic traffic model 

for the smart intersections. Our results show that the effects of increasing the platoon size 

and the marginal gap length on the network capacity are not always positive. In fact, the 

capacity can be maximized by optimizing these cooperative control variables. We analyt- 

ically solve the traffic optimization problem for the platoon size and marginal gap length 

and derive a closed-form solution for a normal distribution of the operational error. The 

performance of the network with smart intersections is presented by a stochastic ANFD, 

derived analytically and verified numerically using the results of a simulation model. The 

simulation results show that optimizing the control variables increases the capacity by 

138% when the error standard deviation is 0.1 s. 

© 2019 Published by Elsevier Ltd. 

 

 

 

 

1. Introduction 

Autonomous vehicles are expected to be introduced to the consumer market in the near future. The artificial intelligence

and wireless communication technologies embedded in these vehicles make “driving” more convenient and roads safer

( Zhang and Ioannou, 2004 ; Van Arem et al., 2006 ; Fernandes and Nunes, 2011 , 2012 ; Aria et al., 2016 ; Shabanpour et al.,

2018 ). Improvement in the traffic condition, however, would be trivial in urban networks without upgrading conventional
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traffic control systems ( Mahmassani, 2016 ). In this research, we propose a cooperative traffic control strategy for smart

intersections to reduce congestion in urban networks. 

The concept of self-driving vehicles was introduced in the 1930s. However, only recent advances in computation, com-

munication, and automation technologies have made it feasible to realize the dream of autonomous vehicles. Currently,

major car manufacturers, along with high technology companies, are making prototypes to be introduced by 2025 ( Shi and

Prevedouros, 2016 ; Kockelman et al., 2017 ). The radar-based autopilot technology of autonomous vehicles enables real-time

monitoring of the environment and automatic independent actions on roads ( Bose and Ioannou, 2003 ; Ni et al., 2010 ; Zohdy

et al., 2015 ; Aria et al., 2016 ; Kockelman et al., 2017 ). In addition to autopilot technology, the capability of communicant au-

tonomous vehicles (CAVs) to exchange information with both predecessors and infrastructure, through vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I) communication technologies, respectively, enables cooperative traffic control in au- 

tomated highways and networks ( Bekiaris-Liberis et al., 2016 ; Shi and Prevedouros, 2016 ; Ghiasi et al., 2017 ; Lioris et al.,

2017 ). 

Cooperative traffic control can substantially increase the throughput of automated highways by safely increasing speed

and decreasing the headway between the CAVs moving in platoons. ( Fernandes and Nunes, 2011 , 2012 ; Lam and Katupitiya,

2013 ; Roncoli et al., 2014 ; Ghiasi et al., 2017 ). Improving highway throughputs, however, increases network inflow as well,

which can worsen the traffic condition in urban regions by overloading the network over the peaks, ultimately causing a

complete gridlock (hypercongestion phenomenon). Hence, the overall performance of the integrated system of highways

and urban networks can be improved by dynamically controlling the speed and size of CAV platoons in highways to keep

network inflow optimized over time ( Amirgholy et al., 2020 ). Overall, the limited capacity of urban networks is the main

barrier to improving the traffic condition, even in interregional highways. In this research, we aim to improve network

capacity by enabling cooperative traffic control at smart urban intersections. 

For automated networks, we coordinate CAV platoons to safely pass through each other at non-signalized intersections

with no interruption. For this to happen, the inter-platoon headway (the time gap between the passage of the rear bumper

of the last vehicle in a platoon and the front bumper of the leader of the next platoon, from a reference point) in each

direction needs to be sufficient for the safe passage of the consecutive platoons in the crossing direction. Thus, the effect

of increasing the size of the platoons on the capacity of the network is not always positive, as opposed to the case in

automated highways. 1 In this research, we maximize network capacity by optimizing platoon size (number of vehicles in

each platoon) as one of the primary cooperative control variables of the system. 

Network capacity largely depends on the precision and speed of sensors, computation processing, vehicle-to-vehicle and

vehicle-to-infrastructure communication technology, and the actuation system. Operational error in coordinating the arrival 

and departure of the platoons at an intersection can cause a failure (interruption) in the synchronization process. For resyn-

chronization, the approaching platoon stops at the intersection upon an early/late arrival and waits for the next upcoming

spacing between the successive platoons (spacing between the rear bumper of the last vehicle in a platoon and the front

bumper of the leader of the next platoon) in the crossing direction to pass through the intersection. In this case, the inter-

platoon headway also needs to be adjusted for the safe passage of the stopped platoon through the intersection. When the

synchronization process fails repeatedly, the capacity significantly drops. Hence, we maximize the network capacity by al-

lowing a marginal gap (extra time gap) of an optimal length between the arrival and departure of the consecutive platoons

in crossing directions. 

In this research, we develop a stochastic analytical model for optimal traffic control at smart intersections. We formulate

synchronization failure probability as a function of marginal gap length for a general statistical distribution of the opera-

tional error. We then derive the intersection capacity by accounting for the probabilistic impacts of synchronization failure.

Our analytical results show that the intersection capacity can be maximized by optimizing the size of platoons and the

length of the marginal gap. We analytically solve the optimal control problem for the platoon size and the marginal gap

length and derive a closed-form solution for a general (bell-shaped) statistical distribution of the operational error. To show

the generality of the analytical derivations, we also reformulate the closed-form solution for a normal distribution of the

operation error. The performance of the network with smart intersections is also presented by the automated network fun-

damental diagram (ANFD). The stochastic ANFD reveals that the performance of the network in the “highly hypercongested”

state can be improved by altering the pattern of the synchronized operation from approach-and-pass to stop-and-pass in

one of the directions. In the end, we verify the analytical results using a double-ring simulation model. The simulation

results show that optimizing the control variables increases the capacity by 138% when the error standard deviation is 0.1 s.

The remainder of the paper is organized as follows: Section 2 develops a stochastic traffic model for the smart intersec-

tions. Section 3 formulates the optimal control problem. Section 4 presents the analytical ANFD. In Section 5 , we evaluate

the analytical model with the results of a simulation model. Lastly, conclusions of the paper are summarized in Section 6 . 

