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Abstract
In this paper the problem of centralized control of a platoon of non-identical vehicles under constant time headway
strategy (CTHS) is investigated for multi predecessors following (MPF) topology. A centralized neighbor based linear
control law using relative position and velocity is considered for each vehicle. Due to communication and parasitic delays
and time-varying network topology, the closed-loop dynamics of platoon is in the form of a multiple delayed switched
linear system. New approaches are developed to perform the internal stability analysis of one-dimensional heteroge-
neous vehicular platoons. Afterwards, sufficient conditions assuring the string stability of a platoon under MPF topology
are obtained by presenting a new theorem. In continuance of the paper, some conditions on control parameters guaran-
teeing safety of the platoon in an emergency braking maneuver are presented through a new theorem. Several simulation
results are provided to show the effectiveness of the proposed methods.
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Introduction

In recent decades, the problem of traffic congestion has
received great attention as a serious social, environmen-
tal, and economic problem.1–5 As a result, the intelli-
gent transportation system (ITS) idea, as a possible
solution for this problem, has been highly regarded.4,5

The main objective of an ITS is maintaining small inter-
vehicle spacing in vehicular platoons.6,7 There are sev-
eral benefits in implementing an ITS, such as enhance-
ment of safety, increasing highways capacity and fuel
efficiency, and decreasing air pollution.2,8,9

The coordinated motion of a group of vehicles mov-
ing with optimal spacing and common velocity is called
vehicular platooning.10 Vehicular platooning is a useful
tool to implement the idea of ITS.1,11–13 Vehicular pla-
tooning has received a lot of attention in recent
decades. As a result, several methods are provided for
control design and stability analysis of one-dimensional
(1-D) vehicular platoons.14–20

In vehicular platooning, in addition to usual stability
analysis, the string stability analysis is also considered.
In a platoon, vehicles are dynamically connected by

feedback control laws. Therefore, the spacing error cre-
ated by each vehicle, affects others which may propa-
gate upstream the platoon. This phenomenon is called
string instability.21,22 The inter-vehicle spacing between
consecutive vehicles are adjusted by two different stra-
tegies: constant spacing strategy (CSS);21,23,24 and con-
stant time headway strategy (CTHS).19–21 In CSS the
inter-vehicle spacing is constant, but in CTHS it varies
with velocity.

In recent decades, a great deal of research works has
been carried out on vehicular platooning. Linear con-
trollers without considering parameter uncertainties
have been applied.9,11,13,17 In other studies,21,25 adap-
tive controllers are designed to estimate the unknown
parameters such as rolling resistance, air drag force,
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and vehicle mass. Stability analysis using a partial dif-
ferential equation approximation of a third-order dyna-
mical model has been employed.15,19 Homogenous
platoons have been investigated,19,22,24 while heteroge-
neous platoons have also been studied.15,17 A model
predictive control is designed to guarantee the internal
and string stability of vehicular platoons.26 A leader-
predecessor following topology with CSS was stud-
ied.12,13 Bidirectional schemes for CSS and CTHS have
also been studied.15,19,25 A centralized controller based
on a leader-predecessor following scheme with experi-
mental validations is presented.13 A comparison
between the performances of different information
flows on stability margin is presented.14 The communi-
cation delay is considered in stability analysis of
platoons.12,13,15,17,27

The third-order consensus of heterogeneous vehicu-
lar platoons has not been studied in previous works.
Therefore, the effect of time-varying interaction topol-
ogy on internal and string stability of vehicular pla-
toons has not been investigated for platoons with a
third-order model of upper level dynamics. Moreover,
the collision avoidance and string stability problems of
vehicular platoons with MPF topology in presence of
communication and parasitic delays have not been
studied so far.

In this paper, a safe control methodology of 1-D het-
erogeneous vehicular platoons is investigated. A third-
order dynamical model is used to describe the longitu-
dinal motion of each vehicle. The network topology is
assumed to be variable by time. Both communication
and parasitic delays are involved in system modeling
and controller design. By applying Lyapunov–
Razumikhin and Lyapunov–Krasovskii theorems, new
approaches for constructing common Lyapunov func-
tions (CLFs) for the resultant switched linear multiple
delays system are introduced for CTHS.

In the existing literature, the string stability of vehi-
cular platoons with multi predecessors following
(MPF) topology in the presence of communication and
parasitic delays has not been studied. In the study by
Jia and Ngoduy,23 only internal stability of a platoon
with MPF topology under communication delay was
investigated. The controller presented by Xiao and
Gao cannot satisfy the string stability of MPF topology
in the presence of a delay.11 Therefore, another impor-
tant objective of this paper is to solve the problem of
string stability of vehicular platoons with MPF topol-
ogy under communication and parasitic delays with
switched network topology. In brief, the main innova-
tions of this paper are as follows:

(1) Presenting a modified Razumikhin-based
approach for stability analysis of third-order
switched linear time delay systems. In previous
and similar studies,19,23 the Razumikhin theorem
for stability analysis of switched networks is
incorrectly applied, which leads to incorrect
results and a fundamental contradiction.

