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Summary

Peak periods are a result of consumers generally using electricity at similar

times and periods as each other, for example, turning lights on when returning

home from work, or the widespread use of air conditioners during the

summer. Without peak shifting, the grid's system operators are forced to use

peaked plants to provide additional energy. This operation is incredibly expen-

sive and harmful to the environment due to its high levels of carbon emissions.

Battery storage system (BSS) has been proposed to allow purchasing the energy

during off-peak periods for later use, with the primary objective of realizing

peak shifting occurred. Multi-objective optimization with the reinforcement

learning technique has been utilized in order to achieve the primary objective,

reduce energy consumption, and minimize the consumers' utility bills. The

results revealed that the reduction in energy consumption was more than 20%,

the consumers' energy bills were minimized, as well as realizing perfect peak

shifting. In addition, the strategy attempted to overcharge the battery with

about 7% of the time, and promising methods to address this has been

proposed as a direction for future research.
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1 | INTRODUCTION

A significant problem in the generation and consumption
of energy is that of peak demand.1 Although energy usage
varies from household-to-household, season-to-season,
and many other factors, such as location, there are still
numerous trends in energy usage, which could be
predicted.2 For instance, when people return home after
work, they may turn on the television, start cooking, or
may turn on the air conditioner if the temperature is far

from comfortable before sleeping.3 These trends result in
times of significantly higher energy demand, known as
peak periods, and could be incredibly difficult for the grid
to manage.4 At times of high demand, peak power plants
are generally needed to be used to provide the additional
required energy.5 It is a particular case when moving
towards the intermittent decentralized network at times
when the forecasted demand for energy is significantly
lower than the actual demand. These peak power plants
are harmful to the environment as they are generally
generating energy through inefficient combustion of fos-
sil fuels, and are also incredibly expensive to operate.6

These higher costs are covered by the consumer, resulting
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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in much higher than necessary utility bills. In addition,
peak power plants cannot be turned on instantly and
generally might take at least an hour to become func-
tional, adding yet another layer of uncertainty and poten-
tial for power outages at times of high demand.7

Many load shifting studies in power systems have been
conducted in terms of the optimum storage configuration.
Shi et al8 proposed a joint optimization technique using
the BSS simultaneously for the sake of frequency regula-
tion and peak shaving that captures battery regression,
operating constraints, and customer load degradation.
Their study revealed that the user's electricity bill could be
minimized by up to 12%. Setlhaolo et al9 proposed a
nonlinear programming mathematical method (NPMM)
with the BSS in order to optimize the household appli-
ances regression under the time of utilizing electricity tar-
iffs. Their study demonstrated the ability of that algorithm
in load shifting by means of optimizing appliances degra-
dation and battery, valley filling, charge saving, and peak
shaving. Hashim et al10 presented a mixed-integer linear
program (MILP) in order to build a combined biomass
solar city that involved the BSS and load shifting. Their
study revealed that the loads were optimally shifted while
the BSS was employed to reduce the capacities of the oper-
ating units. Barzin et al11 presented a control scheme to
achieve optimum load shifting for building sectors with
the incorporation of the BSS technology. Their approach
achieved cost savings of more than 60%. Uddin et al12 dis-
cussed the peak load shifting policies with the incorpora-
tion of the BSS and electric vehicles (EVs). Their study
proved that the BSS could be an appropriate tool for
shifting peak loads. Rozali et al13 presented a power pinch
study to estimate peak load shifting for optimum storage
sizing in addition to optimize the subscriber's bills. Taylor
et al14 proposed the BSS operation based on a stochastic
optimization for the sake of peak shaving at 11 kV distri-
bution system. Ananda-Rao et al15 proposed different
types of the BSS for peak shaving with controlling in
charging/discharging operations as well as extended the
lifetime of the BS schemes. Bao et al16 proposed a peak
demand with a BSS by utilizing the mixture of regression
methods for load profile forecasting and dynamic pro-
gramming (DP) for optimal action selection, where action
referred to buy and store energy. Qin et al17 used an online
modified greedy algorithm. Their study was addressed as
computational complexity suffered by DP methods, but
with the additional problem of requiring bounds on the
pricing structure and not being able to constrain the stor-
age size of the BSS. Kim and Lim18 presented the problem
of BSS utilizing a reinforcement learning approach. Their
approach could learn a policy independent of the price dis-
tribution and therefore could perform well even in an
environment with a nonstationary price profile.

Deep Q-learning has been applied for optimum opera-
tions of the BSS in many studies. Bui et al19 proposed a
dual deep Q-learning approach for dealing with the dis-
tributed BSS operation in a microgrid system. Shen
et al20 provided a deep learning approach, focused on the
calculation of the voltage, current, and charging power of
the BSS operation over a part-load period, using a deep-
repressive neural network (DRNN). Ren et al21 presented
the deep-learning framework combined with the DRNN
for retains useful life (RUL) forecast of a lithium-ion
(Li-ion) battery. Meng et al22 presented an estimation for
the battery state of health (SOH) by utilizing a deep
learning approach that could improve the efficiency of
the data-driven SOH assessment through well-designed
incorporation of the feeble learners. Shen et al23 proposed
a deep learning-based approach with the integration of
ensemble learning for estimating the capacity of the Li-ion
battery with a view to achieving satisfactory accuracy.
Bhowmik et al24 proposed the generative method of the
machine learning framework for the monitoring and
enhancement of reliability in the predictive design of bat-
tery interfaces. Yang et al25 proposed an approach to the
charge/discharge and the purchase schedule for the BSS
based on deep reinforcement learning (DRL). Chemali
et al26 proposed a new technique utilizing the DRNN in
order to estimate the state of charge (SOC) of the BSS
interface, where the battery measurements were charted
directly into SOC. Liu et al27 reviewed the machine learn-
ing approaches for the design of rechargeable batteries
materials, including property forecasting for solid and liq-
uid electrolytes and electrode materials, with discovering
the forecast of components and structure of new recharge-
able battery materials. Sedighizadeh et al have applied a
stochastic optimization algorithm for scheduling a short
term in a microgrid that consists a storage battery. Many
power sources are considered in this microgrid such as;
wind turbine, PV system, storage battery, microturbine,
and fuel cell. A cost function has been designed consider-
ing the uncertainty of the wind speed and solar irradiation.
A hybrid algorithm from modified particle swarm with the
Differential Evolutionary is applied to deterministically
solve the objective function. Here, the authors try to make
a scheduling for a short term for this microgrid and
depending on the storage energy systems such as fuel cell
and batteries.28 While, in Ref. 29 the authors apply
reconfiguration for IEEE 33 bus system feeders as well as
the scheduling for the generators using GAME software
considering all operational constraints. Mainly, the cost
function is designed to consider the active and the reactive
power from the utility grid and the switching cost to
obtain the best distribution feeders configuration.

