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Abstract
At the same time with the increase in the data volume, attacks against the database are also rising, therefore information 
security and confidentiality became a critical challenge. One promised solution against malicious attacks is the intrusion 
detection system. In this paper, anomaly detection concept is used to propose a method for distinguishing between normal 
and abnormal activities. For this purpose, a new density-based clustering intrusion detection (CID) method is proposed which 
clusters queries based on a similarity measure and labels them as normal or intrusion. The experiments are conducted on two 
standard datasets including TPC-C and TPC-E. The results show proposed model outperforms state-of-the-art algorithms 
as baselines in terms of FN, FP, Precision, Recall and F-score measures.
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1  Introduction

Database systems which have been designed to manage the 
data in computer systems are dealing with safety challenge. 
A database management system in order to provide access to 
data, responses commands from general or specified applica-
tion programs (Darwen 2009). Any unauthorized attempt to 
access, manipulate, modify and destroy information or to use 
a computer remotely to spam, hack or modify other computers 
in computer science is called an intrusion (Dua et al. 2016). 
To overcome intrusions, intrusion detection systems have been 
developed which raise an alarm when detect an intrusive activ-
ity. The intrusion detection is fulfilled in three levels: network, 
operating system and database (Santos et al. 2014). Since some 
attacks and intrusions in the database are not detectable in the 
network and operating systems levels and considering the 

existence of inner attacker who has access to data, several stud-
ies have focused on intrusion detection in relational databases.

There are two general approaches for intrusion detection, 
called anomaly detection and misuse detection (Dua et al. 
2016). Misuse detection strategy detects the predetermined 
intrusions efficiently, while fail to find new and unknown 
ones. This strategy, leads to large false negative rate. In the 
anomaly detection approach, the normal activities are mod-
eled and any activity with a difference behavior is recog-
nized as an intrusion. Data mining technologies with the aim 
of detecting patterns for normal and abnormal activity have 
been applied to find abnormal activity or intrusions (Kam-
ber 2011). Both supervised and unsupervised learning have 
been utilized for current task (Gogoi et al. 2011; Aggarwal 
2013). Supervised learning deals with labeled data, whereas 
unsupervised learning works with unlabeled data. As a result 
of lack of labeled data in this domain unsupervised models 
such as clustering algorithms based on density perform well 
for intrusion detection (Du 2010).

In this research, anomaly detection concept is used to 
present a novel method for distinguishing between normal 
and abnormal activities in database level. For this purpose, 
we propose a new density-based clustering method called 
CID (Clustering-based Intrusion Detection) which clusters 
queries based on a similarity measure and label them. CID 
works in two parts including training and test phase. In train-
ing phase, which works on training data first features are 
extracted for input queries, then clustering is modeled. In 
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clustering, first the queries distances are computed, then the 
Radius Neighbor is calculated. After that, the number of 
points for the purpose of clustering is determined. At the end 
the training queries by density-based clustering are labeled. 
Test phase includes two parts feature extraction and CID 
model, which applied on test data. Our method contributes 
to the issue in two parts:

1.	 Computing the distances between features, a new dis-
tance metric inspired by similarity measure is intro-
duced. Since the queries are in form of strings, we devel-
oped a metric to measure the distances of queries’ string.

2.	 Training query clustering, in which a density-based 
query clustering for Labeling the Training Queries is 
proposed.

To the best of our knowledge, there is no other study in 
domain of database intrusion detection which consider string 
based query distance metric. The CID is tested on TPC-C 
and TPC-E datasets. The results of CID are compared to arti-
cles using mentioned datasets. The results show that in com-
parison with three algorithms including: RBDDRM (Ronao 
et al. 2015) and WRBDDRM (Rao and Singh 2017), and RF 
(Ronao and Cho 2015) CID outperforms baselines in terms 
of true positive, false negative, Recall and F-score. Proposed 
model performs competitively in terms of other metrics.

The rest of the paper is organized as follows: Sect. 2 pre-
sents related work. In Sect. 3, the concepts and definitions 
are reviewed, and in Sect. 4 proposed intrusion detection 
system which is based on clustering method is introduced. 
Section 5 indicates the experiments. Section 6 concludes the 
paper and outlines the future directions.

