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Abstract- In order to alleviate the energy crisis and 
environmental pollution, Electric Vehicles (EVs) have obtained 
the large-scale development in the exceptional period in the 
world. On the other hand, Virtual Power Plant (VPP), an 
aggregator involved in various renewable energies and 
diversified loads, is considered as the crucial measure to 
coordinate the EVs to participate in the power market. 
Obviously, the equivalent model of EV in the VPP is difficult to 
satisfy the need for large-scale development of EVs in the future. 
Therefore, it is of great significance to establish the detailed 
charging models of EVs and explore the influences on the 
operation of the VPP. First of all, the basic structure and 
operation feature of VPP considering four different kinds of EVs 
is introduced briefly. Moreover, in order to describe the bidding 
processing of VPP, the three stages of power market are 
introduced from the trading aspects. Then, the charging 
characteristics of four types EVs are analyzed from charging 
time, charging power and access probability. In addition, the 
bidding strategy models of VPP at three different stages are built 
and the improved Artificial Bee Colony algorithm is utilized to 
solve the optimal bidding strategies of the VPP. Finally, the 
performances of the bidding model of VPP are validated by the 
different scenarios which considered the multi-type EVs 
integrations, and the influences of the different scales of EVs on 
the bidding strategy of VPP are also analyzed.   
Index terms- virtual power plant; electric vehicle; artificial bee 
colony algorithm; step transactions cost; bidding strategy 

 

Nomenclature 

Parameters 

iC   MT environmental penalty 

mtk   MT dynamic cost coefficient 

, ,load da tL   Forecast load level of the day-ahead market 

, ,load r tL   Forecast load level of real-time market 

,load tL   Actual load level 

,ev tL   EV load level 

, ,w dap tP   WT forecast output in day-ahead market 

, ,pv dap tP   PV forecast output in day-ahead market 

, ,w rp tP   WT forecast output in real-time market 

, ,pv rp tP   PV forecast output in real-time market 

,w tP   WT actual output 

,pv tP   PV actual output 

min,mtP   MT minimum output 

,maxmtP   MT maximal output 

 

iQ   MT pollutant gas emission 

, ,da p t   Forecast price of day-ahead market 

, ,da r t   The day-ahead market-clearing price 

, ,r p t   Forecast price of real-time market 

,r t :  Real-time market-clearing price 

sd :  MT start-up/shut-down costs 

base   MT fixed cost 

Variable 

, ,da mt tC   MT output cost in the day-ahead market 

, ,da rt tC   MT output cost in the real-time market 

, ,Cda m t  Trading cost in the day-ahead market 

, ,r m tC  Trading cost in the real-time market 

, ,w da tP   WT bidding output in day-ahead market  

, ,w rd tP   WT forecast bidding output in real-time market  

, ,w r tP   WT bidding output in real-time market 

, ,pv da tP   PV bidding output in the day-ahead market 

, ,pv rd tP   PV forecast bidding output in the real-time market  

, ,pv r tP   PV bidding output in the real-time market 

, ,mt da tP   MT bidding output in the day-ahead market  

,r,mt tP   MT bidding output in the real-time market 

, ,da m tP   Trading power of VPP and external markets in the 

previous market 
, ,rd m tP   Trading power of VPP and external markets in the 

real-time market 

,balance tP   VPP trading power in balance market at time t 

, ,m tP  VPP trading power with the market at time t 

, ,w da tR   WT forecast bidding revenue in day-ahead market 

, ,pv da tR   PV forecast bidding revenue in day-ahead market 

, ,mt da tR  MT forecast bidding revenue in day-ahead market 
'

, ,w da tR  WT actual bidding revenue in day-ahead market 
'

, ,pv da tR  PV actual bidding revenue in day-ahead market 
'

, ,mt da tR   MT actual bidding revenue in day-ahead market 

, ,w rt tR   WT forecast bidding revenue in real-time market 

, ,pv rt tR   PV forecast bidding revenue in real-time market 

, ,mt rt tR   MT forecast bidding revenue in real-time market 

,sd t   MT status coefficient This work is supported by the National Natural Science Foundation of China 

(Grant No. 51977212)  
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I. INTRODUCTION 

Nowadays, shortages of fossil energy and environmental 
pollution problems are becoming more and more serious in 
the last few years. In order to alleviate the energy crisis and 
reduce pollutant emissions, the government has built a large 
number of renewable energy units and promoted the 
developments of electric vehicles (EVs) in urban. Relying on 
the development of the Virtual Power Plant (VPP), the 
distributed renewable energies, the EVs, the common loads 
can be aggregated to an entirety to participate in grid 
operation and bidding in the power market [1]. The 
integrations of EVs into the distribution system under the 
dispatching of the VPP can improve the absorption ability of 
renewable energy and alleviate the detrimental effects of 
random access [2]. As a kind of specific load in the power 
system [3], EV is not only utilized as the traditional load to 
consume the electricity but also can be considered as the 
controllable load to participate in the daily operation and 
dispatch of the distribution network [4]. At present, many 
studies have been completed on the EVs load calculated and 
the bidding strategy of the VPP. Until now, the existing 
researches on the VPP bidding strategy and on the EV 
operational features are summarized as follows: 

