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A B S T R A C T

It is well known that the significance of dynamic viscosity and thermal conductivity cannot be overemphasized
in the movement of any fluid. In the present investigation, the impact of variable viscosity, variable thermal
conductivity, Brownian motion, thermophoresis, heat and chemical reaction effects on an unsteady Eyring–
Powell nanofluid flow in a stretching sheet is extensively discussed. The governing non-linear coupled partial
differential equations describing the problem were derived. Similarity variables were used to transform
the governing partial differential equations into ordinary differential equations. After which the Spectral
quasi-linearization method (SQLM) was employed to numerically handle the emerging governing differential
equations after validating the convergence of the method with existing results in literature. The novel flow
features which include fluid velocity, skin friction, heat transfer coefficient and rate of mass transfer were
discussed therein as a function of sundry parameters entering flow formation. Findings reveal that the Brownian
motion and thermophoresis parameters increase the temperature profile. Also, fluid concentration was found
to be a decreasing and increasing function of Brownian motion parameter and thermophoresis parameter
respectively. For accuracy check, tabular representations are carried out with published work in the literature;
excellent agreement were found.
. Introduction

The word nanofluid describes a liquid coolant formed by the pres-
nce of one or more sub-micronic solid particles (nanoparticles), pri-
arily used as heat transfer equipment such as radiators, electronic

ooling system (such as flat plates) and heat exchangers. Many articles
eal with understanding the behaviour of nanofluids to determine ap-
ropriate choice to enhance heat transfer in industrial applications such
s; microelectronics, fuel cells, nuclear reactors, transportation, hybrid-
owered, domestic refrigerator engine as well as biomedicine and food
torage. This term was first used by Choi1 where he discussed how
anofluids can be used to enhance thermal conductivity. Similar results
ave been established by various researchers over the years, to mention
few; Masuda et al.2 examined the alteration of thermal conductivity

nd viscosity of liquid. Buongiorno3 gave a mathematical model that in-
orporated the thermophoresis and Brownian motion effects, Khanafer
t al.4 and Abu-Nada.5 Other related articles where the mathematical
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model of Buongiorno3 is employed include (Neild and Kuznetsov6 and
Grosan and Pop7). Flow formations due to stretching sheet has signifi-
cant industrial applications such as plastic fabrications, the hot rolling
wire drawing and glass–fibre production. Based on these applications,
one of the earliest work on flow formation due to stretching sheet is the
work of Sarkiadis8 where the forced convection boundary layer flow
past a moving flat plate was studied. After which several authors have
conducted different physical situations of the aforementioned problem.
Cran9 studied the steady laminar boundary layer flow of a Newtonian
fluid caused by a stretching plate while Magyari and Keller10 offered
exact solutions for the problem, Ishak et al.11 studied the same problem
over an unsteady stretching vertical surface, while Wang12 discovered
an unusual type of flow due to shrinking when the behaviour of a
liquid film on an unsteady stretching sheet was investigated. Kasali
et al.13 probed the significance of Soret and Dufour on the flow of
a second grade fluid over a surface stretched exponentially using a
modified (Catteneo–Christov) heat flux model. The homotopy analysis
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method was employed to solve the governing flow equations. Their
study elucidated that increase in Dufour parameter support the fluid
thermal boundary layer while an opposing trend was noticed for Soret
parameter.

The classical Newtonian fluids have several limitations in giving
accurate prediction of flow formations and heat transfer whenever the
shear stress and strain are not linear. Meanwhile, in application, most
industrial fluids are non-Newtonian; such as paint, blood, crude-oil,
ketchups and starch. For proper understanding and physical analysis
of this kind of fluids (non-Newtonian fluids), several models over the
years have been proposed; such as the power law model, the Casson
fluid model, Maxwell fluid, Jeffrey fluid, Eyring–Powell fluid. For this
current investigation, we have employed the Eyring–Powell fluid model
proposed by Eyring and Powell.14 One distinctive feature of the Eyring–
Powell fluid is that it has it understanding from the molecular theory
and not from empirical relation which most Non-Newtonian fluids
are derived from. Several research articles have been committed to
comprehend this type of fluid. By the use of Keller box method, Javed
et al.15 considered the Eyring–Powell fluid flow model over a stretching
sheet. They concluded that there exists enhanced velocity profiles for
a non-Newtonian fluid, as against the use of a Newtonian fluid. On
the other hand Hayat et al.16 gave series solution for heat transfer in
an Eyring–Powell fluid flow over a continuously moving surface with
a convective boundary condition by means of the homotopy analysis
method. Recently, Ogunseye et al.17 scrutinized the stagnation-point
of Eyring–Powell nanofluid over stretching cylinder with thermal slip
jump by incorporating the buoyant force. They concluded that the
skin friction is enhanced by the velocity slip parameter and the fluid
material parameter. In another work, the entropy generation due to
irreversibility ratio in an unsteady Eyring–Powell hybrid nanofluid
over a permeable surface was carried out by Ogunseye et al.18 using
a Lie-group analysis. They established through analysis that entropy
generation is minimize in the system by a decrease in Eckert number
and nanoparticle volume fraction. Also, Ogunseye et al.19 examined
the dynamical behaviour of Eyring–Powell nanofluid through parallel
horizontal plate with heat-dependent thermal conductivity, chemical
reaction and magnetic field under the influence of thermophoresis
and Brownian motion. They established that hydromagnetic Brownian
parameter and thermophoresis parameter influence greatly the heat
and mass transfer as shown by the flow profiles. Other related works
where the Eyring–Powell nanofluid flow is discussed are; Akbaret al.20,
Agbaje et al.21 and Ibrahim and Gadisa22 where they found numerical
olution for Powell–Eyring nanofluid in the presence of transversely
pplied magnetic field, heat generation and non-linear stretching sur-
ace respectively, Babu et al.23 discussed the heat and mass transfer
n MHD Eyring–Powell nanofluid flow due to cone in porous medium,
alil et al.,24 Hayat et al.,25 Ramzan et al.26 and Malik et al.27 The
ignificance of heat source in moving fluids is of great importance in
iew of its numerous physical applications such as those dealing with
hemical reactions and those concerned with dissociating fluids.