(2) String stability analysis of third-order heteroge-
neous vehicular platoons with MPF topology by
considering communication and parasitic delays.

(3) Presenting a Krasovskii-based method to find a
CLF for stability analysis of vehicular platoons
under time-varying delays by using the concepts
of switching systems.28

(4) Presenting a robust safe consensus protocol guar-
anteeing collision avoidance against communica-
tion and parasitic delays.

The rest of paper is organized as follows. In the fol-
lowing section, mathematical preliminaries are intro-
duced briefly. The third section discusses the third-order
longitudinal vehicle model briefly. Also, the controller
design and internal stability analysis are presented in
this section. String stability of heterogeneous vehicular
platoons in the presence of communication and parasi-
tic delays and switching topology is then discussed. The
collision avoidance problem of a platoon is studied ana-
lytically. Simulation studies are provided to show the
effectiveness of the proposed approaches. Finally, this
paper is then concluded in the final section.

Graph theory and mathematical lemmas

Let G=(V,E,A) be a graph of order N in which
V= f1, 2, . . . ,Ng represents a node set, E � N3N is
the set of edges, and A is the adjacency matrix with
nonnegative elements. An edge (i, j) denotes that the
node j has access to the information of the node i. Set
of neighbors of node i is shown by
Ni = fj 2 V : (j, i) 2 e, j 6¼ ig. In the leader-follower
scheme, for the follower agents 1 to N, there exists a
leader labeled by 0. Information is exchanged between
the leader and the follower agents which belong to the
neighbors of the leader. Then, the graph �G= �V, �E,Að Þ
with node set �V=V [ f0g and edge set �E= �V3 �V rep-
resents the communication topology between the leader
and the followers. A diagonal matrix B 2 R

N3N is
defined as a leader adjacency matrix of �G with diagonal
elements bi = ai0. If lead vehicle is a neighbor of vehicle
i, ai0 . 0 and ai0 =0 otherwise. Node 0 is globally
reachable in �G if there is a path form every node i 2 V
to it. For graph G the Laplacian matrix
L= ½lij� 2 <N3N is defined with lii=

PN
j=1, 6¼i aij and

lij= � aij, i 6¼ j. Also, for graph �G the important
matrix H=L+B is defined.

Lemma 1.
29

H � 0 if and only if the lead vehicle is
globally reachable in �G.

Lemma 2.30 The symmetric matrix M=
M11 M12

MT
21 M22

� �
is positive definite if and only if: M11 � 0 and

M22 �MT
12M

�1
11 M12 � 0.

Lemma 3.31 For any vectors d1, d2 and any positive
definite matrix C, the inequality
2dT

1 d24dT
1 Cd1 + dT

2 C�1d2 holds.
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Lemma 4.30 Suppose that li, i=1, . . . , n are the eigen-
values of N 2 R

n3n and ki, i=1, 2, . . . ,m are the eigen-
values of ! 2 R

m3m. So that, the eigenvalues of N� !
are l1k1, . . . ,l1km,l2k1, . . . ,l2km, . . . ,lnk1, . . . ,lnkm,
where � is the Kronecker product.

String stability:21 A platoon of vehicles is string stable if
the spacing errors between consecutive vehicles do not
amplify along the string. String stability of N vehicles
can be met with the following requirement:

e1k k‘5 e2k k‘5 . . .5 eNk k‘ ð1Þ

where ei is the spacing error of ith vehicle.

Problem description

The longitudinal motion of vehicular platoons consist-
ing of a lead vehicle and N non-identical followers is
investigated. It is assumed that each vehicle is equipped
with GPS and a wireless as shown in Figure 1.
Therefore, each vehicle can measure its own absolute
position and velocity and has access to its neighbors’
absolute position.

The longitudinal dynamics of the ith vehicle is mod-
eled by the following nonlinear equation:14

_ai = fi(vi, ai)+ gi(vi)ci ð2Þ

where xi, vi, and ai are position, velocity, and accelera-
tion of the ith vehicle, respectively, and ci is the input of
engine. Also, fi(vi, ai) and gi(vi) are as follows:

fi(vi, ai)= � 1

Ti
ai +

sAicdi
2mi

v2i +
Ri

mi

� �

� sAi cdiviai
mi

, gi(vi)=
1

Ti mi

ð3Þ

where s. is density of air, Ti,Ai, cdi,Ri, and mi are
engine time constant, cross-sectional area, air drag

coefficient, rolling resistance force, and mass of ith
vehicle, respectively. By adopting the following control
law:

ci = uimi +0:5sAicdiv
2
i +Ri +TisAicdiviai ð4Þ

where ui is the additional control input, the following
third-order linear differential equation is obtained:

Ti _ai + ai = ui ð5Þ

In general, the control architecture of a vehicle is com-
posed of two levels: the lower level control which com-
pensates the nonlinear vehicle dynamics and the upper
level control which designs the desired acceleration of
vehicle. In this paper, only upper level control is
designed and it is assumed that the lower control has
already been designed. The model of equation (5) has
been extensively used in upper level control design
and stability analysis of the longitudinal vehicle’s
motion.6,13,19,24,27

