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Third-order leader-following consensus
protocol of traffic flow formed by
cooperative vehicular platoons by
considering time delay: constant
spacing strategy

Hossein Chehardoli and MR Homaeinezhad

Abstract
In this article, the problem of third-order consensus of homogeneous traffic flow formed by cooperative vehicular pla-
toons is studied. This article is presented in two main parts. Inter-platoon stability analysis and intra-platoon stability
analysis. For inter-platoon stability analysis, due to great length of traffic flow, it is assumed that lead vehicle is not avail-
able. Therefore, a new consensus algorithm based on bidirectional virtual leader-following strategy is introduced. Both
communication and parasitic delays are involved in control design and stability analysis. By decoupling the closed-loop
dynamics of cooperative leaders and employing the cluster treatment characteristic root method, necessary conditions
on control parameters and stable regions of time delay satisfying internal stability of leaders’ network are derived. In
continuance of this part, inter-platoon string stability is studied. In the second part, it is assumed that the communication
topology of each platoon is generic. Therefore, some of the eigenvalues of network matrix are complex which compli-
cates the intra-platoon stability analysis. After decoupling the closed-loop dynamics of each platoon, a new consensus
algorithm is presented. It will be shown that by this algorithm, the control parameters are independent of eigenvalues of
network matrix which simplifies the controller design and stability analysis. Several simulation results are provided to
show the effectiveness of the proposed approaches.
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Introduction

In recent decades, the problem of traffic congestion as
an important environmental, economical, and social
issue has received a lot of attentions.1–3 The idea of
intelligent transportation systems (ITS) is a useful pol-
icy to decrease the impact of traffic congestion, shorten
travel time, and increase safety and lower fuel consump-
tion.4,5 The main idea of ITS is to control the autono-
mous vehicles to constitute the cooperative platoons in
which all platoons move with identical velocity and as
small as possible inter-platoon and intra-platoon spac-
ing.5 Therefore, the traffic capacity and fuel efficiency
will increase.

The coordinated motion of a group of vehicles with
the same velocity and small inter-vehicles spacing is
called vehicular platooning.5–7 The vehicular platoon-
ing has received much attention since 1980s.5 Due to

employing smaller inter-vehicle spacing compared with
typical adaptive cruise controls, vehicular platooning
has a significant potential to achieve and implement
the idea of ITS.5,8 In implementing vehicular platoon-
ing, three important indexes are considered.9 Internal
stability has the same concept as asymptotic stability,
string stability, and scalability. A vehicular platoon is
said to be internal stable if all the roots of the closed-
loop dynamics locate on the left-hand side of imaginary
axis.10,11 The string stability assures that the spacing
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errors will not propagate along the platoon when a dis-
turbance signal is applied to lead vehicle’s motion.12

The scalability studies the effect of platoon size on sta-
bility margin of closed-loop dynamics.13

The control structure of an autonomous vehicle is
composed of two levels: (1) upper level controller and
(2) lower level controller. The upper level controller cal-
culates the desired value of acceleration and lower level
controller calculates the appropriate inputs for the
throttle and brake actuators to produce the desired
acceleration specified by the upper level controller.14

To adjust the inter-vehicle spacing, two general stra-
tegies are employed in platooning control: (1) constant
spacing strategy (CSS)6 and (2) constant time headway
strategy (CTHS).11 In CTHS, the inter-vehicular spac-
ing is a function of velocity. But in the CSS, it is con-
trolled to remain constant. A vehicular platoon is called
homogeneous if all vehicles have identical dynamics.
Otherwise, it is heterogeneous.10

A great deal of research studies have been done on
stability analysis and control design of vehicular pla-
tooning. These works can be categorized from several
aspects of view. Centralized controller schemes are stud-
ied by Santini et al., Chehardoli and Homaeinezhad,
and Naus et al.,8,10,12,15 and decentralized controllers are
investigated by Santhana and Rajamani, Ghasemi et al.,
Khatir and Davidson, and Ploeg et al.6,11,16,17 In the
works by Chehardoli and Homaeinezhad and Bernardo
et al.,10,18,19 second-order consensus of vehicular pla-
toons is studied, whereas different third-order linear
consensus protocols are presented in the works by
Ghasemi et al., Naus et al., Zheng et al., and Chehardoli
and Homaeinezhad.11–13,15 In the works by Chehardoli
and Homaeinezhad, Middleton and Braslavsky, and
Ghasemi et al.,19–21 it is assumed that all vehicles in pla-
toon are homogeneous. The internal and string stability
analysis of heterogeneous platoons is studied by
Chehardoli and Homaeinezhad, Wang and Nijmeijer,
and Bernardo et al.10,22,23 Several linear control proto-
cols are provided by Chehardoli and Homaeinezhad,
Khatir and Davidson, Ghasemi et al., and Peters
et al.,10,16,21,24 whereas different nonlinear schemes are
presented by Guo et al., Swaroop et al., and Kwon and
Chwa.25–27 A robust control based on sliding mode con-
troller is presented in the work by Swaroop et al.26 to
guarantee the internal and string stability of homoge-
neous vehicular platoons with second-order dynamics.
A new adaptive control scheme is presented by Guo
et al. and Kwon and Chwa25,27 to estimate the uncertain
parameters such as rolling resistance and air drag coeffi-
cient. In the works by Santhana and Rajamani,
Ghasemi et al., and Bernardo et al.6,11,18,23 and
Chehardoli and Homaeinezhad, Naus et al., Swaroop
et al., and Ghasemi and Rouhi,10,12,26,28 CTHS and CSS
are employed to adjust the inter-vehicle spacing. Due to
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication, time delay is attracted much
more attention to vehicular platooning.10,12,15,23,24 In
the works by Naus et al. and Peters et al.,12,24