This paper outlines a solution method to the peak
demand problem utilizing the BSS interface, with the
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goal of learning an optimal policy of buying and storing
energy in an incredibly dynamic and complex non-
stationary environment via the usage of reinforcement
learning. The BSS has been chosen due to the fact it is
becoming more feasible in recent times due to lowering
costs, as well as it is easy to install, repair, replace, and is
being used by many companies to-date, verifying its effec-
tiveness. However, a simple battery is easy to model in
detail. Based on the data made available by informatics,
the end-user would be various households situated in
Japan. This is an important stipulation, as the size of
batteries used by households would be significantly dif-
ferent from that used at large facilities, and of course, as
different countries exhibit varying energy protocols, as
discussed previously. It should be noted that the use of
batteries introduces some additional complications. First,
capacity degradation, a phenomenon whereby the maxi-
mum capacity, or upper limit of stored energy, depletes
over time. Second, self-discharge is another degrading
phenomenon of batteries, which refers to the stored
energy being automatically discharged over time. These
issues would affect the optimal policy of buying and
storing energy, but they would be ignored due to their
relatively small effect. The objective is not only to provide
the exact optimal policy for a specific BSS for a specific
household but also to verify the effectiveness of reinforce-
ment learning to the peak shifting solution, where the
choice of country, end-user, and BSS simply are conve-
niences to aid in testing and evaluation. The rest of the
paper is organized as follows: Section 2 illustrates the
system description; the proposed algorithm of deep
Q-learning method is discussed and illustrated in detail
in Section 3; the relation to the peak shifting domain is
illustrated in Section 4, the detailed results and simula-
tions are described in Section 5, and finally the conclu-
sions are illustrated in Section 6.

2 | SYSTEM DESCRIPTION

A comprehensive understanding of this data would allow
for a more informed decision on which reinforcement
learning algorithms are most applicable to this domain.
The datasets for this task consist of what will be referred
to as observational and household data, each consisting
of minute-by-minute data points over a period of
6 months. The observational data comprises three differ-
ent datasets; the prices of electrical energy from the grid,
weather data, and demand data, which is the technical
term for the limit of available energy from the grid. As
demand could also refer to how much energy is required
by the household, these terms would be used inter-
changeably throughout, but the meaning would always

be clear from the context. The price and demand datasets
consist of multiple different plans, that is, different pric-
ing and demand profiles, but during the model learning
phase, only one plan for each would need to be chosen.
Figure 1 presents 3 days of pricing data using four differ-
ent pricing structures; smart life plan, night-8, night-12,
and random. Random is artificially created data, while
the others are referring to actual pricing plans offered by
the electric power company. Night-8 and night-12 are
plans for customers, who use more electricity at night-
time, while the smart life plan is for customers moving
towards smart homes, who would, in general, be using
electricity a lot throughout both day and night.28 An algo-
rithm should be able to train a model irrespective of
which pricing plan is chosen, assuming there is some sort
of structure to be learned. For this reason, random would
not be used as it simply introduces unnecessary noise
into the learning process. During the testing stage, one of
the remaining plans would be chosen at random.
Figure 2 gives four different meteorological datasets that
could be used to predict energy generation via photovol-
taic. The model training process should be flexible

FIGURE 1 Pricing data for the first 3 days of Jan [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Normalized weather data giving the temperature,

sunlight, rainfall, and daylight for the first 3 days of Jan [Colour

figure can be viewed at wileyonlinelibrary.com]
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enough to allow for any combination of these datasets to
be used, noting that it might be possible to accurately
forecast energy generated without the need for the rain-
fall data, for example. Although the data presented has
been normalized, this does not affect the learning process
as all data would be standardized before being used. In
addition, this data does not necessarily represent the
actual weather at the household, but rather at the closest
meteorological site to the household. The difference in
location would introduce some noise into the forecasting.
Figure 3 presents four different demand plans over the
first 3 days of January. These data show that demand
refers to the maximum amount of energy available to be
purchased at any time. It is necessary that the model is
able to forecast the chosen plan well to aid in peak
shifting. A model that successfully learns to peak shift
would never try to purchase more energy than given by
this graph. All data has been artificially created by infor-
matics as public data on-demand profiles that are not yet
available in Japan. It should be noted that the data has
been slightly modified from the raw values.

All values were divided by 1000 to convert from W to
kW, and then again by 60 to convert from kW to kWh,
thereby giving the actual energy available for each single-
minute time step. Due to a numerical error in the pro-
vided data, where the curator originally attempted to con-
vert from W to Wh but incorrectly multiplied by
60 rather than dividing, this data has then been divided
again by 60 to achieve the correct values.

In general, informatics has prepared datasets for four
different households in Japan. The datasets could be
known as non-intrusive load monitoring data (NILM).
When monitoring the energy consumption of a house-
hold, the data is simply a single number stating the over-
all energy consumption in kWh for all appliances and
devices. However, NILM is an energy disaggregation
method that attempts to provide consumption data of

individual appliances to provide a clearer picture of
exactly which devices are consuming how much energy
at different times. The NILM data has been disaggregated
using the software being developed at informatics and
should provide an additional useful signal to the agent
when forecasting data. For example, being able to exclu-
sively monitor the energy used by the air conditioner
could allow the agent to learn how a household responds
to varying temperature levels. More clearly, one house-
hold may choose to use the air conditioner when the tem-
perature, given by the weather data, is greater than 30�C,
whereas another may never use their air conditioner.
Without the disaggregated NILM data, the agent would
find it much more difficult to learn the energy profiles of
these two different households. Each household has an
associated ID key, but for the sake of brevity, would be
referred to as A, B, C, and D hereon. Table 1 provides a
mapping between the original IDs and alphabet keys for
future reference.

Before using the data to train models, it is important
to get a better understanding of its structure. On the first
inspection, it is evident that over the 6-month period,
there are many NaN values present for some of the
households. Table 2 illustrates the NaN counts for each
NILM entry. NaN values refer to missing appliances, in
the case of the dishwasher for household D, or times
when the household temporarily removes the logging
device from that device, preventing the NILM data from
being measured. It is important to note that all NaN data
have been replaced with the mean of that column for that
specific household. This is just one choice out of many,
such as filling with zeros or interpolating values. Zero-
filling was rejected as a result of too much information
loss. For the columns with a large number of missing
data such as the 5882 counts for household B and the
99 079 counts for the TV column for household C, it is
observed that these missing values are all situated in a
single period of time, that is, values before and after this
period are not NaN. This would make interpolation
incredibly difficult, especially considering the seasonal
nature of this data and so the interpolation filling-method
is also rejected in favor of mean-filling. It should still be
noted that mean-filling ignores the variation in data due

FIGURE 3 Four different artificially created demand plans

over the first 3 days of Jan [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Mapping of original household IDs to a simpler

alphabet referencing structure

Building style ID key

A 0002_9100000042

B 0002_9100000112

C 0002_9100000113

D 0002_9100000114
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to seasonal effects but should result in minimal informa-
tion loss compared to the other two considered methods.
All NILM data have been divided by 60 000 to convert
from W to kWh and then again by 60 to correct for a sim-
ilar mistake as in the demand data explained previously.
The main entry refers to the total energy usage, which is

the sum of all measured appliances (apart from photovol-
taic) plus the consumption of unmetered devices.

