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A B S T R A C T

Continuous increase in world’s population, rapid industrialization, urbanization, and economic growth force for
continuously increase in fossil fuel consumption to meet growing energy demand. Continuous emissions from
burning of fossil fuel will create the need to find the appropriate and sustainable replacement for fossil fuels.
Biodiesel is appropriate alternate solution for diesel engine due to its renewable, non-toxic and eco-friendly
nature. According to EASAC biodiesel evolution is classified into four generations. Cultivation in arid and semi
arid land or water, crop yield, effect on food supply, yield of biodiesel, energy content, carbon-neutral economy,
easy availability, and economic viable are the main factors behind the evolution of biodiesel generations. This
article highlights a comprehensive assessment of various feedstocks used for different generation biodiesel
production with their advantages and disadvantages. Different production methods for biodiesel with yield
calculation are also explained. Algae based third generation feedstocks are better in comparison with first and
second generation due to their high energy content, high oil content and less polluting nature. Forth generation
of biodiesel produced from synthetic biology, which will enhance the various physiochemical properties of
biodiesel to achieve carbon neutral economy. Among the all biodiesel production processes; transesterification is
the most suitable process, because it produces biodiesel of high yield, comparable properties with diesel. This
process is also feasible as per economic point of view. The energy demand of future can be met by the blending of
different generation oil feedstocks.

1. Introduction

Conventional energy sources like fossil fuel, petroleum, coal and
methane are non renewable sources. These are main sources of energy
at present time and due to larger consumption shortage is about to
happen [1]. From 1970 to 2015 energy supply has increased from 6
Gtoe to 15 Gtoe and the consumption of fossil remains high for the
primary energy supply. The consumption of fossil fuel was around 86%
for production of primary energy in 1973 and in the year 2015, this
consumption is about 78%. Oil production will reach to a maximum
limit by 2020 and also the consumption will continue to rise, pulled
primarily by China and India. Rapid industrialization leads to decrease
of fossil fuel reserves [2]. Petroleum, nuclear, wind, coal, solar etc.
produced major part of energy for different sectors (agriculture,

transport and industry) [3–5]. For these sectors oil consumption in year
1973 is 42% and in 2014 it is 64.5% of total world’s oil consumption.
The consumption of fossil fuel is increased by 43.33% from last 41 year.
[6]. Solar, wind, organic, hydrothermal are renewable energy resources
and has great importance at present [1]. Less pollution potential and
less contribution in global warming are the key factors that force to
switch towards alternate solution. 20% population of European Union
faces the problem of high noise production by rail and road traffic [7].
To meet the energy requirements biofuels grabbing the attention of
researchers as an alternative of conventional fuel [8,9]. Other factor
like high price of energy import, high cost and environmental issues
have also created more interest in biofuels. The important properties
that an alternative fuel should have the economically feasible, easily
available, less environment issues as compared to conventional fuels
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[10]. Rudolf Diesel (inventor of diesel engine) also tested peanut oil in
diesel engine as a fuel initially. During the research on alternative fuels
this point was notice that the vegetable oils can also used in diesel
engines without modifications.

Various harmful matters are emitted from engine exhaust (smoke,
un-burnt hydrocarbons, carbon mono oxide, particulate matter and
nitrogen oxides), which are very dangerous for human being and en-
vironment also. Most harmful pollutants are nitrogen oxide and smoke
[11–15]. Accumulation of carbon mono oxide and other gases in the
environment are also responsible for change in climatic condition [16].
From 2007 to 2030 the level of CO2 has been estimated to increase by
80% approximately [17]. Due to reduction in fuel reserves and rising
environmental issues has increased the attention of researcher towards
the alternative fuels in place of conventional fuels [18–20]. Nowadays
several countries have emphasized and encourage the use of alternative
fuel like biodiesel fuel by governmental and regulatory pathways by
means of both incentives and prescriptive volumetric necessities. From
economic and emission quality point of view vegetable oil is the good
source of energy as alternative fuels [21–23]. Mono alkyl ester that
produced from fatty acid esters of edible oil, non edible oil and waste
oils are called biodiesel [24]. Biodiesel can be used directly in engine in
pure form or blend with diesel in various proportions to provide al-
ternative solution of fuel in compression ignition (CI) engines. Biodiesel
is renewable source of energy, sulfur free, oxygenated, sustainable and
biodegradable. In diesel engine no modification is required while using
biodiesel as fuel [25–28]. Biodiesel shows less regulated and un-
regulated emissions as compare to diesel fuel [28,29]. Various reasons
for biodiesel used as alternative fuel are focus on reduction of green-
house gas (GHG) emissions, less effect on global climate, sustainable
and renewable energy solution and to get more promising alternate fuel
supply to meet the current energy demand. With the help of biodiesel
emissions of particulate matter, carbon monoxide, unburned hydro-
carbon and carbon dioxide can be reduced [17,18,30]. The parameters
of diesel engine performance like brake power (BP), brake torque (BT),
brake thermal efficiency (BTE), break specific fuel consumption (BSFC)
are also improved [18,21,31]. Fuel economy and emissions from engine
is greatly affected by fuel injection system. The parameters of fuel in-
jection systems are injection pressure (IP), injection timing (IT), fueling
and injection duration [32,33]. The performance of engine can be im-
proved by recirculating the exhaust gases and it can also reduce the
engine emission [34]. Biodiesel produced from raw vegetable oil has its
properties almost similar to diesel, so that it can be used as an alternate
fuel. The main drawback of biodiesel as compared to diesel are high
pour and cloud point, high viscosity, augmented nitrogen oxides
emission, less volatility, lower energy content and poor spray char-
acteristics [35]. Many researchers have been done to resolve all the
problems of biodiesel fuel by changing feedstocks types, using additives
and engine modifications.

The main advantages of biodiesel as compared to diesel fuel are eco-
friendly, renewability, high flash point, biodegradability and non-
toxicity [36]. Biodiesel has similar properties to petroleum diesel and
lower emissions so it can be used in the transport sector as alternate
solution to diesel fuel [37,38]. With increase in use of biodiesel could
reduce the pollutants and movable carcinogens [39]. Different source of
feedstocks like vegetable oils, algal oils, animal fats, microbial oils and
waste oils can be used for production of biodiesel [40]. Transester-
ification, pyrolysis and supercritical fluid method etc are the procedures
for the production of biodiesel. From all of these methods the most
adoptive method of biodiesel production is transesterification, which
produce biodiesel and glycerol as secondary product from the oil [41].
This review article covers different aspects of biodiesel produced from
different generation of oil feedstocks. This article discusses about var-
ious feedstocks used for biodiesel production and also describes the
different production processes and calculation for yield of biodiesel.
This review will help researchers to analyze and compare different
generations of biodiesel.

2. Generations of biodiesel

All biodiesels have the equal renewable origin and basic. They are
produced from photosynthetic conversion of solar energy to chemical
energy, which make them isolated from early photosynthesis. In ac-
cordance to ASTM, term biodiesel assigned for monoalkyl esters of long-
chain fatty acids resulting from edible oils, non-edible oils and waste
oils, which produced from transesterification process of triglycerides
using methanol and catalyst [42]. Glycerol (glycerin) is formed as by-
product during transesterification process. Generally methanol is used
to produce biodiesel due to low cost and easy availability. The term
B100 means 100% of FAME, while lesser amount, like B20 designate as
‘biodiesel blends’. Production of biodiesel depends on solar energy and
it is the base of sustainable bioeconomy. Mainly in the transport sector
biodiesel is still of primary significance in current societies (in spite of
enormous improvement in technology to convert solar energy to elec-
tricity with photovoltaic cells).