Over the years, several models have been mathematically rendered
or the understanding of internal heat generation effect on flow for-
ations; Inman28 and Ostrach29 assumed it to be constant while it

s considered as a function of space by Toor30 and Chambre.31 Later,
oraboschi and Federico,32 presented the volumetric rate of heat gen-
ration to be directly proportional to (𝑇 − 𝑇0) and disclosed that it
s an approximation of the state of some exothermic process with
0as the initial temperature. In other work, Jha and Ajibade33 probed
he transient natural convection flow of heat generating/absorbing
luid between vertical porous plates with periodic heat input. They
stablished that, the effect of heat sink is inhibited by large suction
alue and the impact of suction/injection is suppressed by large value
f heat sink. Later, Adesanya,34 studied the free convective flow of heat
enerating fluid through a porous vertical channel with slip velocity
nd jump temperature. He established that increase in slip and temper-
ture jump parameters increases the periodic flow velocity and fluid
2

Fig. 1. Flow geometry.

temperature respectively. Jha et al.35 scrutinized steady fully developed
mixed convection flow in a vertical micro-concentric-annulus with heat
generating/absorbing fluid and reported that increase in heat genera-
tion/absorption parameter decreases rate of heat transfer at the outer
surface of inner cylinder. While Oni36 analytically discussed the role
of heat source on mixed convection flow in a vertical annulus filled
with porous materials in the presence of thermal radiation. Despite all
of the above contributions, no research work has been done to derive
a mathematical model for Eyring–Powell nanofluids with Brownian
and thermophoresis effects in the presence of a heat source and a
chemical reaction, taking variable viscosity and thermal conductivity
into account, to the best of the authors’ knowledge. The purpose of this
paper is to determine the impact of various parameters entering flow
formation on heat and mass transfer. The current study has immerse
industrial and technological applications such as in metal extrusion,
solar heating, electronic devices, polymeric sheets, energy production,
food processing and other manufacturing processes.

2. Organization of the paper

The paper is set up as follows. The governing mathematical equa-
tions describing the aforementioned problem are presented in Sec-
tion 3, while the numerical procedure in solving the coupled nonlin-
ear partial differential equations using the spectral quasi-linearization
method (SQLM) lies in Section 4. Section 5 is devoted to discussion of
results, based on numerical values obtained and depicted graphs, while
the salient conclusions are drawn in Section 6.

3. Model formulation analysis

We consider a 2-dimensional flow of an unsteady incompressible
chemically reactive Eyring–Powell nanofluid over a stretching surface.
The stretching sheet velocity is assumed to vary in a linear manner.
The viscosity and thermal conductivity are linearly dependent on tem-
perature. The magnetic field acting normal to the flow direction is
assumed to be constant. Nonlinear thermal radiative heat flux in the
full form is employed without the usual truncation of the higher order
terms in the expansion with the effect of Brownian motion, heat source
and thermophoresis considered in the flow analysis. The influence of
ionslip, thermoelectric, Hall current and Joule heating (Ohmic dissipa-
tion) are ignored as well as buoyancy forces, see Ogunseye et al.18 and
Mkhatshwa et al.37 Thus, some of the assumptions governing the study
are stated (see Fig. 1).
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (3.1)

𝜕𝑢
𝜕𝑡

+𝑢 𝜕𝑢
𝜕𝑥

+𝑣 𝜕𝑢
𝜕𝑦

= 1
𝜌
𝜕
𝜕𝑦

(

𝜇(𝑇 ) 𝜕𝑢
𝜕𝑦

)

+ 1
𝜌𝛽𝛾

𝜕2𝑢
𝜕𝑦2

− 1
2𝜌𝛽𝛾3

(

𝜕𝑢
𝜕𝑦

)2 𝜕2𝑢
𝜕𝑦2

−
𝜎𝐵2

𝑜𝑢
𝜌

,

(3.2)
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𝜕
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− 1
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+ 𝜏

[

𝐷𝐵
𝜕𝐶
𝜕𝑦

𝜕𝑇
𝜕𝑦

+
𝐷𝑇
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(

𝜕𝑇
𝜕𝑦

)2
]

+
𝑞′′′

𝜌𝑐𝑝

+ 1
(𝜌𝑐𝑝)

[

(

𝜇(𝑇 ) + 1
𝛽𝛾

)(

𝜕𝑢
𝜕𝑦

)2
− 1

6𝛽𝛾3

(

𝜕𝑢
𝜕𝑦

)4
]

+
𝜎𝐵2

𝑜𝑢
2

𝜌𝑐𝑝
,

(3.3)

𝜕𝐶
𝜕𝑡

+ 𝑢 𝜕𝐶
𝜕𝑥

+ 𝑣 𝜕𝐶
𝜕𝑦

= 𝐷𝐵
𝜕2𝐶
𝜕𝑦2

+
(

𝐷𝑇
𝑇∞

)

𝜕2𝑇
𝜕𝑦2

− 𝑘(𝑡)(𝐶 − 𝐶∞), (3.4)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞′′′ =
𝑘∗𝑢𝑤
𝑥𝜈𝑓

[

𝐻(𝑇𝑤 − 𝑇∞)𝑓 ′ +𝐻∗(𝑇 − 𝑇∞)
]

.

𝜇(𝑇 ) = 𝜇∞[1 − 𝜉(𝑇 − 𝑇∞)], 𝑘(𝑇 ) = 𝑘∞[1 + 𝜒(𝑇 − 𝑇∞)].

𝑞𝑟 = −4𝜎′
3𝑘

𝜕𝑇 4

𝜕𝑦
.

