
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-020-02231-4

ORIGINAL RESEARCH

CID: a novel clustering‑based database intrusion detection algorithm

Mohamad Reza Keyvanpour1 · Mehrnoush Barani Shirzad2 · Samaneh Mehmandoost1

Received: 15 November 2019 / Accepted: 13 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
At the same time with the increase in the data volume, attacks against the database are also rising, therefore information
security and confidentiality became a critical challenge. One promised solution against malicious attacks is the intrusion
detection system. In this paper, anomaly detection concept is used to propose a method for distinguishing between normal
and abnormal activities. For this purpose, a new density-based clustering intrusion detection (CID) method is proposed which
clusters queries based on a similarity measure and labels them as normal or intrusion. The experiments are conducted on two
standard datasets including TPC-C and TPC-E. The results show proposed model outperforms state-of-the-art algorithms
as baselines in terms of FN, FP, Precision, Recall and F-score measures.

Keywords  Intrusion · Intrusion detection · Database · Anomaly detection · Outlier detection · Density-based clustering

1  Introduction

Database systems which have been designed to manage the
data in computer systems are dealing with safety challenge.
A database management system in order to provide access to
data, responses commands from general or specified applica-
tion programs (Darwen 2009). Any unauthorized attempt to
access, manipulate, modify and destroy information or to use
a computer remotely to spam, hack or modify other computers
in computer science is called an intrusion (Dua et al. 2016).
To overcome intrusions, intrusion detection systems have been
developed which raise an alarm when detect an intrusive activ-
ity. The intrusion detection is fulfilled in three levels: network,
operating system and database (Santos et al. 2014). Since some
attacks and intrusions in the database are not detectable in the
network and operating systems levels and considering the

existence of inner attacker who has access to data, several stud-
ies have focused on intrusion detection in relational databases.

There are two general approaches for intrusion detection,
called anomaly detection and misuse detection (Dua et al.
2016). Misuse detection strategy detects the predetermined
intrusions efficiently, while fail to find new and unknown
ones. This strategy, leads to large false negative rate. In the
anomaly detection approach, the normal activities are mod-
eled and any activity with a difference behavior is recog-
nized as an intrusion. Data mining technologies with the aim
of detecting patterns for normal and abnormal activity have
been applied to find abnormal activity or intrusions (Kam-
ber 2011). Both supervised and unsupervised learning have
been utilized for current task (Gogoi et al. 2011; Aggarwal
2013). Supervised learning deals with labeled data, whereas
unsupervised learning works with unlabeled data. As a result
of lack of labeled data in this domain unsupervised models
such as clustering algorithms based on density perform well
for intrusion detection (Du 2010).

In this research, anomaly detection concept is used to
present a novel method for distinguishing between normal
and abnormal activities in database level. For this purpose,
we propose a new density-based clustering method called
CID (Clustering-based Intrusion Detection) which clusters
queries based on a similarity measure and label them. CID
works in two parts including training and test phase. In train-
ing phase, which works on training data first features are
extracted for input queries, then clustering is modeled. In

 *	 Mohamad Reza Keyvanpour
	 keyvanpour@alzahra.ac.ir

	 Mehrnoush Barani Shirzad
	 Mehrshirzad@gmail.com

	 Samaneh Mehmandoost
	 samaneh.mehmandoost@yahoo.com

1	 Department of Computer Engineering, Faculty
of Engineering, Alzahra University, Tehran, Iran

2	 Data Mining Laboratory, Department of Computer
Engineering, Faculty of Engineering, Alzahra University,
Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02231-4&domain=pdf

	 M. R. Keyvanpour et al.

1 3

clustering, first the queries distances are computed, then the
Radius Neighbor is calculated. After that, the number of
points for the purpose of clustering is determined. At the end
the training queries by density-based clustering are labeled.
Test phase includes two parts feature extraction and CID
model, which applied on test data. Our method contributes
to the issue in two parts:

1.	 Computing the distances between features, a new dis-
tance metric inspired by similarity measure is intro-
duced. Since the queries are in form of strings, we devel-
oped a metric to measure the distances of queries’ string.

2.	 Training query clustering, in which a density-based
query clustering for Labeling the Training Queries is
proposed.

To the best of our knowledge, there is no other study in
domain of database intrusion detection which consider string
based query distance metric. The CID is tested on TPC-C
and TPC-E datasets. The results of CID are compared to arti-
cles using mentioned datasets. The results show that in com-
parison with three algorithms including: RBDDRM (Ronao
et al. 2015) and WRBDDRM (Rao and Singh 2017), and RF
(Ronao and Cho 2015) CID outperforms baselines in terms
of true positive, false negative, Recall and F-score. Proposed
model performs competitively in terms of other metrics.

The rest of the paper is organized as follows: Sect. 2 pre-
sents related work. In Sect. 3, the concepts and definitions
are reviewed, and in Sect. 4 proposed intrusion detection
system which is based on clustering method is introduced.
Section 5 indicates the experiments. Section 6 concludes the
paper and outlines the future directions.

2 � Related work

A plenty of studies focused on utilizing data mining meth-
ods to implement an anomaly-based IDS. In Hu and Panda
(2004) and Srivastava and Sural (2006) authors applied clas-
sification to mine dependencies among data in a relational
database system. In Yu et al. (2018) authors introduced
CTSIF_SVMs in which, SVMs is applied as their Classifi-
cation model for Two-Side cross domain collaborative filter-
ing problem. Inspired by this study also in Yu et al. (2019)
proposed TSEUIF for a cross-domain collaborative filtering
problem. In Hu and Panda (2004) dependency is though as
the access correlations among data items whilst in Srivastava
and Sural (2006) authors considered sensitivity of the attrib-
utes as weights, to find malicious modifications. In Dorou-
dian and Shahriari (2014) another rule mining method has
been proposed. Normal behavior is learned through finding
patterns. They claim that hybridation of transaction and user

task levels, bring advantages to their model. Rule mining is
investigated by Moradi and Keyvanpour (2015).