Major issue regarding renewable fuel is about struggle of land for
food and development of fuel. Scientific steps taken for biodiesel de-
velopment are of covering the feedstocks development, optimum pro-
duction method, quality and quantity improvement for biodiesel and
carbon–neutral economy [43]. According to the EASAC report 2012
biodiesel are usually classified as the first, second and third generation
of biodiesel that primarily based on the origin of biodiesel, whereas the
fourth generation biodiesel drawn from man-made biological tools and
is at infancy level of fundamental research [24]. The production pro-
cesses used for different generations of biodiesel are shown in Fig. 1.

2.1. First generation biodiesel

First generation biodiesels are produced from the edible feedstocks,
example of edible feedstocks are Rapeseed oil, Soybean oil, Coconut oil,
Corn oil, Palm oil, Mustard oil, Olive oil, Rice oil, etc. [44]. Various
feedstocks used for first generation biodiesel are illustrated in Table 1.
Use of edible feedstock for the production of biodiesel is quite popular
at beginning of biodiesel era. Availability of crops and comparatively
easy conversion procedure are the main benefits of the first generation
feedstocks. The risk of limitation in food supply is the main dis-
advantage in use of these feedstocks that increase the cost of food
products [45]. Adaptability to environmental conditions, high cost, and
limited area of cultivation are also the obstacles for the production of
biodiesel from edible feedstock. These drawbacks constrained users to
shift on the further alternate sources for the biodiesel production [46].

2.2. Second generation biodiesel

Second generation biodiesels are produced from the non-edible
feedstocks, example of non-edible feedstocks are Neem oil, Jatropha oil,
Nagchampa oil, Karanja oil, Calophyllum inophyllum oil, Rubber seed
oil, Mahua indica oil etc. [47,48]. Different non-edible feedstocks used
for biodiesel production are discussed in Table 1. Drawbacks of first
generation feedstocks attract researchers to work on non edible feed-
stocks. Eco-friendly, less production cost, eradicates food inequality,
less requirement of land for farming are the main benefits of second
generation biodiesel [44–46]. These oils contain the main benefits of
using second generation biodiesel are, no requirement to relay food
plants and no requirement of agricultural land only. Disadvantages of
second generation fuels is yields of plants, where yield falls for main
non-edible plants like Jatropha oil, Jojoba oil and Karanja oil. These
feedstocks can cultivate in unimportant lands. That’s why it is forced to
farm non-edible crops at farming lands; it directly influences economy
of society and the food production. To beat the socioeconomic issues of
nonedible oil, the researchers paying attention on new alternate solu-
tion, which are economically feasible and simply accessible at greater
extent. Requirement of additional alcohol amount is also the drawbacks
for second generation biodiesel [46].
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2.3. Third generation biodiesel

The biodiesel produced from microalgae and waste oils are termed
as third generation biodiesel [46]. The major benefits of third genera-
tion biodiesel are lesser greenhouse effect, elevated growth rate and
productivity, lesser struggle towards farming land, higher amount of oil
percentage and lesser influence on food supply. The main disadvantages
are requirement of large amount of investment, necessity of sunlight,
issue of production at larger scale, and difficulties in oil extraction
[46,49,50]. At present the production of biodiesel from algal biomass is
under research to enhance the production rate of biodiesel and also
extraction process. The main sources for third generation biodiesel are
fish oil, animal fat, micro algae, waste cooking oil etc. [51]. All these

feasible resources of third generation biodiesel beat the issues faced by
earlier generation feedstocks that influence the food chain, availability,
flexibility with environmental parameters, economic feasibility. In se-
vere situation some algal species have capability to survive and high
lipid content that’s why microalgae can be a possible future source for
third generation biodiesel [52]. In case of waste oils, used cooking oil,
waste fish oil, waste animal tallow oil are also sources for the third
generation biodiesel. It also diminishes load of waste handling plant
and decrease of water pollution. At present animal fats like pork, beef,
goat and poultry rising as a possible and dependable source for bio-
diesel production [53]. Various feedstocks for third generation bio-
diesel are shown in Table 1.

Fig. 1. Biodiesel production process for different generations.

Table 1
Feedstocks used for different generation of biodiesel production.

Edible oil (1st generation) Non-edible oil (2nd generation) Waste oils (3rd generation) Solar biodiesel (4th generation

Cashewnut [55] Aleutites fordii [64] Animal tallow [67] Photobiological solar biodiesel [74]
Coconut [86] Babassu tree [55] Biomass pyrolysis [68] Electrobiofuels [74]
Corn [44] Calophyllum inophyllum [65] Botryococcus braunii [69] Synthetic cell [74]
Cotton seed [56] Castor [66] Chicken fat [70]
Hazelnut [57] Cerbera odollam [64] Chlorella vulgaris algae [69]
Mustard [58] Crambe abyssinica [64] Dunaliella salina algae [69]
Olive [191] Jatropha curcus [64] Poultry fat [71]
Palm [142] Jojoba [55] Fish [72]
Pistachio [55] Karanja [55] Waste cooking oil [73]
Raddish [58] Mahua indica [64]
Rapeseed [59] Milk bush [55]
Rice bran [60] Nagchampa [55]
Soyabean [61] Neem [64]
Sun flower [62] Nicotiana tabacum [64]
Tigernut [63] Petroleum nut [55]
Walnut [55] Rubber seed [64]

Sapindus mukorossi [64]
Silk cotton tree [55]
Tall [55]
Thevettia peruviana [64]
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2.4. Fourth generation biodiesel

Photobiological solar fuels and electro-fuels are considered in fourth
generation of biodiesels. Solar biofuels are produced by conversion of
solar energy into biodiesel using raw material, this method of conver-
sion is a new field of research. Raw materials are widely available,
inexhaustible and cheap. Different solar energy based biodiesel for
fourth generation biodiesel are shown in Table 1. Synthetic biology is
an enabling technology for such a transformation [54]. For sustainable
development, new-to-nature solutions must be find out, which make
synthetic living firms and stylish microorganisms for efficient and direct
change of solar energy to fuel. Similarly, a mixture of photovoltaic or
inorganic water-splitting catalysts with metabolically engineered mi-
crobial fuel development is a rising methodology for efficient devel-
opment and liquid fuel storage. Table 2 describes the benefits and
limitations associated with different generations of biodiesel.

3. Feed stocks for biodiesel production

Biodiesel can be obtained from different feedstocks like vegetable,
algae, microbial oil and animal fats. Biodiesel obtained from different
feedstocks have various purity and composition [44]. The main step for
the biodiesel production is selection of feedstock, which influence
various factors, like purity of biodiesel, cost, composition and yield.
Availability and type of feedstocks source are the main parameters for
classification of biodiesel into edible and non-edible and waste based
origins [82]. Selection of feedstocks for biodiesel production is also
reliant on regions. Availability and economic aspect of country is
mainly considered before selecting feedstock. Canola oil is used as
feedstock in Canada and Soyabean oil is used as feedstock in Brazil and
USA. Coconut and Palm oils are used in Indonesia and Malaysia as
biodiesel feedstock and Rapeseed oils used in Italy, Germany, Finland
and UK as biodiesel feedstock. Karanja and Jatropha have considered as
future feedstocks for biodiesel in India. Among them, Sunflower oil,
Rapeseed oil, Soybean oil and Mustard oil have been used previously as
biodiesel feedstock but due to unfavorable result on food plants slowed
down their utilization as biodiesel feedstocks. The utilization of edible
oils as biodiesel feedstocks have big issue because this directly affect
food chain [43]. From various research it is concluded that consump-
tion of nonedible oil as biodiesel feedstock have many benefits like bio
degradable, low sulphur amount, no effect on food chain, Low aromatic
content and availability. There are certain growing feedstocks for bio-
diesel such as tallow oil, animal fats, fish oil and micro algae etc., which
can also be used to produce biodiesel.