Photovoltaic then refers to the energy consumed by
the solar panels, which is negative as it is a source of gen-
eration rather than consumption. Note that in some cases
the photovoltaic value is positive, indicating energy con-
sumption. This is since the controller attached to the
solar panel cells could sometimes consume more energy
than has been generated. Figures 4 to 7 illustrate the
average consumption and generation for each household
per day over the 6-month period. Through this data, by
observing the peaks and the general trend of the curves,
it is immediately clear that the energy profiles of each
household are significantly different. As the purpose of
this task is to verify that a model for peak shifting is pos-
sible in this domain, rather than generating a perfect
model for a specific set of data, it has been decided that
due to this observation and the large number of missing
data for households B, C, and D, that only household A
would be used. Another reason for this decision is that
given more data, it would be possible to cluster house-
holds into a few different energy profiles. Then, once it
has been verified that reinforcement learning is a suitable
solution method for peak shifting in this domain, it could
then be applied separately to each cluster, creating a sep-
arate model for each of them. With the minimal data

FIGURE 4 Daily averaged generation and consumption data for household A over the 6-month period of available data [Colour figure

can be viewed at wileyonlinelibrary.com]

TABLE 2 NAN counts for each NILM entry

Field/Household A B C D

Data 0 0 0 0

Air conditioner 2 5882 1 2

Dish-washer 1 5882 1 260 640

Ecocute 2 5883 1 3

Ih 2 5882 1 3

Main 28 5882 1 125

Microwave 1 10 1 1

Photovoltaic 28 5882 31 125

Refrigerator 10 10 1 2

Cooker 1 9 1 34

TV 3 2 99 079 8

Washer 16 1 1 13

Total 94 35 235 99 119 260 956
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available currently, we would treat household A as the
only available dataset of a single cluster, but all methods
and code hereafter would be created with the cluster
method in mind. Figure 5 shows the disaggregated NILM
data for the chosen household A over the first 3 days of
January. Here, it is possible to understand better the rela-
tive scales of each appliance's energy consumption and
the generation owed to the solar panels. As seen from
Figure 5, the energy generation from the PV panels
occurs during the middle of the day, seen by the larger
negative values around noon for each of the 3 days
presented.

3 | PROPOSED ALGORITHM

As mentioned previously, the aim will be to verify that
reinforcement learning is able to learn a general policy
that achieves perfect peak shifting while reducing
energy consumption and lowering utility bills without
the need to impose various constraints on the problem.
More concretely, the method should work irrespective
of what price and demand plans are chosen, or what
the battery capacity is, or even where the end-user is
located. Although the optimal model would vary
depending on the values chosen for these variables, the
solution method should remain general and unchanged.
Markov decision processes (MDPs) are a mathematical
formalization commonly applied to the reinforcement
learning problem. Its usage is based on its applicability
to sequential decision making, in spaces where actions
influence not only the present but also future states, a
common theme amongst reinforcement learning prob-
lems as previously discussed. Figure 6 describes the
interaction between the agent and environment when
the model is framed by such an MDP. The agent is the
learner or decision-maker, and the environment is what
it interacts with. These two entities continuously inter-
act with each other, with the agent selecting an action
and the environment responding to the selection via the
output of the updated state and feedback on the action
selection via the reward. Formally, at each time step,
the agent receives a representation of the environment's
internal state, based on which it then chooses an action.
Upon executing this action, the environment responds
by an internal change in state, observable by the agent
as and a reward. This repeated interaction results in a
sequence of state actions and rewards which define
the MDP.2

The notion of a finite MDP is such that the sets of
states, actions, and rewards all have a finite number of
elements and so the associated random variables have
well-defined probability distributions, which, in a true

FIGURE 5 NILM data for household A over a 3-day period at

the start of Jan [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Interaction between the agent and environment in

an MDP [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Daily-averaged requested an energy profile for the

baseline model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]
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sense, depend only on the previous state-action pair.
Mathematically, the environment dynamics (ρ) could be
given as:

ρ s1,r s,aj� �
= Pr Stf = s1,Rt = r St−1j = s,At−1 = ag8s1,s�δ,

r�R,a�A sð Þ ð1Þ

where the probability distribution is well-defined solely
on the current and previous time steps only, satisfying
the Markov property. It means that the state itself should
carry with it all information of the past that may be nec-
essary for positively influencing the future of the agent's
interactions with the environment. In general, the full
environment dynamics are not available and have to be
learned. As Equation (1) is a probability distribution, it
follows that:

X
s�δ

X
a�A sð Þ

ρ s1,r s,aj� �
=18s1,s�δ,r�R,a�A sð Þ ð2Þ

Returning to the concept of a value function, a metric
that defines how good it is to be in a specific state, it is
important to also define the notion of how good means.
It is given by the return, a discounted sum of all rewards
that are achieved from the current time step onwards, as
illustrated in Equation (3), where 0 ≤ γ ≤ 1 is known as a
discount factor, and a tunable hyperparameter. The pur-
pose of the discount factor is not only to avoid infinite
cumulative rewards in nonepisodic, or never-ending,
environments but also introduces the useful notion of
immediate rewards being more desirable than rewards in
the distant future.

Gt¼:
X∞
k=0

γkRt+ k+1 ð3Þ

For an agent to achieve the maximum return possible,
it is the algorithm's job to incrementally modify the
agent's policy, or its action selection process, such that its
value function under the policy is maximized. Formally,
if an agent follows a policy π, this is equivalent to saying
it would act At = a in state St = s at the time t with proba-
bility π(aj s). In all reinforcement problems, there exists
at least one optimal policy, π* such that the correspond-
ing optimal value function V*performs better than all
other nonoptimal value functions in all states.2 By the
above definition, the value function of a statesswhich fol-
lows policyππis given by Equation (4), where the sub-
script π refers to the agent selecting actions based on
policy π.

Vπ sð Þ=Επ Gt Stj = s½ �=Επ

X∞

k=0
γkRt+ k+1 Stj = s

h i
8s�δ

ð4Þ

A similar function termed the action-value function
could also be defined as an expectation of the return
from starting in the state s, selecting an action a, and
subsequently the following policy π thereon. It could
be given by:

Qπ s,að Þ=Επ Gt Stj = s,At = a½ �
=Επ

X∞

k=0
γkRt+ k+1 Stj = s,At = a

h i ð5Þ

The optimal value function could then be defined as:

V� sð Þ=maxVπ sð Þ8s�δ ð6Þ

Similarly, for the optimal action-value function:

Q� s,að Þ=max Qπ s,að Þ8s � δ&a�A sð Þ ð7Þ

A reinforcement learning algorithm should be able to
efficiently learn the optimal policy through the value
function, action-value function, or even a parameterized
representation of the policy directly. However, such an
optimal policy could rarely be found due to the extreme
computational cost required for problems of interest. For
instance, tabular methods work by maintaining a table of
values over the states, or state-action pairs, and this is
simply intractable for larger problems due to the curse of
dimensionality.29 A solution to this is to use a function to
approximate these values, where the function consists of
less parameter that needs to be learned than the original
problem itself. The first method to successfully address
this problem is known as deep Q-network (DQN). The
instability in the learning process is due to a variety of
issues present in the problem set-up. The first of these is
due to correlations in the sequence of observations, as
each time step is fed into the network in order of observa-
tion, thereby making the data-dependent on previous
time steps. This is a problem as most reinforcement
learning methods, including Q-learning, assume the data
to beiid iid(independent and identically distributed).
Inexperience replay, the agent stores experiences
εt = (St, at, rt, St + 1) at each time step in an overall replay
memory D. In the learning stage of the algorithm,
updates to the Q-function are applied to mini-batches of
experiences pooled at random from this memory, remov-
ing the correlations in the observations. The second prob-
lem refers to the fact that the distribution of data in
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reinforcement learning changes during the agent's learn-
ing process and its constantly updating policy. It is prob-
lematic as algorithms including Q-learning assume a
fixed, nonstationary distribution. The experience replay
method also helps tackle this problem by smoothing the
distribution of data and preventing erratic changes on
each policy update.