communication delay is considered homogeneous,
whereas in the works by Chehardoli and Homaeinezhad
and Bernardo et al.,10,15,23 it is assumed heterogeneous.
The safety and collision avoidance problem is discussed
widely in the works by Chehardoli and Homaeinezhad
and Ghasemi and Rouhi.15,28 In the work by Ghasemi
et al.,11 by employing partial differential equation
(PDE) approximation, the closed-loop dynamics of
vehicular platoons is decoupled. However, due to limita-
tion of this approach, communication and parasitic
delays cannot be modeled by PDE approximation. A
new uncertain leader-following consensus algorithm is
presented in the work by Wu et al.29,30 to stabilize the
closed-loop dynamics of multi-agent systems.

To the best of our knowledge, despite huge amount
of relevant literature to date (of which a large part was
addressed in the previous paragraph), the stability anal-
ysis and control design for the whole of traffic flow
have not been studied so far. In practical implementa-
tions, a traffic flow consists of cooperative vehicular
platoons in which leaders exchange information with
each other. A traffic flow consists of two different
cooperative networks: (1) lead vehicles’ communication
network which is called inter-platoon network and (2)
the communication network of individual platoons
which is called intra-platoon network. All the previous
studies focused on stability of intra-platoon network.
In this article, the stability analysis of traffic flow as the
combination between cooperative vehicular platoons is
investigated.

Due to the great length of traffic flow, the leader of
inter-platoon network may be not available. Also, it is
assumed that each leader in inter-platoon network is in
communication with preceding and subsequent leaders.
Therefore, the inter-platoon network topology is bidir-
ectional virtual leader-following (BDVLF) topology. A
new consensus protocol is defined for inter-platoon net-
work and it will be shown that without the position
information of virtual leader, both inter-platoon inter-
nal and string stability are guaranteed. By employing
the cluster treatment characteristic root (CTCR)
method, the stable regions of communication and para-
sitic delays for inter-platoon network are calculated.

The intra-platoon network is assumed to be non-
uniform and generic. Therefore, some eigenvalues of
network may be complex which makes the stability
analysis more difficult. In previous works on networks
with generic topology, the control parameters are
strictly dependent on network’s eigenvalues. This
makes the controller design more complicated, espe-
cially when the communication topology is varying by
time. Therefore, in this article, a new approach based
on decoupling of intra-platoon closed-loop dynamics is
introduced rectifying this problem.

In summary, the main contributions of this article
are as follows:

1. Introducing a new virtual leader-following scheme
based on CSS to guarantee both inter-platoon
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internal and string stability in the presence of com-
munication and parasitic delays.

2. Introducing a new control protocol by decoupling
the intra-platoon closed-loop dynamics in which
the control parameters are independent on network
structure.

The rest of this article is organized as follows: in sec-
tion ‘‘Graph theory,’’ a brief review of graph theory is
presented. In section ‘‘Stability analysis of lead vehicles’
network,’’ inter-platoon internal and string stability
analyses are studied. In section ‘‘Intra-platoon stability
analysis,’’ intra-platoon stability analysis is presented.
In section ‘‘Simulation studies,’’ several simulation
results are provided to show the effectiveness of the
proposed methods. Finally, section ‘‘Conclusion’’ con-
cludes the article. Also, some applicable lemmas and
theorems are listed in Appendices 1 and 2.

Graph theory

Let G=(V,E,A) is a graph of order N with
V= f1, 2, :::,Ng which represents node set, E � N3N
is the set of edges, and A is the adjacency matrix with
nonnegative elements. An edge (i, j) denotes that the
node j has access to the information of the node i. Set
of neighbors of node i is shown by
Ni = fj 2 V : ( j, i) 2 e, j 6¼ ig. In the leader–follower
scheme, for the follower agents 1 to N, there exists a
leader labeled by 0. Information is exchanged between
the leader and the follower agents which belong to the
neighbors of the leader. Then, the graph �G=( �V, �E,A)
with node set �V=V [ f0g and edge set �E= �V3 �V rep-
resents the communication topology between the leader
and the followers. A diagonal matrix B 2 <N3N is
defined as a leader adjacency matrix of �G with diagonal

elements bi = ai0. If lead vehicle is a neighbor of vehicle
i, ai0 . 0 and ai0 =0, otherwise. Node 0 is globally
reachable in �G if there is a path form every node i 2 V
to it. For graph G, the Laplacian matrix
L̂= ½l̂ij� 2 <N3N is defined with l̂ii=

PN
j=1, 6¼i aij and

l̂ij=� aij, i 6¼ j. Also, for graph �G, the important
matrix H= L̂+B is defined.

Stability analysis of lead vehicles’ network

In this section, the inter-platoon internal and string sta-
bility of homogeneous traffic flow is considered.
Figure 1 shows the homogeneous traffic flow as the
combination of cooperative vehicular platoons.