3.1. First generation feedstocks

3.1.1. Coconut (Cocos nucifera)
For the production of biodiesel Coconut is one of feedstock source.

This feedstock is accepted in Philippines for biodiesel production.
Height of Coconut tree is about 15–18m [86,94]. Coconut oil is a tri-
glyceride having less percentage of monounsaturated fatty acids (6%),
polyunsaturated fatty acids (2%) and high percentage of saturated fatty
acids (86%). It have mainly three acids e.g. lauric (45%), palmitic (8%)
and myristic acid (17%). It has totally seven various type of saturated
fatty acids. It has less amount of monounsaturated fatty acid is oleic
acid and it also has only polyunsaturated fatty acid is linoleic acid.
Coconut oil has high biodiesel yield [83]. Some of physical properties
like density, viscosity, and heating value of Coconut oil are 914 kg/m3

(at 15 °C), 27mm2/s (at 40 °C), and 37.806MJ/kg respectively [24].
Automobiles operated on coconut biodiesel enhance mileage by 1–2 km
due to enhance oxygenation, even with 1% minimum blend and de-
crease in emission level by 60% [84].

3.1.2. Palm oil (Arecaceae)
The two main palm oil producer countries from last decade areTa
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Malaysia and Indonesia. Nigeria and Brazil have high potential for Palm
oil production. In Europe the demand of Palm biodiesel oil increases
rapidly. Major benefits of Palm oil are very high yield of oil per hectare
and economic, compared to other edible oils. Height of Palm tree varies
from 10 to 15m. Density, viscosity, and heating value of Palm oil are
897 kg/m3 (at 15 °C), 40.65mm2/s (at 40 °C), and 39.867MJ/kg re-
spectively [24]. Palm oil has monounsaturated fatty acids and high
amounts of medium-chain saturated. It contains palmitic acid
(39–48%), oleic acid (36–44%), linoleic (9–12%), and stearic acid
(3–6%) [83]. One issue associated with Palm oil is alkali catalyzed
biodiesel production because, Palm oil has high amount of saturated
fatty acids. The solution of this problem is follow acid catalyzed pre-
esterification method [85].

3.1.3. Soyabean (Glycine max)
Soybean is the leading oilseed crop cultivated globally. In USA

Soybean oil is very trendy biodiesel production source. Soybean oil
have same iodine number with Sunflower oil (121–143). Height of
Soyabean tree varies from 0.5 to 1.2m. As compared to others, Soybean
produces less yield of oil per hectare [86–89]. Soybean have nitrogen
fixing ability that why it can cultivate in both temperate and tropical
conditions. Soybean also recharges soil nitrogen. The requirement of
fertilizer is less for Soybean which develops positive fossil energy bal-
ance. Physical properties like density, viscosity, and heating value of
Soyabean oil are 916 kg/m3 (at 15 °C), 31.83mm2/s (at 40 °C), and
39.6MJ/kg respectively [24]. Soyabean oil contains linoleic acid
(50–60%), oleic acid (20–30%), palmitic acid (6–10%) and linolenic
acid (5–11%) [90].

3.1.4. Sunflower (Helianthus annuus)
Fifth largest oilseed crop all around the world cultivated is

Sunflower. In Europe after Rapeseed, Sunflower oil is used for pro-
duction of biodiesel. Sunflower tree can grow up to 3m. The yield of oil
production for Sunflower seeds is higher than Soybean and Rapeseed
per hectare. It is much productive as Rapeseed, Sunflower is more used
by the people because it need a smaller amount of fertilizer and water
[41,86,91–93]. Density, viscosity, and heating value of Sunflower oil
are 918 kg/m3 (at 15 °C), 34.01mm2/s (at 40 °C), and 39.56MJ/kg
respectively [24]. It contents high amount of linoleic acid (30–70%),
which is an obstacle in utilization of it as biodiesel feedstock. It also
contains oleic acid (15–40%), palmitic acid (5–8%) and stearic acid
(2–6%). High value of iodine number and less oxidation stability are the
main reasons for pure Sunflower is not suitable as fuel [83].

3.2. Second generation feedstocks

3.2.1. Cotton seed (Gossypium)
The main producer countries of Cotton crop are Europe, China and

United States. The main species of Cotton plants are Gossypium herba-
ceum and Gossypium hirsutum, which are used for the production
Cotton seed oil. Cotton plants can reach up to height of 1.2m. This oil
has various kinds of non-glyceride things, like sterols, carbohydrates,
gossypol, resins, phospholipids, and connected pigments [95]. This oil
has density in the range of 917–933 kg/m3(at 15 °C). Viscosity and
heating value of Cotton Seed oil are 34.79mm2/s (at 40 °C), and
39.5MJ/kg respectively [24]. Seeds of Cotton plant have oil in the
range of 17–25%. The cotton seed oil has fatty acid, like oleic of
19.2–23.26%, palmitic of 11.67–20.1%, and linoleic acid of
55.2–55.5% [16,96].

3.2.2. Jatropha (Jatropha curcas)
Jatropha is an oilseed plant and it cultivated on semi arid, marginal

areas. Scrub can be collected two times in a year, are not often looked
by cattle, and stay productive for 30–50 years. Seeds can obtain from
plant after 1 year of plantation and its productivity is highest after
5 years of plantation [97]. Plant of Jatropha belongs to the family of

Euphorbiaceae and maximum height of plant is up to 5–7m [98,99].
Jatropha plant requires approximate rain 100–150 cm per year. India,
Argentina, United States, Paraguay Brazil, Africa, Bolivia and Mexico
countries are the home for the Jatropha crop [98,100,101]. In India
Jatropha tree has been recognized as one of important sources for
biodiesel, where about 64 million hectares of area is classify as un-
cultivated or waste area. Seed of Jatropha plant have approximate
20–60% oil. Heating value, density, and viscosity of Jatropha oil are
38.96MJ/kg, 916 kg/m3 (at 15 °C), and 37.28mm2/s (at 40 °C) re-
spectively [24]. Jatropha have mostly unsaturated components, like
oleic (34.3–44.7%) and linoleic acid (31.4–43.2%), certain saturated
components, like palmitic acid (13.6–15.1%) and stearic acid
(7.1–7.4%) [102].

3.2.3. Jojoba (Simmondsia chinensis)
Mexico, California, Arizona and India are the main producers of

Jojoba plant. Jojoba plant belongs to the family of Simmondsiaceae.
The main important products obtained from Jojoba plant are liquid wax
ester and oil obtained from its seeds. In India Plant of Jojoba used to
stop desert growth. The maximum height of plant is up to 1–2m. The
profile of leaves of Jojoba plant is oval and width of leave is about
1.5–3 cm and long about 2–4 cm, they are grayish green in color
[103,104]. Density, viscosity, and heating value of Jojoba oil are
868 kg/m3 (at 15 °C), 24.89mm2/s (at 40 °C), and 46.47MJ/kg re-
spectively [24]. Seeds of Jojoba plant have fatty acid approximate li-
noleic 25.2–34.4% and oleic acid 43.5–66% and oil content from Jojoba
seed is about 40–50% [105–107].

