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A B S T R A C T   

Flexibility provisioning through demand response (DR) programs has emerged as an efficient tool for the eco-
nomic and reliable management of electricity grids. In this work, an incentive-based DR model of a community 
microgrid (CMG) is considered, where an aggregator provides flexibility to the CMG. The objective of the 
aggregator is to minimize the cost of flexibility management that comprises the incentives paid to the residential 
users for shifting demands and penalty payments to the CMG operator for violating contractual commitments. 
Instead of attempting to minimize the total cost as single objective minimization, we adopt a two-stage opti-
mization approach, wherein a bi-objective formulation is used in the first stage and a single objective formulation 
is used in the next. The bi-objective formulation enhances diversity and preserves promising solutions during the 
course of the search. An evolutionary algorithm is used to solve the bi-objective formulation and the obtained 
solution is improved in the next stage using local search conforming to a memetic algorithm paradigm. The 
performance of the proposed algorithm is investigated through statistical analysis and comparison with existing 
algorithms. The proposed algorithm reduces the peak-to-average ratio of CMG load by 3.97% with at least 
27.94% cost saving compared to the state-of-the-art algorithms.   

1. Introduction 

Community microgrids (CMGs) have emerged as an intelligent entity 
of smart grids due to their improved reliability and efficiency (Rana 
et al., 2020). CMGs serve a community of energy consumers by utilizing 
their local electricity generation from renewable sources (such as solar 
or wind) and non-renewable sources (such as micro-turbines and/or 
other fossil-fuel based generators). Maintaining supply-demand balance 
in CMGs is still very challenging due to the uncertainty associated with 
the renewable energy generation and variability in the demand from the 
customers (Rana et al., 2021). The simplest way to balance this energy 
mismatch is to vary the energy generated which in turn could require 
installation of new energy generation/storage facilities. An alternative 
would be to incentivise the end-users to motivate them to change their 
energy usage through a demand response (DR) program (Elghitani and 
Zhuang, 2018) commonly referred as flexibility provisioning. This 
approach has gained significant interest since it allows for more efficient 
energy management without the need for any additional gen-
eration/storage infrastructure. In most of the related works, DR was 
employed from the perspective of the system operator (SO). However, 

the application of DR for flexibility provisioning within microgrids has 
not been studied adequately. For efficient operation within microgrids, 
one can procure flexibility from small end-users (who can not participate 
in the DR program directly) through a DR aggregator. Incentive-based 
DR (IBDR) has been employed successfully in many studies (Eissa, 
2018; Lamprinos et al., 2016; Luo et al., 2019) for economic operation of 
the power system. Therefore, this research focuses on the optimal flex-
ibility provisioning of DR aggregator through IBDR in the context of a 
community microgrid. The residential end-users in the CMG participate 
with the aggregator operating on a IBDR scheme i.e., the end users 
receive incentive for modifying their energy profiles. The optimization 
problem considered in this paper minimizes the aggregator’s net cost 
which is the sum of the incentive payments made to the end-users and 
penalty paid to the CMG for failing to provide the required flexibility 
under the IBDR scheme. The optimal modification of aggregated end--
users’  energy profile turns into a complex large-scale problem from the 
aggregator perspective. The performance of the mathematical pro-
gramming based algorithms used to solve such problems degrades with 
the increase in the problem dimension. In this context, population-based 
stochastic algorithms which are also known as meta-heuristics such as 
EAs (evolutionary algorithms) are often effective. Although EAs can 
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handle larger problem size, they often require a higher computational 
budget to reach the optimal region of the search space. Therefore, to 
solve the problem efficiently, an effective memetic algorithm (MA) is 
proposed that delivers near-optimal solutions utilizing the given 
computational budget. The proposed MA applies a two-stage process, 
where the first stage evolves the solutions using a bi-objective EA to-
wards the improved region (near optimum), while the second stage is 
driven by the intensification of the search locally (through a gradient 
descent based optimizer using standard MATLAB fmincon function) from 
the best-obtained location so far in the first stage. The bi-objective EA is 
incorporated in the proposed MA to expedite the overall convergence of 
the algorithm. The main purpose of the developed algorithm is to solve 
the flexibility management problem of the aggregator more efficiently. 
The performance of the proposed optimization approach is investigated 
and compared with other state of the art algorithms through detail 
statistical analysis. The contributions of this work can be summarized as 
follows:  

• Flexibility provisions for CMG from residential end-users under the 
IBDR scheme is proposed.  

• Flexibility management of DR aggregator is formulated as a bi- 
objective problem as opposed to the traditional single-objective 
approach.  

• Proposed algorithm can provide near-optimal solution with a limited 
computational budget.  

• Numerical experiments with statistical analysis and comparison with 
state-of-the-art algorithms corroborate the efficacy of the proposed 
formulation and the algorithm. 

The remainder of the work is organized as follows. The background 
of DR programs and related works are discussed in Section 2. Section 3 
provides the system overview, mathematical problem formulation and 
rationale for the proposed optimization approach. Section 4 presents the 
proposed algorithm. In Section 5, experimental results are presented and 
analyzed to validate and evaluate the performance of the proposed so-
lution approach. Finally, the conclusions are drawn in Section 6. 