As will be shown in stability analyses, the lead vehi-
cle should be globally reachable in the platoon.
Therefore, each vehicle has access to the lead vehicle’s
position and velocity (directly from lead vehicle or
through other neighbors). By considering communica-
tion delay, the following control law is considered for
the ith vehicle:

ui = �D vi(t)� bs
i v0 t� ti0(t)ð Þ � (1� bs

i )v0 t� ti0(t)ð Þ
� �

�
� K xi(t)� x0 t� ti0(t)ð Þ � ti0b

s
i v0 t� ti0(t)ð Þ � ti0(1� bs

i )v0 t� ti0(t)ð Þ � d0i
� �

�

� K
XN
j=1

as
ij xi(t)� xj t� tij(t)

� �
� tijv0 t� tij(t)

� �
� dij

� � ð6Þ

In vehicular platooning, it is assumed that the lead
vehicle has a constant velocity during motion. So that,
the above control law can be expressed as follows:

ui= �D vi � v0ð Þ � K xi(t)� x0 t� ti0(t)ð Þ � ti0v0 � d0i½ �

� K
XN
j=1

as
ij xi(t)� xj t� tij(t)

� �
� tijv0 � dij

� �
ð7Þ

where tij(t) is the time-varying communication delay
between vehicles i and j. K and D are parameters of
controller. s(t) : ½0,‘)! k 2 f1, 2, . . . , nsg is the

Figure 1. Fully connected network of a 1-D heterogeneous platoon of vehicles.
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switching signal and ns is the number of subsystems.
The desired position of the ith vehicle is defined as
xdi = x0 � d0i. It is defined that dij =

Pi�1
k= j

hk v0 � �vð Þ+Lk½ �+(i� j)Dmin, where hk and Lk are
constant time headway and length of the ith vehicle,
Dmin is the minimum allowable inter-vehicle spacing,
and �v is a constant value. Since the velocity of lead
vehicle is constant, the tracking error and its time deri-
vative are as follows:

ei = xi � xdi ) _ei = _xi � v0 ) €ei = ai ) €ei = _ai ð8Þ

The control input of equation (7) can be written in
terms of tracking error as:

ui= �D _ei � Kei � K
XN
j=1

as
ij ei(t)� ej t� tij(t)

� �� �
ð9Þ

Due to parasitic delay, the term of control law ui(t)
is replaced by ui(t� Di). By considering parasitic
delay and inserting equation (9) in equation (5), the
closed-loop dynamics of the ith vehicle is obtained as
follows:

Tie
...
i + €ei = �D _ei(t� Di)� Kei(t� Di)

� K
XN
j=1

as
ij ei(t� Di)� ej(t� �tij(t))
� �

ð10Þ

where �tij(t)= tij(t)+Di. Equation (9) plays the role of
upper level control and equation (4) is the lower level
control of each vehicle. Figure 2 depicts the relation
between the upper level and lower level controls.

By defining the error vector as e=
½e1, . . . , eN, _e1, . . . , _eN, €e1, . . . , €eN�T, the closed-loop

dynamics of platoon is represented in the following
form

_e=Ase+
XN
i=1

Bi,s(t� Di)+
X�m

r=1

Cr,se t� �tr(t)ð Þ,

�m4N(N� 1) ð11Þ

where �tr(t)= f�tij(t) : i, j=1, . . . ,N, i 6¼ jg and

As =

0 I 0

0 0 I

0 0 �I

0
B@

1
CA, Bi,s =

0 0 0

0 0 0

�K(�I+ �Di,s) �D�Ii 0

0
B@

1
CA,

Cr,s =

0 0 0

0 0 0

�K�Cr,s �D�Ii 0

0
B@

1
CA

�I= diagf1=T1, 1=T2, . . . , 1=TNg,
�Di,s = diagf0, . . . , 0, ds

i =Ti, 0, . . . :, 0g,
�Ii = diagf0, . . . , 0, 1=Ti, 0 . . . , 0g,

�Cr,s

� �
jk
=

as
jk=Tj, j 6¼ k, �tr(t)= �tjk(t)

0, otherwise

�

Theorem 1. If the following conditions are satisfied, the
1-D heterogeneous platoon of vehicles is internal stable
under arbitrary switching.

1. The lead vehicle is globally reachable in all
subsystems.

2. The following conditions hold:

D

T2
max

� K�lR . 0, lR K lR �
D

T2
max

	 
2
� 1

T3
min

l2
I . 0 ð12Þ

Figure 2. The block diagram of a vehicle consisting of the upper level (ui) and the lower level (ci) controls.
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where �lR = max
i=1, ...,N

max
i=1, ..., ns

Re(li, k)

� �
, lR = min

i=1, ...,N

min
i=1, ..., ns

Re(li, k)

� �
, �lR = �lR = max

i=1, ...,N
max

i=1, ..., ns
Im(li, k)

� �
,

li, k is the ith eigenvalue of �Hk and
�Hk =�I+

PN
i=1

�Di, k �
P �m

r=1
�Cr, k. It can be easily

shown that for a homogeneous platoon
�Hk =Hk =Lk + I.