Hidden Markov models (HMM) applied in Barbara et al.
(2003) to detect the normal changes in database’s transac-
tions. Other works (Ramasubramanian and Kannan 2004)
used of artificial neural networks (ANN). In Ramasubra-
manian and Kannan (2004) a framework which combined
statistical anomaly detection and rule based misuse detec-
tion proposed to determine misusers. In Ramasubramanian
and Kannan (2006) a framework for anomaly detection by a
neuro-genetic forecasting model to predict attack by captur-
ing previous observations had been proposed.

Support vector machines and multilayer perceptrons are
used in Pinzón et al. (2010) which classify new query in
order to identify SQL injection attacks. In Ronao and Cho
(2015) and Kamra et al. (2008) applied standard of role-
based access control (RBAC). In Kamra et al. (2008) naïve
Bayes classifier is utilized to detect anomalous query access.
In Ronao and Cho (2015) authors used random forest (RF)
algorithm for anomaly detection.

Study of (Bockermann et al. 2009) proposed to apply tree
kernels to model SQL commands to detect malicious behav-
ior. In Choi and Cho (2017) a combination of reinforce-
ment learning and evolutionary learning have been proposed
which claimed that is be resistant to insider misuse.

In Bu and Cho (2017) a hybrid system of convolutional
neural network and genetic algorithm is proposed, in which
CNN classified the queries through learning normal behav-
iors and genetic algorithm find new rules to detect abnormal
behaviors. In Felemban et al. (2018) a data Partitioning-
based Intrusion Management System has been proposed.
Authors defined the concept of Intrusion Boundary (IB) and
formulate it as an optimization problem and apply a Mixed
Integer Non-Linear Programming model as solution.

In Subudhi and Panigrahi (2019) OPTICS clustering on
the transaction attributes for building user behavioral profiles
is applied. In Wee and Nayak (2019) reinforcement learn-
ing is applied for intrusion detection. In Sallam and Bertino
(2019a) proposed anomaly detection techniques designed to
detect data aggregation and attempts to track data updates.

Other works like (Ronao and Cho 2014) made compari-
son between several data mining based algorithms for anom-
aly detections. In Sallam and Bertino (2019b) reviewed the
prominent techniques and systems for anomaly detection in
database systems. Study of (Pourkazemi and Keyvanpour
2017) proposed a method for community detection.

3 � Concepts and definitions

An intrusion detection system (IDS) is a system which ana-
lyzes the database system and user’s activity, assesses the
systems and data integrity, finds intrusion’s pattern, reacts

CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

to intrusions and reports its detections as outputs. IDSs are
developed to overcome the short come of network and oper-
ating system in intrusion detection and their lack of capac-
ity to detect inner intrusions (Corona et al. 2013). The act
of intrusion detection is divided into three steps including
measurement, classification and response. Figure 1 shows
the IDS architecture.

An IDS is categorized according to: the detection
approach, react to intrusion, the location of IDS, the time and
architecture (Mordai 2014). Considering detection approach,
IDS categorized into misuse/signature-based detection, and
anomaly/profile detection. From the react to intrusion point
of view, IDSs classified into active and passive systems.
Based on IDS location, they are categorized into Network-
based and Host-based systems. Considering time, IDS are
continuously or discretely. Based on the architecture IDS
are central or distributed. Two types of attacks are defined
in a database (Corona et al. 2013) inner and outer attacks.
Attacks can be classified into Inference, passive, active, and
SQL injection (Corona et al. 2013). Several works studied
system security such as (Zandian and Keyvanpour 2017)
which assessed fraud detection models.

Anomaly detection is a widely used approach in detecting
intrusion. Clustering is a solution to anomaly based intrusion
detection. Clustering is divided into four types including;
connectivity based, centroid based, distribution based and
density based clustering (Pirrone et al. 2018).

In density based clustering points which are not belong-
ing to any of clusters considered as noises (outlier or anom-
aly). In this clustering, dense areas are separated from each
other by sparser areas in data space (Ester et al. 1996). In
following definitions for anomaly based intrusion detection
by density base clustering issue is provided.

Definition 1: (Distance) the distance between two query
points qi and qj in a database D is denoted by DA(qi,qj) is the
result of applying a distance function:

DA
(
qi, qj

)
∶ D × D → [0,∞)

where [0, ∞) indicate that the result is a non-negative real
number. For all members of D, the following conditions are
satisfied:

1.	 DA
(
qi, qj

)
≥ 0

2.	 DA
(
qi, qj

)
= 0 ↔ qi = qj

3.	 DA
(
qi, qj

)
= DA

(
qj, qi

)

First indicated the distance of two instances is a posi-
tive real number. Second expresses the instances whiteout
distance are the same. Third one demonstrated the symmet-
ric property of distance in which the distance between two
instances is equal in every direction.

Generally, in clustering instances tends to make clusters
with their nearest neighbors. Neighbors are determined
according to their distances from each other.

Definition 2: (Eps-neighborhood of a query) The Eps-
neighborhood of a query q, shown by NEps(qi), is defined as
(Corona et al. 2013):

For density based clustering for each qi instance in a clus-
ter C, there exists n number samples in Esp-neighborhood
of q which belong to the same cluster C. The number of
instances in Esp-neighborhood of q are at list MinPts. This
parameter should set for clustering purpose.

Definition 3: (directly density-reachable) A query qi is
directly density-reachable from a point qj wrt. Eps, MinPts
if:

1.	 qi ∈ NEps(q)

2.	 |NEps(q)| ≥ MinPts(corepointcondition)

Directly density-reachable concept enjoys the symmetric
properties for core pairs of instances. Core instance refers to
instances which are not on the border of clusters.