2. Background and related works 

2.1. Background 

The term flexibility in a more generic sense refers to the modification 
of end users’  demand profile in response to the energy generation or 
electricity market price variations (El Geneidy and Howard, 2020). The 
DR program is the underlying element that offers flexibility and there 
are two forms of DR in use i.e. a price-based DR (PBDR) and an 
incentive-based DR (IBDR). In the former, the electricity price is varied 
so that the end-users reduce their consumption during periods of higher 
price and vice versa. In the latter, the end-users receive incentives for 
changing their energy usage profile based on agreed conditions with the 
system operator (SO) or aggregators (third-party) (Lamprinos et al., 
2016). Since price-based DR is not dispatchable, it offer less flexibility to 
the system operator. Furthermore, the end-users are exposed to the risk 
of price-volatility of the wholesale electricity market. The natural risk 
aversion tendency limits participation of end-users to such DR programs 
(Yu et al., 2016). In contrast, incentive-based DR is attractive from the 
SO perspective as it can achieve the required flexibility by dispatching 
DR resources. Besides, it is also lucrative for the end-users since they get 
instant rewards for modifying their energy usage profile (Eissa, 2018). In 
the US, incentive-based DR led to 93% reduction in peak load (Asadi-
nejad and Tomsovic, 2017). In IBDR programs, the aggregator plays a 
vital role as a mediator/broker between the end-users and the SO. The 
aggregator can negotiate with the SO effectively on behalf of the 
end-users and SO can directly deal with the aggregator instead of indi-
vidually managing a large number of end-users (Gkatzikis et al., 2013). 
In this work, we consider flexibility provisioning by an aggregator 
relying on a incentive based demand response program. 

2.2. Related works 

Numerous studies have been reported in the literature on incentive- 
based DR programs with aggregators offering required flexibility to the 
system operators. In Luo et al. (2019), an incentive-based DR was 

Nomenclature 

Acronym 
MAb Memetic algorithm with bi-objective EA 
MAs Memetic algorithm with single-objective EA 
CMG Community microgrid 
CMGO Community microgrid operator 
DR Demand response 
IBDR Incentive-based demand response 
PAR Peak-to-average ratio 
PBDR Price-based demand response 
SO System operator 

Parameter 
CCMGO

dev Penalty rate for any deviation in requested flexibility 
Cshift

i Expected remuneration for shiftable appliance i 
Creglt

k Expected remuneration for regulatable appliance k 
Ibase,k,t Base intensity of power consumption (%) for regulatable 

appliance k at time t 
Imin,k/Imax,k Allowed minimum/maximum intensity (%) for 

regulatable appliance k 
Nreglt Number of regulatable appliances 
Nshift Number of shiftable appliances 
Pshift

base,i Baseline profile of shiftable appliance i 

Preglt
base,k Baseline profile of regulatable appliance k 

Pbase Accumulated baseline profile of all appliance 
PCMGO

flex,t Flexibility requested by CMGO 

pshift
i,t Power consumption of shiftable appliance i at time t 

preglt
k Maximum power of regulatable appliance k 

TH Time horizon 
tstart
base,i Baseline starting time of the appliance i 

tstart
pref Preferred starting time of appliance from end-users 

wopr
i/k Operating window of the appliance i/k 

Variable 
Cpenalty Penalty cost incurred on the aggregator 
Crem Remuneration paid to the appliances 
F Net cost of the aggregator 
Inew,k New intensity of power consumption (%) for regulatable 

appliance k 
Pagg

flex,t Flexibility procured by the aggregator 

Pdev
flex Deviation between flexibility procured and flexibility 

requested 
Pnew,i/k Modified profile of the appliance i/k 
tstart
new,i New starting time of the appliance i 

i Index of shiftable appliances 
k Index of regulatable appliances 
t Index for time slots  
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considered for a virtual power plant (VPP) with an aim to minimize the 
operating cost of the VPP, while preserving customers’  interests. The 
customers were grouped based on their preferred incentive rates and the 
problem was formulated as a non-linear programming problem and 
solved with LINGO optimizer (a software package for linear and 
non-linear programming). The operation of a community-based resi-
dential microgrid was optimized using a multi-agent system in Morsali 
et al. (2020). The DR model was formulated as a mixed-integer problem 
and solved using a gradient descent (GD) algorithm. Multiple competi-
tive aggregators have also been considered in Abapour et al. (2020) in an 
attempt to achieve greater flexibility. In Nguyen and Le (2015), the 
profit of a microgrid (MG) aggregator was maximized by procuring 
flexibility from customers through incentive-based DR. Stochastic pro-
gramming was employed to solve the optimization problem. A 
non-cooperative game model was used in Gregori et al. (2016) to 
maximize the profits of connected MGs and DR aggregators. The DR 
aggregators maximized their profits by trading flexibility with MGs by 
shifting the usage of appliance loads of its customers. Different 
meta-heuristic techniques have also been employed to optimize DR 
problems. In Xu et al. (2019), an incentive-based demand-side man-
agement strategy with a micro-market module was proposed for 
non-controllable loads within an university campus. A self-crossover 
genetic algorithm (GA) was proposed to optimize the DR program. 
Hybridization of IBDR and PBDR have also been considered in  Kim 
et al. (2021) to reduce peak loads and improve the reliability of 
microgrids. Particle swarm optimization (PSO) was used to optimize the 
MG operation with DR. However, in the design of IBDR, penalty cost 
associated with customers’ failure to satisfy predefined terms was 
ignored. Evolutionary algorithms (such as differential evolution, PSO 
and vortex search) have also been employed in Lezama et al. (2020) to 
maximize the profit of the DR aggregator in providing flexibility to the 
SO through scheduling home appliances of its customers. The profit of 
the aggregator is maximum when its cost (sum of the remuneration paid 
to the customers and the penalty for the mismatch of flexibility sought 
by the SO) is minimum. The problem has been formulated as a 
single-objective minimization task combining both parts of the cost 
function. Other meta-heuristic algorithms employed for DR applications 
include non-dominated sorting genetic algorithm II (NSGA-II) (Devia 
et al., 2021), discrete harmony search (DHS) algorithm (Chauhan and 
Saini, 2017), simulated annealing (SA) algorithm  (Qian et al., 2013), 
teaching learning-based optimisation (TLBO) algorithm  (Derakhshan 
et al., 2016) and hybrids (Waseem et al., 2020) etc. 

3. System overview and problem formulation 

The overview of the considered CMG and mathematical problem 
formulation of the IBDR program is presented in this section. 