(3.5)

The associated boundary conditions are given as;

= 𝑢𝑤(𝑥) =
𝑐𝑥

1 − 𝜆𝑡
, 𝑣 = 𝑣𝑤, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤 𝑎𝑡 𝑦 = 0. (3.6)

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ 𝑎𝑡 𝑦 → ∞. (3.7)

Where 𝜏 = (𝜌𝑐𝑝)𝑝
(𝜌𝑐𝑝)𝑓

depicts the ratio of the heat capacitant of the
anoparticle material and heat capacitant of the fluid, 𝑢 and 𝑣 are the

velocity components in 𝑥 and 𝑦 axes respectively. 𝑇 and 𝐶 represent
the temperature and concentration of the fluid respectively. 𝛽 and 𝛾
are the fluid parameters (Eyring–Powell). 𝜌 is the fluid density, 𝜇(𝑇 )
and 𝐾(𝑇 ) are temperature dependent dynamical viscosity and thermal
onductivity. 𝜇∞ and 𝑘∞ are viscosity and thermal conductivity of the
luid far away from the stretching sheet, 𝜉 is the variable dynamical
iscosity parameter that quantifies the rate at which viscosity changes
ith temperature. 𝜒 is the variable thermal conductivity parameter

hat quantifies the rate at which thermal conductivity changes with
emperature. 𝐵𝑜 is the intensity of magnetic field, 𝐷𝐵 and 𝐷𝑇 are
rownian motion diffusion and thermophoretic diffusion coefficient

n that order. 𝑞𝑟 and 𝑞′′′ stands for radiation and heat source effect
espectively. 𝑘 is the mean absorption coefficient, 𝜎′ is the Stefan–
oltzmann constant, 𝑐 is the stretching parameter. Where 𝑘(𝑡) = 𝑘′𝑟

(1−𝜆𝑡)
is the chemical reaction coefficient, 𝐻 and 𝐻∗ are the coefficient of
space and temperature dependent heat source/sink. We consider the
wall temperature 𝑇𝑤 and nanoparticle concentration 𝐶𝑤 as

𝑇𝑤(𝑥, 𝑡) = 𝑇∞ + 𝑎𝑥
1 − 𝜆𝑡

, 𝐶𝑤(𝑥, 𝑡) = 𝐶∞ + 𝑏𝑥
1 − 𝜆𝑡

,

and b are positive constants and 𝜆 is a positive constant having
imension 𝑡𝑖𝑚𝑒−1.

By employing the similarity variables

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜂 =
√

𝑐
𝜈(1 − 𝜆𝑡)

𝑦, 𝜓 =
√

𝑐𝜈
(1 − 𝜆𝑡)

𝑥𝑓 (𝜂), 𝑢 = 𝑐𝑥
1 − 𝜆𝑡

𝑓 ′(𝜂),

𝑣 = −
√

𝑐𝜈
(1 − 𝜆𝑡)

𝑓 (𝜂), 𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

,

𝜙(𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

.

(3.8)

Eqs. (3.1)–(3.7) become

(1 + 𝜀 − 𝛽1𝜃)𝑓 ′′′ − 𝛽1𝜃′𝑓 ′′ + 𝑓𝑓 ′′ − (𝑓 ′)2 − 𝜀𝛿(𝑓 ′′)2𝑓 ′′′

− 𝛬
(

𝑓 ′ +
𝜂
2
𝑓 ′′

)

−𝑀𝑓 ′ = 0. (3.9)
3

(1 + 𝛽2𝜃)𝜃′′ + 𝛽2(𝜃′)2

+ 4
3
𝑅
[

3(1 + (𝜃𝑤 − 1)𝜃)2(𝜃𝑤 − 1)𝜃′2 + (1 + (𝜃𝑤 − 1)𝜃)3𝜃′′
]

+ 𝑃𝑟𝜆1𝑓 ′

+ 𝑃𝑟𝜆2𝜃 + 𝑃𝑟𝐸𝑐
(

(1 − 𝛽1𝜃 + 𝜖)𝑓 ′′2 − 𝜀𝛿
3
(𝑓 ′′)4

)

+ 𝑃𝑟𝐸𝑐𝑀𝑓 ′2

− 𝑃𝑟𝛬
(

𝜃 +
𝜂
2
𝜃′
)

+ 𝑃𝑟𝑁𝑏𝜙
′𝜃′ + 𝑃𝑟𝑁𝑡𝜃

′2 + 𝑃𝑟𝑓𝜃′ − 𝑃𝑟𝑓 ′𝜃 = 0.

(3.10)

′′ +
𝑁𝑡
𝑁𝑏

𝜃′′ + 𝑃𝑟𝐿𝑒

[

𝑓𝜙′ − 𝑓 ′𝜙 − 𝛬
(

𝜙 +
𝜂
2
𝜙′
)

− 𝑘𝑟𝜙
]

= 0. (3.11)

e observed the satisfaction of the continuity equation in Eq. (3.1). In
ddition, the appropriate boundary conditions in dimensionless form
re transformed to:

(0) = 0, 𝑓 ′(0) = 1, 𝑓 ′(∞) → 0, (3.12)
(0) = 1, 𝜃(∞) → 0, (3.13)
(0) = 1, 𝜙(∞) → 0. (3.14)

ith the following relevant dimensionless parameter

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛬 = 𝜆
𝑐
, 𝛽1 = 𝜉(𝑇𝑤 − 𝑇∞), 𝛽2 = 𝜒(𝑇𝑤 − 𝑇∞) ,

𝜀 = 1
𝛽𝛾𝜇∞

, 𝛿 =
𝑐𝑢2𝑤

2𝜈𝛾2(1 − 𝜆𝑡)
, 𝐾𝑟 =

𝑘′𝑟
𝑐
, 𝑀 =

𝜎𝐵2
0 (1 − 𝜆𝑡)
𝑐𝜌

,

𝑅 =
4𝜎′𝑇 3

∞

𝑘1𝛼
, 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞)
𝜈

, 𝑁𝑡 =
𝜏𝐷𝑇 (𝑇𝑤 − 𝑇∞)

𝜈𝑇∞
, 𝜃𝑤 =

𝑇𝑤
𝑇∞

,

𝐿𝑒 =
𝛼
𝐷𝐵

, 𝜆1 =
𝑎𝑘∗

(𝜌𝑐𝑝)𝜈
, 𝜆2 =

𝑏𝑘∗
(𝜌𝑐𝑝)𝜈

, 𝑃 𝑟 = 𝜈
𝛼
, 𝐸𝑐 =

𝑢2𝑤
𝑐𝑝(𝑇𝑤 − 𝑇∞)

.