Definition 4: (cluster) for D database a cluster C wrt. Eps
and MinPts is a non-empty subset of D satisfying the fol-
lowing conditions:

1.	 ∀qi, qj : if qj ∈ C and qj is density-reachable from qi wrt.
Eps and MinPts, then qi ∈ C.

2.	 ∀qi, qj : qi is density-connected to qj wrt. Eps and MinPts.

A cluster in density based clustering addresses a set of
instances which are density connected to each other.

Definition 5: (non-overlapping clusters) this refers to
clustering in which clusters do not share any member, are
defined as follows (Grossi et al. 2015),

NEps(qi) = {qi ∈ D|dist(qj, qi
)
≤ Eps}

∀Ci ∈ C ∶ Ci ⊆ C,∪C = D,∩C = �.

Fig. 1   Intrusion detection system architecture

	 M. R. Keyvanpour et al.

1 3

Clusters can share their instances between each other or
not. In other words, an instance can be a member of more
than one clusters. Here we considered no- overlapping
cluster.

Definition 6: (Intrusion) Let Ct … Ck be the clusters of
the database D wrt. parameters Epsi and MinPts i, i = 1 …
k. Intrusion is defined as the set of queries in the database D
not belonging to any cluster Ci, i.e.

Noise or outlier or intrusion can be defined as instances
which are not member of any clusters (Ester et al. 1996).
Clusters contain the pattern of major queries, whilst the
intrusions deny to follow the common trend.

4 � CID: clustering‑based intrusion detection
method

Input to this system is an unlabeled relational database
query. First in training phase, features are extracted for each
query. Learning contains training clusters, in which feature
vectors are received from previous step and a clustering
model is learned. In test phase, first features are extracted
for each new query, then the label is determined by learned
CID model considering its similarity with training query.
Figure 2 shows the scheme of CID.

4.1 � Training phase

4.1.1 � Feature extraction

This phase consists of feature extraction, in which for all
input queries features vectors are extracted. Ten relational
database queries including select, select into, insert, insert
into, update, delete, alter, drop (Kamra et al. 2008) is con-
sidered in this paper. These commands belong to seven com-
mand type.

Each query has several features such as command,
attributes, read_tables, write_tables, values, where_
conditions, having_conditions, order by, group by. Command
expresses each command type. Attribute relates to fields
(columns) used in a query. Read_table include the name of
tables have been read in a query. Write_table include the
name of tables have been written in a query. Values depict
the value assigned to each field. Where_condition include
the conditionals expressions in where command while
having_condition include the conditionals expressions in
having command. Order by shows the attribute in order
by command which determines the outputs are indicated
by which attributes and group by indicates the attribute in
group by command which determine the outputs are grouped

Intrusion = {q ∈ D|∀i ∶ q ∈ Ci}

and indicated by which attributes. Each of aforementioned
commands possesses several of these features. Table 1
illustrated the commands and their possible features. Some
commands do not have any features, which are shown with
dash in the table.

The input to this feature extraction algorithm is an array
of strings including training queries. The output is feature
vectors of queries. For queries have not some of the above
feature null is set as feature value. For all queries query is
split to words and the first word for command is checked.
Then in order to string normalization, unnecessary charac-
ters and words are eliminated and important features accord-
ing to relevant command are extracted.

4.1.2 � Training query clustering

This stage starts with calculating the distance between que-
ries. Distance is defined inspiring by the similarity measure.
In Shirzad and Keyvanpour (2017) distance is applied to find
similarity. Here, the result is a symmetric matrix applying tri-
angular matrix for saving in memory. Then, eps is calculated
which is the threshold for radius neighbor of each query (Ester
et al. 1996). Next the minPts which determines the minimum
number of points for constructing a cluster is computed. The
procedure is followed by clustering based on density. Figure 3
illustrates four components of clustering phase.

Fig. 2   Clustering-based intrusion detection scheme

CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

a.	 Computing the distances between features
	  Since here the queries are not digital data and are

string, for computing the distances the metrics which
determine the similarity or difference between two
strings are required (Gomaa and Fahmy 2013). In this
research the fields’ name and tables’ name are saved
as string and compared with each other. Features such
as attributes, read_tables, write_tables and values each

word shows a value. In order to compute distance of
each of these features of two queries, the similar values
are counted. Whilst for features such as where condi-
tion and having_conditions, since the value of them are
sentences other measure is needed. To this end, a string
metric called Levenshtein distance is applied. Leven-
shtein distance between of two strings is computed by
summation of the minimum number of operations such
as insert, delete and substitution of letters applied in
order to transform one string to the other string (Miller
et al. 2009) Levenshtein is defined as follows.

where Leva,b (i,j) is the distance between word i of the
first string and word j of the second string. I(a! = b) is an
indicator function which equals to zero if ai and bj are
equal otherwise set to 1. In above equation first expres-
sion in min relates to delete, second relate to insert oper-
ation and the third one relates to equality or inequality
of letters (Miller et al. 2009). Herein, two example for
Levenshtein distance between two words is indicated
(Rani and Sing 2018).

	  Levenshtein (Right, fight) = 1 (substitution operation
of ‘f’ for ‘r’).

	  Levenshtein (book, books) = 1 (insert operation of s).
	  In following some examples for Levenshtein distance

method on queries are depicted. For followings three
queries A, B and C, Levenshtein are computed.

	  Query A = select 1, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock
where i_id = :11 and s_w_id = :31 and s_i_id = i_id.

(1)

Leva,b(i, j)

⎧
⎪⎪⎨⎪⎪⎩

max(i, j)ifmin(i, j) = 0

min

⎧⎪⎨⎪⎩

Leva,b(i − 1, j) + 1

Leva,b(i, j − 1) + 1

Leva,b(i − 1, j − 1) + I(a! = b)

otherwise.