3.1. System overview 

A community microgrid is connected to the utility grid through 
point-of-common-connection (PCC) as shown in Fig. 1. The CMG serves 
the energy consumers with the energy from the local generations and 
energy purchased from the utility grid. The CMG gathers flexibility from 
its consumers via IBDR to reduce energy purchase from the utility grid 
during peak hours, while ensuring reliable supply. In other words, the 
CMG operator targets to improve peak-to-average ratio (PAR) of its 
aggregated load through flexibility management. The CMG can also 
utilize the obtained flexibility to provide ancillary services to the utility 
grid. Existing DR programs mostly cater to large industrial/commercial 
customers as they are capable of significantly modifying the demand. An 
aggregator can also provide significant flexibility to the community 
microgrid operator (CMGO) by managing the energy usage of its large 
number of residential consumers. The aggregator receives payment from 
the CMG operator for the flexibility provided. 

However, the aggregator is also penalized by the CMGO for any 

mismatch between the delivered and the sought flexibility. The aggre-
gator in turn pays its residential consumers incentives to alter their 
energy profile to meet the required flexibility. 

Two types of household appliances have been considered for flexi-
bility provisioning: shiftable devices and regulatable devices. The ap-
pliances for which the power consumption can not be controlled but 
their starting time can be delayed/shifted falls in the first category. The 
second category consists of regulatable appliances for which power 
consumption can only be regulated. 

The end-users can specify their preferences (such as allowed delay 
for switching on a device, expected remuneration etc.) when they 
participate in the DR program. 

3.2. Formulation of optimization problem 

The objective is to minimize the net cost of the aggregator that 
comprises of the incentive payments to the residential customers and the 
penalty paid to the CMG operator. In the following subsections, we first 
present the details of the model followed by the single and bi-objective 
formulation of the problem. The rationale for the bi-objective formula-
tion is also discussed in details. 

3.2.1. Mathematical model 
Let, D={dshift, dreglt} be the set of all appliances from the households 

participating in the DR program where dshift = {1,2,….Nshift} and dreglt =

{1,2,….Nreglt} represent the set of shiftable and regulatable appliances, 
respectively. Number of shiftable and regulatable appliances are deno-
ted by Nshift and Nreglt. The end-users receive financial incentives from 
the aggregator for any modification in their base profile. The base profile 
denotes the power consumption of the appliances without DR over the 
time horizon (TH). For the daily profile (24 h), a time resolution of 15 
min would lead to TH of 96 time-slots. The base profile of the shiftable 
devices i is characterized by their starting time (tstart

base,i), appliances’ 

operating window in time slots (wopr
i ) and power consumption (pshift

i,t ) in 
each of the time slots within the operating window. The base profile of 
the shiftable appliances can be calculated as in (1). 

Fig. 1. Proposed IBDR in the community microgrid.  
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Pshift
base,i,t =

⎧
⎨

⎩

pshift
i,t− tstartbase,i+1 if tstartbase,i ≤ t ≤ tstartbase,i + wopr

i − 1

0 else
(1) 

As the start times of the regulatable appliances can not be shifted, the 
base profile of any regulatable appliance k is characterized by its 
maximum rated power (preglt

k ) and base intensity of power consumption 
(Ibase,k,t). The intensity of consumption refers to the percentage of peak 
power consumed by the appliance. Therefore, the base profile of the 
regulated appliances can be represented as in (2). 

Preglt
base,k,t = preglt

k Ibase,k,t (2) 

The aggregated base-profile for all appliances can be obtained from 
(3) by combining individual base-profile of (1) and (2). 

Pbase,t =
∑Nshift

i=1
Pshift

base,i,t +
∑Nreglt

k=1
Preglt

base,k,t (3) 

In this study we assume that the aggregator has access to the base- 
profile for each type of appliances. The aggregator runs an optimiza-
tion algorithm to meet the flexibility needs of the CMGO by modifying 
the base-profile according to the end-users’  preferences. It is also 
assumed that the end-users can submit their preferences of appliance 
operation through the home energy management system. The decision 
variable for optimizing operation of shiftable appliances is the modi-
fied/new starting time (tstart

new,i). The end-users’  submitted preferences 
include preferred starting time (tstart

pref ,i), allowed time window for aggre-

gator to control the appliance (TWagg
i ) and expected remuneration (Cshift

i ) 
for any shifting of appliance i within the allowed time window. The 
shifting of appliances from the base-profile is constrained by user pref-
erences as follows: 

tstartpref ,i ≤ tstartnew,i ≤ tstartpref ,i + TWagg
i (4)  

tstartpref ,i + TWagg
i ≤ TH − wopr

i (5) 

Equation (4) describes that the new starting time of the appliance can 
be any time between preferred starting time and end time for the 
allowed time window. The Eq. (5) indicates that the upper limit for the 
new starting time of the appliance i must be within the considered time 
horizon that can accommodate its operating window wopr

i . 
In the case of regulatable appliance k, the decision variable is the 

new intensity of power consumption (Inew,k,t). The user preferences for 
these appliances include preferred time for initiating/altering con-
sumption (tstart

pref ,k), allowed time window for the aggregator to control the 
appliance (TWagg

k ), allowed maximum/minimum intensity (Imin,k /Imax,k), 
and expected remuneration (Creglt

k ) for any modification of appliance 
intensity within the allowed time window. The new intensity of con-
sumption of the regulatable appliances is constrained by the following 
equations. 

Imin,k ≤ Inew,k,t ≤ Imax,k (6)  

Inew,k,t =

{
Inew,k,t if tstartpref ,k ≤ t ≤ tstartpref ,k + TWagg

k

Ibase,k,t else
(7) 

The new starting time of shiftable appliances (tstart
new,i) and new in-

tensity of regulatable appliances (Inew,k,t) can be used to determine the 
modified profile of the appliances. The new aggregated profile can be 
obtained using (8)–(10). 