1) The Research Status of EV Operation 
Considering the massive penetration of plug-in hybrid 

vehicles into the electricity grid and widespread utilization of 
distributed energy resources in the future, the energy 
management model for VPPs was developed in [5-6]. In 
order to improve the ability of the power grid to absorb wind 
energy and balance the electric vehicle charging power, a 
multiple-goal hierarchical algorithm integrating plug-in EVs 
charging and wind energy scheduling was proposed in[7]. 
Large-scale integrations of EVs into the power grid posed a 
negative impact on the system operation, the impact of EVs 
on the power system and the optimal dispatching of EVs were 
analyzed in [8]. In [9], several types of EVs charging 
characteristics were studied. In addition, the probability 
model of different types of the EV charging profile was also 
proposed.  

2) The Research Status of VPP 
In [10], the industrial VPP model was built and the model 

was utilized to manage the renewable energies and the loads. 
Moreover, the cooperative VPPs using the distributed 
artificial intelligence and game theory were respectively 
proposed in [11-13] and these papers designed the payment 
mechanism to encourage the distributed energy resources to 
join the VPPs. On the other hand, Reference [14] developed a 
real-time algorithmic framework and established a 
system-theoretic foundation to realize the vision of 
distribution-level VPP. A bidding strategy of VPP in the joint 
market of energy and ancillary services market was proposed 
in [15-16], and the results were analyzed under the different 
scenarios. 

In recent years, only a few papers have studied the 
cooperative bidding strategy of VPP by considering the 
integrations of EVs. However, the EV was disposed as a 

whole to participate in the power market and neglect the 
charging characteristics of different EVs. Therefore, four 
kinds of EVs (private car, business car, bus, taxi) are 
considered in the bidding model of VPP and the charging 
loads are calculated based on the integrating time and 
charging power of EVs. 

The organization of this paper is organized as follows: 
Section II introduces the overall framework of VPP and the 
operational structure of power market is also proposed. The 
computation method of charging load by considering four 
kinds of EVs is presented in Section III. Section IV builds up 
of the three stages bidding model of VPP in power market, 
and the improved Artificial Bee Colony (ABC) algorithm is 
utilized to solve the built bidding model. Next, the bidding 
strategies of VPP in power market considering the influence 
of optimal dispatching of EVs based on the charging features 
and different scales are analyzed in Section V. Finally, the 
conclusions are summarized in Section VI. 

II. THE COMPREHENSIVE BIDDING MODEL OF VPP 

1) The Basic Structure of VPP 
Generally speaking, it is difficult to balance the distributed 

generations and loads due to the unstable and intermittent 
feature of the renewable energy, such as the Photovoltaic (PV) 
and Wind Turbine (WT). On the other hand, in order to 
alleviate the consumption of fossil energy, the development 
of EV is strongly encouraged. How to coordinate the 
renewable energies and EVs from the market aspects has 
been becoming a hot researching topic in the world. Under 
this circumstance, VPP is employed to implement the energy 
optimization. VPP can not only receive information about the 
current status of each unit, but it can also send the signals to 
control the objects. 

Furthermore, VPP may enable itself to supply energy and 
ancillary services to the utility grid [17]. Fig.1 proposes the 
overall framework of VPP in this paper. 
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Fig.1 The Overall Framework of VPP  

From the perspective of internal structure, Micro Turbine 
(MT), PV and WT are determined as the generating power 
units in VPP. All the physical units are connecting with the 
control center of VPP. The kernel of VPP is an energy 
management system (EMS) which coordinates the power 
flows coming from the generators to the loads. In the 
proposed framework, the output power of MT can be 
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regulated according to the load level, the total cost of itself 
and the market price.  

From the aspects of energy management, VPP can 
purchase the insufficient electricity and sell the surplus 
energy to the external gird based on the energy balance 
between the generation and consumption. Therefore, in VPP, 
the unstable power generation units (WT and PV) and the 
controllable load (EV) are considered as the key to optimize 
the energy and obtain the maximal revenue from the power 
market  

2) Electricity Market Transaction Structure 
In this paper, VPP is considered as the price taker. That 

means the bidding strategy of VPP has no effect on the 
market price. Furthermore, it should be noted that the power 
loss is neglected because the physical distance between each 
generation unit and load is assumed to be short. The power 
market operating mechanism is illustrated in Fig.2 based on 
the theory in [18][18]. It contains three stage from the time 
dimension.  
Stage1：Day-ahead Market  