Internal stability of lead vehicles’ network

Due to great length of traffic flow, the communication
topology of leaders’ network is assumed to be BDVLF
topology. Each leader is in communication with its
neighbors and virtual leader through V2V and V2I
communication. The longitudinal motion of leader i is
described by the following linear differential equa-
tion11–13,15

1 _a0, i + a0, i = u0, i ð1Þ

where 1, a0, i, and u0, i are time constants of engine,
acceleration, and control input, c, the virtual leader-
following consensus protocol is defined as follows

u0, i(t)=
XN0, i

j=1

aij a2 J(d0, ij)� v0, i(t)
� ��

+a3 v0, j(t� t0, ij)� v0, i(t)+ al(t� tl)t0, ij
� �

�
+a1 v0, i(t)� vlð Þ

ð2Þ

where a1,a2,a3 are positive control gains (the proce-
dure of calculating these parameters is introduced in
Theorem 1); vl, al are the velocity and the acceleration
of virtual leader; N0, i is the number of neighbors of ith
leader; v0, i is the velocity of leader i; t0, ij, tl are V2V
and V2I communication delays; and d0, ij is defined as
follows

d0, ij =
1

i� j
x0, j(t� t0, ij)� x0, i �

Xi�1
k= j

XNk

r=1

Lk, r + �skð Þ+
Xi�1
r= j

�Sr + vl(t� tl)t0, ij

 !
ð3Þ

where x0, j( ) denotes the position of leader j and
Lk, r, �sk, �Sk are the length of vehicle r in platoon k, con-
stant intra-platoon spacing of platoon k, and constant
inter-platoon spacing between consecutive platoons.
Also, the function J(d0, ij) is defined as follows

J(d0, ij)=
�v

2
1+ tanh 2p

d0, ij � R1 +R2

2

R2 � R1

 ! !
ð4Þ

Figure 1. A traffic flow as the combination of cooperative platoons.
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where R1,R2, �v are positive constants. Figure 2 shows
the range policy function J( ) for selected values
R1 =10m, R2 =30m, and �v=40m=s. This range
spacing policy function assures the safety of inter-
platoon network and increases the traffic capacity. If
d0, ij \R1, the leaders tend to brake to avoid the colli-
sion and if d0, ij .R2, leaders reach to �v, to decrease the
inter-platoon spacing.

Based on CSS, the inter-platoon error and its time
derivatives are defined in the following form

e0, i = x0, i � xl +
Xi�1
k=1

XNk

r=1

Lk, r + �skð Þ

+
Xi�1
r= j

�Sr, _e0, i = v0, i � vl, €e0, i = a0, i, e
...
0, i= _a0, i

ð5Þ

where xl is the position of virtual leader. It should be
noted that since the leader is virtual, xl does not have a
physical meaning and is not employed in controller
design. Replacing equations (2), (3), and (5) in equation
(1) and assuming that vl = J(d0, ij(t0)) and vl(t� tl)’

vl(t), the closed-loop dynamics of leader i will be in the
following form

1 e
...
0, i + €e0, i =

XN0, i

j=1

aij
a2

i� j
J
0
(d0, ij(t0)) e0, j(t� t0, ij)� e0, i

� �
+a3 _e0, j(t� t0, ij)� (a1 +a2) _e0, i(t)

� �
+a1 _e0, i ð6Þ

Equation (6), by adding the effect of parasitic delay
(d), will be in the following form

1e0, i + €e0, i =
XN0, i

j=1

aij
a2

i� j
J
0
(d0, ij(t0)) e0, j(t� �t0, ij)� e0, i(t� d)

� �
+a3 _e0, j(t� �t0, ij)� (a2 +a3) _e0, i(t� d)

� �
+a1 _e0, i(t� d) ð7Þ

where �t0, ij= t0, ij+ d. For BDVLF topology, equation
(7) will be in the following form

1e
...
0, i + €e0, i =a2J

0(d0, ij(t0))

e0, i�1(t� �t0, i, i�1)� e0, i(t� d)ð Þ+a2J
0(d0, ij(t0))

e0, i+1(t� �t0, i, i+1)� e0, i(t� d)ð Þ
+ a1 � 2(a2 +a3)ð Þ _e0, i(t� d)

+a3 _e0, i�1(t� �t0, i, i�1)+a3 _e0, i+1(t� �t0, i, i+1)

ð8Þ

For leaders’ network, the error vector is defined as
E= e1, _e1, €e1, . . . , eN, _eN, €eN½ �. Therefore, the inter-
platoon closed-loop dynamics is in the following form

_E(t)= IN � C1E(t)+A� C2E(t� �tij)+ IN � C3E(t� d)

ð9Þ

where

C1 =

0 1 0

0 0 1

0 0 �1=1

0
B@

1
CA,

C2 =

0 0 0

0 0 0

a2J
0(d0, ij(t0))=1 a3=1 0

0
B@

1
CA,

C3 =

0 0 0

0 0 0

z1=1 z2=1 0

0
B@

1
CA,

A=

0 1 0 ::: 0 0

1 0 1 ::: 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 ::: 1 0

0
BBBB@

1
CCCCA

and z1 =� 2a2J(d0, ij(t0)), z2 =a1 � 2(a2 +a3). For
the inter-platoon adjacency matrix A, there exist
matrices T and N such that T�1AT=N, where N is a
diagonal matrix of eigenvalues of matrix A. By defining
E=(T� I3)j, equation (9) can be written in the fol-
lowing form

_j=(T�1 � I3)(IN � C1)(T� I3)j(t)

+ (T�1 � I3)(A� C2)(T� I3)j(t� �t0, ij)

+ (T�1 � I3)(IN � C3)(T� I3)j(t� d)

ð10Þ

By applying Lemma 5 to equation (10), we will have
the following

_j=(IN � C1)j(t)+ (L� C2)j(t� �t0, ij)+ (IN � C3)j(t� d)

ð11Þ

Figure 2. Range policy function J.
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So that the decoupled forms of equation (9) are as
follows

_ji =C1ji(t)+ liC2ji(t� �t0, ij)+C3ji(t� d) ð12Þ

where li is ith eigenvalue of matrix A. In the work by
Ghasemi et al.,11 by employing the PDEs, the intra-
platoon closed-loop dynamics is decoupled. But, due to
limitation of this approach, time delay is not consid-
ered. Due to great distance between leaders, the com-
munication delay should be considered in system
modeling and control design.