Algorithm The full DQN algorithm

Initialize replay memory D to capacity N.
Initialize action-value function Q with random weights
for episode =1: M do

Receive S1 from the environment
for t=1:T do

Select random action at with probability �
otherwise select at = max Q*(st, a; θ)
at =max

a
Q� st,a;θð Þ

Execute action at and observe γtrt and St + 1

Store transition (St, at, rt, St + 1) in D
Set St = St + 1

yj =
rj for terminal sj+1

rj + γmax
aj+1

Q sj+1,aj+1;θ
� �

or nonterminal sj+1

(

Sample random mini batch of transitions
(sj, aj, rj, sj + 1) from D
Set: (Sj, aj, rj, Sj + 1)
Perform gradient descent on (yj − Q(sj, aj; θ))

2

An overview of policy gradient methods will be pres-
ented, with derivations leading into the development of
PPO, or Proximal Policy Optimization, the current de-
facto algorithm used in reinforcement learning problems.
These methods parameterize the policy as π(aj s, θ) = Pr
{At = aj St = s, θt = θ}, where θ � ℝdwith d referring to
the number of degrees of freedom in the parameteriza-
tion of the policy. The goal of these methods is then to
learn the values of θ to shape the policy such that perfor-
mance is maximized (ie, finding the optimal policy). This
is done via a measure of performance J(θ) and updating
the parameters via gradient ascent as in Equation (10),
where rθĴ θð Þ refers to a stochastic estimate with an
expectation that approximates rθJ(θ).

θt+1 = θt + αrθĴ θð Þ ð8Þ

Another advantage of using policy gradient methods
is that the action selection changes smoothly with
updates to the parameters, whereas in DQN with an
�-greedy policy, the action probabilities can suffer from

erratic changes even after a small update to the action-
value function, if such an update results in a different
action having a maximal value. This property of policy
gradient methods results in stronger convergence guaran-
tees than available in DQN.2

In the episodic case, the performance measure is usu-
ally defined as the value functionfrom the initial starting
state; J θð Þ¼: vπθ s0ð Þ , where vπθ s0ð Þ is the true value func-
tion for the policy πθ. As vπθ s0ð Þ is generally not known,
it is not possible to find its gradient. The policy gradient
theorem handles this by rearranging it into a function
whose gradient can be found. The result is shown below:

rJ θð Þ/
X
s
μ sð Þ

X
a
rπ ajsð Þqπ s,að Þ ð9Þ

Thereby providing a computable term for the gradient
of the performance metric, J(θ), which does not explicitly
include the state distribution. The proportionality sign in
Equation (11) is sufficient as the constant of proportion-
ality will be absorbed by the α term, a tunable hyper
parameter in the update. This can then be re-written as:

rJ θð Þ /
X
s
μ sð Þ

X
a
rπ ajsð Þqπ s,að Þ

=π

X
a
qπ St,að Þrπ ajSt,θð Þ

" # ð10Þ

By noticing that the summation is over the states and
weighted by how often those states are visited under the pol-
icy π (this is what μ(s) represents). Therefore, if the policy π
is followed, the expectation above holds. This could then be
used directly in the stochastic gradient ascent update, as
shown in Equation (11), where q̂ refers to a learned approx-
imation to qpi with ω as the parameter vector.

θt+1 = θt + α
X
a
q̂ St,a,wð Þrπ ajSt,θð Þ ð11Þ

However, this update involves all the actions even
though only a single action was taken, again limiting the
domain to a discrete action space. Instead of directly using
this, the REINFORCE algorithm modifies the update rule
to consider only At, the action taken at time step t. This is
done via the gradient-trick method, as used in the policy
gradient theorem derivation, giving the result below.

rJ θð Þ=π Gtrlnπ AtjSt,θð Þ½ � ð12Þ

This motivates the standard REINFORCE update
rule, given by:
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θt+1 = θt + αGtrlnπ AtjSt,θð Þ ð13Þ

which now only depends on the actual action taken, At

This vector in the update rule points in the direction in
the parameter space which will increase the probability
of selecting the action At again, scaled by Gt, thereby forc-
ing the policy to favor this action more if it yields a high
return. A major change that can be made to this algo-
rithm is the introduction of a baseline, b(s), which does
not affect the gradient as long as there is no dependence
on the action.2 A common baseline used here is V (St).
This would give the update:

θt+1 = θt + α Gt−V Stð Þð Þrlnπ AtjSt,θð Þ ð14Þ

Noting that Gt = Q(St, At), the parenthesized term is
equivalent to what is knownas the advantage function
Ât, giving:

θt+1 = θt + αÂtrlnπ AtjSt,θð Þ ð15Þ

This is the result for the update in the REINFORCE
algorithm. However, although REINFORCE provides
many benefits over the previously discussed DQN algo-
rithm, the updates take place at the end of the episode,
making it a Monte-Carlo method and therefore suffers
from high variance and slow learning.2 Defining the objec-
tive function for REINFORCE as JREINFORCE(θ) that is

JREINFORCE θð Þ=π Âtlnπ AtjSt,θð Þ� � ð16Þ

Since the discovery of this algorithm, many other per-
formance measurements havebeen proposed, including
that given by Equation (17).30

JTRPO θð Þ=π Ât
πθ atjstð Þ
πθold atjstð Þ

� �
=π Âtrt θð Þ� � ð17Þ

where πθ refers to the updated policy and πθold the policy
before the update. The term TRPO is used for this objec-
tive, as it is the metric used in the recently developed
Trust Region Policy Method algorithm.31 However, this
algorithm also imposes a constraint on the problem;
ensure that the KL-divergence between the new and old
policies is lower than a small value δ in order to ensure
that the policies do not differ by too much. This con-
straint restrains the updates and offers a theoretical guar-
antee of policy improvements on each update for a
sufficient step size. However, this method is rarely used
in practice as the computation of the KL divergence via

the conjugate gradient method requires the expensive cal-
culation of the Fisher information matrix.31-35 To combat
this, the more recent collection of algorithms, known as
PPO, approaches the problem of constraining the updates
using what is known as a clipped surrogate objective, act-
ing as a first order approximation to JTRP O(θ). The new
objective is given by:

JPPO θð Þ=π min Âtrt θð Þ,clip rt θð Þ,1−� ,1 +�ð Þ� �� � ð18Þ

where, clip (rt(θ), 1 − � , 1 + �) refers to constraining the
value of rt(θ) to the interval [rt(θ)- � , rt(θ)+ �] as an
alternative method of restricting the amount by which
the policy updates at each step. The paper suggests using
a value of � ≈ 0 : 2. PPO is much easier to implement as
it no longer requires calculation of the KL divergence,
and hence neither the Fisher information matrix. It also
offers another improvement upon REINFORCE; it allows
multiple updates to be made per epoch, which is not pos-
sible with REINFORCE as the large updates would cause
it to be unstable.32 This tackles the original problem of
REINFORCE being too slow to learn, and many empiri-
cal results have shown PPO to learn faster than simple
methods such as DQN based on this and the fact that its
updates can be parallelized over multiple CPUs. PPO is
the current de-facto standard policy-gradient algorithm
and therefore will also be used to tackle the peak-shifting
task, in addition to DQN.