In this stage, each unit should send the day-ahead forecast 
output information to VPP control center, and VPP makes the 
bidding output of each units participating in the day-ahead 
market and forecast each unit bidding output in the real-time 
market according to the market forecasting price. The 

day-ahead market is usually opened at 10:00 and closed at 
13:00 on the day before the trading. After the day-ahead 
market closed, the market clears and VPP calculates the 
income and cost based on the day-ahead clearing market 
price. 
Stage2：Real-time Market  

On the trading day, the bidding in the real-time market is 
assumed to start every hour and the market is then clearly 
hourly. At this stage, the day-ahead bidding output of each 
unit is known, meanwhile, WT and PV forecast outputs are 
more accurate. VPP makes bidding decision in the real-time 
market based on the real-time market latest forecasting price. 
The real-time market will be closed an hour before the actual 
operating time. And the VPP calculates the revenue and cost 
according to the real-time market price.  
Stage3：Balance Market 

The balance market is opened after the real-time market 
closed, which is used to compensate the deviation of PV and 
MT output. At this stage, the total bidding output of each unit 
is known. When there is a deviation between the total bidding 
output and the actual output, VPP needs to purchase power at 
a price higher than the real-time market price and sell power 
at a price lower than the real-time market price.

 
Fig.2 The Operating Mechanism of Power Market 

III. CHARGING LOAD COMPUTATION OF EVS 

In modern power systems, EVs are becoming reliable and 
flexible resources for energy balancing under varying 
renewable energy supply and demand scenarios. In this paper, 
four types of EVs are considered: taxi, bus, private car and 
business car. Different kinds of EVs have different operating 
characteristics and the differences are expressed as the 
charging times, charging capacities, charging locations and 
the accessing probabilities [19-20]. Four types of EVs 
charging parameters and assumptions are shown in Table I. 

According to the charging power, the charging styles of 
EVs can be classified into three kinds: fast charging, normal 
charging and slow charging. Next, the charging features of 
four types of EVs are analyzed in the following content. 

(1) Electric Bus: the charging power of bus can be divided 
into 0.75C and 0.25C per hour comparing with the capacity 
of the battery (total capacity is 150kW). The charging time in 
one day are concentrating in two periods: 10:00-16:30 and 
22:00-5:30. The access probability and SOC probability of 

bus in the former charging time obey the Bernoulli 
distribution and Normal distribution respectively. However, 
the values in later charging time are both distributed as the 
Normal distribution. 

(2) Electric Business Car: in this paper, business cars are 
mainly used for business reception during the day. Therefore, 
the charging style is usually selected as the slow charging and 
the charging power is 0.25C per hour comparing with the 
capacity of the battery (total capacity is 45kW). 

(3) Electric Taxi: as for the taxi, they are always working 
in the 24 hours. Obviously, the main charging period of taxi 
are concentrated on shifting and rest time. Moreover, the 
common charging style is fast charging in the station. The 
access probability and SOC probability obey to the Bernoulli 
distribution and Normal distribution respectively.  

(4) Private Car: the charging characteristics of the private 
car is more complicated. In this paper, the charging features 
of private car divided into weekdays and weekends. On 
weekdays, private car is usually used for commuting and 
shopping and the working place with charging facilities can 
provide normal charging for EVs during working hours. 
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Moreover, the customers have to charge their EVs at charging 
stations after working if the working places haven’t charging 
facilities. Besides, private cars also can be charged during the 
shopping time. However, the users can charge their EVs at 

night by slow or normal charging when the private charging 
piles are installed. At weekends, the private car also can be 
charged at home, in charging station and shopping mall 
according to the living habits and driving styles. 

TABLE.I THE CHARGING PARAMENTS FOR DIFFERENT TYPES OF EVS 

EV type 
Major Charging 

period 
Charging Power

Charging time 
limit

Access probability SOC probability Charging location 

Bus 
10:00-16:30 112.5kW \ Be (1.1,1.1) N (0.4,0.1) 

Charging station 
22:00-5:30 37.5kW \ N (23,1) N (0.4,0.1) 

Business Car 19:00-6:00 11.25kW \ N (20,1.5) N (0.5,0.1) Charging station

Taxi 
1:00-5:00 22.5kW 120min Be (2,4) N (0.3,0.1) 

Charging station 
11:00-14:00 56.25kW 60min Be (2,4) N (0.3,0.1) 

Private Car 
(working day) 

9:00-17:00 11.25kW \ N (9,0.5) N (0.5,0.1) Company
19:00-7:00 11.25kW \ N (20,0.5) N (0.5,0.1) Home

19:00-21:00 22.5kW 80min U (19,21) N (0.6,0.1) Shopping Mall
19:00-23:00 56.25kW \ N (20,0.8) N (0.3,0.1) Charging Station

Private Car 
(weekend) 

10:00-22:00 22.5kW 80min N (15,1.5) N (0.5,0.1) Shopping Mall
17:00-6:00 11.25kW \ N (20,1.5) N (0.5,0.1) Home

16:00-23:00 56.25kW \ N (17,0.8) N (0.3,0.1) Charging Station

 

Aiming at analyzing the influence of the EVs on the 
bidding strategy of VPP, the scale and corresponding 
charging probability of each type of EVs are listed in Tab.II.  