Theorem 1. The decoupled equation (12) without time
delay is globally asymptotically stable under the follow-
ing conditions

J0(d0, ij(t0)). 0, a1 \ 2a2, a3 . 1a2J
0(d0, ij(t0)) ð13Þ

Proof. The characteristic equation of equation (12) with-
out considering delay is in the following form

1s3 + s2 � (lia3 + z2)s� (z1 + lia2J
0(d0, ij(t0)))=0

ð14Þ

By employing Routh–Hurwitz criterion, it is shown
that under the following conditions, equation (14) is
stable

z1 + lia2J
0(d0, ij(t0))\ 0) (li � 2)J0(d0, ij(t0))\ 0,

(2� li) a3 � 1a2J
0(d0, ij(t0))

� �
� a1 +2a2 . 0

ð15Þ

For the range policy function (4), it can be easily
shown that J0(d0, ij(t0)). 0. From Gershgorin theo-
rem,31 it is inferred that jlijł 2. Therefore, it can be
easily checked that under conditions (equation (13)), all
inequalities of equation (15) are satisfied.

To calculate the stable regions of time delay, the
CTCR method is employed.32 The characteristic equa-
tion of equation (12) is in the following form

cei = sI3 � C1 � C2lie
��ts � C3e

�ds ) cei = 1s3

+ s2 � li a3s+a2J
0(0)ð Þe��ts � (z1 + z2s)e

�ds

ð16Þ

Since cei has infinite roots, the stability analysis by
applying Routh–Hurwitz method to equation (16) is
impossible. Therefore, the following exact Rekasius
transformations are introduced32

e��ts =
1� T1s

1+T1s
, e�ds =

1� T2s

1+T2s
, s= jv, v 2 <+ ð17Þ

The imaginary roots of equation (16) remain invar-
iant under Rekasius transformation.32 By considering
s= jv, defining s1 =T1v, s2 =T2v and replacing
equation (17) in equation (16), cei will be in the follow-
ing form

cei =
X3
k=0

mkvk + j
X3
k=0

nkvk ð18Þ

where

m0 =� (z1 +a2li)s1s2 � (z1 + lia2J
0(0)),

m1 = (z2 + lia3)(s2 � s1), m2 =s1s2 � 1,

m3 = 1(s1 +s2)

n0 = (s1 � s2)(z1 + lia2),

n1 =� (lia3 + z2)s1s2 � z2 � lia3,

n2 =� (s1 +s2), n3 =� 1(s1s2 +1)

ð19Þ

To exist imaginary roots for equation (16), both real
and imaginary parts of equation (18) must be zero
simultaneously. If Sylvester’s matrix associated with
equation (18) is singular, there exist imaginary roots
for equation (16). Sylvester’s matrix associated with
equation (18) is in the following form

Ms =

m3 m2 m1 m0 0 0
0 m3 m2 m1 m0 0
0 0 m3 m2 m1 m0

n3 n2 n1 n0 0 0
0 n3 n2 n1 n0 0
0 0 n3 n2 n1 n0

0
BBBBBB@

1
CCCCCCA

ð20Þ

We can express that

det (Ms)=F(s1,s2)=F tan(0:5dv), tan(0:5�tv)ð Þ=0

ð21Þ

which constitutes a closed-form description of the ker-
nel curves in the spectral delay space (SDS) (d, �t)v.32

Every point (dv, �tv) on SDS brings an imaginary char-
acteristic root at 6jv. Using the transformation
(t, d)=2(tan�1(t, d)6kp)=v, k=0, 1, 2, . . ., the ker-
nel and offspring hypercurves are derived from SDS
diagram.32 For an imaginary root s= jv, the root ten-
dency is defined as follows32

RTjtjs= jv =sgn Re
∂s

∂t

����
s= jv

 !" #
ð22Þ

If the root tendency is positive, by increasing the
value of one delay (while other delays are constant),
the imaginary root s= jv will be unstable. Using ker-
nel and offspring hypercurves and the concept of root
tendency, the stable regions of time delay for character-
istic equation (16) are obtained. More details about
CTCR method can be found in the work by Ergenc
et al.32

String stability of leaders’ network

Taking Laplace transform of both sides of equation (8)
leads to
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Ei(s)=Gi�1(s)Ei�1(s)+Gi+1(s)Ei+1(s)

Gi�1 =
a2J

0(d0;ij(t0))+a3s
� �

e��ts

1s3 + s2 + 2(a2 +a3)� a1ð Þse�ds +2a2J0(0)e�ds
,

Gi+1 =
a2J

0(d0;ij(t0))+a3s
� �

e��ts

1s3 + s2 + 2(a2 +a3)� a1ð Þse�ds +2a2J0(0)e�ds

ð23Þ

where Ei(s) is the Laplace transform of ei(t) and
�t =maxi, j(�tij). By doing some algebraic manipulations,
we have

Ei

Ei�1
=

Gi�1
1� Gi+1(Ei+1=Ei)