4 | RELATION TO THE PEAK
SHIFTING DOMAIN

In the peak shifting task, there is again much flexibility in
how these terms could be defined, where the chosen defi-
nitions would greatly affect how the model learns and also
what the final policy would describe. It should be noted
that the choice of definitions given below is not unique,
and many other choices could have been made. The envi-
ronment would refer to a system encompassing the battery
itself, and its interaction with the outside world. That is,
the weather, the electricity grid, the grid's system operator,
the households, battery, solar panels, etc., are all
encompassed by the notion of the environment. The agent
would then refer to a non-physical CPU or the brain of the
battery, which makes decisions on how much energy to
buy at any single time from the grid. Following this, the
action space would be a single continuous value at ≥0 and
t is describing how much energy would be bought from
the grid at time step t. At all points in this discussion, any
reference to energy would assume units of kWh.
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Upon choosing this action, the environment responds
by internally calculating how much energy is required
from the battery to provide the necessary energy for con-
sumption, and, therefore, automatically performs the nec-
essary charging and discharging of the battery without the
agent needing to know how this computation works.
Another obvious choice of action space here would have
been to allow the agent to choose how much energy to
charge or discharge from the battery. If this action space
were to be used, the internal computation by the environ-
ment would instead need to calculate how much addi-
tional energy is required to provide enough energy for the
consumption, and this would then be purchased from the
grid. Therefore, both methods achieve the same result but
via the agent to help direct its future decisions. Firstly, the
agent needs to know how much energy is currently stored
in the battery to make a well-informed decision on how
much more energy may be required, and so the current
battery charge should be included in the state definition.
In addition, it is important to know how much energy is
being generated and consumed by the household at the
next time step. Although this may seem like cheating, that
the agent knows explicitly how much energy the house-
hold would require, it should be noted that, in production,
these values could be estimated through simple forecasting
methods. As a single timestep is one minute, this is equiv-
alent to using all past observational data to predict the
values just one minute ahead. Based on the disaggregated
data provided by the NILM technology, this forecasting
should be both simple and of very high accuracy. As such,
the problem of forecasting this one minute ahead data is
ignored and the learning of how to optimally buy energy
to approach the peak demand problem with reinforcement
learning is given full attention. However, the agent still
needs to learn how to effectively buy energy taking into
account the seasonal nature of the data. Even though the
agent has full knowledge of the next time step, it should
be able to leverage information pertaining to the weather,
which, if it could learn to predict, could help in its fore-
casting of energy generation due to photovoltaic solar
cells. For this reason, all-weather data (sunlight, rainfall,
etc.) would also be included in the state. Finally, the cur-
rent price and demand (available energy from the grid)
would also be added to the state, as this would allow the
agent to include these data in its decision-making process.
Finally, the total consumption of energy is then also
included in the state representation. Note that this single
value was chosen over the disaggregated data, but either
choice would be suitable. In the effort to keep the method
as general as possible, the simulator, which would be dis-
cussed in detail later, would allow for user-defined state-
space representations, such as removing some of these fea-
tures such as weather data or even adding in more features

that could be useful for learning. The reward function
needs to be defined. At this point, it is important to reiter-
ate exactly what the aim of the task is; achieving peak
shifting while reducing energy consumption and lowering
utility bills, with peak shifting being of primary impor-
tance. The process of defining a suitable reward signal for
this task is known as reward signal shaping. It should be
noted again that there is no specific correct reward signal,
and that the choice is up to the designer. For this task,
individual rewards related to the various optimization
tasks are first defined. In the following, the term penalty is
used for negative rewards and is solely a term of conve-
nience. In maximizing the reward, the agent is thereby
minimizing these penalties. Before looking into the overall
goals of peak shifting and cost and energy reduction, it is
first important to look at the constraints of the system. In
a standard, no reinforcement learning approach to optimi-
zation, mathematically, it might be able to formulate an
objective function to maximize subject to constraints. In
this problem, these constraints would be along the lines of
purchase enough consumption energy, do not buy more
energy than available (grid demand), and do not store
more energy in the battery than permitted by its maxi-
mum capacity. In the reinforcement learning setting, these
constraints cannot be enforced explicitly, but could instead
shape the reward signal in such a way that the agent
would be guided towards a policy that satisfies each of
these. It should be noted that it is not guaranteed such a
policy exists, but even if one does not, given a suitably
defined reward signal, the optimal policy would be such
that the constraints are violated as infrequently as possible.
Before defining the various individual reward signals, a
few useful terms would first be given that are internally
calculated by the environment. Refers to how much
energy remains in the current time step after considering
the charge of the battery, how much energy has been con-
sumed and generated, but before purchasing energy from
the grid. Hence, if this value is negative, the amount by
which it is below zero refers to the minimum amount of
energy that the agent needs to purchase to provide enough
energy for the household to continue using its appliances,
with any excess being used to charge the battery. The term
would be used for the agent's choice of how much energy
it would purchase at the current time step.

current_energy = current_charge+ generated_energy

−consumed_energy ð19Þ

min_required_energy =max 0; −current−energyð Þ ð20Þ

To ensure that constraint 1 is satisfied, a penalty ter-
med under_purchase is designed and given by
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Equation (21), where the minus sign signifies that this is
a penalty and should be avoided by the agent. If the agent
were given this reward signal alone, it should learn to
maximize it, or achieve the value of 0, corresponding to
never purchasing too little energy

runderpurchase = −max 0;min_required_energy− to_buyð Þ
ð21Þ

Constraint 2 is then tackled using the penalty given
by jabovelimit in Equation (22), where demand refers to
the current limit of available energy by the grid. If this
were the only reward signal, the agent would learn to
always buy less or equal to the available energy by maxi-
mizing this term to result in 0 penalties.

rabovelimit = −max 0;to−buy−demandð Þ ð22Þ

The penalty for constraint 3, termed abovecapacity is
given by Equation (23), where max_capacity refers to the
maximum capacity of the installed battery. Similarly, to
before, using this reward signal by itself would guide the
agent into never purchasing an amount of energy that
would force the battery to store more charge than is phys-
ically possible.

rabovecapacity = −max 0;current_energyð
+ to−buy−max_capacityÞ ð23Þ

The above penalties individually tackle the con-
straints on the system but do no effort in explicitly work-
ing towards the intended goal of peak shifting and cost
and energy consumption reduction. In order to guide the
agent into buying energy at cheap prices, a penalty ter-
med cost has been designed and is given in Equation (24),
where price refers to the current price of energy, with
units/kWh. This penalty should also cover the goal of
reducing energy consumption as reducing the amount of
energy purchased will also lower this penalty. As such,
this single penalty goes some way in addressing two of
the objectives posed in the peak shifting problem.