3.2.4. Karanja (Millettia pinnata)
The main producer countries of Karanja are South-east Asia,

Australia, China, and US [108]. It is belongs to the family of le-
gumnosae. The maximum height of Karanja plant is up to 15–25m.
After 3–4 year plantation blossoming initiates and it ripens 4–7 years
after plantation. Plant of Karanja has 9 to 90 kg seeds from a single
plant. It has huge inconsistency of oil amount in Karanja seed (25–40%)
[100,109,110]. Heating value, density, and viscosity of Karanj oil are
35.992MJ/kg, 933 kg/m3 (at 15 °C), and 39.9mm2/s (at 40 °C) re-
spectively [24]. Karanja oil has stearic acid (2.4–8.9%), linoleic acid
(10.8–18.3%) and oleic acid (44.5–71.3%) [111–113].

3.2.5. Linseed (Linum usitatissimum)
The main producer countries of Linseed are Argentina, India,

Europe and Canada. It is an herbaceous type crop. Physical properties
like density, viscosity, and heating value of Linseed oil are 924 kg/m3

(at 15 °C), 26.24mm2/s (at 40 °C), and 39.3MJ/kg respectively [24]. It
has huge unsaturated fatty acids like linolenic acid (46.10–51.12%),
oleic acid (20.17–24.05%) and linoleic acid (13.29–14.93%) and satu-
rated part contains palmitic acid (5.85–6.21%) and stearic acid
(5.47–5.63%) [114,115].

3.2.6. Mahua (Madhuca longifolia)
The largest producer country of Mahua is India. It is evergreen tree

and belongs to the Sapotaceae family [116,117]. Warm and humid
climate is best environmental condition for the cultivation of Mahua
plant. From single Mahua plant approximately 20 to 200 kg seeds are
produced yearly. For production of soap and beauty items and for skin
treatment its oil fat is used. The average age of Mahua plant is approx
60 years and after 10 years of plantation seeds starts developing and it
have 35–50% of oil amount. The maximum height of Mahua plant is
approximately 20m [105,117]. Heating value, density, and viscosity of
Mahua oil are 36.85MJ/kg, 942 kg/m3 (at 15 °C), and 32.01mm2/s (at
40 °C) respectively [24]. It has large amount of unsaturated part like
41–51% of oleic acid (41–51%), stearic acid (20.0–25.1%), palmitic
acid (16.0–28.2%) and linoleic acid (8.9–18.3%) [118].
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3.2.7. Neem (Azadirachta indica)
The main producer countries of Neem are some parts of Bangladesh,

Australia, India, Japan, Burma, Sri Lanka, Indonesia and Pakistan.
Neem is belongs to the family of Meliaceae. Neem can be cultivated in
all type of sand like calcareous, dry, alkaline, saline, shallow, stony soil,
and clay soil. Plant of Neem has reach maximum height up to 12–18m.
For the cultivation of Neem plant 140–120 cm rain required yearly. The
age tenure for Neem plant is about 150 to 200 years and after 15 year of
plantation, it has highest productivity. Oil amount is 20–30% in the
seed of Neem [100,105]. Some of physical properties like density and
viscosity and heating of Neem oil are 929 kg/m3 (at 15 °C) and
38.875mm2/s (at 40 °C) respectively [24]. Neem has mainly large
amount of unsaturated part like oleic acid (25–54%) and linoleic acid
(6–16%) and saturated parts have stearic acid (9–24%) [119,120].

3.2.8. Rubber seed (Hevea brasiliensis)
The main producer country of Rubber seed is Brazil and some other

producer countries are Indonesia, Malaysia, Thailand and India. It be-
longs to the family of Euphorbiaceous. The tree of rubber is so tall and
its height is up to 34m [121]. For the growth of Rubber plant non frost
environment and high rain is essential. Copra or kernel of it has
40–50% brown oil (by weight) and its seed have 50–60% oil content
[105,122]. Density, viscosity, and heating value of Rubber seed oil are
917 kg/m3 (at 15 °C), 42.54mm2/s (at 40 °C), and 38.64MJ/kg re-
spectively [24]. Rubber seed oil has high amount of unsaturated fatty
acids, like linolenic acid (16.3%), linoleic acid (39.6%), and oleic acid
(24.6%) [90].

3.2.9. Tobacco (Nicotiana tabacum)
The main producer countries of Tobacco are Russia, Turkey, India,

Macedonia, South America and North America. It belongs to the family
of Solanaceae [123,124]. Mainly Tobacco plant is cultivated for the
collection of leaves. The main characteristics of Tobacco is quite similar
to vegetable oils like physical and chemical properties that’s why To-
bacco is recognized as future source for development of biodiesel
[66–68]. Heating value, density, and viscosity of Tabacco oil are
39.4 MJ/kg, 918 kg/m3 (at 15 °C), and 27.7 mm2/s (at 40 °C) respec-
tively [24]. Seeds of Tobacco plant have 35–49% of oil amount and also
have unsaturated fatty acids like linoleic acid (69.49–75.58%) [125].

Probability of development of biodiesel from various plants is high
in India. India is the house of more than 300 unlike plant from which
seeds are obtained for the production of oil. The expected possible
obtain-ability of non-edible oils volume is around one million tons per
annum that include Mahua oil (180,000 tones), Sal (180,000 tones),
Neem (100,000 tones) and Karanja (55,000 tones), as the plentiful oil
feedstocks. The advantages of these non-edible plants are not only
compatibility with engines but also it can be cultivated in arid to semi-
arid areas that are less suitable for food plants. Non-edible feedstocks
are not presently cultivated on a large area. These feedstocks can be
main constituents of local economies [126].

3.3. Third generation feedstocks

3.3.1. Animal fat
The co-product of fishery and meat industry is animal fat. It can be

obtained from fish, cattle, chicken and hog. At present co-products from
animal fat are mainly used for biodiesel production because it has low
retail prices, particularly in turn to substitute fuel for automobile fleets,
companies developing these raw materials. Due to numerous animal
scandals and infections the possibility of using sources of animal fats is
not permitted to be utilized as food any longer. It is verified for its use
for biodiesel development. Tallow obtained from diseased livestock is
also found as an important feedstock for biodiesel development.
Irregular supply is biggest issue for all these feedstock, because animal
fat has not been produced only for biodiesel.

Beef tallow or mutton, yellow grease, lard and residues after omega-

3 fatty acids are used for producing third generation biodiesel [50].
These are main products from leather and meat industry. These sources
provide food security, economic, and environmental benefits over ed-
ible oils. However, animal waste fats with higher saturated fatty acids
and free fatty acids required complex development methods. Animal
waste fats with lesser saturated fatty acids have numerous benefits like
containing shorter delay in ignition, good stability to oxidation, and
elevated calorific value [127]. These feedstocks have high degree of
saturation which provides high heating value and Cetane number.
Large volume of saturated fatty acids create problem of low tempera-
ture operability. Due to this the biodiesel obtained from animal fats are
less suitable in cold countries.

3.3.2. Micro algae
Algae cultures are defined in which micro algae farming is done.

Algae culture is a type of aquaculture concerning cultivation of algae to
generate food or other stuffs that can be obtained from algae. These are
aquatic plants having one cell, with possibility to generate huge amount
of lipids that are suitable for production of biodiesel [128]. For the
cultivation of algae two systems are used. First one is open pond system
and other one is closed system. In open pond system algae are sus-
ceptible of being attack by other species and bacteria. The development
of lots of species is comparatively small for open system. Water tem-
perature and lighting are not controlled in open system. The rising
period is dependent on the environmental location and is restricted to
warmer months. The benefits of these systems are lesser price, and the
larger production capacity [129]. Closed system or pond system is the
other system of cultivating algae which is enclosed by greenhouse.
These systems are smaller due to economic reasons in spite of this they
have many benefits. These systems permit cultivation of additional
species which are sheltered from other species from outer. It also en-
larges the growing period. The closed system has photo bioreactor
which connected to source of light. Photobioreacter is an enclosed pond
that contains a light source, polyethylene bags, and plastic or glass
tubes. As light simply penetrates 7–11 cm from top in algae culture, so
for thick development of algae, blend of algae and water has to moved
to permit that light spreads in blends. Many other system also use
plastic or glass sheets [130]. These sheets are inserted into the pond and
provide light directly to the algae for accurate concentration. Algae can
be harvested by flocculation or centrifugation techniques, with the help
of these systems algae can be grown in poor conditions of like arid and
semi arid area. In addition per hectare yield is predictable to be higher
than that of tropical oil plants. Algae can also cultivate in saline water,
for example water from ocean or polluted aquifers. This water has few
opposing uses in industry, forestry, agriculture, or municipalities [131].
At present probability of growing algae next to power plants is high.
The algae can be nourished by CO2 emissions because the main nu-
trients for algae growth are carbon dioxide and nitrogen oxides [132].