ð24Þ

Theorem 2. The inter-platoon network is string stable
under the following condition

a1 � 2(a2 +a3)½ �2 +8a2J
0(d0, ij(t0))a1d

� 4a2J
0(d0, ij(t0)) 1+4(a2 +a3)½ �d . 0

ð25Þ

Proof. According to equation (24), if the conditions
jGi�1(jv)j, jGi+1(jv)jł 0:5 and jEN(jv)=EN�1(jv)jł 1
are met, then jEi(jv)=Ei�1(jv)jł 1. Consider
jGi�1j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pi�1=�qi�1

p
ł 1=2) �qi�1 � 4�pi�1 ø 0. Where

�pi�1 = 12v6 +v4 + 2(a2 +a3)� a1ð Þ2v2

� 2 2(a2 +a3)� a1ð Þ1v4cos dv

� 4 2(a2 +a3)� a1ð Þva2J
0(d0, ij(t0))sin(2dv)

+4v31a2J
0(d0, ij(t0))sin dv

� 4v2a2J
0(d0, ij(t0))cos dv

+4v3 2(a2 +a3)� a1ð Þsin dv+4a2
2J
02(d0, ij(t0))

�qi�1 =a2
2J0

2
(d0, ij(t0))+a3

2v2

By performing some algebraic manipulations, the
inequality �qi�1 � 4�pi�1 ø 0 is simplified to follows

12v6 +v4 + 2(a2 +a3)� a1ð Þ2v2

� 2 2(a2 +a3)� a1ð Þ1v4cos dv

� 4 2(a2 +a3)� a1ð Þva2J
0(d0, ij(t0)) sin (2d)v

+4v31a2J
0(d0, ij(t0)) sin dv

� 4v2a2J
0(d0, ij(t0)) cos dv

+2v3 2(a2 +a3)� a1ð Þ sin dv� 4a2
3 ø 0 ð26Þ

According to the following math expressions

8q ø 0 : sin q ł q! �sin q ø � q,

sin q ø � q, cos q ł 1! �cos q ø � 1

Equation (26) is simplified as follows

12v6 + 1� 4(a2 +a3)� 2a1ð Þ1� 2d1a2J
0(d0, ij(t0))� 4(a2 +a3)� 2a1ð Þd

� 	
v4

+ a1 � 2(a2 +a3)½ �2 � 4a2J
0(d0, ij(t0))d 1+4(a2 +a3)� 2a1ð Þ � 4a3

2
n o

v2 ø 0
ð27Þ

Since spacing errors have most of their energy in the
region of low frequency, this region is most determi-
nant in string stability analysis.33 Therefore, in equa-
tion (27), if the coefficient of v2 be positive, the string
stability is assured. So that under condition (equation
(25)), inequality (equation (27)) is satisfied. Performing
the similar analysis for jGi+1j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pi+1=�qi+1

p
ł 1=2,

leads to the same result as equation (25). For the last
vehicle, we have the following

EN(s)=GN�1(s)EN�1(s), GN�1

=
a2J

0(d0, ij(t0))+a3s
� �

e��ts

1s3 + s2 + a2 +a3 � a1ð Þse�ds +a2J0(d0, ij(t0))e�ds

ð28Þ

It can be easily shown that if equation (25) holds,
then jEN�1(jv)=EN(jv)j\ 1. Therefore, it is concluded
that under condition (equation (25)), the inter-platoon
string stability is assured.

Intra-platoon stability analysis

Intra-platoon internal stability under generic network
topology

In some of previous studies, the intra-platoon network
topology is assumed to be generic.7,15,18,19,23,34–36 In
most of the works,7,8,10,15,18,19,23,37,38 some eigenvalues
of network topology are complex which makes the sta-
bility analysis more complicated specially when the net-
work topology is time-varying. In these studies, the
control parameters are strictly dependent on network’s
eigenvalues. Motivated to this problem, by decoupling
the closed-loop dynamics, a new leader-following con-
sensus protocol is presented to overcome this difficulty.
It will be shown that by the proposed approach, the
control parameters are independent of the network
topology.

The longitudinal model of vehicle i in platoon k can
be represented as follows. In this section, �A and �B are
adjacency matrices of following and lead vehicles,
respectively

_xi, k = �C1xi, k + �C2ui, k, xi = ½xi, vi, ai�T,

�C1 =

0 1 0

0 0 1

0 0 �1=1

0
B@

1
CA, �C2 = ½0, 0, 1=1�T

ð29Þ

The following control scheme is considered for each
vehicle

6 Proc IMechE Part I: J Systems and Control Engineering 00(0)



ui, k(t)= (L+ �L)�bi x0, k(t� t0i)� xi, k(t)+ t0iv0, k(t� t0i)� �s0, ið Þ̂i+ t0ia0, k(t� t0i )̂j
h i

+L
XN
j=1

�aij xj, k(t� tij)� xi, k(t)+ tijv0, k(t� tij)� �sij
� �̂

i+ tija0, k(t� tij)̂j
h i ð30Þ

where L= ½l1, l2, l3�, �L= ½�l1, �l2, 0� are intra-platoon
control gains; î= ½1, 0, 0�T, ĵ= ½0, 1, 0�T, N is the length
of platoon; and �s0i is the desired spacing between leader
and ith vehicle which is defined as follows

d0, i =
Xi
j=1

(�sk +Lj�1, k) ð31Þ

where �sk is the constant spacing and Lj�1, k is the length
of preceding vehicle in platoon k. From equation (31),
it is concluded that �sji= �s0i � �s0j. For vehicle i in pla-
toon k, the error vector is defined as follows

ei, k = x0, k � xi, k � �s0îi ð32Þ

By assuming that a0, k(t� t)’ a0, k(t) and
v0, k(t� t)’ v0, k(t), the control law (equation (30)) in
terms of error vector is expressed as follows

ui, k(t)= (L+ �L)�biei, k(t)+L
XN
j=1

�aij ei, k(t)� ej, k t� tij
� �� 	
ð33Þ

Time derivative of both sides of equation (32), repla-
cing equation (30) in it and considering parasitic delay
(d) yields the following