Table 1   Commands’ features

Command Attribute Read table Write table Values Where
condition

Having
condition

Order by Group by

Select 1 ✓ ✓ – – ✓ ✓ ✓ ✓
Select into 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Insert into 2 ✓ ✓ ✓ – – – –
Insert into table 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Update 3 – – ✓ ✓ ✓ – – –
Delete 4 – – ✓ – ✓ – – –
Alter 5 ✓ – ✓ – – – – –
Drop/truncate table 6 – – ✓ – – – – –
Create table 7 ✓ – ✓ – – – – –
Create table as … select 7 ✓ ✓ ✓ – ✓ ✓ ✓ ✓

Fig. 3   Clustering phase

	 M. R. Keyvanpour et al.

1 3

	  Query B = select 10, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock
where i_id = :22 and s_w_id = :3 and s_i_id = i_id.

	  Query C = select 1, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock
where i_id = :11 and s_w_id = :31 and s_i_id = i_id
UNION ALL.

	  Levenshtein (A, B) = 4 indicates the number of opera-
tions including insert, substitution and delete, which are
needed to transform query A to query B. Levenshtein
(A, C) = 10 shows the number of required insert opera-
tions for converting query A to query C including inser-
tion of characters and spaces. Differences in B and C
queries from query A are also highlighted in example
queries. Obviously, the Levenshtein distance for two
identical queries is equal to zero. The distance between
two queries is achieved by summation of difference of
all features. In distance computation the command fea-
ture is not considered. In following the pseudocode for
distance algorithm is shown. Input is array of feature
vectors of queries, and output is an upper triangular
matrix including distances between queries.

Algorithm1 : compute the distance of queries
1
2
3
4
5
6

7

8
9
10
11
12
13

counter = 0
FOR i = 1 TO (number of queries-1) DO
//constructing an upper triangular matrix

FOR j = i+1 TO number of queries DO
split features attributes, read_tables,

write_tables, values into words
compare words of every relevant

feature in Q[i] and Q[j], and find number of
uncommon words
use levenshteinDistance function for

features where_condition and
having_condition (levenshteinDistance
(where_condition[i], where_condition[j]),
levenshteinDistance(having_condition[i],

having_condition[j]))
TotalDistance = sum of the number of

all uncommon words and levenshtein
distances

DA[counter] = TotalDistance
counter++

ENDFOR
ENDFOR
EN

b.	 Calculating the radius neighbor (EPS)
	  Study of (Ester et al. 1996) showed the distance

function determines the clustering shape. Here a new
2-dimensional distance function is introduced. For cal-
culating the radius neighbor, first the average and vari-
ance of distance for each query against others is com-
puted, then the absolute of their differences is set as the
query’s radius neighbor. The average of distances from
one query indicates the mean distance of other queries
from it. Standard deviation (Bland and Altman 1996)
is shown by δ and is a distribution identification which
expresses the data’s distance from mean value in aver-
age. Following equation defines the standard deviation.

where xi here is the queries’ distance from the consid-
ered query, N is the number of queries, µ is the average
distance. If the standard deviation value is near to zero
it means the data are near to average and the has small
distribution, whilst large variance expresses the con-
siderable data distributions. Standard deviation equals
to square of variance. Herein, the absolute difference
between average and standard deviation is considered as
radius neighbor. Following formula indicates the radius
neighbor.

where epsi is radius neighbor related to ith query, µi is
average and δi is the standard deviation from i query.
Algorithm 2 shows the process of computing EPS. Input
is array of distances between queries (DA[]) and output
is an array of queries’ EPS.

(2)
δ =

√
1

N
[(x1 − μ)2 + (x2 − μ)2 +⋯ +

(
x2 − μ)2

]

where μ =
1

N
(x1 +⋯ + xN)

(3)epsi = |μi − δi|

CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

Algorithm 2: compute EPS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int sum = 0;
FOR i = 1 TO number of queries DO

FOR j = 1 TO number of queries DO
int m;
IF (i == j) THEN

continue;
IF (j < i) THEN

m = (j*n)-(((1+j)*j)/2)+(i-(j+1));
ELSE

m = (i*n)-(((1+i)*i)/2)+(j-(i+1));
sum += DA[m]; //sum the distances

between query i and all the other queries
ENDFOR

compute average of distances
compute standard deviation of

distances
eps[i] = absolute value of average-

deviation;
sum = 0;

ENDFOR
END

	  Radius neighbor is computed for each query, this lead
to have difference density for clusters. In other words,
radius neighbor for each query depends on points’ dis-
tance from it. This method leads to change in density
based on query which made the algorithm dynamic.

c.	 Determining the number of points for clustering
(minPts)

	  The minimum number of points is set to find all
instances member of the same cluster (Ester et al. 1996).
Queries’ distances are applied here to gain minPts. To
this aim, first for each query the number of queries
which their distance values are lower than or equal to
eps is gained. Then average is computed. The following
equation shows the minPts.

(4)
minPts =

∑n

i=1

∑n

j=1
Distancei,j

n
Such that Distancei,j ≤ epsi

	  this value is identical for all queries.
d.	 Labeling the training queries by density-based clustering
	  The main strategy in clustering based on query is to

model the clusters according to dense area in space to
separate them from sparse area. Clustering methods are
able to clustering arbitrary [7]. In this research the center
of a cluster is selected considering the distance matrix of
queries opting for queries near to each other. Then, the
number of near queries for each query is achieved. After
that, the query’s points are sorted in descending order
according to their distances. So that, there exists a set of
points can be chosen as cluster centers. First the number
of each label is assigned as its label. In Hassanzadeh
and Keyvanpour (2013) sequence labeling is addressed.
First point which has the largest number of points with
lowest distances is considered as cluster center. Then,
the list of query candidate for cluster center are inves-
tigated. If the query’s distance from the first selected
center cluster is lower than or equal to eps, then it gains
the label of first query. Otherwise, it keeps its previous
label. After tracing the list and labeling its members,
the queries which own the shortest distance with center
are assessed. If their distance with current point is lower
than or equal to eps then receive the current query’s
label, else keeps its own label. This process continues
for all queries; in cases which query had been labeled
before its label would not change anymore. The clusters
are constructed as a result of aforementioned steps. The
number of minimum points for cluster should satisfy
the minPts. A query is labeled as intrusion in following
conditions.