2 � Related work

A plenty of studies focused on utilizing data mining meth-
ods to implement an anomaly-based IDS. In Hu and Panda 
(2004) and Srivastava and Sural (2006) authors applied clas-
sification to mine dependencies among data in a relational 
database system. In Yu et al. (2018) authors introduced 
CTSIF_SVMs in which, SVMs is applied as their Classifi-
cation model for Two-Side cross domain collaborative filter-
ing problem. Inspired by this study also in Yu et al. (2019) 
proposed TSEUIF for a cross-domain collaborative filtering 
problem. In Hu and Panda (2004) dependency is though as 
the access correlations among data items whilst in Srivastava 
and Sural (2006) authors considered sensitivity of the attrib-
utes as weights, to find malicious modifications. In Dorou-
dian and Shahriari (2014) another rule mining method has 
been proposed. Normal behavior is learned through finding 
patterns. They claim that hybridation of transaction and user 

task levels, bring advantages to their model. Rule mining is 
investigated by Moradi and Keyvanpour (2015).

Hidden Markov models (HMM) applied in Barbara et al. 
(2003) to detect the normal changes in database’s transac-
tions. Other works (Ramasubramanian and Kannan 2004) 
used of artificial neural networks (ANN). In Ramasubra-
manian and Kannan (2004) a framework which combined 
statistical anomaly detection and rule based misuse detec-
tion proposed to determine misusers. In Ramasubramanian 
and Kannan (2006) a framework for anomaly detection by a 
neuro-genetic forecasting model to predict attack by captur-
ing previous observations had been proposed.

Support vector machines and multilayer perceptrons are 
used in Pinzón et al. (2010) which classify new query in 
order to identify SQL injection attacks. In Ronao and Cho 
(2015) and Kamra et al. (2008) applied standard of role-
based access control (RBAC). In Kamra et al. (2008) naïve 
Bayes classifier is utilized to detect anomalous query access. 
In Ronao and Cho (2015) authors used random forest (RF) 
algorithm for anomaly detection.

Study of (Bockermann et al. 2009) proposed to apply tree 
kernels to model SQL commands to detect malicious behav-
ior. In Choi and Cho (2017) a combination of reinforce-
ment learning and evolutionary learning have been proposed 
which claimed that is be resistant to insider misuse.

In Bu and Cho (2017) a hybrid system of convolutional 
neural network and genetic algorithm is proposed, in which 
CNN classified the queries through learning normal behav-
iors and genetic algorithm find new rules to detect abnormal 
behaviors. In Felemban et al. (2018) a data Partitioning-
based Intrusion Management System has been proposed. 
Authors defined the concept of Intrusion Boundary (IB) and 
formulate it as an optimization problem and apply a Mixed 
Integer Non-Linear Programming model as solution.

In Subudhi and Panigrahi (2019) OPTICS clustering on 
the transaction attributes for building user behavioral profiles 
is applied. In Wee and Nayak (2019) reinforcement learn-
ing is applied for intrusion detection. In Sallam and Bertino 
(2019a) proposed anomaly detection techniques designed to 
detect data aggregation and attempts to track data updates.

Other works like (Ronao and Cho 2014) made compari-
son between several data mining based algorithms for anom-
aly detections. In Sallam and Bertino (2019b) reviewed the 
prominent techniques and systems for anomaly detection in 
database systems. Study of (Pourkazemi and Keyvanpour 
2017) proposed a method for community detection.

3 � Concepts and definitions

An intrusion detection system (IDS) is a system which ana-
lyzes the database system and user’s activity, assesses the 
systems and data integrity, finds intrusion’s pattern, reacts 
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to intrusions and reports its detections as outputs. IDSs are 
developed to overcome the short come of network and oper-
ating system in intrusion detection and their lack of capac-
ity to detect inner intrusions (Corona et al. 2013). The act 
of intrusion detection is divided into three steps including 
measurement, classification and response. Figure 1 shows 
the IDS architecture.

An IDS is categorized according to: the detection 
approach, react to intrusion, the location of IDS, the time and 
architecture (Mordai 2014). Considering detection approach, 
IDS categorized into misuse/signature-based detection, and 
anomaly/profile detection. From the react to intrusion point 
of view, IDSs classified into active and passive systems. 
Based on IDS location, they are categorized into Network-
based and Host-based systems. Considering time, IDS are 
continuously or discretely. Based on the architecture IDS 
are central or distributed. Two types of attacks are defined 
in a database (Corona et al. 2013) inner and outer attacks. 
Attacks can be classified into Inference, passive, active, and 
SQL injection (Corona et al. 2013). Several works studied 
system security such as (Zandian and Keyvanpour 2017) 
which assessed fraud detection models.