_ei, k(t)= �C1ei, k(t)� �C2(L+ �L)�biei, k(t� d)

� �C2L
XN
j=1

�aij ei, k(t� d)� ej, k t� �tij
� �� 	

ð34Þ

where �tij= tij+ d. By defining ek = ½e1, k, e2, k, . . . ,
eN, k�T, the closed-loop dynamics of platoon k in terms
of tracking error will be written as follows

_ek(t)= IN � �C1

� �
ek(t)� D� (�C2L)+ IN � �C2

�L
� �� 	

ek(t� d)+
XN
i=1

XN
j=1

�Aij � (�C2L)
� �

ek(t� �tij) ð35Þ

where akl=
hij k= i, l= j
0 otherwise



, �Aij = ½akl�ij, D= diagfdi

+ big, di is the degree of node i, and hij is the element

of matrix H. A necessary (but not sufficient) condition
for stability of system (35) is stability without delay.
System (35) without considering time delay will be in
the following form

_ek(t)= IN � �Cc �H� �C2L
� �� 	

ek(t) ð36Þ

where �Cc =
0 1 0
0 0 1
��l1 ��l2 �1=1

0
@

1
A. Before presenting

the main theorem, the following new theorem is
proposed.

Theorem 3. It is assumed that H has n distinct real
eigenvalues ei with the repetition order ni and m distinct
complex eigenvalues �ei = pi + jqi with the repetition
order mi. So that

Pn
1 nr +

Pm
1 mr =N. There exists a

non-singular matrix V 2 <N3N such that

V�1HV=N, N= diag N1, . . . ,Nn,Nn+1, . . . ,Nn+mð Þ
ð37Þ

where Ni, i=1, 2, . . . , n+m are Jordan blocks associ-
ated with real and complex eigenvalues. For repetitive
real eigenvalues, Jordan blocks are in the following
form (i=1, . . . , n)

Xi =

ei 1 ::: 0

0 ei . .
. ..

.

..

. . .
. . .

.
*

0 ::: 0 ei

2
6664

3
7775 ð38Þ

Based on nilpotent degree of ei, * 2 f0, 1g.35 The
Jordan blocks associated with �ei are as follows
(i= n+1, . . . , n+m)

Ni =

�Ni I2

0 �Ni
. .

.

..

. . .
. . .

.
I2

0 ::: 0 �Ni

2
66664

3
77775, �Ni =

pi qi
�qi pi

� �
ð39Þ

Proof. The proof of Theorem 3 is explained in
Appendix 1.

Theorem 4. The system (36) under the following condi-
tions is globally asymptotically stable

L=
�C
T
2P
�1

2
ð40aÞ

where P is a positive definite matrix satisfying
�CcP+P�CT

c � 0

�l2 . 1�l1, l2 . 1l1 ð40bÞ

Proof. According to Lemma 1, since lead vehicle is
globally reachable in platoon, matrix H is positive
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definite. By defining ek(t)= V� I3ð Þ�jk(t) and employ-
ing Lemma 5, equation (36) can be written as follows

_�jk(t)= V�1 � I3
� �

IN � �Cc �H� �C2L
� �� 	

V� I3ð Þ�jk(t)
= IN � �Cc � N� �C2L

� �� �
�jk(t)=Ccjk(t)

ð41Þ

According to equations (38) and (39), we have the
following

Cc =

�Cc � ei �C2L ��C2L 0

0 �Cc � ei �C2L
. .

.
0

..

.
0 . .

.
�*�C2L

0 � � � 0 �Cc � ei �C2L

0
BBBBB@

1
CCCCCA,

i=1, 2, . . . , n

ð42Þ

Cc =

~Ci �I2 � (�C2L) 0

0 ~Ci
. .

.
0

..

.
0 . .

.
�I2 � (�C2L)

0 � � � 0 ~Ci

0
BBBBB@

1
CCCCCA,

~Ci = I2 � �Cc �
pi qi

�qi pi

� �
� (�C2L), i= n+1, . . . , n+m

ð43Þ

System (41) is asymptotically stable if

�Cc � ei �C2L � 0

~Ci = I2 � �Cc �
pi qi

�qi pi

� �
� (�C2L) � 0

ð44Þ

For real eigenvalues, the characteristic equation of
matrix �Cc � ei �C2L is in the following form

l3 +
1

1
+ l3ei

� �
l2 + (�l2 + eil2)l+(�l1 + eil1)=0

ð45Þ

By employing Routh–Hurwitz criterion, it can be
easily verified that if the following expression is satis-
fied, equation (44) is asymptotically stable

l3ei �l2 + eil2
� �

+
1

1
�l2 + eil2
� �

� �l1 + eil1
� �

. 0 ð46Þ

Since ei . 0, it is obvious that if �l2 . 1�l1 and l2 . 1l1,
then �Cc � ei �C2L � 0. According to Lemma 3, if there is
a positive definite matrix P satisfying the following
expression, equation (44) is satisfied

I2 � �Cc �
pi qi

�qi pi

� �
� (�C2L)

� �
I2 � Pð Þ

+ I2 � Pð Þ I2 � �C
T
c �

pi �qi
qi pi

� �
� (LT �C

T
2 )