If the number of a cluster’s member is lower than
minPts, all quires belong to that cluster are considered as
outlier or intrusion. A query is considered as intrusion if
it is not a member of any cluster, its label is unique. Input
to this algorithm is array of unlabeled queries, array of
EPSes, minPts and output is the labeled queries as normal
or intrusion.

Intrusion
(
qi
)
= {if qi ∈ Ci and

||Ci
|| ≤ MinPts, or qi ∉ C}

	 M. R. Keyvanpour et al.

1 3

Algorithm 3: density based clustering (PMMD)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

FOR i = 1 TO number of queries DO
find the nearest query to query[i]

ENDFOR
keep the queries that are nearest to others

in an array and sort them decently (NQ[])
FOR i = 1 TO number of queries DO

label[i] = i; // default label of each query
count_label[i] = 1; //number of each

label is 1
ENDFOR
FOR i = 1 TO number of nearest queries in

sorted array DO
FOR j = i+1 TO number of nearest

queries in sorted array DO
IF (NQ[j] is not visited)

IF(dist(i,j) <= eps[NQ[i])
count_label[j]--;
label[j] = label[i];
count_label[i]]++;
visited[j] = true;

ENDIF
ENDIF

ENDFOR
FOR x = 1 TO number of queries that

NQ[i] is nearest to them DO
IF (distance(x,i) <= eps[i] and order of

x is not higher than i) THEN
count_label[x]--;
label[x] = label[i];
count_label[i]++;

ENDIF
ENDFOR

ENDFOR
FOR i = 1 TO number of queries DO

IF (count_label[label[i]] < minPts)
THEN

label[i] = a number bigger than the
number of training queries; //to show that a
query is not normal

ENDIF
ENDFOR

END

4.2 � Test phase

Test phase is the last part of every learning based model
(James 2013). This step includes the new data which are
different from training data are applied in order to evaluate
the final model. Herein, this part works in two segments
including feature extraction in which queries are trans-
formed into vectors of features and CID in which a label
assigned to query and the intrusion detection is happened.

4.2.1 � Feature extraction

The input of this part is a new query and the output is
feature vector. To label new instance, features introduced
in (Kamra et al. 2008) are extracted for this new query.
Nine features including command, attributes, read_tables,
write_tables, values, where_conditions, having_condi-
tions, order by, group by similar to training feature extrac-
tion section are extracted for test data. The extracted fea-
ture vectors are delivered to test phase as input.

4.2.2 � CID model

The aim of density based clustering is to separate the dense
area of instances from the spars space. In the clustering
based intrusion detection issue the instances which are not
belong to any clusters are considered as intrusion query. In
this part the new query represented by a feature vector is
received to CID learned from training phase and the proper
label is assigned to it. Hans-Peter et al. (2011) defined the
dense cluster as areas of higher density than the other area
of the data space. Therefore, in order to assign a label to
a new test data which is an unlabeled query, the closest
query to the test query is found then assess if their distance
is lower than or equal to the threshold i.e. eps value (Ester
et al. 1996). If the condition is satisfied, the test query
obtains the nearest query’s label otherwise it is labeled as
intrusion. This relation is formulated as following formula:

where Labelnew-query shows the test query, D(new-query-
nearest-query) indicates the distance between test query and
the nearest query to it. epsnearest-query expresses the radius

(5)

Labelnew−query ={
Labelnearest−query if D(new query.nearest query) ≤ epsnearest−query

intrusive else.

CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

neighbor for nearest query. Therefore, here the issue is
transformed to finding nearest query to the test query. For
this purpose, the distances are computed applying distance
algorithm and finding the minimum value representing the
nearest query. In following algorithm 4 is presented the test
process.

Algorithm 4: Labeling Test Query
1
2
3
4
5
6
7
8

find the minimum distance between new
query and training queries

keep the distance(d) and label of nearest
query

IF (d <= eps (nearest query)) THEN
Label [new query] = label [nearest

query]
ELSE

Label [new query] = "intrusive"
ENDIF

END

5 � Experiments

5.1 � Experimental setting

Datasets. The experiments are conducted on two databases
from TPC benchmark similar to other valid studies (Rao
and Singh 2017; Ronao and Cho 2014; Kundu et al. 2010).
This benchmark consists of several datasets.1 We use TPC-C
(online transaction processing benchmark)2 and TPC-E sim-
ulates the online transaction processing (OLTP)3 database.
Transactions of both datasets are standard and have ACID
properties. Table 2 lists the features for each dataset. We
have used 3120 normal queries and 220 abnormal queries

on TPC-E dataset. In order to test the algorithm on TPC-C
dataset, 622 normal queries and 158 abnormal queries have
been employed.

Evaluation Measures. Popular metrics applied for intru-
sion detection assessments include: true negative, false
positive, false negative, true positive, precision, recall and
F-score. True positive rate indicates the number of intru-
sions detected correctly. True negative rate shows the rate
of normal activities that determined as normal. False posi-
tive rate depicts the number of normal activities that incor-
rectly indicates as intrusion. False negative rate measures
the number of intrusions that detected as normal (Zhang
et al. 2008). Precision and Recall are defined based on these
measures. Precision addresses the percentage of relevant
results, whilst Recall indicates the percentage of total rel-
evant results correctly detected. Following equation formu-
lates the Precisions.

Following equation formulates the Recall measure.

To balance these metric F-score (Sasaki 2007) has been
proposed. F-score is shown in following equation.