3.3.3. Waste oil
For the production of biodiesel a wide range of waste oils are

available. Generally waste oils are cheap and present an extra ecolo-
gical force by consuming materials of such types which would have to
be disposed [133]. Waste oils can classify into three categories; waste
oil from food industry, non food industry and from household and
restaurants. Waste oil from rape seed, coconut, soybean, palm oils and
other edible oils are utilized in biodiesel development. Utilization of
these waste oils needs extra processing to handle obtained acid at high
temperatures and clean out residues. In the food factory also so many
co-products produced, which can be used for biodiesel production.
Waste oils from non food industry use waste plastic oil, waste tyre oil
etc to produce biodiesel through pyrolysis process [134].

3.4. Fourth generation feedstocks

High energy content, inexhaustible, easily availability and less cost
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are the key parameters behind fourth generation biodiesel feedstocks
development. Artificial photosynthesis [135] and direct solar biodiesel
production are the main technologies those use photosynthetic water
splitting into its constituents by the use of solar energy. Fourth gen-
eration biodiesel based on synthetic biology technologies. Second and
third generation biodiesel feedstocks are improved to increase photon
to fuel conversion efficiency (PFCE) with the help of improvement in
biomass processing technology. Future photobiological solar fuel pro-
duction system harvests the solar energy and uses it to production of
high quality fuel with improved yield. The microorganism will be
making it possible to collect the fuel continuously in a photo-bioreactor.
Direct solar fuel production technology is independent on harvested
biomass. In an ideal system the production of biomass stopped when the
system is shifted to direct photobiological solar fuel production. So, the
microorganism’s growth targeted to be provisionally separated from the
production process of fuel. Immobilisation of algae and cyanobacteria
could provide a solution for this. In comparison with ordinary biomass
harvesting system PFCE of a photobiological fuel production process is
higher. Presently research on these “designer organisms” target at 10%
PFCE, with the necessity for appropriate bioreactors configuration. The
future technologies, based on microbial electrosynthesis (MES) [136],
hybrid systems (electrobiofuels), and synthetic cell are used to reach
even higher PFCEs.

4. Steps for biodiesel production

The production of biodiesel; oils from plant feedstocks, microalgae,
animal fats, and waste oils are used. The yield of biodiesel from oil
crops mainly depends on the crop species. The yield of biodiesel pro-
duced from oils of third generation feedstocks is less in comparison with
oil from first and second generation feedstocks [86]. The production of
biodiesel involves two major steps. First one is production of oil from
seeds or algae biomass, than conversion of oil in biodiesel using dif-
ferent major techniques like pyrolysis, micro-emulsification, dilution,
transesterification etc. Transesterification process is the one of the most
economic process with high biodiesel yield so, it is the most adaptive
method for commercial biodiesel production.

4.1. Extraction of oil from feedstocks

The production of oil is done from its extraction from seeds of first
and second generation feedstocks. Third generation feedstocks content
microalgae, waste oils and animal fats so extraction of oil for these
feedstocks is different from first and second generation. For the pro-
duction of biodiesel, extraction of oil from seeds of oil crops (first and
second generation) is the first step. There are two methods of oil ex-
traction on the basis of infrastructure and amount of production. First
one is small scale pressing and another one is large scale or industrial
pressing. In small scale pressing first step is cleaning of oil seeds, and
next step is mechanical pressing of seeds at 40 °C (highest). Next step is
filtration in which suspended impurities are removed. The residual oil
has some amount of press cake (approximately 10%). Press cakes
formed as side product and it is full of protein so it can be utilized as

protein fodder [137]. Presently small scale pressing is not commonly
used due to greater production prices; while it provides opportunity for
extra profits and also press cake that is side product can be directly used
as feeder for animals. In large scale production the requirement of
temperature is more than 80 °C to disable bacteria growth and
spreading of press through proteins. In the beginning crushing of press
cake is done and then solvent is mixed in it. The requirement of specific
amount of water is essential because high amount of water creates issue
for diffusion of solvent, while less amount increase compactness. Fur-
thermore, the diffusion of solvent is better in crushed seeds. As a solvent
generally hexane is used, which can remove oil at 80 °C temperature
[137]. The mixture of hexane and oil is obtained at the end of proce-
dure known as extraction grist and miscella. Recycling of hexane is
done and removed from the mixture. Afterward maintaining the tem-
perature and water amount, next step is pressing of seeds at 80 °C
temperature. Thus about 75% of entire oil amount can be obtained
[42]. After this process obtained oil further processed for refining. From
various literatures it is found that edible oils and non edible oils have
wide range of oil content percentage from feedstocks like Canola
(40–45%) [86,143,144], Coconut (63–65%) [86,94], Linseed (40–44%)
[86], Palm (30–60%) [86,142], Peanut (45–55%) [86,145], Rapeseed
(38–46%) [86,140,141] Soybean (15–20%) [89], Sunflower (25–35%)
[41,86,91-93], Castor (45–50%) [42,86,152,153], Chinese tallow seed
(44.15%) [150,151], Jatropha (30–40%) [86,148,149], Karanja
(27–39%) [86,147], Neem (20–30%) [38,139], and Rubber seed
(53.74–68.35%) [154]. The main reason behind the variation of oil
content is varying climate conditions throughout the globe [86]. In case
of third generation feedstocks, waste oils only required refining process
while; in case of microalgae different approach is used. Algae that are
collected from pond spread under the sunlight for 48 h to evaporate the
water content. The dried algae are grinded and the fine powder was
passed through different micron sieves to get different mesh size algal
biomass. Hexane as a solvent was mixed with the dried algae powder to
extract oil. Then the mixture was kept for 24 h for settling and two
layers are separated in the funnel. The Algal oil was separated from
Algae biomass by filtration. The extracted oil evaporated in a water
bath to release hexane [38]. From literature it is found that third
generation feedstocks have high oil contents e.g. Algae, Boiler chicken
waste, Micro algae, Microbial, Pine and kapok have 30–70% oil content
[155–160]. The Percentage of oil content from different feedstocks are
given in Table 3.

4.2. Oil refining

Refining process is used to eliminate unwanted components like
colorants, phosphatides, tocopherols and free fatty acids. These com-
ponents influence further steps of processing and also affect storage life
of oil. Physicochemical properties of oil and type of feedstock resources
influence the refining process. Degumming is initial purification stage
of refining, in which elimination of phosphatides is done. Elimination of
phosphatides is essential because it makes oil muddy and also they
support accumulation of H2O [138]. Acid and water degumming are the
two methods used for elimination of Phosphatides. In acid degumming

Table 3
Percentage of oil content from different feedstocks.