� �
� 0

ð46Þ

Using Lemma 5, equation (46) will be as follows

I2 � �CcP+PC
T

c

� �
�

pi qi

�qi pi

� �
� �C2LP
� �

�
pi �qi
qi pi

� �
� PLT �C

T

2


 �
� 0

ð47Þ

Under condition (equation (40a)), �Cc � 0.
Therefore, there exist positive definite matrices
P,Q � 0 such that �CcP+P�C

T

c =�Q. By choosing
L= �C

T

2P
�1=2, equation (47) will be in the following

form

I2 � �CcP+P�C
T

c


 �
�

pi 0

0 pi

� �
� �C2

�C
T

2

= I2 � �CcP+P�C
T

c � pi �C2
�C
T

2


 �
=� I2 � �Q

ð48Þ

According to Lemma 4, �Q � 0. Therefore, the proof
is complete.

Remark 1. In addition to CTCR method, the
Razumikhin and Krasovskii theorems are also
employed to stability analysis of time delay systems
(for additional information, readers are referred to the
works by Qiu and colleagues39,40). Also, the modeling
of leader-following scheme of inter-platoon network
via Markov chains is an interesting subject deserving
some further investigations.41,42

Remark 2. Since the control methodologies provided in
this article describes the procedure of upper level con-
trol, these methods also can be employed for all kinds
of gasoline and electric ground vehicles.43,44

Simulation studies

In this section, a homogeneous traffic flow consisting of
10 cooperative vehicular platoons is investigated. The
length of each platoon (number of following vehicles) is
10. In this section, time responses of leaders’ network
and platoon 7 are studied. Figure 3 shows the network
structure of platoon 7 and Figure 4 depicts the SDS dia-
grams of inter-platoon network.

123459 78 610

Figure 3. Network topology of platoon 7.
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The eigenvalues of matrix H of platoon 7 are as fol-
lows: 1, 1.58, 2.11, 2.83, 3.56, 5.31, 60.8j, 4.9960.36j,
4.32. Table 1 shows the control gains and constant
parameters used in the simulation studies.

Inter-platoon stability simulation

The CTCR method implementation. In the stability analysis
of inter-platoon network, the spacing error is defined as
D0, i = x0, i�1 � x0, i � d0ij. The control parameters

Table 1. Control gains and constant parameters.

a2 = 4:1 a3 = 5:3 a1 = 8:7 �sk = 10 m �Sk = 25 m
�L = ½2, 4, 0� R1 = 10 m R2 = 20 m § = 0:1 �v = 40 m=s
d = 0:11 s tl = 0:2 t0, i, i + 1 = 0:22 s tk, i, i + 1 = 0:13 s L = 4 m

Figure 4. Spectral delay space for eigenvalues of leaders’ adjacency matrix. (a) l = 21.92, (b) l = 21.66, (c) l = 21.31,
(d) l = 20.83, (e) l = 20.28, (f) l = 20.28, (g) l = 20.83, (h) l = 1.83, (i) l = 1.68, (j) l = 1.92, (k) total SDS diagram.
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presented in Table 1 satisfy the conditions (equation
(13)). In continuance, the stable regions of time delay
are calculated by employing the CTCR method. At
first, by employing equations (18)–(21), the SDS dia-
grams are obtained for each eigenvalues of inter-
platoon adjacency matrix (Figure 4). Afterward, using
the relation (t, d)=2 tan�1(t, d)6kp

� �
=v, k=0, 1,

2, . . . , the kernel and offspring hypercurves are derived
from SDS diagrams. Figure 5 shows the kernel and off-
spring hypercurves for inter-platoon network. The sta-
ble regions of time delay can be specified by calculating
the root tendency (equation (22)). In Figure 5, the sta-
ble regions are specified.

Inter-platoon stability discussion. In order to verify the
results, two different points ‘‘a’’ and ‘‘b’’ are considered
which are inside and outside of the stable regions.
Figure 6 shows the spacing error and velocity of lead
vehicles for delays related to point ‘‘a.’’ According to
Figure 6(a), the inter-platoon internal stability is
assured. Moreover, according to this figure, the ampli-
tude of error decreases along the network indicating
the string stability of inter-platoon network. Figure 7

shows the unstable behavior of inter-platoon network
for delays related to point ‘‘b.’’

Intra-platoon stability simulation

The intra-platoon spacing error is defined as
Di = xi�1 � xi � Li�1 � �s. To evalute the intra-platoon

Figure 5. Stable region of communication and parasitic delays for leaders’ network. (a) Kernel and offspring hypercurves, (b) Stable
regions of communication and parasitic delays.

(a) (b)

Figure 6. Behavior of lead vehicles’ motion: point ‘‘a’’: (a) Spacing error of lead vehicles and (b) velocity of lead vehicles.

Figure 7. Inter-platoon unstable behavior: point ‘‘b.’’
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internal stability, the control input is applied to all
vehicles in platoon 7. Figure 8 depicts the spacing error
and velocity of vehicles in this platoon. According to
Figure 8(a), the spacing error decreases along the
platoon indicating the string stability. Moreover, to
evaluate the string stability of platoon 7 against exter-
nal disturbance, the disturbance signal d(t)=4:56sin
0:2tð Þ+2:31cos 0:4tð Þ, t 2 ½60, 100� is applied to leader
of platoon 7. According to Figure 9, the string stability
of this platoon is assured.