(3.15)

here 𝑀 is the magnetic parameter, 𝑃𝑟 stands for Prandtl number,
𝑒 is the Lewis number, 𝑁𝑏 represents the Brownian parameter, 𝑁𝑡

s the thermophoresis parameter, 𝐸𝑐 is the Eckert number, 𝐾𝑟 stands
or the chemical reaction parameter, 𝑅 represent the radiation param-
ter, 𝜆1 is the space generation/absorption parameter, 𝜆2 is the heat
eneration/absorption parameter, 𝛬 is the unsteadiness parameter, 𝜃𝑤
epresents temperature ratio, 𝛽1 represents variable dynamical viscosity
arameter, 𝛽2 stands for variable thermal conductivity parameter. 𝜖 and
are the Eyring–Powell fluid parameters.

The engineering physical parameter of skin friction coefficient,
usselt and Sherwood numbers takes the following definition;

𝐶𝑓 =
𝜏𝑤
𝜌𝑢2𝑤

,

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘∞(𝑇𝑤 − 𝑇∞)
,

ℎ𝑥 =
𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤 − 𝐶∞)
.

(3.16)

here shear stress, surface heat flux and mass flux are 𝜏𝑤, 𝑞𝑤 and 𝑞𝑚
which are defined as

𝜏𝑤 =
(

𝜇(𝑇 ) + 1
𝛽𝛾

)(

𝜕𝑢
𝜕𝑦

)

− 1
6𝛽𝛾3

(

𝜕𝑢
𝜕𝑦

)3
|

|

|

|𝑦=0
,

𝑞𝑤 = −
(

𝑘(𝑇 ) + 16𝜎′
3𝑘

𝑇 3
)

𝜕𝑇
𝜕𝑦

|

|

|

|𝑦=0
, 𝑞𝑚 = −𝐷𝐵

𝜕𝐶
𝜕𝑦

|

|

|

|𝑦=0
. (3.17)

n dimensionless form, Eq. (3.16) using the definition of Eqs. (3.8),
3.15) and (3.17) becomes

𝑅𝑒
1
2
𝑥 𝐶𝑓 =

(

1 − 𝛽1𝜃(0) + 𝜖
)

𝑓 ′′(0) − 𝜖𝛿
3
𝑓 ′′3(0),

𝑅𝑒
− 1

2
𝑥 𝑁𝑢 = −

(

1 + 𝛽2𝜃(0) +
4
3
𝑅
(

(1 + (𝜃𝑤 − 1)𝜃(0))3
)

)

𝜃′(0),

𝑅𝑒
− 1

2
𝑥 𝑆ℎ = −𝜙′(0).

(3.18)

here 𝑅𝑒𝑥 = 𝑥2𝑐 is the Reynolds number.

𝜈(1 − 𝜆𝑡)
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4. Numerical procedures

The non-linear coupled ODEs in Eqs. (3.9)–(3.11) with it boundary
conditions in Eqs. (3.12)–(3.14) are not amenable to compact solution,
an approximate iterative numerical method would be sought. To this
end, the spectral quasi-linearization method (SQLM) will be used in
handling the coupled system equation. The SQLM is a product of two
powerful methods; quasi-linearization (QLM) and spectral (Chebyshev)
collocation (SCCM) methods. Quasi linearization method (QLM) is due
to the work of Bellman and Kalaba38 which is a generalization of the
Newton–Raphson method and a detail explanation as to the use of
SCCM can be found in the work of Motsa39 and Motsa and Sibanda.40

he choice of the SQLM is necessitated due to its accuracy in handling
xponentially decaying solution profiles, see Akolade and Tijani.41

We linearize Eqs. (3.9)–(3.11) to have

1,𝑎𝑓
′′′
𝑎+1 + 𝜉2,𝑎𝑓

′′
𝑎+1 + 𝜉3,𝑎𝑓

′
𝑎+1 + 𝜉4,𝑎𝑓𝑎+1 + 𝜉5,𝑎𝜃

′
𝑎+1 + 𝜉6,𝑎𝜃𝑎+1 = 𝑅𝑏1 (4.1)

7,𝑎𝑓
′′
𝑎+1+𝜉8,𝑎𝑓

′
𝑎+1+𝜉9,𝑎𝑓𝑎+1+𝜉10,𝑎𝜃

′′
𝑎+1+𝜉11,𝑎𝜃

′
𝑎+1+𝜉12,𝑎𝜃𝑎+1+𝜉13,𝑎𝜙

′
𝑎+1 = 𝑅𝑏2

(4.2)

𝜉14,𝑎𝑓
′
𝑎+1+𝜉15,𝑎𝑓𝑎+1+𝜉16,𝑎𝜃

′′
𝑎+1+𝜉17,𝑎𝜙

′′
𝑎+1+𝜉18,𝑎𝜙

′
𝑎+1+𝜉19,𝑎𝜙𝑎+1 = 𝑅𝑏3 (4.3)

with it relevant boundary conditions as

𝑓 ′
𝑎+1 = 1, 𝑓𝑎+1 = 0, 𝜃𝑎+1 = 1, 𝜙𝑎+1 = 1 for 𝜂 = 0, (4.4)