TABLE.II THE SCALES AND CHARGING PROBABILITIES OF  

DIFFERENT TYPE OF EVS 

EV type Number Charging Period Charging Probability

Bus 150 
10:00-16:30 0.4
22:00-5:30 0.6

Taxi 250 
1:00-5:00 0.5

11:00-14:00 0.5
Business Car 150 19:00-6:00 1

Private vehicle 
(working day) 

550 

9:00-17:00 0.2
19:00-7:00 0.5
19:00-21:00 0.1
19:00-23:00 0.2

Private vehicle 
(weekend) 

10:00-22:00 0.3
17:00-6:00 0.4
16:00-23:00 0.3

Then, the charging curves of EVs are drawn based on the 
Monte Carlo simulation and the results are compared in Fig.3. 

 
Fig.3 The Charging Load Curves of Private EVs 

From Fig.3, it is clear that the charging load curves of 
weekday and weekend are obviously different. There are 
three load peaks occurring at 0:00, 12:00 and 21:00 in 
weekday while the load peaks occurring time on weekend 
changed into 0:00, 12:00 and 17:00. In order to analyze the 
impact of the EVs charging on the load demand, the total load 
curves which obtained by superimposing the ordinary load 
and charging load are shown in Fig.4. Apparently, the 
integrations of EVs change the peaking time of loads and 
increase the peak-valley difference. Generally speaking, EVs 
produce the negative impact on power system operation 

without the dispatching optimization and charging 
management. 

 
Fig.4 The Load Level Based on the Consideration of EVs 

IV. THREE STAGES BIDDING MODELS OF VPP 

The power market for the bidding strategy of VPP contains 
three stages according to the different time arrangement.  
1) Stage1: Day-ahead Market Bidding Model 

In the day-ahead market, the aim of VPP is to maximize 
the revenue by considering the integrations of different 
renewable energies and loads [21][21]. The detailed model of 
bidding strategy of VPP is presented as follows. 

A. Objective Function  
Generally speaking, the day-ahead market opens between 

10:00 a.m. and 1:00 p.m. in the day prior to the day energy 
consumption. The goal of the day-ahead market bidding 
strategy is to maximize the revenue of VPP. 

 
24

, , , , , , , , , ,
1

max ( -(C ))w da t pv da t mt da t da m t da mt t
t

R R R C


    (1) 

 , , , , , , , , , ,w da t w da t da p t w rd t r p tR P P    (2) 

 , , , , , , , , , ,pv da t pv da t da p t pv rd t r p tR P P    (3) 

 , , , , , ,mt da t mt da t da p tR P   (4) 

 , , , , , , , ,

, , , , , ,

( ) (

)
market t load da t ev t w da t w rd t

pv da t pv rd t mt da t

P L L P P

P P P

    

 
 (5) 

 , , , , , , , , , ,da m t da m t da p t rd m t r p tC P P    (6) 

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 23,2020 at 00:37:03 UTC from IEEE Xplore.  Restrictions apply. 



0093-9994 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2020.2993532, IEEE
Transactions on Industry Applications

 , , , , ,da m t rd m t market tP P P   (7) 

 
, , , , 1 , , , min,

s , , ,
i

(( ) ( )

)

da mt t sd t sd t sd mt t mt da t mt

d t base mt da t i i

C k P P

P Q C

  

 
    

  (8) 

Obviously, Formulation (1) denotes the objective function 
of the bidding model in the day-ahead market. Equation (2) 
and (3) represent the forecasting revenue of WT and PV 
respectively. Equation (4) explains the MT bidding revenue in 
the day-ahead market at time t. Equation (5) indicates the 
trading power of VPP in the day-ahead market and to ensure 
the power balance between the generation and consumption 
in the VPP. When the ,market tP  is positive, that means the 

output power from renewable energies in VPP can’t meet the 
demand of the loads. Therefore, it is necessary to purchase 
additional power from the external market. Conversely, when 
the ,market tP  is negative, the generated power of VPP exceeds 

the load demand and the sufficient power can be sold to the 
external market. Equation (6) shows the VPP forecasting cost 
in the day-ahead market at time t (when , ,da m tC  is negative, 

it indicates the VPP forecasting revenue obtained from the 
day-ahead market). Equation (7) represents the sum of the 
electricity trading between the VPP and the external market in 
the day-ahead market and the estimated real-time market. 
Equation (8) indicates the MT operation cost at time t. 
Generally speaking, the MT operation cost consists four parts: 
the MT start-up/shut-down cost, the MT operating cost, the 
MT fix cost under operating condition and the MT 
environmental penalty. Furthermore, in equation (8), s , d t  is 

the operational state parameters of the MT. When s , d t =1, 

the MT is working. When s , d t  =0, MT is out of the service. 