Conclusion

In this article, the control problem of homogeneous
traffic flow by considering time delays was investigated
based on CSS. The traffic flow consists of finite or infi-
nite cooperative vehicular platoons. For inter-platoon
control protocol, a new virtual leader-following consen-
sus scheme was introduced. The inter-platoon closed-
loop dynamics was decoupled to individual third-order
dynamics. The stability analysis of the decoupled

equations was performed based on Routh–Hurwitz and
CTCR methods. Moreover, it was shown that this new
scheme assures the inter-platoon string stability. It was
assumed that the intra-platoon network topology is
generic or even non-uniform. A new decoupling method
was presented for intra-platoon closed-loop dynamics.

There are different works that can be addressed in
future studies: (1) intra-platoon string stability analysis
with generic network topology, (2) the modeling of
leader-following scheme via Markov chain, and (3) the
intra-platoon stability analysis of generic network
topology in the presence of communication and data
loss.
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Appendix 1

Proof of theorem 3

A non-singular matrix ~V can be found such that

~V
�1
H~V= ~X, ~N

= diagf~N1, :::, ~Nn, ~Nn+1, ~N
	
n+1, :::,

~Nn+m, ~N
	
n+mg

ð49Þ

where ~Ni, i=1, . . . , n is in the form of equation (38);
~Ni, i= n+1, . . . , n+m is in the form of equation
(39); and (*) denotes the complex conjugate operator.
Also, ~V is in the following form

~V= ~V1, ~V2, . . . , ~Vn+m

� �
ð50Þ

For real eigenvalues, ~Wi 2 <N3 ni , i=1, 2, . . . , n
and for complex eigenvalues, ~Vi 2 <N3mi ,
i= n+1, . . . , n+m. For n+1ł rł n+m, we have
the following

H~Vr = ~Vr
~Nr, H~V

	
r =

~V
	
r
~N
	
r ð51Þ

~Vr can be expressed as ~Vr =(vr1, vr2, . . . , vrnr ). vrk is
as follows

vrk=�vrk+ j~vrk, 1ł kł nr; �vrk,~vrk 2 <N ð52Þ

Using equation (51) for k=1, we have the following

Hvr1 = �ervr1 ð53Þ

Applying equation (52) in equation (53) leads to the
following

Hvr1 = pr + jqrð Þ �vr1 + j~vr1ð Þ
= pr�vr1 � qr~vr1ð Þ+ j pr~vr1 + qr�vr1ð Þ

ð54Þ

Equation (54) can be divided into the following
equations

H�vr1 = pr�vr1 � qr~vr1, H~vr1 = pr~vr1 + qr�vr1 ð55Þ

Equation (55) is equivalent to the following

H �vr1~vr1½ �= �vr1~vr1½ � pr qr
�qr pr

� �
= �vr1~vr1½ ��Nr ð56Þ

For 1\ kł nr, it can be written that

Hvrk= �ervrk+ vr(k�1) ð57Þ

Replacing equation (52) in equation (57) will result
in the following

Hvrk=H �vrk+ j~vrkð Þ= pr�vrk � qr~vrk+�vr(k�1)
� �

+ j pr~vrk + qr�vrk+~vr(k�1)
� �

ð58Þ

In matrix form, equation (58) can be written as
follows

H �vrk~vrk½ �= �vr(k�1)~vr(k�1)�vrk~vrk
� 	 1 0 pr �qr

0 1 qr pr

� �T
= �vr(k�1)~vr(k�1)�vrk~vrk
� 	

I2 �Nr

� 	T ð59Þ

Therefore, for rth eigenvalue with repetition order
nr, the matrix wr will be in the following form

vr = ½�vr1,~vr1,�vr2,~vr2, . . . ,�vrnr ,~vrnr � ð60Þ

So that we can write as follows

Hvr = vrNr ð61Þ

where Nr is defined in equation (39). In continuance of
the proof, matrix V 2 <N3N is defined as follows

V= ~V1, . . . , ~Vn,Vn+1, . . . ,Vn+m

� 	
ð62Þ

In equation (62), the first n blocks are corresponding
to real eigenvalues, and other blocks following equation
(60) are corresponding to complex eigenvalues. Now,
we can write that

HV=VN ð63Þ

Finally, the non-singularity of V should be proven.
For imaginary eigenvalues, we can write that
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�vrk=
vrk+ v	rk

2
, ~vrk =

vrk � v	rk
2

ð64Þ

We define the matrix X=1=2(diag
fX1,X2, . . . , Xn+mg) where

Xi =2, i=1, 2, . . . , n; Xi =
1 1

1 �1

� �
,

i= n+1, . . . , n+m

ð65Þ

Now, we can write V= ~VX. Since the matrices X

and ~V are non-singular, it is inferred that V is also non-
singular. So that from equation (63), we have the
following

V�1HV=N ð66Þ

and the proof is complete.

Appendix 2

Mathematical lemmas

Lemma 1.8,10 The matrix H is positive definite if the
lead vehicle is globally reachable in �G.
Lemma 2.45,46 For any vectors a, b and any positive
definite matrix §, the inequality 2aTbł aT§a+ bT§�1b
holds.
Lemma 3.31 An arbitrary matrix A is asymptotically
stable if there exists a positive definite matrix P satisfy-
ing AP+PAT \ 0.
Lemma 4.31 The sum of two definite and semi-definite
matrices is a definite matrix.
Lemma 5.35,36 For arbitrary matrices M1,M2,M3,M4

with appropriate dimensions, the equality
(M1 �M2)(M3 �M4)= (M1M3)� (M2M4) holds,
where � is the Kronecker product.

14 Proc IMechE Part I: J Systems and Control Engineering 00(0)