2. Cooperative traffic control in automated networks 

Cooperative traffic control can substantially improve the performance of urban networks. On the link level, it improves

capacity by safely increasing the speed and decreasing the headway between the CAVs moving in platoons. At intersections,
1 In automated highways, the capacity is an increasing function of the platoon size ( Varaiya, 1993 ; Michael et al., 1998 ; Fernandes and Nunes, 2012 , 

2015 ; Chen et al., 2017 ). 

Please cite this article as: M. Amirgholy, M. Nourinejad and H.O. Gao, Optimal traffic control at smart intersections: Auto- 

mated network fundamental diagram, Transportation Research Part B, https://doi.org/10.1016/j.trb.2019.10.001 

https://doi.org/10.1016/j.trb.2019.10.001


M. Amirgholy, M. Nourinejad and H.O. Gao / Transportation Research Part B xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: TRB [m3Gsc; December 14, 2019;23:45 ] 

Fig. 1. Cooperative traffic control in automated networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the delay can be entirely eliminated by coordinating arrival and departure of platoons in crossing directions, as illustrated

in Fig. 1 . 

In the proposed cooperative control strategy, we make use of the spacing between successive platoons in each direction

for the consecutive pass of the platoons in the crossing direction. For this to happen, an approaching platoon should

be synchronized to arrive at the intersection when the departing platoon in the crossing direction has already cleared

the intersection. Meanwhile, the time gap to the arrival of next approaching platoon should also be equal to or larger

than the minimum time required for the safe maneuvering of the platoon through the intersection. The platoon arrival

time to the intersection and the headway between the platoons, however, are both subject to an operational error, which

can cause occasional interruptions in the synchronized (approach-and-pass) operation of the intersection. In this case, the

platoon that arrives at the intersection early (when the departing platoon has not cleared the intersection) or late (when

the time gap to the arrival of next approaching platoon is insufficient for the safe pass of the entire length of the platoon

through the intersection) has to stop at the intersection. The synchronization failure requires some adjustments in the

operation of the intersection for resynchronizing the platoons. In the adjustment operation (stop-and-pass), a late/early

approaching platoon has to stop at the intersection and wait for the next upcoming spacing in the crossing direction to

pass through. For this to happen, the inter-platoon headway in the crossing direction also needs to be adjusted for the

safe passage of the entire length of the platoon (that starts moving from rest with a constant acceleration rate) through

the intersection. The resynchronization adjustments, however, adversely affect the performance of the intersection if

synchronization fails repeatedly. To reduce the failure probability, we allow a marginal gap between arrival and departure

of the consecutive platoons in crossing directions to make up for the operational error. In the following section, we develop

an analytical model for the intersection capacity by accounting for the probabilistic impacts of synchronization failure on

the performance of the intersection. For simplicity of formulation, we consider the case of one-way intersections with no

turning traffic; however, the model can be further generalized by synchronizing the platoons along the multilane roads and

accounting for the passing time of various turning movements and the corresponding probabilities in the formulations. 

2.1. Synchronized operation: approach-and-pass pattern 

Platoon synchronization can entirely eliminate the queue and delay by using the spacing between the CAV platoons

for the consecutive passing of these platoons by each other with no interruption. When synchronization is accurate, an

approaching platoon in direction i ∈ {X, Y} arrives at the intersection when the departing platoon in direction j ∈ {X, Y}, i

� = j , has already cleared the intersection, as illustrated in Fig. 2 a. 

We calculate the platoon passing time through the intersection in direction i , τ S 
i 

, as the required time for the entire

length of a platoon of n i vehicles to clear the intersection of width w i with a constant speed of v i : 

τ S 
i = 

n i l v + ( n i − 1 ) ( δo + δv i ) + w i 

v i 
. (1)

Here, the platoon length is the summation of the average vehicle length, l v , and the intra-platoon spacing, s p . The intra-

platoon spacing is the bumper-to-bumper spacing between the vehicles in a platoon, expressed as a linear function of the
Please cite this article as: M. Amirgholy, M. Nourinejad and H.O. Gao, Optimal traffic control at smart intersections: Auto- 
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Fig. 2. Cooperative traffic control at the smart intersections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

speed with a constant buffer distance, i.e., intra-platoon jam spacing, δo (unit of length), and a fixed incremental rate, δ
(unit of time): s p ( v i ) = δo + δv i . The clearance gap 

2 is also calculated as w i / v i . 

To improve the system robustness (synchronization success probability), we allow a marginal gap between arrival and

departure of the consecutive platoons in crossing directions. By doing so, we reduce the probability of early/late arrivals

at the intersection (synchronization failure probability), as we explain in Section 2.3 . In a synchronized cycle, the arrival

and departure of the consecutive platoons are successfully coordinated and platoons can approach and pass through the

intersection with no interruption. The length of the synchronized cycle (time span required for the pass of one platoon

in each of the directions), T S , is equal to the summation of the platoon passing times through the intersection in crossing

directions, τ S 
X 

and τ S 
Y 

, plus the marginal gap length, G , as shown in Fig. 3: T S = τ S 
X 

+ τ S 
Y 

+ G . 