Next, the technical parameters and the environmental penalty 
coefficient of MT are presented in Tab.III and Tab.IV 
respectively [20].  It should be noted that the Ci in Equation 
(8) equals to the sum of the Eid and Pi. 

TABLE.III THE TECHNICAL PARAMETERS OF MT 

Maximal 
power 

Minimal 
power 

Kmt 
Start-up/ 

Shut-down cost
Fix cost 

Ramping 
rate

5.67MW 2.5MW 6.31$/MW 30$ 30$ 3MW/H

TABLE.IV THE ENVIRONMENTAL PENALTY OF MT 

Contaminants NOX CO2 CO SO2 

Emission (Qi) 0.6188 184.0829 0.1702 0.000928 kg/MWh
Environmental 

value (Eid) 
1 0.002875 0.125 0.75 $/kg 

Penalty (Pi) 0.25 0.0125 0.02 0.125 $/kg

B. Constraints 
The constraints of each unit in the day-ahead market are 

listed as follows: 
 , , , , , ,w da t w rd t w dap tP P P   (9) 

 , , , , , ,pv da t pv rd t pv dap tP P P   (10) 

 , , ,maxmt da t mtP P  (11) 

 , , 1 , , limmt da t mt da t c bP P P    (12) 

Equations (9)-(10) ensure that the bidding output powers of 
PV and WT are less than the day-ahead forecasting output 

respectively. Equation (11) limits the maximal output of MT 
and equation (12) limits the MT ramping rate. 

2) Stage2: Real-time Market Bidding Model 
Similarly, the objective in the real-time market is to 

maximize the revenue of VPP and to balance the mismatch 
between generation forecast and load prediction hourly. In 
this stage, the bidding outputs of PV, WT and MT in the 
day-ahead market are known. Therefore, VPP can updates the 
forecast output values of PV and WT. Obviously, the forecast 
results of PV and WT are more accurate and the price of 
real-time market are also more assured [22]. The bidding 
model of VPP in real-time market is described as follows: 

A. Objective Function 

 
' ' '24

, , , , , , , , , ,

1 , , , , , , , ,

(
max

)

w da t w rt t pv da t pv rt t mt da t

t mt r t r m t da mt t rt mt t

R R R R R

R C C C

    

  
  (13) 

 '
, , , , , ,w da t w da t da r tR P   (14) 

 , , , , , ,w rt t w r t r p tR P   (15) 

 '
, , , , , ,pv da t pv da t da r tR P   (16) 

 , , , , , ,pv r t pv r t r p tR P   (17) 

 '
, , , , , ,mt da t mt da t da r tR P   (18) 

 , , , , , ,mt r t mt r t r p tR P   (19) 

 , , , , , , , , , ,r m t da m t da r t r m t r p tC P P    (20) 

 
, , , , , , 1 , , ,

, , min, s , , , , ,
i

(( ) + (

) ( ) )

da mt t rt mt t sd t sd t sd mt t mt da t

mt r t mt d t base mt da t mt r t i i

C C k P

P P P P Q C

  

 
   

     (21) 

As the information in day-ahead market, Equation (13) is 
the bidding objective in the real-time market. Equations (14), 
(16) and (18) are the WT, PV and MT actual revenue in the 
day-ahead market. Under this condition, the market price has 
changed from the forecast price to the market-clearing price. 
Equations (15), (17) and (19) are the bidding outputs of WT, 
PV and MT in the real-time market respectively. Equation (20) 
denotes the VPP total trading cost in the real-time market. 
Equation (21) shows the MT total operational cost in both 
two-stage markets. 

Different from the day-ahead market stage, the day-ahead 
clearing price is known at this stage. VPP determines the 
day-ahead revenue based on the day-ahead bidding output 
and day-ahead clearing price and calculates the real-time 
market bidding output based on the real-time market forecast 
price. 

B. Constraints 
The constraints of each unit in the real-time market are 

listed as follows. 
 , , , , , ,w da t w r t w rp tP P P   (22) 

 , , , , , ,pv da t pv r t pv rp tP P P   (23) 

 , , , , ,maxmt da t mt r t mtP P P   (24) 

 
, , , , , , , , , ,

, , , , , , , , ,

da m t r m t w da t w rt t pv da t

pv r t mt da t mt r t load r t ev t

P P P P P

P P P L L

    

   
 (25) 
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Equations (22)-(24) limit the maximal output power of WT, 
PV and MT in the real-time bidding model. Equation (25) 
ensures the power balance of the VPP. 

3) Stage3: Balance Market Model 
In this stage, the bidding output of each unit and the 

real-time market-clearing price are both known. Although the 
PV and MT forecast outputs in the real-time market are more 
accurate, the deviations are still unavoidable comparing with 
the actual output. In the balance market, the bidding model of 
VPP is calculated as follows: 

 , , , , , , ,

, , , , , ,

( ) (

)

balance t load t ev t w t pv t mt da t

mt r t da m t r m t

P L L P P P

P P P

     

 
 (26) 

 ,balance balance r tC P   (27) 

Equation (26) stands for the computation of the power in 
the balance market. In Equation (27), when Pbalance > 0, α is 
set as 1.1[23]. Conversely, α is set as 0.9. 