rcost = −price× to_buy ð24Þ

The main problem of peak-shifting is not as easy to
describe in terms of penalties and rewards. The previ-
ously designed penalty goes some way in addressing this
by making sure the agent does not purchase more energy
than available, but it does not explicitly tell the agent to
smooth its load profile, that is buy similar amounts of
energy at each time step. To address this explicitly, the

reward termed has been designed and is given in Equa-
tion (25). This positive reward has a maximum value of
1 when the agent chooses to not buy any energy, and this
decreases linearly towards 0 as the amount of energy pur-
chased approaches the demand limit. This does not
explicitly tell the agent to favor purchasing similar
amounts of energy at each time step but tries to keep the
chosen amount as close to 0 at each time step. As dis-
cussed previously, there are an infinite number of
rewards that could be designed to tackle the same or sim-
ilar problems. The purpose of this task is not to find the
best reward function to address the problem, but to verify
that reinforcement learning is a suitable solution method
to this task, and as such, it is not necessary to investigate
defining overly intricate reward functions.

rbelowlimit =max 0,1−
to_buy
demand

� 	
ð25Þ

It should be noted that these rewards may not be
mutually exclusive. For example, abovelimit and bel-
owlimit both address very similar problems to do with
influencing the amount of energy purchased with respect
to how much is available. This observation means that
there may be some interaction between the different
terms upon combining the individual rewards and penal-
ties. These five individual signals are then linearly com-
bined, as shown in Equation (26), to provide a single
overall reward signal to guide the agent's learning pro-
cess. The values of the αi coefficients will be discussed at
a later stage. It will be seen later in the results and evalu-
ation section that the appropriate selection of these
values is paramount to the success of the agent learning
an optimal policy and is therefore one of the main contri-
butions presented in this work.

r= α1runderpurchase + α2rabovelimit + α3rabovecapacity
+ α4rcost + α5rbelowlimit

ð26Þ

5 | RESULTS AND DISCUSSIONS

All models have been trained using 70% of the data for
household A, and the results that follow have been gener-
ated using the remaining 30% of the data for the same
household, corresponding to approximately two months.
This train/test split is used to ensure that the models do
not overfit to the data used for training but instead gener-
alizes to unseen data and therefore could be used in pro-
duction where future data is of course not readily
available. All of the graphs and results in this
section have been generated automatically using the sim-
ulator, at the same time that the model has been trained.
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In order to be able to verify whether or not the reinforce-
ment learning agents have learned a useful policy, it is
necessary to first construct a simple baseline with which
results could be compared against. This baseline should
follow as good a policy as is possible without using rein-
forcement learning to ensure that the comparisons are
meaningful. The baseline has been chosen to follow a
policy that requests exactly the amount of energy it needs
at every time step and therefore does not require the use
of a battery. To this end, the baseline has an instant
advantage over all reinforcement learning ends in that it
does not need to learn to infer how much energy is
needed at any time. The calculation is done internally,
taking into account energy consumption and generation,
given by Equation (27), taking into account that there is
no battery and hence charge is removed from this
equation

required_energy= consumed_energy−generated_energy

ð27Þ

As the baseline simply purchases what it needs at
the time, there would be times when it tries to purchase
more energy than is currently available. This is the heart
of the problem and is exactly why the reinforcement
learning agents would need to learn how to peak-shift.
Although there is no training necessary for the baseline
model, in order to allow comparison with the results
from the reinforcement learning agents, the following
graphs and results are generated using just the 30% test-
ing data. Figure 7 gives the requested energy profile for
the baseline agent. This, along with all other graphs that
follow, presents the averaged data over a 24-hour
period. The shadows behind each curve show a single
SD either side of the mean in order to visualize the vari-
ance in the data. As the actions that the agent takes are
the decision of how much energy to buy, this graph is a
direct visualization of the agent's policy. As seen from
Figure 8, the peak is not as apparent as that seen in the
original household data, which included all the training
data. Hence, this baseline agent does not attempt to pur-
chase more energy than available too frequently, but the
purpose of the task is also to achieve peak shifting in
general and to flatten the requested energy profile as
much as possible while taking into account the other
objectives of lowering utility bills and reducing overall
energy consumption.

It should be noted again that the baseline does not
use any control; it purchases exactly what the amount of
energy it needs at every time step, and hence does not
take into account the price or demand (limit) of energy at
all. Figure 11 shows the same requested energy profile

but now graphed against the price of energy and normal-
ized. This allows the designer to verify if the agent has
attempted to buy more energy when the prices are lower.
Of course, in the baseline model, there is no relationship
between the two curves as the agent does not take the
pricing data into account. However, by coincidence, the
cheaper band of energy lines up with the peak in the
requested energy profile and for this reason, the baseline
agent luckily has purchased a lot of its energy at the
cheapest possible price.

It should be noted that although the baseline may
seem simple at first, the fact that it does not need to learn
how much energy is required at any time, and also that it
purchases a lot of its energy at the cheapest price possible
makes it a very strong baseline to outperform. Table 3
gives the results for the baseline agent on the test data.
The abovecapacity error refers to the number of times the
agent attempted to charge the battery above its maximum
capacity. As the baseline agent does not use a battery,
this error. underpurchase refers to the agent buying less
energy than is required at that time step. As the defini-
tion of the baseline policy is such that it would always
buy exactly as much as it needs, again this is never
encountered. Finally, the error refers to the number of
times that the agent attempted to purchase more energy

FIGURE 8 Daily-averaged normalized pricing data for the

baseline model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 3 Numerical results for the baseline agent

Parameter Results

Error abovecapacity abovecapacity 0 (0.00%)

Error underpurchase underpurchase 0 (0.00%)

Error abovelimit abovelimit 122 (0.15%)

Monthly bill 3517.79 Unit price

Total energy purchased 292.51 kWh
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than was available by the grid. As a single time step cor-
responds to one minute, the baseline agent would have
left this household without the required electrical energy
for two hours, corresponding to 0.15% of the test data
period. For other households, this number is much
higher, and so the reinforcement learning agent needs to
outperform an agent which itself is already quite strong
in the case of household A.

The first reinforcement learning algorithm that was
used was DQN based on its simplicity and ease of train-
ing. This allowed for many models to be trained and is
how the initial choice of individual reward signals was
chosen. This was based on first trying one reward signal,
and then subsequently adding the rest whilst observing
the resultant model's policy. At this stage, it became very
apparent that due to the large difference in magnitudes
of the individual reward signals, without the automatic
penalty shaping method none of the models were able to
learn a useful policy. To this end, as discussed in the Sim-
ulator section, once a model has trained the coefficients
in the linear combination of the individual signals were
automatically scaled in order to improve the next model's
policy. The discretization of the action-space was varied
in the initial models, and [0; 0:005; 0:01; 0:015; 0:02; 0:03;
0:04] was chosen to be used in all future models. This
choice was based on a number of factors as well as from
the initial results that proved this to be a promising set of
actions. Firstly, keeping the action space constant
throughout the models allows comparisons to be made
much more easily. Secondly, on observation of the
requested energy profile for the baseline agent in
Figure 10, it was seen that the maximum required energy
at a single time step hovers around the 0:03-0:04 range,
and so this was chosen as the highest values in the dis-
cretization. Also, as most time steps require much less
energy, it was chosen to use more actions between 0:00
and 0:02. All of these values have units of kWh. Increas-
ing the number of actions made the training much slower
and so this upper limit of 7 actions was kept final. In
addition to the varying reward signal coefficient values,
the episode length and neural network architecture were
also varied on each model. For each model, an episode
length was chosen at random from 1440 and 10 080,