3. There exists a symmetric positive definite matrix
P 2 R

N3N such that the following inequality holds:

PFk +FT
kP � �Q � 0, Fk =Ak +

XN
i=1

Bi, k

+
X�m

r=1

Cr, k, k 2 f1, 2, . . . , nsg
ð13Þ

Proof. A switching system under arbitrary switching is
stable if all subsystems are stable and share a CLF. So
that, the necessary condition for stability of system of
equation (11) is that Fk � 0. The characteristic equation
of Fk can be written in the following form:

det (sI� Fk)= det

sIN �IN 0

0 sIN �IN
K �Hk D�IN sIN +�IN

0
B@

1
CA

= det s3IN + s2�IN + sD�IN +K �Hk

� �
=

=
YN
i=1

s3 +
1

Ti
s2 +

D

Ti
s+Kli, k

� �

=
YN
i=1

zi, k(s, li, k)

ð14Þ

Re(li, k). 0 if the lead vehicle is globally reachable for
all k. The Bilharz matrix associated to zi, k(s, li, k) is in
the following form:32

BM =

1
0
0
0
0
0

0
1=Ti

1
0
0
0

�D=Ti

0
0

1=Ti

1
0

�K Im(li, k)
�K Re(li, k)
�D=Ti

0
0

1=Ti

0
0

�K Im(li, k)
�K Re(li, k)
�D=Ti

0

0
0
0
0

� K Im(li, k)
�K Re(li, k)

0
BBBBB@

1
CCCCCA

The even-order minors of BM are:

E1 = det
1 0
0 1=Ti

� �
,

E2 = det

1 0 �D=Ti �K Im(li, k)
0 1=Ti 0 �K Re(li, k)
0 1 0 �D=Ti

0 0 1=Ti 0

0
BB@

1
CCA,

E3 = det (BM)

ð15Þ

By doing some algebraic calculations, we have:

E1 =
1

Ti
, E2 =

D

T3
i

� K

Ti
Re(li, k),

E3 =K Re(li, k) K Re(li, k)�
D

T2
i

	 
2
� K

T3
i

Im(li, k)ð Þ2

All minor values of Ei, i=1, 2, 3 are positive if all con-
ditions in equation (12) are satisfied. In continuance of
the proof, consider the following CLF and its time deri-
vative along equation (11):

V= eTPe) _V=2eTP

As(t)e+
XN
i=1

Bi,s(t)e(t� Di)+
X�m

r=1

Cr,s(t)e t� �tr(t)ð Þ
( )

ð16Þ

By using the Newton–Leibnitz formula:33,34

e(t� Di)= e(t)�
ðt
t�Di

_e(s)ds, e(t� �tr)

= e(t)�
ðt
t��tr

_e(s)ds

ð17Þ

_V can be written in the following form:

_V=2eTP As(t)e+
XN
i=1

Bi,s(t) e(t)�
ðt
t�Di

_e(s)ds

	 
(

+
X�m

r=1

Cr,s(t) e(t)�
ðt
t��tr

_e(s)ds

	 
)

ð18Þ

Equation (18) can be simplified as:
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_V= eT P As(t) +
XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !
+ As(t) +

XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !T

P

9=
;e

8<
: +

+
XN
i=1

ðt
t�Di

�2eTPBi,s(t) As(s)e(s)+
XN
j=1

Bj,s(s)e(s� Dj)+
X�m

j=1

Cj,s(s)e(s� �tj(t))

( )
ds+

+
X�m

i=1

ðt
t��ti

�2eTPCi,s(t) As(s)e(s)+
XN
j=1

Bj,s(s)e(s� Dj)+
X�m

j=1

Cj,s(s)e(s� �tj(t))

( )
ds

ð19Þ

Since Bi,s(t)Bj,s(s) =Bi,s(t)Cj,s(s) =Ci,s(t)Bj,s(s) =Ci,s(t)

Cj,s(s) = 0, _V can be written in the following form:

_V= eT P As(t) +
XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !
+ As(t) +

XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !T

P

9=
;e

8<
: +

+
XN
i=1

ðt
t�Di

�2eTPBi,s(t)As(s)e(s)ds+
X�m

i=1

ðt
t��ti

�2eTPCi,s(t)As(s)e(s)ds

ð20Þ

By exploiting lemma 3 in the following form:

� 2eT(t)PBi,s(t)As(s)e(s) :

dT
1 = � eT(t)PBi,s(t)As(s); d2 = e(s); C=P�1

� 2eT(t)PCi,s(t)As(s)e(s) :

dT
1 = � eT(t)PCi,s(t)As(s); d2 = e(s); C=P�1

ð21Þ

equation (20) can be expressed as:

_V4eT P As(t) +
XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !
+ As(t) +

XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !T

P

9=
;e

8<
: +

+
XN
i=1

ðt
t�Di

eT(s)Pe(s)+ eT(t)PBi,s(t)As(s)P
�1AT

s(s)B
T
i,s(t)Pe(t)

� 

ds+

+
X�m

i=1

ðt
t��ti

eT(s)Pe(s)+ eT(t)PCi,s(t)As(s)P
�1AT

s(s)C
T
i,s(t)Pe(t)

� 

ds

ð22Þ

By using the Lyapunov–Razumikhin theorem for
u 2 ½�max (�tr), 0�,15,32 equation (22) can be expressed
as q. 1:

_V4eT P As(t) +
XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !
+ As(t) +

XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !T

P

9=
;e

8<
: +

+ eT(t)
XN
i=1

qPDi

 !
e(t)+

XN
i=1

ðt
t�Di

eT(t)PBi,s(t)As(s)P
�1AT

s(s)B
T
i,s(t)Pe(t)ds+

+ eT(t)
X�m

i=1

qP�ti

 !
e(t)+

X�m

i=1

ðt
t��ti

eT(t)PCi,s(t)As(s)P
�1AT

s(s)C
T
i,s(t)Pe(t)ds

ð23Þ

In previous (and similar) studies on time-varying net-
works, the Razumikhin theorem is not applied cor-
rectly.17,23 To clarify the matter, consider the arbitrary
switching matrix Ns(t). Since s is a function of time, the
expression

Ð t
t��t Ns(s)e(s)ds=Ns

Ð t
t��t e(s)ds implies that

in the time period ½t� �t, t� no switching actions occur.
Since �t is an arbitrary positive value and t is a free
index, this assumption implies that the switching action
will never happen in any time periods, which is a con-
tradiction. To simplify equation (23), it is assumed that
the percentage of the activity of jth subsystem is equal
to aij in ½0,Di� and equal to bij in ½0, �ti�, in which

Pns
j=1

aij=1 and
Pns
j=1

bij=1. If the kth subsystem is acti-

vated at time t (s(t)= k), the equation (23) is written
in the form of:

6 Proc IMechE Part D: J Automobile Engineering 00(0)



_V4eT P As(t) +
XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !
+ As(t) +

XN
i=1

Bi,s(t) +
X�m

r=1

Cr,s(t)

 !T

P

9=
;e

8<
: +

+Dmaxe
T
XN
i=1

PBi, k

Xns
j=1

aijAjP
�1AT

j

( )
BT
i, kP+NqP

( )
e+

+ �tmaxe
T
X�m

i=1

PCi, k

Xns
j=1

bijAjP
�1AT

j

( )
CT

i, kP+ �mqP

 !
e

ð24Þ

where Dmax = maxfDi, i=1, . . . ,Ng and �tmax=
maxf�tr, r=1, . . . , �mg. Subsequently, equation (24) can
be written as:

_V4� eTQke+Dmaxp1e
Te+ �tmaxp2e

Te ð25Þ

where

p1 = max
k=1, ..., ns

max
04aij41
ai1 +ai2 + ...+ains =1

8><
>: lmax

XN
i=1

PBi, k

Xns
j=1

aijAjP
�1AT

j

( )
BT
i, kP+NqP

( )9>=
>;

p2 = max
k=1, ..., ns

max
04bij41

bi1 +bi2 + ...+bins =1

8><
>: lmax

X�m

i=1

PCi, k

Xns
j=1

bijAjP
�1AT

j

( )
CT

i, kP+ �mqP

( )9>=
>;

ð26Þ

If the following conditions are met, _V is negative
definite:

�tmax \ lmin(Qk)=p2, Dmax \ lmin(Qk)� t2p2ð Þ=p1
ð27Þ

Theorem 2. If the following conditions hold, the 1-D
heterogeneous platoon of vehicles is internal stable
under arbitrary switching.

(1) The lead vehicle is globally reachable in all
subsystems.

(2) The following inequalities are satisfied:

K\
lmin(Z1)

lmax(Z2)lmax(Z3)

Z1 =
2(D� 1)�I D�I

2 � (D� 1)�I� I

D�I
2 � (D� 1)�I� I 2 �I

2 � I
� 


0
@

1
A,

Z2 =
I �I

�I �I

� �
, Z3 = �Hk

�Hk + �H
T
k

� 
�1
�H
T
k

Proof. According to lemma 1, �H � 0 if the lead vehicle
is globally reachable in the platoon. Consider the fol-
lowing CLF

V= eTPe, P=
D�I �I I
�I D�I I

I I �I

0
@

1
A, D. 2Tmax � 1

ð28Þ

where Tmax = maxfTi, i=1, . . . ,Ng. By taking the
time derivative of V along equation (11) and by follow-
ing the procedures similar to equations (16)–(25), _V will
be in the following form

_V4� eT �Qke+Dmaxp1e
Te+ �tmaxp2e

Te,

�Qk = � FT
kP+PFk

� �

�Qk =

K �Hk + �H
T
k

� 

K �H

T
k K�I �H

T
k

K �Hk 2(D� 1)�I D�I
2 � (D� 1)�I� I

K �Hk
�I � 2 �I

2 � I
� 


0
BBB@

1
CCCA
ð29Þ

Exploiting lemmas 2 and 4, it is inferred that �Qk � 0 if:

2(D� 1)�I D�I
2 � (D� 1)�I� I

D�I
2 � (D� 1)�I� I 2 �I

2 � I
� 


0
@

1
A

� K
I �I

�I �I

� �
� �Hk

�Hk + �H
T
k

� 
�1
�H
T
k � 0

ð30Þ

which leads to K\ lmin(Z1)
lmax(Z2)lmax(Z3)

. Now, if the following
conditions are met:

�tmax \ lmin( �Qk)=p2, Dmax \ lmin( �Qk)� t2p2
� �

=p1

ð31Þ

then _V is negative definite.

Remark. As it is discussed in,15 the Razumikhin-based
theorems present small bounds for communication
delay. Therefore, in the following, a Krasovskii-based
theorem is presented which is less conservatism and
present larger bound of delay.

Theorem 3. Under the following conditions, the
switched linear system (11) is globally asymptotically
stable under arbitrary switching.
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(1) The lead vehicle is globally reachable in all
subsystems.

(2) D
T2
max
� K�lR . 0, lR KlR � D

T2
max

h i2
� 1

T3
min

l2
I . 0

(3) There exist symmetric matrices P, Qi, Si, X
s
i =

Xs
i, 11 Xs

i, 12

� Xs
i, 22

� �
� 0, Xs

i, jk 2 <N3N and arbitrary

matrices Ns
i, 1,N

s
i, 2, i=1, 2, . . . ,N2, such that,

the following expressions hold

P � 0, Qi � 0, Si � 0 ð32Þ

cs
i =

Xs
i, 11 Xs

i, 12 Ns
i, 1

� Xs
i, 22 Ns

i, 2

� � Si

0
B@

1
CA � 0,

Fs =

Fs
1, 1 Fs

1, 2 	 	 	 Fs
1,N2 +1

� Fs
2, 2 	 	 	 Fs

2,N2 +1

..

. ..
. . .

. ..
.

� 	 	 	 � Fs
N2 +1,N2 +1

0
BBBBB@

1
CCCCCA � 0

ð33Þ

where

Fs
1, 1 =AT

sP+PAs

+
XN2

i=1
Qi +

XN2

i=1
�aiA

T
sSiAs

+
XN2

i=1
Ns

i, 1 +NsT

i, 1

� 

+
XN2

i=1
�aiX

s
i, 11,

Fs
i, i ¼

(i6¼1)� 1� âið ÞQi�1

+
XN2

j=1
�aj

�A
T

i�1,sSj
�Ai�1,s �Ns

i�1, 2 �NsT

i�1, 2

+ �ai�1X
s
i�1, 22,

Fs
1, j ¼

(1\ j)
P�Aj�1,s +

XN2

i=1
�aiA

T
sSi

�Aj�1,s �Ns
j�1, 1

+NsT

j�1, 2 + �aj�1X
s
j�1, 12,

Fs
i, j ¼(i\ j, i6¼1)XN2

i=1
�ak

�A
T

i�1,sSi
�Aj�1,s:

Also, �Ai,s=
Bi,s, i=1, ...,N
Ci�N,s, i=N+1, ...,N2

�
, 04ai(t)4�ai,

04 _ai(t)4âi41, and ai(t)=
ti(t), i=1, ...,N
Di�N, i=N+1, ...,N2

�
.

Proof. The proof of conditions (1) and (2) is similar to
theorem 1. In the continuance of the proof, consider
the following common Lyapunov–Krasovskii function

V= eTPe+
XN2

i=1

ðt
t�ai(t)

eT(s)Qie(s)ds

+
XN2

i=1

ð0
��ai

ðt
t+ u

_eT(s)Si _e(s)dsdu

ð34Þ

The closed-loop dynamics of equation (11) can be writ-
ten in the following form

_e=Ase+
XN2

i=1
�Ai,se t� ai(t)ð Þ: ð35Þ

Taking time derivative of V along equation (35) leads
to the following expression

_V4 Ase+
XN2

i=1
�Ai,sei

	 
T
Pe

+ eTP Ase+
XN2

i=1
�Ai,sei

	 


+
XN2

i=1
eTQie�

XN2

i=1
(1� âi)e

T
i Qiei +

+
XN2

i=1
�ai Ase+

XN2

i=1
�Ai,sei

	 
T

Si Ase+
XN2

i=1
�Ai,sei

	 


�
XN2

i=1

ð0
��ai

_eT(t+ u)Si _e(t+ u)du

ð36Þ

where ei = e t� ai(t)ð Þ. By adding the following obvious
terms to the right hand side of equation (36),

2 eTNs
i, 1 + eTi N

s
i, 2

h i
e� ei �

ð0
��ai

_e(t+ u)du

	 

=0,

�aid
T
i X

s
i di �

ð0
��ai

dT
i X

s
i didu=0

ð37Þ

where di = ½eT, eTi �
T, and doing some simplifications,

equation (36) can be written as follows:

_V4gT
0 Fsg0 �

XN2

i=1

ð0
��ai

gT
i cs

i gidu ð38Þ

where g0 = ½eT, eT1 , . . . , eTN2 �T and gi = ½eT, eTi , _eT�T. If
the conditions of equations (32) and (33) are satisfied,
_V is negative-definite. As a result, all subsystems of
equation (11) are globally asymptotically stable.
Moreover, V is a CLF; thus stability in switching
instants is assured.