The lane capacity (number of vehicles that pass through the intersection per lane per unit of time) in direction i , q S 
i 
, is

then calculated as the platoon size in direction i , n i , divided by the length of the synchronized cycle, T S : 

q S i = 

v X v Y 
( n X v Y + n Y v X ) l v + ( ( n Y − 1 ) v X + ( n X − 1 ) v Y ) δo + ( n X + n Y − 2 ) δv X v Y + w X v Y + w Y v X + G v X v Y 

n i , (2) 

Here, indices i and j are substituted with X and Y in the first term of capacity function ( 2 ) since they are interchangeable. We

further simplify the capacity function for the case of symmetric intersections ( n = n X = n Y , v = v X = v Y , w = w X = w Y ) where

the platoon passing times through the intersection become equal in crossing directions, τ S = τ S 
X 

= τ S 
Y 

: 

q S = 

n v 
2 ( n l v + ( n − 1 ) ( δo + δv ) + w ) + G v 

. (3) 

The intersection capacity, in a synchronized cycle, is always a strictly increasing function of the speed and a strictly

decreasing function of the marginal gap length, as the first-order (partial) derivatives of capacity function ( 3 ) with respect

to v and G always have positive and negative values, respectively: 

∂ q S 

∂v 
= 

2 n ( n l v + ( n − 1 ) δo + w ) 

( 2 ( n l v + ( n − 1 ) ( δo + δv ) + w ) + G v ) 2 
> 0 , (4) 

∂ q S 

∂G 

= 

−n v 2 

( 2 ( n l v + ( n − 1 ) ( δo + δv ) + w ) + G v ) 2 
< 0 , (5) 

where 2 n ( nl v + ( n − 1) δo + w ) > 0 and − nv 2 < 0 for ∀ n ≥ 1 and ∀ v , l v > 0. The behavior of capacity function ( 3 ) with

respect to the platoon size is also monotonic; however, its monotonicity depends on the marginal gap length. As graphically

illustrated in Fig. 4 a, the intersection capacity can be a strictly increasing, decreasing, or even a constant function of n under

the following conditions: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂ q S 

∂n 

> 0 , G > G S 
∗

∂ q S 

∂n 

= 0 , G = G 

∗
S 

∂ q S 

∂n 

< 0 , G < G 

∗
S 

, (6) 
2 Clearance gap refers to the extra time it takes a platoon to clear the intersection after the last vehicle of the platoon entered the intersection. By 

definition, the instantaneous throughput of the intersection is zero during the time a platoon is “clearing” the interstation, as graphically shown in the 

flow profiles of Fig. 3 . 
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Fig. 3. Automated traffic flow profiles in crossing directions. 

Fig. 4. The capacity function behavior with respect to the platoon size. 

 

 

where 

∂ q S 

∂n 

= 

( G v − 2 v δ − 2 δo + 2 w ) v 
( 2 ( n l v + ( n − 1 ) ( δo + δv ) + w ) + G v ) 2 

, (7)

and G 

∗
S 

is the solution of the first-order condition equation, ∂ q S / ∂ n = 0: 

G 

∗
S = 

2 ( v δ + δo − w ) 
. (8)
v 
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Note that the cycle length is an increasing function of the platoon size since the inter-platoon headway required for

the safe pass of the consecutive platoons through each other at the intersection also increases with the platoon size. In

a synchronized cycle, the effect of increasing the platoon size on the capacity is positive when G > G 

∗
S 

in which case the

cycle length grows slower than the platoon size ( ∂ q S / ∂ n > 0), negative when G < G 

∗
S 

in which case the cycle length grows

faster than the platoon size ( ∂ q S / ∂ n < 0), and neutral when G = G 

∗
S in which case the cycle length and platoon size grow

proportionally ( ∂ q S / ∂ n = 0). Although the effect of increasing the platoon size on the intersection capacity can be positive,

negative, or neutral in a synchronized cycle, the limit value is fixed and independent of the platoon size and the marginal

gap length in all the cases as the platoon size goes to infinity: 

˜ q S = lim 

n →∞ 

q S = 

v 
2 ( l v + v δ + δo ) 

. (9) 

2.2. Adjustment operation: stop-and-pass pattern 

The operational error of the control system in coordinating the platoons causes a stochasticity in their platoon arrival

times at the intersection. This error, if large enough, can cause an interruption in the synchronized (approach-and-pass)

operation of the intersection (synchronization failure) when a platoon arrives at the intersection at the point in time that:

(i) the departing platoon in the crossing direction has not cleared the intersection yet (early arrival), or (ii) the time gap

to the arrival of the next approaching platoon in the crossing direction is insufficient for the safe passage of the platoon

through the intersection (late arrival). Note that the concept of the earliness/lateness is by definition relative in the crossing

directions; an early arrival in one direction can be also seen as a late departure in the crossing direction and vice versa. So,

we choose a primary direction, X, as the reference, and define earliness/lateness in the secondary direction, Y. For resyn-

chronization, the approaching platoon in direction Y stops at the intersection upon an early/late arrival, as illustrated in

Fig. 2 b. The stopped platoon then passes through the next upcoming spacing between the successive platoons in direction X

with the maximum allowable acceleration rate, 3 a v . For this to happen, the inter-platoon headway in direction X also needs

to be adjusted for the safe passage of the entire length of a platoon of n Y vehicles in direction Y through the intersection of

width w Y , as described by the following equation of motion with constant acceleration from kinematics: 

n Y l v + ( n Y − 1 ) 
(
δo + δv̄ p 

(
τ A 

Y 

))
+ w Y = 

1 

2 

a v 
(
τ A 

Y 

)2 
. (10) 

Note that the length of the passing platoon in direction Y continuously increases over time as the intra-platoon spacing

increases with the rise in speed during the acceleration maneuver through the intersection. Here, the intra-platoon spacing

is a linear function of the instantaneous speed, and the speed also increases linearly over time. Therefore, the platoon

passing time through the intersection in secondary direction Y, τ A 
Y , can be equivalently derived for the average passing

speed of the platoon, v̄ p ( τ A 
Y 
) = a v τ A 

Y 
/ 2 , by solving motion Eq. (10) : 

τ A 
Y = 

a v δ( n Y − 1 ) + c 1 ( n Y ) 

2 a v 
, (11) 

with 

c 1 ( n Y ) = 

√ 

( a v δ( n Y − 1 ) ) 
2 + 8 a v ( n Y l v + δo ( n Y − 1 ) + w Y ) , (12) 

where the term under the square root is positive for ∀ n Y ≥ 1. The platoon passing time through the intersection in pri-

mary direction X, however, remains unchanged from the synchronized cycle, τ A 
X 

= τ S 
X 

, and can be derived using ( 1 ). In an

adjustment cycle, we recalculate the passing time through the intersection in secondary direction Y for the case when a pla-

toon has stopped at the intersection upon an early/late arrival. The length of the adjustment cycle (time span required for

the passage of one platoon in each of the directions), T A , is equal to the summation of the platoon passing times through

the intersection in crossing directions, τ S 
X 

and τ A 
Y 

, plus the marginal gap length, G , as shown in Fig. 3: T A = τ S 
X 

+ τ A 
Y 

+ G .