4) Step Transaction Cost 
By convention, VPP is mostly considered as the price 

takers in the power market, indicating that all participants’ 
actions in single VPP do not influence the price and do not 
influence other VPP’s actions. In fact, VPP operates as a 
‘‘prosumer’’ in power market and the trading capacity with 
power system is limited. In this paper, the step transaction 
cost is utilized to denote the limitation of the transaction 
power in the power market. Therefore, Equations (6) and (20) 
are modified as the following expressions respectively.  
 , , , , , , , , , ,+da m t da m t da da p t rd m t r p tC P P    (28) 

 , , , , , , , , , ,r m t da m t da da r t r m t r r p tC P P      (29) 

Obviously, 
da ,

r  are the step transaction cost 

coefficients of the day-ahead market and real-time market 
respectively. The determinations of two parameters are shown 
in Equations (30) and (31). The values of 

da and
r are set as 

the same for the convenient purpose.   
 , ,= =1 ,( 0)   da r m tP  (30) 

 , ,= = ,( 0)   da r m tP  (31) 

The penalty coefficient   is listed in the Tab.V.   

TABLE V. THE PENALTY COEFFICIENT OF STEP TRANSACTION COST 

Transactions Power (MW)   

, ,m tP <5 0 

5< , ,m tP <10 5% 

10< , ,m tP <15 10% 

15< , ,m tP <20 15% 

, ,m tP >20 20% 

5) VPP Dispatch Cost 
In VPP, the optimal dispatching of EVs can not only 

improve the benefits of the VPP but also reduce the 
peak-valley difference of the load. In this paper, the 
dispatching cost is proposed to indicate the expected charging 
deviations of the EVs and the calculating formula is shown in 
Equation (28). 

 
24

, , , ,
1

ev trans ev t da r t
i

C P 


   (28) 

β is the subsidy coefficient, which is related to the 
difference between the expected charging time before and 
after dispatch. The value of β is set as 0.02/h. 

6) The flowchart of the Proposed Algorithm 
Recently, the Artificial Bee Colony (ABC) algorithm has 

been widely applied to solve the optimization problems in the 
power system [24-25]. Generally speaking, the ABC 
algorithm consists of four parts: hire bee, follow bee, 
detection bee, and source. Accordingly, application of ABC 
algorithm to solve the problem can be divided into the 
initialization stage, employment stage, following stage and 
detection stage. 

In this paper, the ABC algorithm is employed to solve the 
objective functions of day-ahead market and real-time market. 
It should be noted that: the day-ahead and real-time market 
objective function can be regarded as honey source values. 
The feasible solution of each iteration can be regarded as the 
locations of honey sources. The optimal solution of each 
iteration will be recorded in the best source location matrix. 
In order to make the ABC algorithm more suitable for this 
model, the improvements of ABC algorithm are described as 
follows: 

(1) A single source location can store as a set of solutions, 
that will greatly increase the storing capacity; 

(2) The iteration is carried out in the feasible region, and 
the constraints are only considered in the initialization 
process; 

(3) Optimize the locations of honey sources and select the 
necessary source location randomly. 

Based on the mentioned modifications, the solving ability 
of ABC algorithm has been greatly improved. Obviously, the 
improved ABC algorithm can store more information in a 
single source and it is easier to calculate the matrix. In the 
process of iteration, no constraints need to be considered, 
which is more conducive to model expansion. The flow chart 
of the improved ABC algorithm is shown in Fig.5. 

   
Fig.5 The Flow Chart of the Proposed ABC algorithm 
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V. CASE STUDIES  

In order to analyze the bidding strategies of VPP by 
considering the large-scale integrations of EVs, the 
corresponding parameters are proposed in this paper. First of 
all, the forecasting and actual prices of day-ahead and 
real-time market are compared in Fig.6. From the perspective 
of time, all the values are near the same from 0:00-10:00. 
However, the variations of these values are inestimable from 
10:00-24:00. 

The purpose of VPP is to achieve maximum benefits in the 
power market by scheduling the renewable energies and EVs. 
In this paper, the output powers of WT and PV in three stages 
of power market are from the Nordpool shown in Fig.7 and 
Fig.8 respectively. 

 
Fig.6 The Price Information in Day-ahead and Real-time Market 

 
Fig.7 The Outputs of WT in the Bidding Model of VPP 

 
Fig.8 The Outputs of PV in the Bidding Model of VPP 

A. VPP Bidding Strategy in Day-ahead Market 

In this paragraph, the bidding strategy of VPP in day-head 
market are solved by the proposed ABC algorithm. In order to 
emphasize the influence of EVs on the bidding strategy of 
VPP, the bidding output power by the WT, PV, and MT are 
shown in Fig.9. Moreover, the actual output power of PV and 
WT are also added in the Fig.9. Traditionally, the output 
power of WT and PV in the day-ahead market should be 
consumed totally due to the lower marginal cost. The function 

of the MT is to compensate for the mismatch between 
short-term supply and demand in VPP. However, the output 
of the MT is affected by the forecasting price, the bidding 
output of WT and PV unit as well as the load. 