These measures are widely used, studies such as (Ronao
and Cho 2014; Pourkazemi and Keyvanpour 2017; Hassan-
zadeh and Keyvanpour 2013; Kundu et al. 2010) applied
these metrics to evaluate their work.

5.2 � Experimental Results

5.2.1 � Experiments 1. Test on TPC‑C dataset

For TPC-C dataset we compare CID with WRBDDRM (Rao
and Singh 2017) and RBDDM (Ronao et al. 2015) methods.
In the study by Rao and Singh (2017) 600 normal query
and 100 intrusive query had been generated. The results
reported here are average values. The results indicated in

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F − score =
(
2*Precision*Recall

Precision + Recall

)

Table 2   Databases’ attributes

Database No. fields Min no.
fields’ table

Max no.
fields’ table

Data type No.
primary
keys

No.
foreign
keys

No. constraint Referential
integrity
rule

TPC-E 33 188 2 24 UID, CHAR, NUM, DATE,
BOOL, LOB

33 50 22 Y

TPC-C 9 92 3 21 UID, CHAR, NUM, DATE 8 9 0 N

1  Available at: https​://www.tpc.org.
2  TPC, TPC Benchmark C, Standard Specification, Ver. 5.1, available
at: https​://www.tpc.org/ tpcc, July 11, 2016.
3  Transaction Processing Performance Council (TPC): TPC bench-
mark E, Standard specification, Version 1.13.0, 2014.

https://www.tpc.org
https://www.tpc.org/

	 M. R. Keyvanpour et al.

1 3

Fig. 4 express that CID outperforms the baselines in terms of
TP and TN. Based on TP metric CID gained 100% and 28%
higher than what WRBDDRM obtained which illustrates its
power in finding all the normal queries. RBDDRM has been
gained the least amount for this metric. Also, according to
TN, RBDDRM reaches the highest value, it shows 62%. CID
gained the second highest amount and shows a 7% improve-
ment against WRBDDRM. Based on FN our method gained
zero value, which indicates the robustness of our method,
which have not detect any intrusions as normal in average
and outperforms the two baselines. Whilst according to FP
measure CID find a rate of about 48% of normal queries as
intrusions. In comparison to WRBDDRM, CID experienced
a decrease of about 8% whilst it reaches a higher value rather
than RBDDRM gained. On the whole proposed method did
better on TPC-C database against WRBDDRM in all met-
rics, and in terms of TP and FN outperforms RBDDRM.

Figure 5 depicts the result of CID and baselines WRB-
DDRM (Rao and Singh 2017) and RBDDRM (Ronao
et al. 2015) on TPC-C Database in Terms of Precision,
Recall and F-score. As it can be seen, based on recall CID
obtained 1 which is the highest possible amount. It reaches
an improvement of 28% against WRBDDRM and 50%
against RBDDRM. This result rooted in TP values, which
CID outperforms baselines in terms of TP values. Turning
to precision value CID emphasizes its merit with a 11% and

10% improvement in comparison to baselines. According
F-score CID witnessed a significant improvement of 27%
and 37% against the basedlines and gained the highest value.

On the whole CID outperform WRBDDRM and RBD-
DRM in terms of several metrics. Also, it gained the high-
est possible value based on true positive and Precision.
The improvement in the result of CID can be the result
of applying clustering which is not sensitive to the uncor-
rected labeling. Morevoer, in suggested algorithm the con-
ditional expressions in queries are considered, whilst the
WRBDDRM only considered the attributes and tables. Two
baselines depend on support and confidence for each role
to create rules. RBDDRM applied the same support and
confident whereas WRBDDRM utilized different values for
supprot and confident. Obviously, assigning and investigate-
ing supprot and confident need extra operation and exceed
the reqiured time.

5.2.2 � Experiments 2. Test on TPC‑E dataset

Figure 6 shows the result of CID and the base line RF
(Ronao and Cho 2015) method in terms of TP, FN, FP, TN
on TPC-E dataset. The RF applied 11,000 labeled query
which 30% of them are intrusions. In this paper tenfold
cross validation is utilized. Similar to TPC-C dataset CID
gained 100% in terms of TP and outperforms the baseline.
Here CID has 5% improve against the RF. According to FN

0

20

40

60

80

100
CIDRMDDRMWRMDDRM

TNFPFNTP

100%

72%

28%

0%

48%
55% 52%

45%

66%

38%
54%50%

Fig. 4   Results on TPC-C dataset based on TP, FN, FP, TN

0.0

0.2

0.4

0.6

0.8

1.0
CIDRMDDRMWRMDDRM

F-scorePrecisionRecall

1

0.72 0.67
0.56

0.8

0.63
0.5

0.57 0.53

Lorem ipsum

Fig. 5   Results on TPC-C database in terms of precision, recall and
F-score

0

20

40

60

80

100
RFCID

TNFPFNTP

100% 95%

0% 5%

21%
13%

79%
87%

Fig. 6   Results on TPC-E dataset based on TP, FN, FP, TN

0.0

0.2

0.4

0.6

0.8

1.0
RFCID

F-scorePrecisionRecall

1

0.82
0.9010.95

0.87 0.908

Fig. 7   Results on TPC-E database in terms of precision, recall and
F-score

CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

our method gained 0 zero. Whereas based of FP suggested
model gained higher amount in comparison to RF. It shows
a growth of 8%. Considering the TN measure our method
experienced a decrease of 8% against the RF. Appling vari-
ous Principal Component Analysis in RF can be the reason
of its merit.

Turning to the precision, recall and f-score as Fig. 7
shows CID has competitive results against RF. Clearly CID
gained 100% in terms of recall and outperform baseline.
Same as TP measure CID has a growth of 5% against its
baseline. According to precision evaluation measure, our
model reached 82% which is 5% lower than what RF gained.
These near values for precision and recall lead to almost
equal result based on f-score for both CID and RF.