Pshift
new,i,t =

⎧
⎨

⎩

pshift
i,t− tstartnew,i+1 if tstartnew,i ≤ t ≤ tstartnew,i + wopr

i − 1

0 else
(8)  

Preglt
new,k,t = preglt

k Inew,k,t t ∈ wopr
k ,wopr

k ∈ TH (9)  

Pnew,t =
∑Nshift

i=1
Pshift

new,i,t +
∑Nreglt

k=1
Preglt

new,k,t (10) 

The flexibility procured by the aggregator is the difference between 
the aggregated base-profile and the new/modified profile of the appli-
ances as presented in (11). Also, the deviation of flexibility provisioned 
by aggregator from the flexibility requirement of CMGO is calculated in 
(12). 

Pagg
flex,t = Pbase,t − Pnew,t (11)  

Pdev
flex =

∑TH

t=1

⃒
⃒
⃒Pagg

flex,t − PCMGO
flex,t

⃒
⃒
⃒ (12) 

The aggregator pays the remuneration to the end-users based on 
changes to their energy usage by the shiftable and regulatable devices 
according to the new scheduled profiles as presented in (13)-(14). The 
total remuneration cost (Crem) paid to the end-users is given by (15). The 
aggregator also needs to pay a penalty imposed by the CMGO if Pdev

flex > 0. 

Cshift
rem,i =

{
Cshift

i if tstartbase,i ∕= tstartnew,i

0 else
(13)  

Creglt
rem,k = Creglt

k

∑TH

t=1

⃒
⃒Preglt

base,k,t − Preglt
new,k,t

⃒
⃒ (14)  

Crem =
∑Nshift

i=1
Cshift

rem,i +
∑Nreglt

k=1
Creglt

rem,k (15) 

The net cost of the aggregator is the sum of the remuneration paid to 
the end-users and the penalty cost paid to the CMGO. Therefore, the 
objective of the aggregator is to minimize the net cost (F) for the flexi-
bility provision. 

3.2.2. Single objective formulation 
The single-objective formulation of the minimization problem can be 

written in compact form as in (16) (Lezama et al. 2020). 

min x→ F = Crem + CCMGO
dev Pdev

flex

s.t
(4) − (6)

(16)  

where x→ denotes the vector of decision variables combining tstart
new,i and 

Inew,k,t . CCMGO
dev is the penalty factor (weight factor) in € /kWh set by the 

CMGO for any mismatch of flexibility collected by the aggregator and 
the required flexibility. The choice of this penalty factor in the single- 
objective formulation (16) affects the course of search. 

3.2.3. Bi-objective formulation 
In the bi-objective formulation, the remuneration paid to the end- 

users and penalty cost paid to the CMGO are considered as two 
different objectives. Both objectives are minimized simultaneously to 
reduce the net cost of the aggregator for the flexibility provisions. The 
bi-objective formulation of the optimization problem can be presented 
as in (17). 

min x→ F = {f1, f2}
s.t

(4) − (6)
(17)  

f1 = Crem (18)  

f2 = Cpenalty = CCMGO
dev Pdev

flex (19) 

Where f1 and f2 represent the two objectives, namely, remuneration 
cost (Crem) and penalty cost (Cpenalty), respectively. The value of f1 and f2 
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can be obtained using (15) and (19). 

3.2.4. Rationale for bi-objective formulation 
As discussed earlier, the objective of this paper is to minimize the net 

cost (F) of the aggregator in procuring flexibility services for the CMGO. 
It is well known that EAs evolve a set of solutions over the generations/ 
iterations towards the optimal solution. While doing so, the optimizer 
can follow different trajectories as shown in Fig. 2. For the sake of 
illustration, let’s assume, the initially generated point is A and the op-
timum point is B and both points are depicted in a two-dimensional 
objective space (i.e., objectives f1 and f2) where B implies minimum 
values in both objectives. 

Also, let’s assume that A and B are the opposite corner points of a 
two-dimensional space. This means that the shortest distance (according 
to the triangle inequality theorem) which can be travelled from A to 
reach B must be along the hypotenuse (i.e., straight trajectory AEB) of 
the triangle ΔADB. This further implies that all other lines of search 
trajectory in the space □ADBC must be greater than AEB, while both 
ACB as well as ADB form the longest trajectories. This indicates that the 
convergence rate will be maximum only if the search trajectory follows 
the path AEB. Since F is correlated with both f1 and f2 as stated above (F 
decreases when f1 and f2 decrease and vice-versa), trajectory AEB in-
volves equal weights (in the normalized scale), while minimizing F 
along this path. Note that the weight of f1 and f2 in F varies due to the 
values of CCMGO

dev in (19) as well as remuneration rates (Cshift
i and Creglt

k ) in 
(13)-(14). The weight will create bias in the course of search i.e. 
objective with a higher weight will get priority and vice versa. This 
might happen often when minimization of net cost (F) is considered in 
the optimization process. In that case, search is diverted towards any 
trajectory in the upper/lower triangular space (i.e., two extreme con-
ditions are ACB and ADB) based on weight of f1 and/or f2. Such a sce-
nario in turn consumes a higher evaluation budget to identify the near- 
optimal solution. In contrast, bi-objective formulation of (17) considers 
f1 and f2 as two separate objectives which are minimized simultaneously 
and such a consideration will inherently force a search along the most 
preferred shortest path as illustrated in Fig. 2. 

4. Proposed memetic algorithm 

The proposed approach relies on a two-stage solution process. In the 
first stage, a population-based stochastic algorithm (an evolutionary 
algorithm (EA) in this case) is used with the bi-objective formulation to 
identify promising regions of the search space. From the set of trade-off 
solutions identified at the end of stage one, the solution with the best 
aggregate cost measure is selected. A gradient based local search using 
the single-objective formulation is used in the second stage with the 
starting solution being the one selected from the first stage. The 
computational budget is equally divided among the stages in this study 
for simplicity. The EA consists of components for initialization, evolu-
tion, evaluation and environmental selection, while the local search is 
based on a gradient based optimizer (default fmincon function in MAT-
LAB). The combination of the proposed population based search and the 
local search conforms to a memetic algorithm paradigm. The pseudo- 
code of the approach is presented in Algorithm 1 and steps are dis-
cussed later in this section. The codes of the proposed memetic algo-
rithm can be downloaded from Code. 