 
Fig.9 Bidding Strategy of VPP in Day-ahead Market (Without EVs) 

In VPP, there are two different ways to dispose the power 
unbalance caused by PV and WT. One is to adjust the output 
of MT in the first step and then implement the energy 
exchange with the utility grid if the total generation is lower 
than the consumption of VPP. The other is direct to purchase 
or sell the electricity from or to the utility grid without 
considering the output of the MT. Under this condition, the 
trading power between the VPP and utility grid is determined 
by the install capacities of PV and WT of VPP. In order to 
evaluate the influence of the exchange power in the bidding 
model, the difference with and without consideration of the 
step transaction cost are compared in Fig.10.  

 
Fig.10 Trading Power of VPP in Day-ahead Market 

After considering the step transaction cost, the transaction 
cost of the VPP is proportional to the transaction capacity. 
Obviously, the transaction power of the VPP decreases the 
bidding output of the units in the VPP. At this stage, the 
revenue of VPP is less affected by the predicting deviations 
from the unstable abilities of PV and WT. The VPP revenue 
increase from $29685 to $29814. Next, the influences of the 
EVs on the bidding strategy of VPP in Day-ahead market and 
Balance market are analyzed. The comparisons in the typical 
day are expressed in the Fig.11.  

From the results in Fig.11, it is obvious that the 
integrations of EVs increase the load demand at the peak hour. 
That means the VPP should purchase more electricity from 
the utility gird and adjust the output of MT aiming at meeting 
the load demand. Under this circumstance, the revenue of 
VPP decreases from $29814 to $29250. 
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Fig.11 VPP Trading Power Considering the Integrations of EVs  

B. VPP Bidding Strategy in Real-time Market 

In the day-ahead market, PV, WT, and MT can only bid 
one time. The single bidding regulation will cause a large 
deviation between the bidding output and actual output. 
However, in the real-time market, VPP can adjust the bidding 
output and bid to times according to the information from the 
internal and external participants to obtain higher revenue. 
The bidding outputs of WT and PV are shown in Fig.12 and 
Fig.13. 

 
Fig.12 The Bidding Outputs of WT in Real-time Market 

 
Fig.13 The Bidding Outputs of PV in Real-time Market 

Comparing with the bidding output in day-head market, the 
values of the PV and WT in real-time market are closer to the 
actual output. The higher accuracy of the power output of PV 
and WT not only can optimize the power flows and improve 
the stable and economical operation of VPP, but also can 
increase the revenue of VPP from the electricity trading 
aspects. The total bidding revenue of VPP increased from 
$29250 to $35424 in the whole bidding process. 

C. Influence of EVs on VPP’s Bidding Strategy 

In this paragraph, the influences of different scales of EVs 
on the bidding strategies are analyzed. In the first part, the 
number of the EV is gradually increasing according to the 

proportions in Tab II. Then, the values of VPP revenues 
considering different scales of EVs are presented in Tab.VI.  

TABLE.VI REVENUE COMPARISONS OF VPP WIHT DIFFERENT EVS 

Number of EV 0 1000 4000 6000 8000 10000

VPP Revenue($) 29814 29250 26524 24024 21057 17741

 
It is clear that the increasing integration of EVs will 

grossly reduce the revenue of the VPP duo to the huge 
electricity purchasing from the utility grid. Therefore, the 
management of VPP should comprehensively consider the 
magnitudes of the renewable energies and the load demands. 
Furthermore, the trading power in Day-head and Balance 
Market with the 10000 EVs integration are displayed in 
Fig.14. 

  
Fig.14 VPP Trading Power considering 10000EVs 

Under this condition, it can be seen that the demands of 
EVs exceed the power supply from the values of trading 
power of VPP in Day-ahead market. Comparing with the 
values in Fig.11, the trading power of MTs are nearly the 
same. That means the outputs of MT have little change due to 
the multiple constraints.  

 
Fig.15 The Total Load Demands Considering Four Types of EVs 

Due to the different charging characteristics of EVs, four 
types of EVs with the same scale (the integration number is 
1000) are utilized to study the influences of the EVs on the 
bidding strategy. From the perspective of equivalent load, the 
total load demands by superposing the ordinary load and EVs 
are compared in Fig.15.The dashed black line stands for the 
original load curve. 

Although the scales of the EVs are same, the equivalent 
load demands show obvious changes, especially in the 
charging periods. From the point of performances, all the 
kinds of EVs produce the different levels on the load peaking 
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time and rush values. Furthermore, the influences of the 
different kinds of EVs on the bidding revenue of VPP are 
listed in Tab. VII. 