corresponding to 1 day and 1 week, respectively. The
model architecture was also chosen at random between
[64], [64; 64], and [64; 128; 64], where each value repre-
sents the number of nodes in each layer. It should be
noted here that the variation in these two parameters
would most likely also affect the optimal values for the
reward signal coefficients, and this is one downside to
the simple scaling method used. In future work, a more
intricate penalty shaping method could be used which
takes into account all past results and the model architec-
tures. The best model was selected after training approxi-
mately 300 models using the created simulator. As
previously discussed, there is no explicit definition of
what best here means, and so the author's judgment has
been used but ensuring that peak shifting maintains the
number one priority with a reduction in energy con-
sumption and lowering of utility bills also being impor-
tant. Table 4 gives the results for this model on the test
data and is compared side-by-side with the baseline
results from the previous section. Now that there is a bat-
tery, it is possible to encounter the error. The DQN model
attempts to overcharge the battery approximately 13% of
the time. This is a significantly high amount, but it
should also be noted that most models encountered this
error at least 25% of the time. Although high, in produc-
tion it is possible to explicitly constrain the amount of
energy bought so as not to overcharge the battery, and so
the error is not of too much concern. However, the fact
that the model has relied on overcharging the battery at
some time steps implies that the policy it has learned is
not optimal. One way of tackling this in the future would
be to explicitly give the battery's maximum capacity as an
additional feature in the environment's state representation.
The DQN agent has also encountered the error at 512-time
steps, corresponding to not buying enough energy for the
required consumption. However, as this is only 0:65% of
the time, this implies the agent has almost perfectly learned
how to infer the required energy, making a mistake very
infrequently. The times at which it could be attributed to
the coarse discretization of the action space. For example,
consider the case where the policy in a specific state which
requires 0:025 kWh of energy assigns 49% chance of pur-
chasing 0:03 kWh and a 51% chance of purchasing 0:02

TABLE 4 Results for the best DQN model compared to the baseline

Parameter Baseline Agent DQN Agent % Difference

Error abovecapacity - 10 374 (13.10%) -

Error underpurchase underpurchase 0 (0.00%) 512 (0.65%) + ∞ %

Error abovelimit abovelimit 122 (0.15%) 29 (0.04%) −76%

Monthly bill 3517.79 UC 3296.43 UC −6%

Total energy purchased 292.51 kWh 257.94 kWh −12%
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kWh of energy. In this case, the agent would, but if there
were a less coarse discretization, with some actions in
between 0:02 and 0:03, then the agent would be likely to
select a more appropriate action. This alone is a motivation
for using a continuous-action method such as PPO. How-
ever, the error has been reduced by 76% compared to the
baseline, which is evidence that the agent has learned to
peak shifts considerably. It is still purchasing more than the
limit at some time steps, but there has been considerable
improvement in this domain. Finally, the monthly electric-
ity bill has had a small reduction by 6% and energy con-
sumption has also reduced by 12%. These results prove that
the DQN agent has outperformed the baseline and that it
has successfully achieved all three of the goals in the multi-
objective optimization problem.

Figure 9 visualizes the policy with control (DQN
agent) and compares it to that of the baseline, providing
verification that peak-shifting has successfully occurred.
There is quite a bit of fluctuation in the DQN model's
requested energy profile, but this is due to the discrete
nature of the action space. As the PPO agent is able to
work in continuous action space, its resultant profile
should appear to be a lot smoother. There is a slight peak
in the purchase of energy between 2 AM and 6 AM

Observing Figure 10, which shows the daily-averaged
normalized values of the requested energy profile against
the price of energy, it could be seen that this peak corre-
sponds to a time period where energy is cheaper. There-
fore, evidence that the agent has learned to buy energy
when it is cheaper in an effort to reduce the electricity
bill. Figure 11 shows the daily-averaged charging profile
of the battery over the test data when using this model,
an indirect method of visualizing the policy as the battery
charge is related to the amount of energy that is pur-
chased. As the battery that has been tested has a maxi-
mum capacity of 14.4 kWh, it could be seen that the
relatively high charge state of the battery between noon

and 8 PM most likely corresponds to the numerous errors
encountered.

The peak between 2 AM and 6 AM corresponds to the
agent purchasing more energy at this time due to the
lower price, with the excess being stored in the battery.
The sharp loss of charge just after this time then corre-
sponds to the necessary use of these stores to tackle the
large consumption period as given by the initial peak
before implementing the battery. The relatively high
amount of energy being stored thereafter corresponds to
the agent purchasing energy even though consumption is
relatively low, and so the majority of this purchased
energy is being stored in the battery. It could also be due
to it requiring more energy the next day quite early on
and so the agent has realized this and is purchasing the
energy well in advance. This is corroborated by the fact
that it then begins to use this energy continuously from
about 4 PM until 2 AM the next day when it again decides

FIGURE 9 Daily-averaged requested an energy profile for the

best DQN model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 10 Daily-averaged normalized pricing data for the

DQN model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 Daily-averaged normalized charging profile for

the DQN model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]
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to top up the energy in advance of the high consumption
period.

Figure 12 shows the total reward achieved per episode.
The fluctuation could be attributed to the fact that each
episode corresponds to a single day of data, and the day-
to-day data varies significantly as seen by the large error
shadow in the household data as previously seen in
Figure 4. However, the model could be seen to learn very
quickly by the initial upwards trend, and learning slows
by around episode 75. All 1-day episode models were
trained for 500 episodes to allow for sufficient exploration
of the domain before stopping. At the end of the training
process, the model from around episode 75 would have
been used to avoid any overfitting that may have occurred
between that and the end episode.

It should be noted that the ability of the agent to suc-
cessfully achieve the goals of the task was highly reliant
upon it learning from an optimized reward signal, which
was shaped using the automatic penalty shaping feature
discussed previously. Figure 13a shows the individual
reward signals per episode during training for the first
DQN model that was trained. This model does not use
the automatic penalty shaping feature as there is no pre-
vious model from which to learn. It could be seen that
the reward, the reward is given for being below the avail-
able energy limit, is much higher than the rest. Such a
reward signal would bias the agent into placing more

emphasis on learning to maximize this reward whilst
ignoring the rest. Figure 13b then shows the same graph,
but for the best DQN model that has been evaluated in
this section. It could be seen that, through the automatic
penalty shaping feature, the magnitudes of each individ-
ual signal are much closer to each other. The only anom-
aly now is the erratic fluctuation in the penalty. This
fluctuation corresponds to the large error achieved by
this agent. This implies that if there were a way to
smoothen this specific reward signal, then the model
agent would be more likely to learn a policy that avoids
such a large number of errors related to the battery
capacity. In summary, the DQN results are very promis-
ing, having achieved all three intended results of peak-
shifting, lower energy bills, and reduced energy con-
sumption. There is, however, still room for improvement
in regard to the aforementioned errors. To this end, it is
worth mentioning again that although it has achieved
considerable peak shifting, it is not perfect and still pur-
chases more energy than is available sometimes, albeit
very infrequently. The main functional difference
between DQN and PPO is that PPO could handle a con-
tinuous action space and so does not suffer the same
problems as DQN does by discretization. PPO learns to
modify the mean and variance of a Gaussian which is
then used in the action selection.