Table 1 presents a comparison between theorems 1,
2, and 3 from different points of view.

Table 1. Comparison between presented theorems.

Aspect Upper bound of
communication delay

Content of
calculations

Robustness
against lag

Simplicity of
Lyapunov function

Complexity
of approach

Theorem 3 . 1 . 2 3 . 1 . 2 3 . 1 . 2 2 . 1 . 3 1 . 2 . 3
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String stability

As mentioned previously, the string stability of a vehi-
cular platoon (either homogeneous or heterogeneous)
with MPF topology under time-varying delay has not
been solved in previous studies. For MPF topology, the
closed-loop dynamics of ith vehicle will be in the follow-
ing form:

Tie
:::
i + €ei = �D _ei(t� Di)� Kei(t� Di)� K

Xi�1
j= i�m�1

ei(t� Di)� ej(t� �tij)
� � ð39Þ

Equation (39) can be rewritten as follows:

Tie
:::
i + €ei = �D _ei(t� Di)� K(m+1)ei(t� Di)

+K
Xi�1

j= i�m�1
ej(t� �tij) ð40Þ

Theorem 4. Under the following condition, the string
stability of system of equation (11) is assured under m-
predecessors following topology.

D5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K(m+1)

p
ð41Þ

Proof. Taking the Laplace transform of both sides of
equation (40) will result in

Tis
3 + s2

� �
Ei(s)= �Dse�DisEi(s)

� K(m+1)e�DisEi(s)+K
Xi�1

j= i�m�1
e�tijsEj(s)

ð42Þ

By simplifying equation (42), the following equality is
obtained:

Ei(s)=
K

Tis3 + s2 + Ds+K(m+1)½ �e�Dis

Xi�1
j= i�m�1

e�tijsEj(s)

ð43Þ

By considering that Ej(jv)
�� ��4Emax, from equation

(43), we can conclude that

Ei(jv)j j4 Gi(jv)j jEmax, Gi(s)=
Ni(s)

Di(s)

=
mK

Pi�1
j= i�m�1 e

�tijs

Tis3 + s2 + Ds+K(m+1)½ �e�Dis

ð44Þ

So that if Di(jv)j j2 � Ni(jv)j j250, the string stability is
assured. By performing some algebraic calculation, the
following inequality is obtained

T2
i v

6 +v4 +D2v2 � 2DTiv
4 cosDiv

+2KTi(m+1)v3 sinDiv

� 2Dv3 sinDiv� 2K(m+1)v2 cosDiv

+(m+1)2K2 �m2K250

ð45Þ

According to

8d50 : sin d4d! � sin d5� d, sin d5� d,

cos d41! � cos d5� 1, ð46Þ

equation (45) will be simplified as follows

T2
i v

6 + 1� 2DDi � 2DTi � 2KTiDi(m+1)½ �v4

+ D2 � 2K(m+1)
� �

v2 + (m+1)2K2 �m2K250

ð47Þ

Since the spacing errors have most of their energy in
the area with low frequencies, this area is determinative
in string stability analysis.35 So that, if the following
condition hold, the string stability is assured, i.e.

D2 � 2K(m+1)50) D5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K(m+1)

p

Safety (collision avoidance) during
emergency braking

In a string stable platoon, the spacing error of the first
vehicle is larger than other vehicles. If we have
e1(t)4L�, where L� is a safe distance, then the platoon
is safe during emergency braking. Therefore, we can
express that

e1(t)

a0(t)
4

L�

a0, max
) E1(s)

A0(s)
4

L�

a0, maxs
) E1(jv)

A0(jv)

����
����4 L�

a0, maxv

ð48Þ

where a0(t) and a0, max are deceleration and max decel-
eration of lead vehicle during sudden braking.

Theorem 5. Under the following conditions, the colli-
sion avoidance is assured during emergency braking.

1+2KT1D1 � 2D(T1 +D1)� a20, maxT
2
1=L

�250,

D2 � a20, max=L
�250

ð49Þ

Proof. In emergency braking, a0 6¼ 0. Therefore, for i
= 1, equation (10) can be written in the following form

T1e
:::
i + €e1 = �D _e1(t� D1)� Ke1(t� D1)

+T1 _a0 + a0
ð50Þ

Taking the Laplace transform of both sides of equation
(50) will result in

Table 2. Parameters used in simulation studies.