TABLE.VII THE REVENUES OF VPP CONSIDERING FOUR TYPES OF EVS 

Types of EVs 1000-bus 1000-taxi 1000-business 1000-private

Revenue ($) 28709 29908 29117 29015  
Combing with the outputs of PV and WT and the 

equivalent load demands in Fig.16, it can be deduced that the 
bus charging load is mostly concentrated in the peak period 
and the charging power is relative higher, therefore, the total 
bidding revenue of VPP declines significantly. On the other 
hand, the charging power of taxi is smaller and most of the 
charging time are in the lower price periods as well the huge 
outputs of WT and PV, so the taxi has the least impact on the 
bidding revenue of VPP. In fact, the influences of the 
business car and private car also be analyzed similarly. In a 
word, the influences of EVs on the bidding revenue can be 
sorted as follows: bus, private car, business car and taxi. At 
this point, the optimal dispatching of bus and private car will 
obtain much benefits in the bidding strategy of VPP. 

D. Dispatching Strategy of EVs in VPP 

In general, the objective of the VPP when participating in 
the short-term electricity market is to maximize its expected 
profit from the trading energy in the whole bidding process. 
In order to reduce the impact of EVs and improve the benefits 
of VPPs, the dispatching strategies of EVs by considering the 
outputs of PV, WT and MT as well as the variations of power 
price are researched in this section. Frist of all, the 
comparisons of peak-valley differences, bidding revenues and 
charging costs before and after dispatching with the 
increasing scale of the EVs are listed in Tab.VIII. 

TABLE.VIII VPP CHANGES BEFORE AND AFTER DISPATCHING 

 Before 
Dispatch 

After 
Dispatch 

Comparison
Results

1000
EVs 

Peak-valley 
Difference 

14.72MW 14.09MW -0.63MW 

Bidding Revenue $29250 $29532 +$282
Charging Cost $1774 $1615 -$159

4000
EVs 

Peak-valley 
Difference 

28.48MW 20.98MW -7.5MW 

Bidding Revenue $26524 $28081 +$1557
Charging Cost $7096 $6328 -$768

8000
EVs 

Peak-valley 
Difference 

47.71MW 28.94MW -18.77MW 

Bidding Revenue $21057 $25142 +$4085
Charging Cost $14193 $11394 -$2799

 

The conclusions contained in Tab VIII can be summarized 
as follows: 

(1) With the increasing of EVs, the peak-valley difference 
is becoming bigger and bigger and the dispatch of the EV can 
obviously reduce the peak-valley difference by coordinating 
the renewable energies and load demands to guide the 
charging strategy at different time and locations. For example, 
the Peak-valley differences with or without dispatch is 
7.5MW when the number of the EVs is 4000 while the value 
is 18.77MW when the number of EVs reaches to 8000. 

(2) The bidding revenue of the VPP is reduced with the 
increasing number of the EVs. However, the optimal dispatch 
of EVs can improve the benefits of VPP. For example, 

although the number of EVs increases to 8000, the revenue 
decreases from $29532 to $25142 while this value is $21057 
before the dispatch of the EVs. 

(3) The dispatching of the EVs also can decrease the 
charging cost. The cost of charging will be deduced more 
obvious with the gradually increasing of EV’s scale. 
Therefore, the dispatching of large-scale EVs will provide 
tremendous benefits to the VPP in the power market. 

In order to explore the influences of EVs on the bidding 
strategy of VPP, the equivalent load demand before and after 
the dispatching of EVs (the scale of EVs is 4000) are 
compared in Fig.16. 

 
Fig.16 Comparison of Equivalent Load Demand Before and After 

Dispatching Considering the Integrations of EVs (4000) 

From Fig.16, it is clear that the optimal dispatching of EVs 
can reshape the load demand of the power system to improve 
the bidding strategy of VPP. From that point of view, the 
scheduling strategy of VPP has direct relationship with the 
number of EVs. The integration of EVs not only improve the 
consumptive ability of renewable energy but also increase the 
benefit of the VPP by coordinating the generation and 
consumption over a longer time scale.  

VI. CONCLUSION 

In this paper, EV is utilized to improve the operation 
efficiency of VPP. The influences of EVs on the bidding 
strategies of VPP is also studied by considering different 
types and scales. 

(1) From the perspective of type, electric bus and private 
car have the greater impact on the bidding strategy of VPP 
comparing with the business car and taxi.  

(2) From the perspective of scale, the integrations of EVs 
should coordinate with the development of renewable energy 
in the VPP.  

(3) From the perspective of management, the dispatching 
of EVs can improve the benefit of VPP by optimize the 
charging time and charging style. 

For the future research works, the uncertainties of 
renewable energy and different kinds of EVs and their 
influences on the bidding strategies of VPP are still needed to 
further study in the next step. Furthermore, the performances 
of the bidding strategies of VPP should be evaluated in the 
practical power market by considering the actual integration 
of EVs. 
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