As Gaussians have an infinite domain, this is then
clipped to [−1; 1] and then scaled appropriately to [0; 0:03],
as suggested in the literature. This modified range is cho-
sen for the same reasons as with the DQN considerations
based on the observed required energy from Figure 7. Simi-
larly, when training the DQN models, the parameters of
the model were adjusted over the first few initial models
until a parameter set that performed well was found.

All models were trained using episodes of 1 day
(1440-time steps). The agents did not seem to learn effi-
ciently when using an episode length of one week with the
chosen parameters, and it was decided that finding param-
eters for a one-week episode model would be unnecessary
additional extra work given the 1-day episode models were
training easily and more quickly. More than 75 models

FIGURE 12 Total rewards per episode during the training

period for the best DQN model

FIGURE 13 Disaggregated

reward signals for two different

DQN models [Colour figure can

be viewed at

wileyonlinelibrary.com]
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using a PPO agent were trained, with each successive
model learning from the last via the automatic penalty
shaping feature. The results for this model have been com-
pared with the baseline in Table 5. As before, the model
tends to try and charge the battery above its maximum
capacity from time-to-time, but much less so than the
DQN model did, reducing this to 7.48% of the time com-
pared to 13.1% as a major improvement. In addition to this,
the model never or goes above the limit, that is, it always
has at least enough energy than is required for the con-
sumption and never goes above the amount of energy
available by the grid. Hence, it has achieved perfect peak-
shifting, the main requirement for this task. Finally, it has
also managed to reduce the total energy bill and energy
consumption by over 20% in both cases, thereby making
this model production-ready and a perfect validation that
reinforcement learning is an adequate solution to this task.

Figure 14 shows the requested energy profile of this
model against the baseline. It follows a similar trend to
that of DQN, but with a much smoother profile due to
the ability to choose actions from a continuous space.
Again, it is immediately obvious from this graph that
peak-shifting has been achieved; the requested energy
profile for the PPO model maintains a relatively flat
profile without any significant peaks. It has also
learned to react significantly to changes in the demand
(available energy) profile as could be seen just after
8 AM At this time, the energy limit drops very slightly,
and the model reacts to this by purchasing no energy at
all, due to its prediction that the limit would rise again
shortly.

Figure 15 shows this data against the price of energy
after being normalized. Similarly, to the DQN model, the
PPO agent decides to purchase more energy between
2 AM and 6 AM when the price of energy is at its lowest. It
also seems to predict the end of this low pricing period
and decides to purchase a large amount of energy again
just before the price goes up, in order to minimize the
overall energy bill.

Figure 16 shows the charge profile for this model,
again showing a similar trend to that of the DQN model
and reacting to the households' energy consumption
habits almost identically. Figure 17 shows the total

reward achieved per episode. There is still fluctuation in
this learning process due to the variation in consumption
data from day-to-day. The model was only trained for
75 episodes based on the fact that it was trained over 8 dif-
ferent CPUs and so this equates to much more clock-
training time than in the DQN model, although due to
the different learning processes these cannot be directly
compared anyway. The model appears to continue learning
until the end of the 75 episodes, but due to memory

TABLE 5 Results for the best

model compared to the baseline
Parameter Baseline Agent DQN Agent % Difference

Error abovecapacityabovecapacity - 5928 (7.48%) -

Error underpurchase underpurchase 0 (0.00%) 0 (0.00%) +0%

Error abovelimit abovelimit 122 (0.15%) 0 (0.00%) −100%

Monthly bill 3517.79 UC 2777.75 UC −21%

Total energy purchased 292.51 kWh 226.49 kWh −23%

FIGURE 15 Daily-averaged normalized pricing data for the

PPO model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 14 Daily-averaged requested an energy profile for

the best PPO model on household A [Colour figure can be viewed

at wileyonlinelibrary.com]
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reasons, it became a lot more difficult to train any further
than this, although it may have proven beneficial if
possible.

Figures 18a, b, similarly to the DQN case, shows how
the individual reward signals have been shaped from the
initial model to the final, best model chosen. Again, it is
very clear that in the first model before any smart shap-
ing has taken place, the reward overpowers the rest and
so the model ignores the remaining reward signals. In
the final, improved model, the reward signals are much
closer to each other, although there is still some fluctua-
tion in the above capacity reward, albeit much less than
in the DQN case. However, this fluctuation begins to die
off near to the end of the training period, resulting in a
much lower above capacity error of approximately 7%
compared to 13% with DQN. In summary, PPO gives per-
fect results minus its reliance on going above the battery's
capacity approximately 7% of the time. It has achieved
perfect peak shifting, never purchases less energy than is
required, and has reduced energy consumption and
lowered the utility bill by a significant amount. Although
it is obvious that the PPO agent has managed to improve
upon the DQN agent on all fronts, it serves useful to

compare the policies on both fronts to see exactly what
was learned. Figure 19 shows the requested energy pro-
file, the direct policy, of both the best PPO and DQN
agents against the baseline.

Figure 20 does the same but for the charge profile,
which is an indirect visualization of the policy. From
both of these graphs, it is apparent that the learned poli-
cies for both agents are incredibly similar. Also, it could
be seen that the variance in action selection is much
lower for the PPO agent, due to the continuous action

FIGURE 16 Daily-averaged normalized charging profile for

the PPO model on household A [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 17 Total reward per episode during the training

period for the best PPO model

FIGURE 18 Disaggregated reward signals for two different

PPO models [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 19 Daily-averaged requested an energy profile for

the best PPO and DQN model on household A [Colour figure can

be viewed at wileyonlinelibrary.com]
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space, and this results in much smoother profiles and is
also likely the reason why PPO never purchases more
energy than is available.

The results of PPO fare better than the DQN model,
and this is again undoubtedly due to its use of continuous
action space and the fact that it is a more robust rein-
forcement learning algorithm in general, being the first
choice for many problems to date. Although it is impossi-
ble to tell what the actual optimal policy in this domain
is, from these results and the fact that both agents' poli-
cies are very similar, it is very likely that the policy
learned by PPO is exceedingly close to the optimal policy,
if not the optimal policy itself. It is hypothesized that the
variation in results between DQN and PPO would disap-
pear if the discretization of the action space in the DQN
model was made infinite, approaching that of the contin-
uous domain. Of course, this is not possible to test due to
computational reasons, but the sheer similarity in the
outlined policies for both agents in these graphs back up
this statement.

6 | CONCLUSIONS

The aim of this paper was to verify that reinforcement
learning is a suitable solution method for the peak
demand problem. That is, reinforcement learning could
be used in conjunction with a BSS to purchase energy at
off-peak periods in order to flatten the energy require-
ment profile of consumers. Such an achievement would
prevent the grid's system operators from needing to use
peaked plants to provide additional energy during peak
periods, lowering carbon emissions, and energy prices for
the consumer. This peak-shifting would allow the grid's
system operators to be able to more easily predict electric-
ity demand, thereby reducing their need to generate more
energy than necessary, again lowering the tariffs for

energy for the consumer. Secondary aims of directly
reducing the energy consumption and utility bills were
also required, making this a multi-objective optimization
problem. The user data, in conjunction with the created
simulator which performs the full training and testing
phases of the models, to find an optimal policy using
DQN and PPO reinforcement learning algorithms.
Finally, the proposed algorithm is able to achieve perfect
peak shifting, a reduction in the monthly utility bill by
21%, and also a reduction in energy consumption by 23%,
achieving all of the aims of the paper.
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