Parameters Description Value

K Gain of controller 2.7
D Gain of controller 4.1
�tij(s) Communication delay

between vehicles
0:18 sin tj j

hi(s) Constant time headway 0.8
Dmin(m) Minimum displacement 5
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E1(jv)

A0(jv)

����
����= jvT1 +1j j

�jv3T3
1 � v2 + jvD+Kð Þe�jvD1

�� �� ð51Þ

Combining equations (48) and (51) and employing
equation (46), it can be easily shown that under the
conditions of equation (49), the heterogeneous platoon
of vehicles is safe during emergency braking.

Simulation study

A platoon of six vehicles consisting of three different
kinds of vehicles is considered, as shown in Figure 3. It
is assumed that the communication topology of each
vehicle varies between leader predecessor following
(LPF) and leader two-predecessors following (LTPF)
schemes. Three different topologies are considered as
shown in Figure 3.

In order to show the effect of velocity of platoon on
inter-vehicle spacing, in all scenarios, the spacing error
is defined as di = xi�1 � xi � Li�1. The relation
between tracking error and spacing error is as follows
di = ei + hiv0 +Dmin. Under the control input of equa-
tion (7), ei converges to zero and subsequently, di con-
verges to hiv0 +Dmin.

Scenario 1. In this scenario, the performance of
string stability of platoon is studied. The control para-
meters are presented in Table 2. The engine time con-
stant, parasitic delay and length of vehicles are
considered as follows:

T1 =0:1s,T2 =0:11s,T3 =0:07s,T4 =0:12s,T5 =0:08s

D1 =0:08s,D2 =0:1s,D3 =0:11s,D4 =0:14s,D5 =0:09s

L1 =4m,L2 =4:1m,L3 =3:8m,L4 =4:2m,L5 =3:9m

Figure 4 shows the velocity tracking and Figure 5
depicts the performance of string stability of platoon.

According to Figure 5, in the acceleration and decel-
eration time period of lead vehicle’s motion, the ampli-
tude of spacing error decreases along the platoon
indicating the string stability.

Scenario 2. In this scenario, the performance of spac-
ing error is studied in presence of noise on transmitted
signals. A noise signal with the amplitude 60:6 and
sampling time T=0:05 Sec is applied to all transmitted
signals between vehicles. Figure 6 shows the spacing
error in this scenario. According to this figure, the con-
trol algorithm of equation (7) is robust against noise
and guarantees both string and internal stability.

Figure 3. Switching topology of a heterogeneous platoon.

Figure 4. Velocity of vehicles in the first scenario.

Figure 5. Spacing error for the first scenario.

Figure 6. Spacing error for the second scenario.
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Scenario 3. This scenario studies the influence
of external disturbance on string stability of platoon.
For this purpose, the disturbance signal d(t)=

1:23 sin (0:96t), t. 30, t\ 90
0, otherwise

�
. is applied to lead vehi-

cle’s motion. According to Figure 7, the platoon is
string stable against disturbance signal.

Scenario 4. In this scenario, the safety of the platoon
in an emergency braking maneuver is studied. Figure 8
shows the velocity of vehicles. As this figure indicates,
at t=50s the emergency barking occurs. In this sce-
nario, in addition to parameters described in Table 2, it
is assumed that a0, max = � 10m=s2 and L�=1:3m.
Figure 8 depicts the velocity of vehicles in this scenario
and Figure 9 shows the spacing error during emergency
braking. According to these figures, the collision avoid-
ance is guaranteed during emergency braking.

Conclusion

The third-order safe consensus of longitudinal hetero-
geneous vehicular platoons is considered in this paper.
The network topology of platoon is considered time-
varying. Both communication and parasitic delays are
considered in control design and stability analyses. A
centralized neighbor based linear control law based on

MPF topology is considered for each vehicle. Some
new approaches are presented to perform internal sta-
bility analysis of the vehicular platoons in presence of
delay and time-varying network topology. Afterwards,
a new theorem is presented which introduces a neces-
sary condition on control parameters to guarantee the
string stability for MPF topology. Moreover, necessary
conditions on control parameters assuring safety dur-
ing emergency braking are derived. Several simulation
studies are rendered to illustrate the effectiveness of the
proposed approaches.
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Appendix

List of symbols and abbreviations

A: Adjacency matrix of followers,
B: Adjacency matrix of leader,
BM: Bilharz matrix,
CSS: Constant spacing strategy,
CTHS: Constant time headway strategy,
ci : Lower level control,
D: Gain of controller,
Dmin : Minimum displacement,
hi : Constant time headway,
ITS: Intelligent transportation system,
K: Gain of controller,
Ns

ij : Arbitrary matrices,
ns : Number of subsystems,
N: Number of vehicles,
�P,P,Qi,Si,X

s
i : Positive definite matrices,

xi : Position of vehicle i,
_xi, vi : Velocity of vehicle i,
€xi, ai : Acceleration of vehicle i,
xdi : Desired position,
T: Engine time constant,
s(t) : Switching signal,
li, k : ith eigenvalue of Hk,
zi, k : ith characteristic equation,
t(t) : Communication delay,
�ti(t) : Total time delay,
�ti : Maximum total time delay,
D : Parasitic delay,
di : Spacing error.
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