Generally, CID shows competitive performance with its
base line RF. Whilst in terms of TP, FN and recall CID out-
performs the RF according to other measure such as FP,
TN and precision it received weaker results. In worst state
our model just has 8% difference with the baseline. Con-
sidering high values of TN and precision, and low amount
of FP gained here CID showed acceptable performance.
The advantage of CID against other clustering model is its
capability in detection of unknown attack or apparently nor-
mal intrusion. In addition, RF required constructing trees,
clearly RF used 30 trees which is a time consuming process.
Order of complexity for constructing each tree in RF is O
(v*nlog(n)), which n shows the number of instances and
v indicates the number of variables. In CID clustering is
fulfilled offline and order of our model in the worst case is
O(n2) in labeling part.

Considering results based on evaluation metrics, CID
noticeably performs the better than baselines. In addition,
CID is not limited to role based databases whilst all base-
lines rely on roles in the database. Morevoer in suggested
algorithm the conditional expressions in queries are con-
sidered whereas baseline merely focused on attributes and
tables. Here clustering is applied which inherit sound prop-
erties such as fairly low complexity. CID is a density based
algorithm which does not require to determine the number of
clusters and find non-overlapping clusters led to high accu-
racy. This kind of clustering is robust against outliers, which
the results on two datasets proved it.

6 � Conclusions and future works

In this research, a new density-based clustering method
called CID is proposed to intrusion detection problem. The
results of CID compared to two articles using two datasets
show that in comparison with WRBDDRM, FN and FP are
improved. In comparison with RF, it has an improvement in
FN, but FP higher than FP of RF, showing that it has a lower
performance in this part. Generally, the results show that the

proposed method, has a valuable improvement in FN. For
future work developing a distance metric which based on
semantic rather than words and letter is suggested. Improv-
ing the clustering performance by tuning eps and minPts
parameter can be another future plan. Other open challenge
is about supplying standard databases that provided specifi-
cally for the intrusion detection issue.

References

Aggarwal CC (2013) An introduction to outlier analysis. In Outlier
analysis. Springer, New York, pp 1–40

Barbara D, Goel R, Jajodia S (2003) Mining malicious corruption of
data with hidden markov models. In: Gudes E, Shenoi S (eds)
Research directions in data and applications security, IFIP, vol
128. Springer, Berlin, pp 175–189

Bland JM, Altman DG (1996) Statistics notes: measurement error. BMJ
312(7047):1654

Bockermann C, Apel M, Meier M (2009) Learning SQL for database
intrusion detection using context-sensitive modelling|. In: Flegel
U, Bruschi D (eds) DIMVA 2009. LNCS, vol 5587. Springer,
Heidelberg, pp 196–205

Bu SJ, Cho SB (2017) A hybrid system of deep learning and learning
classifier system for database intrusion detection. In: Martínez de
Pisón F, Urraca R, Quintián H, Corchado E (Eds.). Hybrid arti-
ficial intelligent systems. HAIS 2017. Lecture notes in computer
science, Vol. 10334. Springer, Cham

Choi SG, Cho S-B (2017) Adaptive database intrusion detection using
evolutionary reinforcement learning. In: Perez Garcia H, Alfonso-
Cendon J, Sanchez Gonzalez L, Corchado E, Quintian H (Eds.).
International joint conference SOCO’17- CISIS’17-ICEUTE’17,
Proceedings (pp. 547–556). Advances in intelligent systems and
computing; Vol. 649. Springer Verlag

Corona I, Giacinto G, Roli F (2013) Adversarial attacks against intru-
sion detection systems: taxonomy, solutions and open issues. Inf
Sci 239:201–225

Darwen H (2009) An introduction to relational database theory, 3rd
edn. Bookboon

Doroudian M, Shahriari HR (2014) Database intrusion detection sys-
tem for detecting malicious behaviors in transaction and inter-
transaction levels., 7th international symposium on telecommu-
nications (IST’2014), pp. 809–814

Du H (2010) Data mining techniques and applications: an introduction.
Cengage Learning, Boston

Dua S, Du X (2016) Data mining and machine learning in cybersecu-
rity. CRC Press, Boca Raton

Ester M, Peter H, Jörg S et al. (1996) A density-based algorithm for
discovering clusters in large spatial databases with noise. In:
Simoudis E, Han J, Fayyad UM (Eds.). Proceedings of the second
international conference on knowledge discovery and data mining
(KDD-96). AAAI Press. pp. 226–231

Felemban M, Javeed Y, Kobes J et al. (2018) Design and evaluation of
a data partitioning-based intrusion management architecture for
database systems. arXiv:1810.02061

Gogoi P, Borah B, Bhattacharyyac D (2011) Supervised anomaly
detection using clustering based normal behaviour modeling. Int
J Adv Eng Sci 1(1):12–17

Gomaa WH, Fahmy AA (2013) A survey of text similarity approaches.
Int J Comput Appl 68:13

Grossi V, Monreale A, Nanni M et al (2015) Clustering formulation
using constraint optimization. In: Bianculli D, Calinescu R,
Rumpe B (eds) Software engineering and formal methods. SEFM

	 M. R. Keyvanpour et al.

1 3

2015. Lecture notes in computer science, vol 9509. Springer,
Berlin

Hans-Peter K, Peer K, Jörg S et al (2011) Density-based Clustering.
WIREs Data Min Knowl Discov 1(3):231–240 (J.M.P. Martinez)

Hassanzadeh H, Keyvanpour M (2013) A two-phase hybrid of semi-
supervised and active learning approach for sequence labeling.
Intell Data Anal 17(2):251–270

Hu Y, Panda B (2004) A data mining approach for database intrusion
detection. ACM symposium on applied computing, pp. 711–716

James G (2013) An introduction to statistical learning: with applica-
tions in R. Springer, Berlin, p 176