𝑓 ′
𝑎+1 = 0, 𝜃𝑎+1 = 0, 𝜙𝑎+1 = 0 as 𝜂 → ∞. (4.5)

where the variable (coefficient) are given as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜉1,𝑎 = 1 + 𝜀 − 𝛽1𝜃𝑎 − 𝜀𝛿𝑓 ′′2
𝑎 , 𝜉2,𝑎 = 𝑓𝑎 − 𝛽1𝜃′𝑎 − 2𝜖𝑓 ′′

𝑎 𝑓
′′′
𝑎 −

𝛬𝜂
2
,

𝜉3,𝑎 = −2𝑓 ′
𝑎 − 𝛬 −𝑀,

𝜉4,𝑎 = 𝑓 ′′
𝑎 , 𝜉5,𝑎 = −𝛽1𝑓 ′′

𝑎 , 𝜉6,𝑎 = 𝛽1𝑓 ′′′
𝑎 ,

𝜉7,𝑎 = 2𝑃𝑟𝐸𝑐
(

1 + 𝜖 − 𝛽1𝜃𝑎
)

𝑓 ′′′
𝑎 − 4

3
𝐸𝑐𝜀𝛿𝑓 ′′3

𝑎

𝜉8,𝑎 = 2𝑀𝐸𝑐𝑃𝑟𝑓 ′
𝑎 + 𝑃𝑟𝜆1 − 𝑃𝑟𝜃𝑎, 𝜉9,𝑎 = 𝑃𝑟𝜃′𝑎,

𝜉10,𝑎 = 𝛽2𝜃𝑎 + 1 + 4
3
𝑅
(

1 + (𝜃𝑤 − 1)𝜃𝑎
)3

𝜉11,𝑎 = 2𝛽2𝜃′𝑎 + 8𝑅
(

1 + (𝜃𝑤 − 1)𝜃𝑎
)2(𝜃𝑤 − 1)𝜃′𝑎

− 1
2
𝑃𝑟𝛬𝜂 + 𝑃𝑟𝑁𝑏𝜙′

𝑎 + 2𝑃𝑟𝑁𝑡𝜃′𝑎 + 𝑃𝑟𝑓𝑎

𝜉12,𝑎 = 𝛽2𝜃′′𝑎 + 4
3
𝑅

(

6
(

1 + (𝜃𝑤 − 1)𝜃𝑎
)

(𝜃𝑎 − 1)2𝜃′2𝑎

+3
(

1 + (𝜃𝑤 − 1)𝜃𝑎
)

𝜃′′𝑎 (𝜃𝑎 − 1)2
)

+

𝑃𝑟𝜆2 − 𝑃𝑟𝛬 − 𝑃𝑟𝐸𝑐𝛽1𝑓 ′′2
𝑎 − 𝑃𝑟𝑓 ′

𝑎
𝜉13,𝑎 = 𝑃𝑟𝑁𝑏𝜃′𝑎, 𝜉14,𝑎 = −𝑃𝑟𝐿𝑒𝜙𝑎, 𝜉15,𝑎 = 𝑃𝑟𝐿𝑒𝜙′

𝑎,

𝜉16,𝑎 =
𝑁𝑡
𝑁𝑏

, 𝜉17,𝑎 = 1

𝜉18,𝑎 = 𝐿𝑒𝑃𝑟𝑓𝑎 −
1
2
𝑃𝑟𝐿𝑒𝛬𝜂, 𝜉19,𝑎 = −𝐾𝑟𝐿𝑒𝑃𝑟 − 𝛬𝐿𝑒𝑃𝑟 − 𝐿𝑒𝑃𝑟𝑓 ′

𝑎.

(4.6)

After the QLM has been achieved for Eqs. (3.9)–(3.11), we set our
focus on the spectral Chebyshev collocation method. We note that we
now have a linear coupled differential system of equation with variable
coefficients and can be solve by an efficient iterative numerical method;
we have used SQLM in this work. The SQLM procedure is as follows;

• We transform our domain in 𝜂 to
[

0, 𝐽
]

, where 𝐽 ∈ Z+ is the far
field limit of the boundary.

• Transformation mapping of 𝜂 =
(𝜒 + 1)

2
𝐽 to the computational

domain [−1, 1] where the method is applicable.
• We approximate the unknown functions 𝑓𝑎+1, 𝜃𝑎+1 and 𝜙𝑎+1 by

Chebyshev interpolating polynomials and the derivatives of the
approximating functions at Gauss–Lobatto collocation points.

𝜒𝑖 = cos
(

𝜋𝑖
)

, 𝜒 ∈ [−1, 1], 𝑖 = 0, 1, 2, 3, 4,… , 𝑁. (4.7)

𝑁

4

𝑁 is the number of collocation points.
• We used the Chebyshev differentiation matrix 𝐷 stated as, see

Trefthen42

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑛𝑓𝑎+1(𝜒𝑖)
𝑑𝜒

=
∑𝑁
𝑘=0𝐷

𝑛
𝑖𝑘𝑓𝑎+1(𝜒𝑘) = 𝐃𝑛𝐅,

𝑑𝑛𝜃𝑎+1(𝜒𝑖)
𝑑𝜒

=
∑𝑁
𝑘=0𝐷

𝑛
𝑖𝑘𝜃𝑎+1(𝜒𝑘) = 𝐃𝑛𝐓,

𝑑𝑛𝜙𝑎+1(𝜒𝑖)
𝑑𝜒

=
∑𝑁
𝑘=0𝐷

𝑛
𝑖𝑘𝜙𝑎+1(𝜒𝑘) = 𝐃𝑛𝐏,

(4.8)

where 𝐃 = 2𝐷
𝐽

, 𝐅 =
[

𝑓𝑎+1(𝜒0), 𝑓𝑎+1(𝜒1),… , 𝑓𝑎+1(𝜒𝑁 )
]𝑇 , 𝐓 =

[

𝜃𝑎+1(𝜒0), 𝜃𝑎+1(𝜒1),… , 𝜃𝑎+1(𝜒𝑁 )
]𝑇 and 𝐏 =

[

𝜙𝑎+1(𝜒0), 𝜙𝑎+1(𝜒1),
… , 𝜙𝑎+1(𝜒𝑁 )