4.1. Solution encoding 

The first step relates to an encoding process where decision variables 
of the problem are represented as a chromosome. The decision variables 
of the problem under consideration are the new starting times (tstart

new ) of 
the shiftable appliances and the new intensity levels (Inew) of power 
consumption of the regulatable appliances. The solution vector con-
cerning the shiftable appliance can be presented as in (20). 

x→shift =
[
tstartnew,1,…, tstartnew,i…tstartnew,Nshift

]
(20) 

Where i = 1, 2,…,Nshift denotes the index of shiftable appliances. 
Similarly, the solution vector for the regulatable appliances can be 

presented as in (21). 

x→reglt =
[
Inew,1,1,…, Inew,k,t ,…, Inew,Nreglt ,wopr

]
(21) 

Where k = 1, 2,…,Nreglt represents the index of regulatable appli-
ances. Time-slots of the operating window for the respective regulatable 
appliances are denoted by t = 1, 2, …,wopr. The decision variables for 
both types of appliances are concatenated to form a single solution 
vector for the optimization problem as in (22). 

x→=

[

x→shift x→reglt

]

(22) 

The upper and lower bound of these decision variables are set as per 
end-users preferences for the respective appliances. 

4.2. Stage one 

In this stage, an evolutionary algorithm is used to deal with the bi- 
objective formulation of the problem. A set of initial solutions are 
generated randomly within the specified variable bounds for the enco-
ded decision variables. Then, the current parent set of solutions are used 
to generate offspring solutions using crossover and mutation operations. 
In doing so, we have used popularly known simulated binary crossover 
(SBX) and polynomial mutation approach (Deb and Agrawal, 1995) in 
this study. Prior to both operations, the parent solutions are selected 
following binary tournament (Deb et al., 2002) strategy to maximize the 
likelihood of elite parents used in recombination. The offspring solutions 
are then evaluated. With the newly evaluated offspring solutions and 
also all solutions that have been evaluated so far, the best set of N so-
lutions are identified based on non-dominated sorting and carried for-
ward as parents for the next generation. The process continues until half 
of the computing budget is exhausted and the set of non-dominated 
solutions based on all evaluated solutions are considered as an output 
from stage one. Fig. 2. Trajectory of the solution process in the objective space.  

M.J. Rana et al.                                                                                                                                                                                                                                 

http://www.mdolab.net/Ray/Research-Data/DR_paper_code.zip


SustainableCitiesandSociety74(2021)103218

6

Require: NFEmax (maximum number of function evaluations), N (population size), crossover and mutation parameters.
Output: The best point found at the end of evaluation budget.
1: NFE = 0, j = 0. // Initial generation
2: Initialize (PN j). // Initial set of solutions
3: Evaluate (PN j) and update NFE.
4: Store the evaluated solutions in archiveA.
5: Rank (PN j) based on merits of ( f1) and ( f2). // Following non-dominated sorting (Deb, Pratap, Agarwal, & Meyarivan, 2002).
6: while (NFE ≤ NFEmax) do
7: if (NFE ≤ 1

2 × NFEmax) then
8: CN

j = Evolve (PN j). // Following SBX crossover and PM (Deb & Agrawal, 1995)
9: Evaluate (CN

j) and update NFE.
10: Update the archive;A ←− (A∪CN

j).
11: Rank (A) based on f1 and f2 merits. // Following non-dominated sorting (Deb et al., 2002).
12: PN j+1 ←− Reduce (A). // Environmental selection
13: j = j + 1.
14: else
15: Find the best solution so far based on total fitness (F = f1 + f2) merit.
16: Run a local search from the current best. // Using fmincon as the GD based optimizer .
17: Evaluate the locally improved solution and update NFE.
18: Update the archiveA with locally evaluated solutions.
19: end if
20: end while

Algorithm 1. Proposed memetic algorithm with bi-objective EA (MAb).  

M
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4.3. Stage two 

While the EA used in stage one delivers a set of trade-off solutions, 
there is a need to accelerate the search especially when the overall 
computing budget is limited. Memetic algorithms are a popular choice in 
such circumstances, where a local search is usually conducted following 
a population-based search. In our proposed approach, we first identify 
the solution with the best aggregate measure (F) and initiate a local 
search using a gradient-based optimizer (fmincon with default MATLAB 
settings have been used in this study) with the aggregate measure (F) as 
the objective. The default settings include ’SQP’ (sequential quadratic 
programming) as the active set algorithm where step tolerance as well as 
optimality tolerance limit were set to default (1e − 6 respectively). The 
local search is allocated to use half the overall computing budget in this 
study. At the end of the local search, the best solution in terms of F (i.e., 
minimum net cost) is reported. 

5. Results and discussion 

In this section, the performance of the proposed approach is inves-
tigated using numerical experiments. 