The adjusted lane capacity in each direction i ∈ {X, Y}, q A 
i 

, is then derived as the size of the platoon (passes through the

intersection per cycle) in direction i , n i , divided by the length of the adjustment cycle, T A : 

q A i = 

2 v X a v 
v X c 1 ( n Y ) + c 2 ( n X , n Y ) + 2 v X a v G 

n i , (13) 

where 

c 2 ( n X , n Y ) = a v ( 2 n X l v + 2 ( n X − 1 ) δo + ( 2 n X + n Y − 3 ) δv X + 2 w X ) . (14) 

In a symmetric intersection, capacity function ( 13 ) is simplified as: 

q A = 

2 n v a v 
v C 1 ( n ) + C 2 ( n ) + 2 v a v G 

, (15) 
3 Maximum acceleration rate that is tolerable and safe for the passengers (see remarks of Li et al. (2014) and Le Vine et al. (2015) ). 
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where C 1 ( n ) and C 2 ( n ) are the symmetric versions of c 1 ( n Y ) and c 2 ( n X , n Y ) in which n i , v i , and w i are replaced by n , v , and

w , respectively. Note that the adjustment operation causes a decline in the capacity of the intersection ( q A ≤ q S ) since the

cycle length increases in the adjustment cycles since τ A ≥ τ S . 4 

Similar to a synchronized cycle, the intersection capacity in an adjustment cycle is also a strictly increasing and decreas-

ing function of the speed and the marginal gap length, respectively: 

∂ q A 

∂v 
= 

4 a 2 v n ( n l v + δo ( n − 1 ) + w ) 

( v C 1 ( n ) + C 2 ( n ) + 2 v a v G ) 
2 

> 0 , (16)

∂ q A 

∂G 

= 

−4 a 2 v n v 2 

( v C 1 ( n ) + C 2 ( n ) + 2 v a v G ) 
2 

< 0 , (17)

since 4 a 2 v n ( n l v + δo ( n − 1 ) + w ) > 0 and −4 a 2 v n v 2 < 0 for ∀ n ≥ 1 and ∀ v , l v , w > 0. The behavior of the capacity function with

respect to the platoon size, however, also depends on the parameters and variables other than the platoon size. As depicted

in Fig. 4 b, capacity model ( 15 ) can be a strictly increasing, decreasing, or even a non-monotonic function of the platoon size,

n , under the following conditions: ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ q A 

∂n 

> 0 , G > G 

∗
A ( n ) 

∂ q A 

∂n 

< 0 , G < G 

∗
A ( n ) 

, (18)

where 

∂ q A 

∂n 

= 

2 a v v 2 
(

C 1 ( n ) − n a v ( 4 ( δo + l v ) + a 2 v δ
2 ( n −1 ) ) 

C 1 ( n ) 

)
− ( 2 δo + 3 δv − 2 ( G v + w ) ) 

( v C 1 ( n ) + C 2 ( n ) + 2 v a v G ) 
2 

, (19)

and G 

∗
A 
(n ) is the solution of the first-order condition equation, ∂ q A / ∂ n = 0: 

G 

∗
A ( n ) = 

a v δ2 ( n − 1 ) − 4 ( n l v + δo ( n − 2 ) + 2 w ) 

2 C 1 ( n ) 
+ 

δo 

v 
+ 

3 δ

2 

− 2 w. (20)

The optimal platoon size in the non-monotonic case can be derived as: 

n 

∗ = G 

∗−1 
A ( G ) , (21)

where G 

∗−1 
A 

(·) denotes the inverse function of G 

∗
A 
(·) . 

In an adjustment cycle, increasing the platoon size causes the instantaneous speed of the platoon to further increase dur-

ing the accelerating maneuver through the intersection as the platoon gets longer. Therefore, the overall effect of increasing

the platoon size on the intersection capacity, in an adjustment cycle, is positive when G > G 

∗
A 
(n ) , in which case the cycle

length grows slower than the platoon size ( ∂ q A / ∂ n > 0), and negative when G < G 

∗
A 
(n ) , in which case the cycle length grows

faster than the platoon size ( ∂ q A / ∂ n < 0). In the non-monotonic case, however, the intersection capacity gets maximized at

stationary point n ∗ where the cycle length varies proportionally with the platoon size so that the marginal effect of changing

the platoon size on the intersection capacity becomes zero ( ∂ q A / ∂ n = 0). Although the intersection capacity can be a strictly

increasing, decreasing, or even a non-monotonic function of the platoon size in an adjustment cycle, the limit value is fixed

and independent of the platoon size and the marginal gap length in all these cases as the platoon size goes to infinity: 

˜ q A = lim 

n →∞ 

q A = 

v 
l v + 2 v δ + δo 

. (22)

2.3. Synchronized operation with a probability of failure 

Interruption in the synchronized operation of the intersection, if it occurs repeatedly, can have negative impacts on the

overall performance of the system. At the smart intersections, the robustness (success probability) of the control system (in

coordinating the approach of the platoons in the crossing directions) can be significantly improved by allowing a marginal

gap between arrival and departure of the consecutive platoons in crossing directions to reduce the failure probability at the

cost of increasing the cycle length. In this case, an approaching platoon in direction Y can simultaneously pass through the

intersection with no interruption in a synchronized cycle only if it arrives at the intersection within the marginal gap, after

the departing platoon in direction X has cleared the intersection. However, an early/late platoon (one that arrives at the

intersection before/after the marginal gap) has to stop at the intersection for resynchronization in an adjustment cycle. 
4 Theoretically, τ A ≥ τ S for 1 ≤ n ≤ n U where n U = (2 v 2 + a v ( δo + δv − w ))/( a v ( δo + δv + l v )) is the solution of equation τ A = τ S for n ∈ R > 0 . In practice, 

n U ≥ 20 for a reasonable range of values for the model variables and parameters, which is outranged by the platoon size safety/stability criteria (See the 

remarks of Biswas et al. (2006) , Robinson et al. (2010) , and Amoozadeh et al. (2015) ), even in absence of an upper limit for the instantaneous speed of the 

platoons during the accelerating maneuver through the intersection. 
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Fig. 5. General probability distribution of the operational error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To account for the stochasticity associated with the synchronization process, we consider a statistical distribution, with

a general probability density function (PDF), f , for the random operational error in the platoon arrival time (with mean

zero and standard deviation σε) and the marginal gap length (with mean Ḡ and standard deviation σ G ): ε ∼ f ( t; 0 , σ 2 
ε ) and