]𝑇 .

valuating Eqs. (4.1)–(4.3) at the collocation points and substituting
erivatives of Eq. (4.8) yields a simultaneous systems

11𝐅𝑎+1 + 𝐄12𝐓𝑎+1 + 𝐄13𝐏𝑎+1 = 𝐑𝑏1 (4.9)

21𝐅𝑎+1 + 𝐄22𝐓𝑎+1 + 𝐄23𝐏𝑎+1 = 𝐑𝑏2 (4.10)

𝐄31𝐅𝑎+1 + 𝐄32𝐓𝑎+1 + 𝐄33𝐏𝑎+1 = 𝐑𝑏3 (4.11)

where
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐸11 = 𝑑𝑖𝑎𝑔[𝜉1,𝑎]𝐃3 + 𝑑𝑖𝑎𝑔[𝜉2,𝑎]𝐃2 + 𝑑𝑖𝑎𝑔[𝜉3,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉4,𝑎]𝐈,
𝐸12 = 𝑑𝑖𝑎𝑔[𝜉5,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉6,𝑎]𝐈, 𝐸13 = 0𝑁+1×𝑁+1
𝐸21 = 𝑑𝑖𝑎𝑔[𝜉7,𝑎]𝐃2 + 𝑑𝑖𝑎𝑔[𝜉8,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉9,𝑎]𝐈,
𝐸22 = 𝑑𝑖𝑎𝑔[𝜉10,𝑎]𝐃2 + 𝑑𝑖𝑎𝑔[𝜉11,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉12,𝑎]𝐈,

𝐸23 = 𝑑𝑖𝑎𝑔[𝜉13,𝑎]𝐃
𝐸31 = 𝑑𝑖𝑎𝑔[𝜉14,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉15,𝑎]𝐈, 𝐸32 = 𝑑𝑖𝑎𝑔[𝜉16,𝑎]𝐃2

𝐸33 = 𝑑𝑖𝑎𝑔[𝜉17,𝑎]𝐃2 + 𝑑𝑖𝑎𝑔[𝜉18,𝑎]𝐃 + 𝑑𝑖𝑎𝑔[𝜉19,𝑎]𝐈

(4.12)

subject to the spectral boundary conditions

𝑓𝑎+1(𝜒𝑁 ) = 1,
𝑁
∑

𝑘=0
𝐷𝑁,𝑘𝑓𝑎+1(𝜒𝑘) = 1, 𝜃𝑎+1(𝜒𝑁 ) = 1, 𝜙𝑎+1(𝜒𝑁 ) = 1.

𝑓 ′
𝑎+1 =

𝑁
∑

𝑘=0
𝐷0,𝑘𝑓𝑎+1(𝜒𝑘) = 0, 𝜃𝑎+1(𝜒0) = 0, 𝜙𝑎+1(𝜒0) = 0.

(4.13)

In addition, we have used the following as our initial approximation to
kick start our iterative scheme.

𝑓0(𝜂) = 1 − 𝑒−𝜂 , 𝜃0(𝜂) = 𝑒−𝜂 , 𝜙0(𝜂) = 𝑒−𝜂 .

4.1. Numerical validation

Numerous researchers have established the efficiency, accuracy and
convergence of the SQLM39,40. In this section, we show the convergence
of the method and validate the present research work with the work
of Malik et al.43, Alsaedi et al.44 and Naseem et al.45 to ascertain the
accuracy and efficiency of the method. We will like to mention MAPLE
18 was used for simulation on an intel 3 GB RAM PC. Table 1 is for the
convergence analysis, we observed a rapid convergence of the Spectral
quasi-linearization method (SQLM) after six iterations. Tables 2 and
3 show that the current results compare favourably with the previous
established result in some limiting conditions.

5. Results and discussion

This article is devoted to develop a mathematical model for Eyring–
Powell nanofluid with varying viscosity and thermal conductivity in the
presence of heat source and chemical reaction. In order to clearly as-
certain the role of various sundry parameters entering flow formation,

heat and mass transfer, we present graphical illustrations to show the
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Fig. 2. Influence of fluid parameters (𝜀) and (𝛿) on the fluid velocity (𝑓 ′) profile.
Fig. 3. Influence of Prandtl number (𝑃𝑟) on the fluid temperature (𝜃) and concentration (𝜙) profiles.
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Table 1
Convergence analysis of the spectral quasi-linearization method (SQLM) for −𝑓 ′′(0),
𝜃′(0) and −𝜙′(0) for the following parameter values of 𝛽1 = 0.5, 𝛽2 = 0.5, 𝛿 =
.2, 𝛬 = 2.5, 𝜖 = 0.3, 𝑀 = 1.0, 𝜆1 = 0.2, 𝜆2 = 0.2, 𝐸𝑐 = 0.4, 𝑅 = 0.4, 𝑃𝑟 =
.2, 𝐿𝑒 = 0.03, 𝜃𝑤 = 1.8, 𝑁𝑏 = 1.0, 𝑁𝑡 = 0.5, 𝐾𝑟 = 1.2.
Iterations Spectral quasi-linearization method (SQLM) CPU(s)

𝑛 −𝑓 ′′(0) −𝜃′(0) −𝜙′(0) 𝑇 𝑖𝑚𝑒

2.0 2.7274557158 0.8413093451 0.7315857223 2.609
4.0 2.7613146123 0.8400529799 0.7321360655 4.156
6.0 2.7613146135 0.8400529799 0.7321360656 6.094
8.0 2.7613146135 0.8400529799 0.7321360656 8.187
10.0 2.7613146135 0.8400529799 0.7321360656 10.245

Table 2
Comparison of Skin friction coefficients (−𝑓 ′′(0)) for different values of 𝑀 when
𝛽1 = 𝜖 = 𝛬 = 0 and 𝛿 = 0.