5.1. System data 

For the numerical experiments, 20 similar residential end-users, who 
registered their appliances for DR, have been considered. It is assumed 
that all the registered residential end-users have both shiftable and 
regulatable appliances. The registered shiftable appliances in each 
household includes washing machine (WM), tumble dryer (TD), and 
dishwasher (DW). On the other hand, regulatable appliances registered 
for DR consists of air-conditioning (AC) unit, television (TV), lighting 
system (LT), and desktop computer (DC). The typical power consump-
tion profile and operating window of the appliances is presented in 
Figs. 3 and 4. The baseline profile of each appliances in the end-users’ 
premises are created across a 24 h period with 15 min intervals (i.e. 96 
time-slots). The overall load profile in the CMG as well as the accumu-
lated baseline profile of both shiftable and regulatable appliances is 
shown in Fig. 5. The preferred shifting time window of the shiftable 
appliances is generated using uniform random function in the range of 
0–64 time-slots; likewise, the preferred intensity of regulatable appli-
ances is varied between 0 to 40% of the appliance power. For different 
participation of the end-users, the remuneration paid for shifting 

appliances is modelled as ±30% of 0.2 €. On the other hand, the ex-
pected remuneration of the regulatable appliances is considered to be ±
30% of 0.09 € /kWh. The penalty cost imposed on the aggregator by 
CMGO for any deviation in the requested and supplied flexibility is 
assumed as 0.2 € /kWh. It is assumed that by registering appliances in 
the IBDR scheme, the end-users provide aggregator direct control over 
their appliances and aggregator respects user preferences while con-
trolling these appliances. The off-peak and peak periods of energy 
consumption are considered as 02:00-06:00 and 18:00-21:00 hours, 
respectively. 

The flexibility requirement of the CMG varies according to the period 
of operation as shown in Fig. 6. Data regarding household appliances 
and their baseline consumption profiles are taken from Lezama et al. 
(2020). 

5.2. Experimental setup 

In this subsection, the results obtained from the proposed approach is 

Fig. 4. Operating window and typical power consumption profile of regulat-
able appliances (a) AC (b) TV and LT (c) DC . 

Fig. 5. Load profile (a) overall load in the CMG (b) accumulated baseline 
power consumption profile from both shiftable and regulatable appliances. 

Fig. 3. Operating window and typical power consumption profile of shiftable 
appliances (a) WM (b) TD (c) DW. 
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presented, analyzed and compared with the state-of-the-art algorithms. 
The simulation was conducted for 31 independent runs to carry out 
statistical analysis. A computational budget of 1e5 function evaluations 
were allocated to all algorithms. The total number of decision variables 
of the considered problem is 940. The population size, crossover prob-
ability, and mutation probability for the proposed algorithm were set to 
100, 1, and 0.1, respectively. Two variants of the proposed algorithm, 
namely, memetic algorithm with single-objective EA (MAs) and memetic 

algorithm with bi-objective EA (MAb) were used to solve the problem. 
The performance of MAs was investigated against the state-of-the-art 
algorithms; then, the effectiveness of the proposed MAb was assessed 
with MAs and the best performer among the state-of-the-art algorithms. 
All the simulation studies were programmed and implemented in the 
MATLAB (R2018a) environment on a computer equipped with 3.20 GHz 
Intel Core i7 processor and 16 GB of RAM. 

5.3. Results with single-objective approach 

The single-objective approach aims to minimize the total cost of the 
aggregator for managing flexibility provision for the CMG. The mini-
mization problem was solved using the MA embedded with single- 
objective EA (i.e., MAs). Additionally, for the sake of comparison, the 
problem was solved employing different state-of-the-art algorithms that 
include PSO, vortex search (VS) and different variants of DE. The vari-
ants of DE include DErand, DEcurrent− to− best , hybrid adaptive DE  (HyDE) 
and HyDE with decay function (HyDE-DF). The implementations of the 
above algorithms were taken from Lezama et al. (2020).The obtained 
net cost of the aggregator using the proposed MAs and the 
state-of-the-art algorithms are presented in Table 1. The results show 
that the VS produced minimum net cost of the aggregator among the 
state-of-the-art algorithms with a median fitness value of 6.64€. 
Although the proposed MAs exhibits a higher standard deviation, it 
outperformed all the state-of-the-art algorithms in terms of fitness value. 
The convergence plots for the median run of the state-of-the-art algo-
rithms and MAs are shown in Fig. 7. From the convergence plots, it can 
be observed that DEcurrent− to− best and VS algorithms converged to better 
fitness values compared to the other state-of-the-art algorithms. 
Although both DEcurrent− to− best and the VS algorithm had almost similar 
convergence during early stages of the search process, VS algorithm 
outperforms DEcurrent− to− best eventually. On the contrary, the proposed 
MAs employing an evolutionary search process achieved faster 

Fig. 7. Convergence plots for median run of the algorithms in single- 
objective approach. 

Table 2 
Fitness value obtained from the proposed memetic approach with bi-objective 
EA.  

Algorithm Best Worst Average Median STD 

Proposed MAb  3.81 6.76 5.22 5.19 0.58 
Proposed MAs  5.12 8.48 6.56 6.41 0.80 
Avg. savings (%) - - 20.43 - -  

Fig. 8. Convergence comparison of the proposed MAb, MAs and state-of-the 
art algorithm. 

Fig. 6. Flexibility requirement from the CMGO.  

Table 1 
Fitness value obtained from single-objective approach.  

Algorithm Best (€) Worst (€) Average (€) Median (€) STD 

PSO 16.59 20.69 18.26 18.35 0.94 
DErand  16.18 18.11 17.18 17.22 0.43 
DEcurrent− to− best  6.57 8.59 7.80 7.88 0.53 
HyDE 8.93 10.65 9.89 9.91 0.41 
HyDE-DF 8.17 10.05 9.16 9.14 0.43 
VS 5.48 7.70 6.67 6.64 0.57 
Proposed MAs  5.12 8.48 6.56 6.41 0.80  
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convergence than the state-of-the-art algorithms during the early stages. 
However, improvement in the fitness value stalled between the number 
of function evaluations 2e4 to 5e4. Local search (LS) was then applied 
after 5e4 function evaluations to further improve the fitness value. The 
impact of LS is evident from the final fitness value which places MAs as 
the top performer ahead of all the state-of-the-art algorithms. 

5.4. Results with bi-objective approach 

In the bi-objective approach, the goal is to minimize the net cost of 
the aggregator by simultaneously reducing remuneration cost and 
penalty cost. The results obtained from 31 runs of the proposed MAb is 
presented in Table 2. It is evident from the results that MAb identifies 
solutions with better net cost. It shows that the aggregator can save on 
average 20.43% employing the bi-objective approach than the single- 
objective strategy (i.e., MAs). The lower standard deviation (i.e. 0.58) 
of the obtained results compared to the MAs indicates the robustness of 
the proposed MAb. 