Kamber M, Pei J (2011) Data mining: concepts and techniques. Morgan
Kaufmann, Burlington

Kamra A, Terzi E, Bertino E (2008) Detecting anomalous access pat-
terns in relational databases. VLDB J 17(5):1063–1077

Kundu A, Sural S, Majumdar AK (2010) Database intrusion detection
using sequence alignment. Int J Inf Secur 9(3):179–191

Miller FP, Vandome AF, Mc Brewster J (2009) Levenshtein distance:
information theory, computer science, string (computer science),
string metric, Damerau? Levenshtein distance, spell checker, ham-
ming distance. Alpha Press

Moradi M, Keyvanpour M (2015) An analytical review of XML asso-
ciation rules mining. Artif Intell Rev 43(2):277–300

Mordai F (2014) Improving community detection methods for network
data analysis. Phd thesis

Pinzón C, Herrero A, De Paz JF et al (2010) CBRid4SQL: a CBR intru-
sion detector for SQL injection attacks. In: Corchado E, Graña
Romay M, Manhaes Savio A (eds) HAIS 2010, Part II. LNCS,
vol 6077. Springer, Heidelberg, pp 510–519

Pirrone R, Cannella V, Giordano G et al. (2018) Linear density-based
clustering with a discrete density model. arXiv:1807.08158v

Pourkazemi M, Keyvanpour M (2017) Community detection in social
network by using a multi-objective evolutionary algorithm. Intell
Data Anal 21(2):385409

Ramasubramanian P, Kannan A (2004) Intelligent multi-agent based
database hybrid intrusion prevention system. In: Benczúr AA,
Demetrovics J, Gottlob G (eds) ADBIS 2004. LNCS, vol 3255.
Springer, Heidelberg, pp 393–408

Ramasubramanian P, Kannan A (2006) A genetic algorithm based neu-
ral network shortterm forecasting framework for database intru-
sion prediction system. Soft Comput 10(8):699–714

Rani S, Singh J (2018) Enhancing Levenshtein’s edit distance algo-
rithm for evaluating document similarity. In: Sharma R, Mantri
A, Dua S (eds) Computing, analytics and networks. ICAN 2017.
Communications in computer and information science, vol 805.
Springer, Singapore

Rao UP, Singh NK (2017) Weighted role based data dependency
approach for intrusion detection in database. Int J Netw Secur
19(3):358–370

Ronao CA, Cho SB (2014) A comparison of data mining techniques
for anomaly detection in relational databases. Int Conf on Digital
Society (ICDS), pp. 11–16

Ronao CA, Cho SB (2015) Mining SQL queries to detect anomalous
database access using random forest and PCA. In International
conference on industrial, engineering and other applications of
applied intelligent systems, Vol. 9101, pp. 151160. Springer,
Cham

Sallam A, Bertino E (2019a) Result-based detection of insider threats
to relational databases. Proceedings of the ninth ACM conference
on data and application security and privacy, pp. 133–143

Sallam A, Bertino E (2019b) Techniques and systems for anomaly
detection in database systems. In: Calo S, Bertino E, Verma D
(eds) Policy-based autonomic data governance. Lecture notes in
computer science, vol 11550. Springer, Cham

Santos RJ, Bernardino J, Vieira M (2014) Approaches and challenges
in database intrusion detection. ACM SIGMOD Rec 43(3):36–47

Sasaki Y (2007) The truth of the F-measure. https​://www.toyot​a-ti.
ac.jp/Lab/Densh​i/COIN/peopl​e/yutak​a.sasak​i/F-measu​re-YS-
26Oct​07.pdf. Accessed 5 June 2019

Shirzad MB, Keyvanpour M (2017) Weighted similarity: a new simi-
larity measure for document ranking features. In: Silhavy R, Sen-
kerik R, Kominkova Oplatkova Z, Prokopova Z, Silhavy P (eds)
Artificial intelligence trends in intelligent systems. CSOC 2017.
Advances in intelligent systems and computing, vol 573. Springer,
Cham, pp 273–280

Srivastava A, Sural S, Majumdar AK (2006) Database intrusion detec-
tion using weighted sequence mining. J Comput 1(4):8–17

Subudhi S, Panigrahi S (2019) Application of OPTICS and ensemble
learning for database intrusion detection. J King Saud Univ Com-
put Inf Sci. https​://doi.org/10.1016/j.jksuc​i.2019.05.001

Wee CK, Nayak R (2019) A novel machine learning approach for data-
base exploitation detection and privilege control. J Inf Telecom-
mun 3:308–325

Yu X, Chu Y, Jiang F et al (2018) SVMs classification based two-side
cross domain collaborative filtering by inferring intrinsic user and
item features. Knowl-Based Syst 141:80–91

Yu X, Jiang F, Du J et al (2019) A cross-domain collaborative filtering
algorithm with expanding user and item features via the latent
factor space of auxiliary domains. Pattern Recogn 94:96–109

Zandian ZK, Keyvanpour M (2017) Systematic identification and anal-
ysis of different fraud detection approaches based on the strategy
ahead. KES J 21(2):123–134

Zhang J, Zulkernine M, Haque A (2008) Random-forests-based
network intrusion detection systems. Syst Man Cybern
38(5):649–659

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://doi.org/10.1016/j.jksuci.2019.05.001

	CID: a novel clustering-based database intrusion detection algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Concepts and definitions
	4 CID: clustering-based intrusion detection method
	4.1 Training phase
	4.1.1 Feature extraction
	4.1.2 Training query clustering

	4.2 Test phase
	4.2.1 Feature extraction
	4.2.2 CID model

	5 Experiments
	5.1 Experimental setting
	5.2 Experimental Results
	5.2.1 Experiments 1. Test on TPC-C dataset
	5.2.2 Experiments 2. Test on TPC-E dataset

	6 Conclusions and future works
	References