Values Malik et al.43 Alsaedi et al.44 Naseem et al.45 Present result

𝑀 −𝑓 ′′(0) −𝑓 ′′(0) −𝑓 ′′(0) −𝑓 ′′(0)

0.0 1.00000 1.00000 1.00000 1.00000
0.5 1.11802 1.11803 1.11802 1.11803
1.0 −1.41419 1.41421 1.41420 1.41421

effects of some physical parameters with detail explanation as to their
importance on the velocity, temperature and concentration profiles.
Keeping this in mind, we assume the following initial value for each
 i

5

Table 3
Comparison of Skin friction coefficients (−𝑓 ′′(0)) for different values of 𝛬 when
1 = 𝜖 =𝑀 = 0 and 𝛿 = 0.
Values Sharidan et al.46 Chamkha et al.47 Kumar & Srinivas48 Present result

𝛬 −𝑓 ′′(0) −𝑓 ′′(0) −𝑓 ′′(0) −𝑓 ′′(0)

0.8 1.261042 1.261512 1.26108 1.261042
1.2 1.377722 1.378052 1.37777 1.377723

parameter.

⎧

⎪

⎨

⎪

⎩

𝛽1 = 0.5, 𝛽2 = 0.5, 𝛿 = 0.2, 𝛬 = 2.5, 𝜖 = 0.3, 𝑀 = 1.0
𝜆1 = 0.2, 𝜆2 = 0.2, 𝐸𝑐 = 0.4, 𝑅 = 0.4, 𝑃𝑟 = 7.2.
𝐿𝑒 = 1.5, 𝜃𝑤 = 1.8, 𝑁𝑏 = 1.0, 𝑁𝑡 = 0.5, 𝐾𝑟 = 1.2.

(5.1)

nless stated otherwise.
The fluid parameters 𝜀 and 𝛿 have an opposing effect on the flow

elocity as depicted in Fig. 2. An increment in 𝜀 shows a sharp decrease
n the viscosity of the fluid which thus led to enhancement of the fluid
elocity. In contrast 𝛿 shows underwhelming effect on the velocity of
he fluid. Fig. 3 shows the influence of Prandtl number on the temper-
ture and concentration profiles. We observed that the Eyring–Powell
luid conduct and diffuse lesser as we increase the Prandtl number.
his is due to reduction in the thermal boundary layer, which has a
reat impact on the shear stress. This implies heat loss is experienced to
mmediate working environment which consequently led to a reduction
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Fig. 4. Influence of Radiation (𝑅) and Eckert numbers (𝐸𝑐) on the fluid temperature (𝜃) profile.
Fig. 5. Influence of chemical reaction (𝐾𝑟) and Lewis numbers (𝐿𝑒) on the fluid concentration (𝜙) profile.
n the energy profile. Interestingly, this observation agrees with the
eport of Malik et al.43 A similar explanation suffices as to the reduction
n the concentration profile as we increase the Prandlt number as
hown in Fig. 3(b). The influence of Radiation parameter 𝑅 on the
nergy profile is well pronounced; see Fig. 4(a). The Eyring–Powell
luid conducts and conserves much energy as we increase the radiation
umber. A similar observation was reported in the study conducted by
ayat et al.25

In similar manner like the radiation parameter, increment in Eckert
umber 𝐸𝑐 leads to increment in the temperature field. This can be
ttributed to the fact that as Eckert number increases, heat is produced
s a result of the drag between the fluid particles, thus, heat production
nside the fluid rises with additional heating due to viscous dissipation,
s in Fig. 4(b). Chemical reaction parameter 𝐾𝑟 and Lewis number
𝑒 have similar effect on the concentration profile. Fig. 5 shows that
nhancement of 𝐾𝑟 and 𝐿𝑒 retard the concentration profile. In case
f the Lewis number 𝐿𝑒 = 𝛼

𝐷𝐵
, we note here that 𝐿𝑒 is inversely

proportional to Brownian motion coefficient 𝐷𝐵 thus reduction in the
fluid particle interaction which lead to reduction in the concentration
profile as depicted in Fig. 5(b).

One of the novelties of this work is to examine the influence of
Brownian motion parameter 𝑁𝑏 and thermophoresis 𝑁𝑡 effects. In
Figs. 6 and 7, these two effects are clearly illustrated graphically. We
observed that increasing the Brownian motion parameter increases the
6

temperature profile but an adverse effect was noticed on the concen-
tration profile. For the thermophoresis parameter both the temperature
and concentration profiles are significantly influenced. We understand
these results as increasing thermophoresis parameter lead to more
collision of the fluid particles thus, high energy is produced which in
turn increase the reaction taking place in the system. This accounted
for the temperature and concentration increase.

Fig. 8(a) and (b), shed more light on the behaviour of space and
heat generation parameter 𝜆1 and 𝜆2 on the temperature profile, as
expected increase in heat and space generation parameter lead to
increase in the temperature profile. Fig. 8(c) shows an escalating effect
on the temperature profile as the temperature ratio 𝜃𝑤 increases. The
behaviour of the three parameters in Fig. 8 are quite not surprising
because they are temperature associated parameters. In Fig. 9, it was
observed that an inverse relation exists between the Lorentz force
and the velocity profiles. Physically, the magnetic field intensity is a
retarding force in the flow profile. Conversely, displaying an increase
in the thermal boundary layer.

Fig. 10(a) depicts the impact of variable viscosity parameter on
fluid velocity. It is interesting to observe that the variable viscosity
parameter act as a decreasing function on fluid velocity. This could be
clearly attributed to the fact that increase in 𝛽1 implies increase in fluid
viscosity, which in turn increases the shear stress and thereby retarding
flow formation. Fig. 10(b) exhibits an increase in the Eyring–Powell
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Fig. 6. Influence of Brownian motion parameter (𝑁𝑏) on the fluid temperature (𝜃) and concentration (𝜙) profiles.
Fig. 7. Influence of thermophoresis parameter (𝑁𝑏) on the fluid temperature (𝜃) and concentration (𝜙) profiles.
luid’s temperature profile as the temperature dependent thermal con-
uctivity parameter 𝛽2 increases, which in turn affects the boundary
ayer’s ability to create heat and assisting temperature profiles.