Edible oils Oil content (%) Non edible oils Oil content (%) Animal Fat & other sources Oil content (%)

Soybean [86–89] 15–20 Neem [38,139] 20–30 Algae [155,156]
Sunflower [41,86,91–93] 25–35 Karanja (Pongamia pinnata) [86,147] 27–39 Broiler chicken waste [155]
Rapeseed [86,140,141] 38–46 Jatropha [86,148,149] 30–40 Micro algae [38,42,157]
Palm [86,142] 30–60 Chinese tallow seed (stillingia) [150,151] 44.15 Microbial [158,159] 30–70
Linseed [86] 40–44 Castor [42,86,152,153] 45–50 Pine and kapok [160]
Canola [86,143,144] 40–45 Rubber seed [154] 53.74–68.35
Peanut [86,145] 45–55
Coconut [86,94] 63–65
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acidic components are mixed with oil and this method is used for in-
soluble phosphatides elimination i.e. not hydrated. Water degumming
is used for removal of soluble phosphatides. In water degumming, water
is mixed with oil at temperature 60–90 °C and then with help of cen-
trifugal separation, oil and water phase are separated [139].

De-acidification is the next stage of refining. It is the essential stage
for first generation edible oils because it prohibits production of rancid
flavors of free fatty acids (FFA). De-acidification approach is also used
for elimination of heavy metals, phenol, phosphatides and oxidized
fatty compounds. Elimination of these components is not only essential
for edible oil but also essential to fuel development because these
components directly affect transesterification process and storage life.
The approach of de-acidification includes distillation, de-acidification
and removal of pigments and smells by many solvents like propane,
ethanol, and furfural, neutralization with alkali, and de-acidification.
Bleaching is the next step of refining in which colorants are eliminated.
Storage time is improved with bleaching. In this approach adsorbing
materials are used like activated carbon, bleaching earth, silica gel.
Deodorization is the next stage of refining in which odorous compo-
nents like aldehydes and ketones are eliminated. Dehydration is the last
stage of refining in which water content is eliminated. Elimination of
water is performed by distillation process at low pressure [138].

Microalgae have highest oil content up to 70%. In case of non-edible
feedstock Rubber seed has maximum 68.35% oil content whereas in
edible feedstocks coconut has 65% oil content. The oil content is about
15–20% in soybean, which is lowest.

4.3. Refined oil to fuel conversion techniques

For the production of biodiesel there are numerous methods which
are investigated by researchers. Table 4 briefly describes about the pro’s
and con’s of different production technologies used for biodiesel pro-
duction. Among these techniques, there are four methods which are
most favorable for production of biodiesel from different generation oil
feedstocks.

4.3.1. Pyrolysis
Pyrolysis is one method which is used for biodiesel production. In

this method thermal decomposition of material occur at high tem-
perature in absence of air or in inert atmosphere. This process affected
with variation in chemical composition of material. When oil is used as
raw material during heating it will break and features of its liquid
portion is like as diesel fuel. The characteristics of fuel obtained from
pyrolysis process have calorific value similar to diesel fuel; pour point,
viscosity and flash point are less than diesel. Cetane number is lesser
than diesel of biodiesel produced through pyrolysis process. Biodiesel
produced through this process has adequate quantity of water and
sulfur, but it has in adequate amount of residual carbon and ash content
[161]. High installation cost is the major drawback of this process.

Based on operating parameters pyrolysis method is classify into
three sub categories-

(a) flash pyrolysis,
(b) conventional pyrolysis, and
(c) fast pyrolysis

Flash pyrolysis process is a high heating rate (> 1000 °C/s) thermal
cracking process. It takes very less vapour residence time to minimize
cracking at secondary stage to provide high liquid yield. Fast Pyrolysis
reduces the yield of bio-oil in comparison to conventional pyrolysis.
Physiochemical properties of fast pyrolysis and conventional pyrolysis
bio-oils were tested by ASTM 7554-10 [162].

4.3.2. Micro-emulsification
The issue of viscosity for vegetable oil can be eliminated by making

of micro emulsion. It is the stable, transparent and isotropic mixture of
water, oil and surfactant. It is colloidal dispersion that is thermo-
dynamically stable. The range of droplet diameter varies from 100 to
1000 Å. For preparing micro-emulsion of oils; co-solvent, alcohol,
Cetane improver and surfactant are added. The maximum viscosity
requirement for fuel can be met by making micro-emulsion with bu-
tanol, hexanol and octanol. The process of micro-emulsion is easy. Less
volatility, stability and high viscosity are some issues with micro-
emulsification [163].

4.3.3. Dilution
Dilution is the method in which amount of solute decreased in so-

lution by increasing the amount of solvent. Ethanol and diesel fuel can
be used as solvent for dilution of oils. The outcomes from this process
are decrement in density and viscosity of oil. If 4% amount of solvent
(ethanol to diesel fuel) is added to oil than brake power, brake thermal
efficiency and brake torque increases and brake specific fuel con-
sumption decreases. The value of boiling point for diesel fuel is higher
than ethanol that’s why ethanol could promote progress of combustion
procedure over an unburned blend spray. The process of dilution is easy
but there are some problems are associated with it like carbon de-
position in engine cylinder and incomplete burning.

4.3.4. Transesterification
Biodiesel produced from transesterification process have compar-

able properties with diesel fuel and this process is favorable for com-
mercial production as per economic point of view. In transesterification
process glycerol and esters are formed when triglyceride reacts with
alcohol. Fig. 2 shows the transesterification reaction for biodiesel pro-
duction. Three fatty acids are connected to triglycerides (organic fats
and oils) base and it has molecule of glycerin. Free fatty acids are
formed by hydrolyzing triglycerides. After this these free fatty acids are
reacts with alcohol and formed ester or biodiesel (methyl or ethyl fatty

Table 4
Pro’s and con’s of various biodiesel production technologies [164–166].

Production technologies Pro’s Con’s

Catalytic distillation Easy separation of products Usage of solvent and rate of conversion rate after treatment
depends on recovery of catalyst

Dilution Process is easy Carbon deposition in engine cylinder and improper burning
Micro-emulsion Process is easy Less volatile and stable and higher viscosity
Microwave technology Fast rate of reaction and less heat loss After the process catalyst is required to remove, catalyst activity

highly influences the conversion process
Pyrolysis Easy process with less emissions High installation cost, high carbon residue creates lower purity,

clinker high temperature is required
Reactive distillation High free fatty acid content feedstocks can be processed, Process is easy,

methanol requirement is less, easy separation of Products
Requirement of high energy, catalyst efficiency affects the
conversion process

Super fluid method Fast rate of reaction, high efficiency of conversion, no requirement of catalyst High energy requirement and installation cost
Transesterification Produced biodiesel properties are comparable with diesel, favorable for

industrialized production
Less efficiency of conversion, catalyst can’t be reuse.
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acid ester) and glycerol. Transesterification is also known as alcoho-
lysis, due to reaction of free fatty acid with alcohol. The end products of
transesterification process are separated, biodiesel settles on the top
and due to high weight glycerol settles down. The process of separation
should be very fast to avoid reverse process [164]. Usually in transes-
terification process methanol and ethanol are used. If methanol is used
to react with free fatty acids than this transesterification process is
known as methanolysis. In methanolysis process heat is applied to the
mixture of oil (80–90%) and methanol (10–20%) and very less quantity
of catalyst. The solubility of methanol in oil is less that’s why proper
mixing is essential. The produced biodiesel after the process is fatty acid
methyl ester (FAME) [165].The methanol has higher reactivity and
cheaper in price than other alcohols due to this reason it is preferred for
transesterification.