G ∼ f ( t; Ḡ , σ 2 
G ) . The operational error generally has a symmetric 5 (bell-shaped) statistical distribution and the mean error

in the coordinated arrival time of the platoons at the intersection is zero. Hence, the synchronization failure probability

can be equally minimized for the early and late arrivals by coordinating the platoons to arrive to the intersection right at

the midpoint of the marginal gap, with mean length of Ḡ , as illustrated in Fig. 3 a, b. In this case, the maximum success

probability of the synchronized process, Pr( − G /2 ≤ ε ≤ G /2), can be formulated in terms of Ḡ , as shown in Fig. 5: 

P s 
(
Ḡ 

)
= 

∫ Ḡ / 2 

−Ḡ / 2 

z ( ω ) dω = Z 

(
Ḡ 

2 

)
− Z 

(
− Ḡ 

2 

)
. (23) 

Here, Z denotes the cumulative distribution of z ∼ f ( t; 0 , σ 2 
ε + σ 2 

G / 4 ) . The probability of the synchronization failure (followed

by the adjustment operation) is the complementary probability of success, 1 − Pr( − G /2 ≤ ε ≤ G /2): 

P A 
(
Ḡ 

)
= 1 − P s 

(
Ḡ 

)
= 1 + Z 

(
− Ḡ 

2 

)
− Z 

(
Ḡ 

2 

)
. (24) 

The expected length of the cycles is calculated as the summation of the lengths of the synchronized and adjustment cycles,

weighted by the success and failure probabilities: E[ T ] = T S P s ( ̄G ) + T A P A ( ̄G ) . The expected capacity in direction i ∈ {X, Y}

is then formulated as the size of the platoon (passes through the intersection per cycle) in direction i , n i , divided by the

expected length of the cycles, E[ T ] : 

q i = 

n i 

τ S 
X 

P s 
(
Ḡ 

)
+ τ A 

X 
P A 

(
Ḡ 

)
+ τ S 

Y 
+ Ḡ 

. (25) 

Here, τ S 
i 

and τ A 
X 

can be plugged in from ( 1 ) and ( 11 ), respectively. In a symmetric intersection, capacity model ( 23 ) is

simplified as: 

q = 

2 n v a v 
( C 2 ( n ) − v C 1 ( n ) − 2 a v ( n − 1 ) δv ) P s 

(
Ḡ 

)
+ v C 1 ( n ) + C 2 ( n ) + 2 v a v ̄G 

. (26) 

As is the case in both synchronized and adjustment cycles, the expected capacity is also a stictly increasing function of

speed, ∂ q / ∂ v > 0 for ∀ n ≥ 1 and ∀ v , l v , w > 0. The behavior of the capacity function with respect to the platoon size also

follows a pattern similar to that of the adjustment cycle, while the limit value can be recalculated for the stochastic case

as: 

˜ q = lim 

n →∞ 

q = 

v 
2 v δ + ( δo + l v ) 

(
1 + P S 

(
Ḡ 

)) . (27) 

The intersection capacity, however, is not a monotonic function of the marginal gap length anymore when the synchroniza-

tion process is subject to probabilistic failure. In the next section, we maximize the expected capacity of the intersection by

optimizing the two primary control variables of the system: platoon size and marginal gap length. 
5 A probability distribution is symmetric if and only if ∃ x o | f ( x o − �) = f ( x o + �) , ∀ � ∈ R . 
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3. Optimal platoon control problem 

Besides the physical and technological characteristics of the vehicles, infrastructure, and the control system, the inter-

section capacity largely depends on adjustments of the control system settings. To achieve the highest performance of the

system, we maximize the expected capacity of the intersection by solving the following optimization problem for the pla-

toon size, n , and the marginal gap mean length, Ḡ : 

max 
n, ̄G 

q = 

n 

τ S 
(
1 + P s 

(
Ḡ 

))
+ τ A P A 

(
Ḡ 

)
+ Ḡ 

, (28)

where P A ( ̄G ) = 1 − P S ( ̄G ) , and τ S and τ A can be plugged in from relations ( 1 ) and ( 11 ), respectively, by replacing n i , v i ,

and w i with n , v , and w for a symmetric intersection. The expected capacity is directly proportional to the platoon size,

and inversely proportional to the expected cycle length, which is an increasing function of the platoon size. Therefore,

the overall effect of increasing the platoon size on the expected capacity is positive for smaller platoons when the cycle

length still grows slower than the platoon size ( ∂ q / ∂ n > 0), and becomes negative for larger platoons when the cycle length

grows faster than the platoon size ( ∂ q / ∂ n < 0). So, the intersection capacity is maximized at stationary point n ∗ where the

cycle length varies proportionally with the platoon size, where the marginal effect of a change in the platoon size on the

intersection capacity becomes zero. Therefore, the size of the platoons can be optimized by solving the first-order condition

equation ( ∂ q / ∂ n = 0) for n as: 

n 

∗ = 

((
a v δ2 − 4 ( δo + l v ) 

)(
2 

(
1 − P S 

(
Ḡ 

))2 
v 2 ( δo − w ) + C 3 

(
Ḡ 

))
+ 

√ 

2 C 4 
(
Ḡ 

))
(
a v δ2 − 2 ( δo + l v ) 

)(
2 

(
1 − P S 

(
Ḡ 

))2 
v 2 ( δo + l v ) + a v δ2 C 3 

(
Ḡ 

)) , (29)

where 

C 3 
(
Ḡ 

)
= 

(
a v ( δo + δv − w ) 

(
1 + P S 

(
Ḡ 

))
− Ḡ v 

)(
( δo − w ) 

(
1 + P S 

(
Ḡ 

))
− Ḡ v + 2 δv 

)
, (30)

and 

C 4 
(
Ḡ 

)
= a v 

(
2 ( δo + l v ) 

2 − a v δ2 ( l v + w ) 
)(

2 δo 

(
1 + P S 

(
Ḡ 

))
+ δv 

(
3 + P S 

(
Ḡ 

))
− 2 

(
Ḡ v + w 

(
1 + P S 

(
Ḡ 

))))2 

×
(

2 

(
1 − P S 

(
Ḡ 

))2 
v 2 ( δo − w ) + C 3 

(
Ḡ 

))
. 