Table 4 shows the effect of varying sundry parameters on the skin
riction, Nusselt and Sherwood number coefficients. For the parameter
nder consideration, the values of the skin friction coefficient are all
egative. We observe the skin drag force increases as the variable
ynamical viscosity and variable thermal conductivity parameter in-
reases, whereas the Nusselt number decreases as we increases the
ariable dynamical viscosity. Enhancing the fluid parameter 𝜀 and
agnetic parameter abates the skin friction and Nusselt number but

ugments the Sherwood number coefficient. The effects of radiation
nd Lewis number on 𝑅𝑒

1
2
𝑥 𝐶𝑓 , 𝑅𝑒

− 1
2

𝑥 𝑁𝑢 and 𝑅𝑒
− 1

2
𝑥 𝑆ℎ are diametrically

opposed. The behaviour of fluid parameter 𝛿, Brownian parameter 𝑁𝑏
and chemical reaction parameter 𝐾𝑟 on the engineering physical quanti-
ties are similar. Increasing the thermophoresis parameter enhances skin
drag forces but diminishes Nusselt and Sherwood number.

6. Conclusion

The influence of certain thermo-physical characteristics on the flow
of Eyring–Powell fluid across a stretched sheet was investigated in this
work. We presented the governing equations in ordinary differential
after employing a suitable similarity transformation. An efficient it-
erative scheme SQLM was employed to give account of all the flow
7

parameters after numerical validation with earlier known works have
been established. The findings can be summarized as follows:

• Enhancement of temperature dependent viscosity parameter lead
to reduction in the fluid flow profile. However, enhancement of
temperature dependent thermal conductivity increases the energy
profile

• Increasing the Brownian motion parameter increases the thermal
boundary layer but opposed the specie boundary layer.

• Thermophoresis parameter has a direct proportionality with the
build-up of thermal and specie boundary layers.

• Radiation has an escalating effect on the temperature profile.
• Chemical reaction and Lewis numbers retard the concentration

profile.
• Prandtl number has a pronounced effect on the temperature and

concentration profiles.

To this end, we recommend increasing the Brownian motion, radiation
and thermophoresis coefficients as a means to increase the conductivity
of the Eyring–Powell nanofluid taking into account heat source and
magnetic field intensity in both momentum and energy equations. The
SQLM prove its uniqueness, worth, simplicity, stability and ability in
this study. Thus, the method can be employ to provide approximate
solution to different fluid rheology problem in any flow geometry.
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Fig. 8. Influence of space generation (𝜆1), heat generation (𝜆2) and temperature ratio parameters (𝜃𝑤) on the fluid temperature (𝜃) profile.
Fig. 9. Influence of Magnetic parameter (𝑀) on the velocity 𝑓 ′ and temperature (𝜃) profiles.
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Fig. 10. Influence of variable viscosity parameter (𝛽1) and variable thermal conductivity on the velocity 𝑓 ′ and temperature (𝜃) profiles.
Table 4
Numerical values of skin friction coefficient 𝑅𝑒

1
2
𝑥 𝐶𝑓 , heat transfer coefficient 𝑅𝑒−

1
2

𝑥 𝑁𝑢 and mass transfer coefficient 𝑅𝑒−
1
2

𝑥 𝑆ℎ for different values of
𝛽1 , 𝛽2 , 𝛿, 𝜀, 𝑀, 𝑅, 𝐿𝑒 , 𝑁𝑏, 𝑁𝑡, 𝐾𝑟 when 𝑃𝑟 = 7.2, 𝜆1 = 0.2, 𝜆2 = 0.2, 𝛬 = 2.5, 𝐸𝑐 = 0.5, 𝜃𝑤 = 1.2.

𝛽1 𝛽2 𝛿 𝜀 𝑀 𝑅 𝐿𝑒 𝑁𝑏 𝑁𝑡 𝐾𝑟 𝑅𝑒
1
2
𝑥 𝐶𝑓 𝑅𝑒

− 1
2

𝑥 𝑁𝑢 𝑅𝑒
− 1

2
𝑥 𝑆ℎ

0.1 0.5 0.2 0.3 1.0 0.2 0.03 1.0 0.5 1.2 −2.152135 1.601805 0.822626
0.2 −2.074689 1.598495 0.821990
0.5 −1.794622 1.578650 0.821028
0.5 0.1 −1.796702 1.246393 0.827680

0.2 −1.796172 1.330737 0.825467
0.5 −1.794622 1.578650 0.821028

0.1 −1.837438 1.603566 0.815813
0.2 −1.794622 1.578650 0.821028
0.3 −0.781085 1.561767 0.822975

0.1 −1.602736 1.663672 0.796327
0.3 −1.794622 1.578650 0.821028
0.4 −1.889825 1.547160 0.830407

0.0 −1.592073 2.193129 0.684892
0.2 −1.636599 2.066184 0.712571
1.0 −1.794622 1.578650 0.821028

0.1 −1.795308 1.374811 0.828101
0.2 −1.794622 1.578650 0.821028
0.5 −1.792352 2.170670 0.809218

0.01 −1.808358 2.091168 0.162108
0.02 −1.800627 1.800285 0.505591
0.03 −1.795866 1.624377 0.751100

0.5 −1.807888 2.039732 0.482589
1.0 −1.794622 1.578650 0.821028
2.0 −1.774282 0.997642 0.948793

0.1 −1.817323 2.371676 0.832235
0.5 −1.807888 2.039732 0.482589
1.0 −1.798055 1.727764 0.275820

0.4 −1.800528 1.814181 0.011724
1.2 −1.798055 1.727764 0.275820
1.5 −1.797276 1.700593 0.362134
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