To further analyze the performance, the convergence plots of the 

median run for the proposed MAb, MAs and the VS algorithm (best 
performer among the state-of-the-art-algorithms) are shown in Fig. 8. 
From the convergence plots, it can be inferred that the single-objective 
approaches (MAs and VS) converge to almost similar fitness values 
(although MAs slightly outperformed VS). However, significant 
improvement in the convergence of fitness value is attained by adopting 
the bi-objective formulation that confirms the effectiveness of the pro-
posed MAb. 

5.5. Performance analysis of the proposed algorithm 

5.5.1. Convergence comparison 
The purpose of this subsection is to validate the principle discussed in 

Section 3.2.4 which hypothesizes that a bi-objective formulation can 
lead to better fitness values than the single-objective approach given an 

Fig. 10. Trajectory of proposed bi-objective EA of MAb in the normalized 
objective space. 

Fig. 11. Non-dominated solution set of EA and final solution from local search 
(LS) using proposed MAb. 

Table 3 
Wilcoxon sign test of the proposed MAb versus single-objective algorithms for 31 
runs.  

Comparison Better Similar Worse p-value 

MAb vs. PSO  31 0 0 1.17e-06 
MAb vs. DErand  31 0 0 1.17e-06 
MAb vs. DEcurrent− to− best  31 0 0 1.17e-06 
MAb vs. HyDE  31 0 0 1.17e-06 
MAb vs. HyDE-DF  31 0 0 1.17e-06 
MAb vs. VS  30 0 1 1.92e-06 
MAb vs. MAs  28 0 3 6.57e-06  

Table 4 
Friedman test for all algorithms.  

Category Algorithms Mean rank 

Proposed MAb  1.13  
MAs  2.52  

PSO 7.77  
DErand  7.23 

State-of-the-art DEcurrent− to− best  3.81  
HyDE 5.87  
HyDE-DF 5.10  
VS 2.58  

Fig. 9. Trajectory of single-objective EA of MAs in the normalized objec-
tive space. 
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equal computational budget. The better fitness of the bi-objective 
approach is due to its capability to effectively follow the optimal tra-
jectory during the course of search. To illustrate this point, the trajectory 
of the evolutionary search process of both the single-objective (i.e., in 
MAs) and proposed bi-objective formulation (i.e., in MAb) are shown in 
Figs. 9 and 10, respectively. 

It can be seen that the search process was biased towards minimizing 
f2 in the beginning while f1 was prioritized in the later stages. On the 
other hand, the trajectory of the proposed bi-objective EA (shown in 
Fig. 10) closely follows the optimal trajectory. At the end of the evolu-
tionary search process, a local search was applied to the final non- 
dominated solution with the lowest net cost (F). The application of 
local search further minimized the cost as illustrated in Fig. 11. 

5.5.2. Statistical analysis 
To verify the consistency, the performance of the proposed algorithm 

(MAb) was compared to the state-of-the-art algorithms using multiple 
statistical tests The objective values achieved from 31 independent run 
of all algorithms were taken as the samples for the tests. Two non- 
parametric tests (Wilcoxon sign test and Friedman test) are conducted. 
The Wilcoxon sign test was performed using 5% significance level of the 
samples and the obtained results are presented in Table 3. The results 
show that the proposed MAb outperformed all other algorithms in most 
of the trials. Furthermore, the p values of the tests are less than 0.05 
which indicates a significant difference between the obtained results 
from the proposed algorithm when compared with other algorithms. 
The results from Friedman test is presented in Table 4, which shows that 
the proposed MAb is ranked first among all other algorithms. Addi-
tionally, boxplots for all algorithms is shown in Fig. 12 which confirms 
the superiority of performance of the proposed algorithm. 

5.5.3. Analysis of computational time 
The obtained results presented in Tables 1 and 2 are based on the 

stopping criteria of maximum number of function evaluations which 
was set to 1e5 for all algorithms. The average computational time 
required by each algorithm and corresponding median fitness values is 
presented in Table 5. The results show that using equal number of 
function evaluations, the proposed MAb produced better fitness value. 
However, the computational time for the proposed algorithm was higher 
than other algorithms. The additional computational time arises from 
the initialization of local search optimizer (i.e.fmincon) in the MATLAB 
environment. The required computational time for the proposed MAb is 

Fig. 12. Box plots for all algorithms.  

Table 5 
Comparison of computational time between proposed algorithm and state-of- 
the-art-algorithms.  

Stopping criterion Algorithm Avg. computation time 
(second) 

Median 
fitness  

MAb  229.73 5.19  
PSO 88.68 18.35  
VS 87.86 6.64  
DErand  91.64 17.22 

Max. number of DEcurrent− to− best  86.00 7.88 
function evaluation HyDE 91.88 9.91  

HyDE-DF 101.09 9.14  

PSO 250 17.88  
VS 250 7.68  
DErand  250 15.97 

Max. computation 
time 

DEcurrent− to− best  250 7.18  

HyDE 250 8.32  
HyDE-DF 250 8.47  

Fig. 13. (a) Baseline vs modified profile (b) flexibility procured from shift-
able appliances. 

Fig. 14. (a) Baseline vs modified profile (b) flexibility procured from regulat-
able appliances. 
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reasonable from the perspective of the day-ahead flexibility manage-
ment problem considered in this work where cost minimization is of 
primary concern. Nevertheless, for fair comparison, state-of-the-art the 
algorithms were run with the stopping criteria of maximum computa-
tional time of 250 s. The fitness values of the algorithms obtained using 
maximum computational time is shown in Table 5. The results reveal 
that even with increased computational time allocation, the state-of-the- 
art algorithms failed to reach the fitness value achieved with the pro-
posed algorithm. This establishes the computational efficiency of the 
proposed algorithm. 