(31)

A marginal gap between arrival and departure of the platoons in crossing directions can significantly enhance the ro-

bustness (success probability) of the synchronization process at the cost of increasing the cycle length. Hence, the expected

capacity of the intersection is maximized by allowing a marginal gap of an optimal length between arrival and departure of

the consecutive platoons to make up for the associated operational error. In this case, the improvement resulting from the

enhancement of robustness maximally outweighs the decline in the throughput of the intersection. Note that the success

probability, P S ( ̄G ) , is generally an increasing concave function of Ḡ ≥ 0 , regardless of type of the operational error distri-

bution. Therefore, τ = τ S ( 1 + P s ( ̄G ) ) + τ A ( 1 − P s ( ̄G ) ) becomes a decreasing convex function of Ḡ since τ A ≥ τ S . Following

from above, E[ T ] = τ + Ḡ becomes a non-monotonic convex function of Ḡ ≥ 0 , as illustrated in Fig. 6 . The marginal gap

(mean) length is then optimized by solving the following equation resulting from the first-order condition for the minimum

expected cycle length, ∂ E[ T ] /∂ Ḡ = 0 : 

∂ P s 
(
Ḡ 

)
∂ Ḡ 

(
τ A − τ S 

)
− 1 = 0 , (32)

where 

∂ P s 
(
Ḡ 

)
∂ Ḡ 

= 

∂ 
(

Z 

(
Ḡ 
2 

)
− Z 

(
− Ḡ 

2 

))
∂ Ḡ 

= 

1 

2 

(
z 

(
Ḡ 

2 

)
+ z 

(
− Ḡ 

2 

))
. (33)

Since the operational error generally has a symmetric probability distribution, z( ̄G / 2 ) = z( −Ḡ / 2 ) , relation ( 33 ) can be further

simplified as: 

∂ P s 
(
Ḡ 

)
∂ Ḡ 

= z 

(
Ḡ 

2 

)
. (34)

By solving the equation resulting from plugging ∂ P S ( ̄G ) /∂ Ḡ from relation ( 34 ) into first-order condition ( 32 ), the optimal

marginal gap length, Ḡ 

∗, is generally derived for any given parametric/nonparametric probability distribution of the opera-

tional error as: 

Ḡ 

∗ = 2 z −1 
(

1 

τ A − τ S 

)
, (35)
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Fig. 6. Variations of the components of the expected cycle length with the marginal gap length ( ̄G ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where z −1 ( • ) denotes the inverse function of z ∼ f ( t; 0 , σ 2 
ε + σ 2 

G / 4 ) . Note that a closed-form solution can be simply gen-

erated for any invertible PDF of the operational error by substituting z −1 ( • ) in Eq. (35) . To demonstrate the generality of

the analytical derivations, we also reformulate the closed-form solution for a normal distribution of the operational error,

z ∼ N( t; 0 , σ 2 
ε + σ 2 

G / 4 ) , which is a well-fitted statistical distribution for the operational error ( Zito et al., 1995 ; Dulman et al.,

2003 ; Yan and Bitmead, 2005 ): 

Ḡ 

∗ = 

√ √ √ √ √ 

8 

(
σ 2 

ε + σ 2 
G 
/ 4 

)
ln 

⎛ 

⎝ 

τ A − τ S √ 

2 π
(
σ 2 

ε + σ 2 
G 
/ 4 

)
⎞ 

⎠ . (36) 

Optimizing the operation of the smart intersections can significantly improve the performance of the system at the network

level, as we explain in Section 4 . 

4. Automated network fundamental diagram 

In this section, we present the automated network fundamental diagram (ANFD) as an analytical tool for modeling the

dynamics of traffic in networks with smart intersections. In conventional networks, the macroscopic fundamental diagram

(MFD) approximates the interrelationship between traffic variables in large urban regions. Observed traffic data from the

city of Yokohama ( Geroliminis and Daganzo, 2008 ) and the results of the traffic simulation of the downtown network of

San Francisco ( Geroliminis and Daganzo, 2007 ) show that when congestion has a uniform distribution across the network,

flow (veh/s.lane) increases with vehicular density (veh/m.lane) from zero to its maximum value in the uncongested state

of the network. The flow, however, sharply decreases with a further rise in density in the hypercongested state of the net-

work until complete gridlock occurs ( Daganzo, 2007 ; Daganzo and Geroliminis, 2008 ). In automated networks, cooperative

traffic control makes it possible to keep the vehicular density homogenous across the network. The synchronization failure

probability also remains identical for the intersections controlled by the same technology. The proposed analytical model

for the intersection capacity can be then extended to present the performance of automated networks on a macroscopic

level. 