If ethanol is used to react with free fatty acid than this transester-
ification process is known as ethanolysis. As compared to other alcohol
ethanol slightly enhances cetane number and heat content of fuel and
also ethanol has less toxic content [166]. The main issues associated
with ethanolysis are high energy requirement for the reaction and issue
in separation of ester and glycerol [138]. That’s why price of biodiesel
produced through ethanolysis is increased. Biodiesel produced from the
ethanolysis process is fatty acid ethyl ester (FAEE) [167]. Produced
biodiesel from transesterification process have many benefits as com-
pare to pure plant oil (PPO). One important property of fuel is viscosity
which directly effects engine performance. PPO has higher viscosity
than biodiesel. Like high viscosity inversely influence the atomization,
fuel injection time, and injection pressure for diesel engine. Biodiesel
can be used in diesel engines with small variations in engine because its
characteristics are quite similar to fossil diesel.

For the production of biodiesel from transesterification two ap-
proaches are followed-

(a) Catalytic Transesterification.
(b) Supercritical Methanol Transesterification.

In catalytic transesterification approach glycerol and ester is formed
when triglyceride reacts with alcohol in the presence of catalyst. Due to
presence of catalyst this approach is known as catalytic transester-
ification. The nature connected fatty acids define the features of tri-
glyceride or fat/oil that means nature of fatty acid directly influence the
behavior or feature of biodiesel [163].

To eliminate water content from oil, heat is applied to oil in a
container. After removal of water, oil taken inside container and again
heat is applied and continuously subjected to stirring. The oil reacts
with catalyst and form a mixture at 60 °C temperature of oil, and

stirring process is continued till glycerol separation initiates. After this
mixture is taken into a separate vessel and kept it in for 8 h. After the
completion of reaction glycerol settles down slowly due to high weight.
It may be purified for further use in cosmetic and pharmaceutical in-
dustries. The separation of end products i.e. glycerol and ester indicates
effectiveness of transesterification process. These catalyst transester-
ification processes are usually classified on the basis of nature of cat-
alyst.

• Acid catalyzed transesterification

• Alkaline catalyzed transesterification

• Lipase catalyzed transesterification

• Transition metal compound catalyzed transesterification

• Silicates catalyzed transesterification.

The selection of catalyst depends on the fatty acids content of oil
[165]. The main challenges faced by catalyst transesterification process
are comparatively higher time required for completion of reaction and
extra process is required for separation of catalyst. These issue arises
because phase separation of mixture (alcohol and oil). This mixture
may faces the forcefully stirring for formation of mixture and require
more time. Alkaline catalyzed transesterification have several benefits
like reaction rate is fast, so less time consuming and simple setup is
required as compare to acid catalyst. In Table 5 various types of cata-
lyst, their amount, alcohol type, reaction time and yield of biodiesel are
given for different generation feedstocks. In super critical transester-
ification instead of this two phase mixture, single phase mixture is
formed at supercritical state (pressure- 43MPa, temperature- 340 °C).
At these conditions dielectric constant of alcohol reduces. At super-
critical state reaction time is very less and it is approximately 2 to
4min. In this process purification of biodiesel is very easy because
catalyst is not used [166]. High cost of production is the main drawback
of super critical transesterification process.

For the production of biodiesel, nanocatalyst technology is a new
approach with high catalytic efficiency, which grabs all the attention at
present [184]. As compared to traditional catalyst, nanocatalysts have
high surface area that’s why they have improved activity rate [185].
The important characteristics of nanocatalyst are high opposition to
saponification, high stability, and efficient volume to surface ratio,
reusability and high activity [38,151]. The one type nanocatalyst is
prepared by help of oxides, zeolites and carbon [184]. Various nano-
catalysts have been used for the transesterification reaction, as sum-
marized in Table 6. For example biodiesel production from Soybean oil
using transesterification process with nanocatalyst (potassium tartrate)
which is prepared by impregnation. Highest yield of biodiesel is

Fig. 2. Transesterification reaction for biodiesel production [138].

D. Singh, et al. Fuel xxx (xxxx) xxxx

9



Table 5
Biodiesel production parameters in transesterification reaction for different feedstocks.

Feed stock/Oil type Alcohol type Catalyst used Catalyst Amount Molar ratio of
alcohol to oil

Reaction Conditions Biodiesel yield
(%)

Reference

Animal tallow oil Methanol NaOH 2 g 6:1 60 °C/180min – [168]
Canola, corn Karanja and

jatropha, Oil
Methanol H2SO4 0.5 %w/v 9:1 60 °C/120min 80 [169]

Canola, corn Karanja and
jatropha, Oil

Methanol KOH 2 %w/v 9:1 55 °C /60min 90–95 [169]

Honne oil Methanol H2SO4 0.5ml 8:1 45–65 °C/
30–150min

89 [170]

Honne oil Methanol KOH 0.75–1.5%w/v 4:1 45–65 °C/
30–150min

89 [170]

Karanja oil Methanol H2SO4 1ml 6:1 54.5–55.5 °C/60min 98.6 [171]
Karanja oil Methanol NaOH 28.5 g – 70 °C/60min 84 [172]
Karanja oil Methanol H2SO4/NaOH 1%w/v – 50 °C/60min 97 [173]
Mahua oil Methanol H2SO4 1%w/v – 60 °C/30min 98 [116]
Mahua oil Methanol KOH 0.7%w/v 4:1 – – [116]
Mahua oil Methanol KOH 0.7%w/v 6:1 60 °C/30min 98 [174]
Mahua oil Methanol KOH 1%w/v 8:1 54.5–55.5 °C/60min 95.71 [171]
Hybrid (or) Mixture of Karanj and

Mahua oil
Methanol KOH – – – 94 [171]

Restaurant waste oil Methanol NaOH 0.3 g 35% by vol 55 °C/90min 85.5 [175]
Waste cooking oil Methanol Copper doped zinc oxide

nano composite
12% w/w – 55 °C/50min 97.71 [176]

Waste cooking oil Methanol KBr/CaO 3% w/v 12:1 65 °C/180min – [177]
Waste cooking oil Methanol Calsinide scallop shell 5%w/v 6:1 65 °C/120min 86 [178]
Waste frying oils Methanol NaOH 0.6%w/v 4.8:1 60 °C/40min 98 [179]
Palm oil by using waste obtuse

horn shells
Methanol CaO 5%w/v 12:1 360min 86.75 [85]

Rubber seed oil Methanol H2SO4 0.5%w/v 6:1 40–50 °C/120min – [180]
Rubber seed oil Methanol NaOH 5 g 9:1 – – [180]
Palm oil Methanol H2SO4 5%v/w 40:1 95 °C/540min 97 [181]
Palm kernel oil Ethanol NaOH 1%w/v 20% 60 °C/90min 95.8 [182]
Jatropha Curcas Oil Methanol KOH 2.09%w/w 7.5:1 60 °C/60min 80.5 [183]

Table 6
Various nano catalyst used for biodiesel production in transesterification reaction.