5.6. Analysis of the obtained results 

The aggregator modifies the consumption profile of the appliances. 
The resulting modified profile of the appliances should follow the flex-
ibility requirement as close as possible to avoid penalty from the CMGO. 
The modified profile of the shiftable appliances with regards to the 
baseline profile and flexibility offered by the shiftable appliances are 

shown in Fig. 13(a)-(b) respectively. It can be seen that the power 
consumption of the modified profile was reduced around 19:00-20:00 
and increased around 05:00-06:00. Accordingly, the flexibility from 
shiftable appliances was maximum during these periods. This occurred 
due to the shifting of some appliances from peak periods to off-peak 
periods. 

On the other hand, as shown in Fig. 14, the maximum flexibility 
provided by the regulatable appliances (around 2 kW) is less than that of 
the shiftable appliances. As before, the maximum flexibility occurs 
during peak hours. The reason behind the higher flexibility from shift-
able appliances is that the shifting of any appliances from one time 
period to another contributes twice in flattening the overall load curve; 
whereas, the regulatable appliances helps in modifying the consumption 
at any specific period only. 

The accumulated modified profile and procured flexibility from all 
appliances is shown in Fig. 15. From Fig. 15(a) it can be observed that 
overall consumption was reduced around peak periods, while it 
increased around off-peak periods; this conforms to the modification of 
the usage of individual appliances. Furthermore, Fig. 15(b) reveals that 
the flexibility requirement was met most of the time except during a few 
time slots. 

5.6.1. Impact of DR on the CMG load profile 
The overall load profile of the CMG is modified due to the procured 

flexibility by the aggregator as shown in Fig. 16(a). The flexibility 
requirement set by the CMGO was higher around peak hours. Accord-
ingly, the modified load of the CMG was reduced during peak hours 
(around 19:00-20:00). On the other hand, the modified load of the CMG 
was increased slightly around 05:00-06:00 (i.e. off-peak hours). Conse-
quently, the peak-to-average ratio (PAR) of the CMG load profile was 
reduced by 3.97% as shown in Fig. 16(b). The lower value of PAR is 
conducive to the economic and reliable operation of the CMG. Similar 
values of PAR were also achieved employing the state-of-the-art algo-
rithms but with the expense of higher cost of flexibility management. 
Table 6 shows the percentage increase in the median value of flexibility 
management cost using state-of-the-art algorithms with respect to (w.r. 
t.) the cost incurred with the proposed MAb. For almost similar PAR 
value, the most economical one (i.e., VS) among the state-of-the-art al-
gorithms incurs 27.94% additional cost for the flexibility management. 
This confirms the effectiveness of the proposed optimization scheme. 
Although the impact of achieved flexibility in the overall load profile of 
the CMG is not that prominent, more benefits can be harnessed by 
motivating more end-users for increased participation in the DR 
program. 

6. Conclusions and future work 

In this work, an optimization approach is proposed for flexibility 
provisioning from residential end-users participating in an incentive- 
based demand response scheme. The gathered flexibility is utilized to 
improve the peak-to-average ratio of the community microgrid load 
profile. A two-stage optimization approach is proposed wherein in the 

Fig. 15. (a) Baseline vs modified profile of all appliances appliances (b) flexi-
bility requirement vs flexibility procured by aggregator. 

Fig. 16. Impacts of DR with the proposed approach (a) CMG load profile (b) 
PAR of CMG load. 

Table 6 
Peak-to-average-ratio (PAR) of CMG load achieved with median run of the 
algorithms.  

Category Algorithm PAR % Cost increase (w.r.t. MAb)  

Proposed MAb  1.21 0  

PSO 1.23 253.56  
DErand  1.23 231.79 

State-of-the-art DEcurrent− to− best  1.22 51.83  
HyDE 1.22 90.94  
HyDE-DF 1.22 76.11  
VS 1.22 27.94  
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first, a bi-objective formulation is used with incentive payments and 
penalty payments being minimized. In the second stage, a local search is 
used to minimize the total cost as a single objective. We refer to this 
algorithm as a memetic algorithm with bi-objective considerations in 
stage one (MAb). The problem is also solved using memetic algorithm 
(MAs) where the aggregate/total cost is used as a single objective in 
stage one. The performance of the proposed algorithm is validated 
through detail statistical analysis and comparison with six different 
state-of-the-art algorithms. 

The obtained results from numerical experiments show that the 
proposed MAs outperforms all the state-of-the-art algorithms in mini-
mizing the net cost of the aggregator for flexibility management. The 
proposed bi-objective form (MAb) delivered better performance when 
compared with MAs or any other state-of-the-art algorithms. The simu-
lation results reveal that using the proposed MAb instead of MAs, the 
aggregator can reduce the average cost for flexibility management by 
20.43%. The analysis of the underlying search trajectories and conver-
gence validates the rationale for better performance of the proposed bi- 
objective algorithm (MAb). The utility of the local search is also reflected 
in the obtained results. Additionally, the statistical tests confirm the 
consistency of the proposed algorithm. 

The proposed optimization approach allowed the aggregator to meet 
the flexibility requirement by optimally modifying the baseline profiles 
of the appliances. From the perspective of the CMG, a 3.97% reduction 
in the peak-to-average-ratio (PAR) of the CMG load profile was achieved 
using the proposed approach. For the achieved PAR value the proposed 
optimization approach results in at least 27.94% cost saving compared 
to the state-of-the-art algorithms 

The success of the DR program depends on the strategies that moti-
vate the participation of a large number of end-users. To harness more 
benefits for CMG from DR programs, this work can be extended by 
devising effective DR strategies which may include introducing multiple 
aggregators and interconnected CMGs as well hybrid DR program 
combining both PBDR and IBDR. Some of these directions are currently 
being pursued by the authors. 
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