In networks with smart intersections, flow increases from zero to the network capacity with a rise in density in the

uncongested state with no decline in the (free flow) speed, v . Further increase of the vehicular density, however, requires

reducing the network speed to enable a further decrease of (i) the required inter-platoon spacing and (ii) the safe intra-

platoon spacing in order to accommodate a larger number of platoons in the network. In this case, the network flow de-

creases with the decline of speed in the hypercongested state of the network as the system moves towards a complete

gridlock. The ANFD expresses the relationship between the network flow, Q , and the vehicular density, k , in automated

networks as shown below: 

Q ( k ) = 

{
k v , 0 ≤ k ≤ k m 

k v ( k ) , k m 

< k ≤ k j 
, (37) 

where the optimal density, k m 

, (for a given platoon size and marginal gap length) is calculated by plugging the network lane

capacity from Eqs. (3) , ( 15 ), and ( 26 ) into Q m 

in the macroscopic flow equation, k m 

= Q m 

/ v , for approach-and-pass (absolute
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robust synchronization), stop-and-pass (absolute fragile synchronization), and stochastic (synchronization with a probability

of failure) operation scenarios as shown below: 

k m 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n 

2 ( n l v + ( n − 1 ) ( δo + δv ) + w ) + Ḡ v 
approach − and − pass 

2 n a v 

v C 1 ( n ) + C 2 ( n ) + 2 v a v ̄G 

stop − and − pass 

2 n a v 

( C 2 ( n ) − v C 1 ( n ) − 2 a v ( n − 1 ) δv ) P s 
(
Ḡ 

)
+ v C 1 ( n ) + C 2 ( n ) + 2 v a v ̄G 

stochastic 

. (38)

The network speed in the hypercongested state ( k m 

< k ≤ k j ) is then derived for different operation scenarios by reversing

the optimal density function, v (k ) = k −1 
m 

(k ) : 

v ( k ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n − 2 k ( n l v + ( n − 1 ) δo + w ) 

k 
(
2 ( n − 1 ) δ + Ḡ 

) approach − and − pass 

2 n a v − 2 k a v ( n l v + ( n − 1 ) δo + w ) 

k 
(
3 a v ( n − 1 ) δ + 2 a v ̄G + C 1 ( n ) 

) stop − and − pass 

2 n a v − 2 k a v ( n l v + ( n − 1 ) δo + w ) 
(
1 + P s 

(
Ḡ 

))
k 
(
a v ( n − 1 ) δ

(
3 + P s 

(
Ḡ 

))
+ 2 a v ̄G + C 1 ( n ) 

(
1 − P s 

(
Ḡ 

))) stochastic 

. (39)

The jam density in different operation scenarios is also derived by solving the zero speed equation, v ( k ) = 0: 

k j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n 

2 ( n l v + ( n − 1 ) δo + w ) 
approach − and − pass 

n 

n l v + ( n − 1 ) δo + w 

stop − and − pass 

n 

( n l v + ( n − 1 ) δo + w ) 
(
1 + P s 

(
Ḡ 

)) stochastic 

. (40)

As illustrated in Fig. 7 a, the ANFD is bounded from above and below by its extreme cases, while the failure probability,

P A ( ̄G ) = P s ( ̄G ) − 1 , varies between 0 and 1. The capacities derived for the network under the absolute robustness ( P S ( ̄G ) =
1 for ∀ ̄G ≥ 0 ) and absolute fragility ( P S ( ̄G ) = 0 for ∀ ̄G ≥ 0 ) conditions, respectively, determine the upper bound, Q 

S 
m 

, and

the lower bound, Q 

A 
m 

, of the operational capacity of the network, Q 

A 
m 

< Q m 

< Q 

S 
m 

, when the synchronization process at the

intersections is subject to a probabilistic failure ( 0 < P S ( ̄G ) < 1 ). For a given distribution of the operational error, the network

capacity can be maximized by optimizing the size of the platoons, n , and the length of the marginal gaps, Ḡ , as explained

in Section 3 . By plugging n ∗ and Ḡ 

∗ from Eqs. (29) and ( 35 ) into ( 38 ), the maximum achievable capacity of the network

under stochasticity, Q 

∗
m 

, is derived for the adjusted optimal density, k ∗m 

, as shown in the optimal-hybrid ANFD of Fig. 7 b.

In automated networks, the jam density also varies between an upper bound and a lower bound when the operational

error has a statistical distribution. In this case, the jam density derived under the absolute fragility condition ( P S ( ̄G ) = 1 for

∀ ̄G ≥ 0 ), k A 
j 
, determines the upper bound and the jam density derived under the absolute robustness condition ( P S ( ̄G ) = 0

for ∀ ̄G ≥ 0 ), k S 
j 
, determines the lower bound of the operational jam density in automated networks, k S 

j 
< k j < k A 

j 
. 

Remark. The performance of the network in the highly hypercongested state ( k > k I ) can be significantly improved by

altering the synchronized operation pattern of the intersections from approach-and-pass to stop-and-pass in one of the

directions, as shown in Fig. 7 b. The accelerating maneuver of the platoons through the intersections in the stop-and-pass

operation scenario allows further increase of the density in the highly hypercongested state by reducing the minimum

required inter-platoon spacing in comparison to the approach-and-pass operation scenario. 

The critical density at interchange point I, k I , is derived by solving the equation resulting from equating the upper and

the lower bounds of the ANFD’s declining legs: 

k I = 

n ( C 1 ( n ) − a v ( n − 1 ) δ) 

2 ( n l v + ( n − 1 ) δo + w ) 
(
a v 

(
( n − 1 ) δ + Ḡ 

)
+ C 1 ( n ) 

) . (41)

The critical speed, v I = v ( k I ), and flow, Q I = v I k I can be accordingly calculated at point I as: 

v I = 

1 

4 

( a v ( n − 1 ) δ + C 1 ( n ) ) , (42)

Q I = 

a v n 

a v 
(
( n − 1 ) δ + Ḡ 

)
+ C 1 ( n ) 

. (43)
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Fig. 7. Automated network fundamental diagram (ANFD). 

Fig. 8. Macroscopic fundamental diagram of the non-automated double-ring system. 

 

 

 

 

 

 

 

 

 

 

Note that the performance of the system can be maximized by keeping the vehicular density of the network optimized

over time using the dynamic perimeter control and demand management strategies introduced in the MFD literature (see

remarks of Geroliminis and Levinson, 2009 ; Geroliminis et al., 2013 ; Ramezani et al., 2015 ; Amirgholy and Gao, 2017 ). 