Feedstock Catalyst Alcohol to oil
ratio

Temp. (°C) Reaction time
(min)

Catalyst wt% Catalyst Size
(nm)

Biodiesel yield
%

Reference

Algal lipids (Ca(OCH3)2 30:1 80 150 3 – 99 [187]
Algal oil CaO 9:1 55 – 1.25 – 96.3 [188]
Jatropha curcas oil CaO-Al2O3 5:1 100 180 – 29.9 82.3 [185]
Jatropha oil Li-CaO 12:1 65 120 5 – >99 [40]
Karanja oil Li-CaO 12:1 65 60 5 – >99 [40]
Mahua indica oil Heteropoly acid coated ZnO – 50–60 300 – 5–29 98 [189]
Mutton fat Li/MgO 12:1 65 40 5 17 – [190]
Neem oil Cu-ZnO 10:1 55 60 10 – 97.18 [146]
Olive oil Cs-MgO 30:1 90 1440 2.8 12.2–22.8 93 [191]
Palm oil TiO2-ZnO 6:1 60 300 – 34.2 92.2 [142]
Palm oil ZnO 6:1 60 300 – 28.4 83.2 [142]
Pongamia oil Fe/ZnO 10:1 55 55 12 – 93 [192]
Rapeseed oil MgO 4:1 70–310 40–120 – 50–200 98 [184,193]
Rapeseed oil KF/CaO-MgO – 70–310 40–120 – 50–200 95 [184,193]
Soybean oil ZrO2/C4H4O6HK 16:1 60 120 6 10–40 98.03 [186]
Soybean oil Nano MgO supported on Titania 18:1 150–225 60 0.1–7 – 95 [184,194]
Soybean oil Sr3Al2O6 25:1 – 61 1.3 – 95.2–96.2 [195]
Soybean oil Sr-Ti nanocomposite 15:1 – 15 1 – 98 [39]
Soybean oil lipase on Fe3O4 @polydopamine

nanoparticles
1:1 37 720 – 50 93 [196]

Stillingia oil KF/Ca-Fe3O4 12:1 65 180 4 50 95 [151]
Sunflower oil Cs/Al/Fe3O4 14:1 58 120 4 30–35 94.8 [184]
Sunflower oil MgO/MgAl2O4 12:1 110 180 3 21.3 95.7 [197]
Sunflower oil CsH2PW12O40 /FeSiO2 12:1 60 240 4 38–42 81 [198]
Sunflower oil CaO nanoparticles/NaX Zeolite 6:1 60 360 10 – 93.5 [92]
tallow seed oil KF/CaO 12:1 65 150 4 30–100 96 [150]
Vegetable oil Cs-Ca/SiO2-TiO2 12:1 60 120 – 45 98 [199]
Waste cooking oil TiO2/PrSO3H 15:1 60 540 4.5 8.2–42 98.3 [200]
Waste cooking Oil CaO-MgO 7:1 – 360 – – 98.95 [201]
Waste cooking oil CZO 8:1 – 50 12 – 97.71 [202]
Waste cooking oil Ti(SO4)O 9:1 75 180 1.5 25 97.1 [203]
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obtained by Li-CaO nanocatalyst. The dimensions for nanocatalysts are
in the range of 10 to 200 nm. The highest yield of biodiesel is more than
99% were obtained for Karanja oil and for this the ratio of methanol to
oil was 12:1 at temperature of 65 °C with amount of catalyst was 5
percentage by weight and for completion of reaction time required will
be one hour [186].

5. Biodiesel yield

Biodiesel yield is defined as the amount of biodiesel obtained from
raw oil that includes the percentage of fatty acid methyl esters.
Chromatographic or spectroscopic analysis is used for the character-
ization of biodiesel. Thin layer chromatography is used for qualitative
analysis of biodiesel. For the evaluation of glycerides (mono-, di-, and
tri-) and fatty acids, this was taken as main approach. It contains re-
strictions like sensitivity to humidity and very less accuracy. Gas
chromatography is new process used for biodiesel classification and it is
used along with a gas chromatography-flame ionization detector (GC-
FID) or gas chromatography-mass spectroscopy detector (GCMS).
Precise quantity of major and minor components in biodiesel can be
found using gas chromatography [187,204]. This systematic method
offers distribution zone consequent to every element in produced
sample. Analysis of produced biodiesel is carried out by find out the
approximate percentage of fatty acid methyl esters. It can be find out
from distribution zone outcome from gas chromatography investiga-
tion. Percentage of fatty acid methyl esters for a feedstock is prime
requirement to find out biodiesel yield using equation-1 [205]:

= ×

Percentage of biodiesel yield

(FAME percentage result from GC) (Volume yield) (1)

The volume yield of biodiesel obtain from oil feedstock can be find
out using equation (2).

= ×Percentage of Volume yield
Volume of product

Volume of feed
100 (2)

Apart from biodiesel yield the entire amount of mono, di, and tri-
glycerides can be find out by high-performance liquid chromatography
(HPLC) and it can also be used to distinguish biodiesel from more than
one feedstocks [187,204]. Eq. (3) describes the percentage translation
of triglyceride (TG) [184]:

=
−

×Triglyceride(%)
[TG(oil) TG(sample)]

[TG(oil)]
100

(3)

Here,

TG (sample) signifies the total HPLC peak area of triglyceride in
biodiesel sample (diluted), and
TG (oil) is the total triglyceride HPLC peak area in oil (diluted)
[206].

The chemical classification of biodiesel can also be done by nuclear
magnetic resonance (NMR) technique. It is used to find out the blend
value and analyze the peaks of different range in parts per million,
which provides the biodiesel yield that produced from transesterifica-
tion method [187,204]. Equation (4) is used to find out the percentage
translation of triglycerides to fatty acid methyl esters (C %) [207]:

=
×

×

×C(%)
[2 integration value of protons of methyl ester]

[3 integration value of methyl protons]
100

(4)

The details of biodiesel and triglycerides can be analyzed by infra-
red spectroscopy. ASTM D6751 (USA), EN 14213 (European Union), IS
15607 (India) etc. standards are used to maintain the quality of pro-
duced biodiesel. These standards are used for biodiesel (B100), not for
biodiesel blends. For biodiesel blends standards are only given by
ASTM.

6. Conclusion and future scope

Biodiesel is the sustainable appropriate replacement of fossil fuel.
This review article covers all four generations of biodiesel in terms of
feedstocks used for biodiesel production, various biodiesel production
technologies, and calculation of biodiesel yield. Each generation of
biodiesel have its own benefits and limitations. The evolution of gen-
erations of biodiesel primarily focused on the biodiesel quality en-
hancement with less deterioration to environment. The first generation
of biodiesel produced from edible oil feedstocks and the conversion
process for this generation is easy. The crop yield of this generation is
also low. The first generation of biodiesel is not suitable for commercial
biodiesel production due to food-fuel competition. In context of this
issue second and third generations of biodiesel provide an alternate
solution. Second generation of biodiesels are produced from non-edible
oil feedstocks, while third generation of biodiesels are produced from
waste oil or algae oil. Feedstocks of these two generations can be grow
on non-arable land. Algae feedstocks can be grow on waste water or sea
water. High energy content is required for algae cultivation so research
should be focus on reduction in cost of cultivation. The oil content
obtained from algae feedstock is high (30–70%) in comparison with
edible and non-edible feedstocks. Research for fourth generation of
biodiesel feedstocks is on infancy level. Fourth generation of biodiesel
uses synthetic biology technology, which is the future of biodiesel
generations. Metabolic engineering is used in this generation to add
biological tools to improve the quality and quantity of biodiesel from
different feedstocks. Fourth generation biodiesel have high energy
content, rapid feedstock growth rate and more CO2 absorbing capacity
during the feedstock production. Biodiesel is produced from oil using
different techniques i.e. catalytic distillation, dilution, micro-emulsion,
pyrolysis, transesterification etc. Among these conversion techniques
transesterification is the most economic and the biodiesel produced
from this technique have comparable properties with diesel. The pre-
sent review summarizes that the energy demand of future cannot be
met by single generation so; blending of different generation of bio-
diesel will be preferred. On the basis of present literature review it is
found that various research opportunities are available in the area of
biodiesel production process, economic feasibility, performance en-
hancement, and emission reduction. In future research should focus on
the identification of non-edible feedstocks for biodiesel production with
high yield. There are wide research opportunities are available in the
area of reduction in cost of biodiesel production without affecting the
quality of fuel. Improvement in photon to fuel conversion efficiency
(PFCE) for biodiesel production will be the main area of future work.
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