5. Simulation and numerical analysis 

In this section, we evaluate the analytical model with the results of a simulation model. We also numerically evaluate

the effects of adjusting the control system settings on the performance of the automated network. In this simulation, we use

the double-ring concept developed by Daganzo et al. (2011) . In this example, the average vehicle length is l v , the maximum

allowable acceleration rate is a v = 16m/s 2 , and the intersection width is w = 3m. In the absence of automation technology,

the performance of a conventional (non-automated) system with a free flow speed 

6 of 25m/s is presented by the MFD of

Fig. 8 . 

In automated networks, cooperative traffic control enables CAVs to safely move in close distane from their predecessors in

platoons. Here, we calculate the intra-platoon spacing in a connected environment for fixed and variable incremental safety

distance coefficients of δo = 0.1 m and δ = 0.4 s. Fig. 9 a–f evaluate the analytical ANFD with the results of the double-
6 CACC technology allows for a safe increase of the free flow speed in automated networks by reducing perception-reaction time. However, to evaluate 

the effects of automating the operation of traffic on the performance of the system, we use comparable simulation settings, including an identical free flow 

speed of 25 m/s (90 km/h), for both conventional and automated double-ring systems. 
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Fig. 9. Analytical ANFD and automated double-ring simulation results. 

 

 

 

 

 

ring simulation for a platoon size of n = 3, marginal gap length of Ḡ = 0.8 s, at different system accuracy levels, where the

operational error has a normal distribution, z ∼ N( t; 0 , σ 2 
z ) . The results show that the analytical ANFD has a high accuracy,

i.e., low mean absolute percentage error (MAPE), in approximating the macroscopic retaliation between flow ( Q ) and density

( k ) of automated networks. Comparing the simulation results of Fig. 8 and Fig. 9 a–f shows that the proposed cooperative

control strategy improves the capacity by 81% to 104%, depending on the accuracy of the control system in coordinating the

platoons. 
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Fig. 10. Variations of the network performance measures with the platoon size, n (veh), and marginal gap length, Ḡ (s) . 

Fig. 11. Optimal-hybrid ANFD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To investigate the effects of adjusting the cooperative control settings on the performance of the system, we plot the

variations of the capacity ( Q m 

), jam density ( k j ), and critical density ( k I ) with the platoon size ( n ) and marginal gap length

( ̄G ) for σ z = 0.1 s in Fig. 10 a–c. As discernable from the contours of Fig. 10 a, the effects of increasing the platoon size and

decreasing the marginal gap length on the capacity of the network are not always positive. In fact, the network capacity is

maximized at the stationary point ( n ∗, Ḡ 

∗) , which is derived using Eqs. (29) and ( 36 ): n ∗ = 4.19 and Ḡ 

∗ = 0.06 s. The jam

density, however, is an increasing function of the platoon size, but a decreasing function of the marginal gap length, as

presented in Fig. 10 b. The critical density is also a decreasing function of the marginal gap length, but its behavior with

variations in the platoon size is not monotonic, as depicted in Fig. 10 c. 

The optimal-hybrid ANFD of Fig. 11 presents the macroscopic relationship between flow and density of the automated

network for the optimal platoon size, n ∗, and marginal gap length, Ḡ 

∗. Note that altering the synchronized operation pat-

tern of the intersections from approach-and-pass to stop-and-pass in one of the directions can improve the network per-

formance in the highly hypercongested state ( k > k I = 0.06 veh/m.lane), as illustrated in Fig. 11 . Comparing the ANFD of

Fig. 11 with the MFD of Fig. 8 indicates that optimizing the cooperative traffic variables has increased the capacity by

138%. 

As explained in Section 2.3 , the capacity of automated networks largely depends on the platoon size and the robustness

of the control system. Fig. 12 a, b plot variations of the network capacity ( Q m 

) with the platoon size ( n ) and the improvement

in the robustness of the control system ( P S ( ̄G ) ) as the marginal gap ( ̄G ) increases. As shown in Fig. 12 c, the system robustness

always increases with the marginal gap length, but decreases with the error standard deviation, as illustrated in Fig. 12 d.

Note that the effects of increasing the platoon size and improving the system robustness by increasing the length of the

marginal gap on the network capacity are not always positive. Hence, it is imperative to optimize the size to the platoons

and set a marginal gap of an optimal length between arrival and departure of the consecutive platoons in crossing directions

to maximize the performance of automated networks. 
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Fig. 12. Automated network capacity and cooperative control robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

Automation technology is more effective when infrastructure is integrated with traffic. In this research, we propose an

optimal traffic control strategy to entirely eliminate the queue at urban intersections by making use of the headway between

CAV platoons in each direction for consecutive passage of platoons in the crossing direction through the non-signalized in-

tersection with no delay. However, the operational error in coordinating the arrivals and departures of the consecutive

platoons can cause interruptions in the synchronized operation of the intersection. By formulating the synchronization fail-

ure probability, we develop a stochastic traffic model for smart urban intersections. In this model, we focus on one-way

intersections with no turning traffic for simplicity of formulation. The model, however, can be further generalized by syn-

chronizing the platoons along multilane roads and also accounting for the passing time in various turning movements and

the corresponding probabilities in the formulations. Our analytical results show that the effects of increasing the platoon size

and improving the system robustness by increasing the marginal gap length on the capacity of the network are not always

positive. In fact, the capacity can be maximized by optimizing the size of the platoons and the length of the marginal gap.

Hence, we analytically solve the optimal traffic control problem for the platoon size and marginal gap length, and derive a

closed-form solution for a normal distribution of the operational error. We also introduce the ANFD as a macro-level analyt-
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ical tool for modeling and optimizing the dynamics of the congestion in automated networks. The ANFD model reveals that,

in the highly hypercongested state, the network performance can be significantly improved by altering the synchronized op-

eration pattern of intersections from approach-and-pass to stop-and-pass in one of the directions. To evaluate the accuracy

of the proposed model, we compare the analytical ANFD with the results of a double-ring simulation model developed for

this purpose. The results indicate the high accuracy of the analytical ANFD in approximating the macroscopic relationship

between the traffic variables of automated networks. Comparing the MFD and ANFD of the double-ring system also shows

that optimizing the control variables increases the capacity by 138% when the error standard deviation is 0.1 s. 
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