Anomaly detection is a widely used approach in detecting 
intrusion. Clustering is a solution to anomaly based intrusion 
detection. Clustering is divided into four types including; 
connectivity based, centroid based, distribution based and 
density based clustering (Pirrone et al. 2018).

In density based clustering points which are not belong-
ing to any of clusters considered as noises (outlier or anom-
aly). In this clustering, dense areas are separated from each 
other by sparser areas in data space (Ester et al. 1996). In 
following definitions for anomaly based intrusion detection 
by density base clustering issue is provided.

Definition 1: (Distance) the distance between two query 
points qi and qj in a database D is denoted by DA(qi,qj) is the 
result of applying a distance function:

DA
(
qi, qj

)
∶ D × D → [0,∞)

where [0, ∞) indicate that the result is a non-negative real 
number. For all members of D, the following conditions are 
satisfied:

1.	 DA
(
qi, qj

)
≥ 0

2.	 DA
(
qi, qj

)
= 0 ↔ qi = qj

3.	 DA
(
qi, qj

)
= DA

(
qj, qi

)

First indicated the distance of two instances is a posi-
tive real number. Second expresses the instances whiteout 
distance are the same. Third one demonstrated the symmet-
ric property of distance in which the distance between two 
instances is equal in every direction.

Generally, in clustering instances tends to make clusters 
with their nearest neighbors. Neighbors are determined 
according to their distances from each other.

Definition 2: (Eps-neighborhood of a query) The Eps-
neighborhood of a query q, shown by NEps(qi), is defined as 
(Corona et al. 2013):

For density based clustering for each qi instance in a clus-
ter C, there exists n number samples in Esp-neighborhood 
of q which belong to the same cluster C. The number of 
instances in Esp-neighborhood of q are at list MinPts. This 
parameter should set for clustering purpose.

Definition 3: (directly density-reachable) A query qi is 
directly density-reachable from a point qj wrt. Eps, MinPts 
if:

1.	 qi ∈ NEps(q)

2.	 |NEps(q)| ≥ MinPts(corepointcondition)

Directly density-reachable concept enjoys the symmetric 
properties for core pairs of instances. Core instance refers to 
instances which are not on the border of clusters.

Definition 4: (cluster) for D database a cluster C wrt. Eps 
and MinPts is a non-empty subset of D satisfying the fol-
lowing conditions:

1.	 ∀qi, qj : if qj ∈ C and qj is density-reachable from qi wrt. 
Eps and MinPts, then qi ∈ C.

2.	 ∀qi, qj : qi is density-connected to qj wrt. Eps and MinPts.

A cluster in density based clustering addresses a set of 
instances which are density connected to each other.

Definition 5: (non-overlapping clusters) this refers to 
clustering in which clusters do not share any member, are 
defined as follows (Grossi et al. 2015),

NEps(qi) = {qi ∈ D|dist(qj, qi
)
≤ Eps}

∀Ci ∈ C ∶ Ci ⊆ C,∪C = D,∩C = �.

Fig. 1   Intrusion detection system architecture
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Clusters can share their instances between each other or 
not. In other words, an instance can be a member of more 
than one clusters. Here we considered no- overlapping 
cluster.

Definition 6: (Intrusion) Let Ct … Ck be the clusters of 
the database D wrt. parameters Epsi and MinPts i, i = 1 … 
k. Intrusion is defined as the set of queries in the database D 
not belonging to any cluster Ci, i.e.

Noise or outlier or intrusion can be defined as instances 
which are not member of any clusters (Ester et al. 1996). 
Clusters contain the pattern of major queries, whilst the 
intrusions deny to follow the common trend.

4 � CID: clustering‑based intrusion detection 
method

Input to this system is an unlabeled relational database 
query. First in training phase, features are extracted for each 
query. Learning contains training clusters, in which feature 
vectors are received from previous step and a clustering 
model is learned. In test phase, first features are extracted 
for each new query, then the label is determined by learned 
CID model considering its similarity with training query. 
Figure 2 shows the scheme of CID.

4.1 � Training phase

4.1.1 � Feature extraction

This phase consists of feature extraction, in which for all 
input queries features vectors are extracted. Ten relational 
database queries including select, select into, insert, insert 
into, update, delete, alter, drop (Kamra et al. 2008) is con-
sidered in this paper. These commands belong to seven com-
mand type.

Each query has several features such as command, 
attributes, read_tables, write_tables, values, where_
conditions, having_conditions, order by, group by. Command 
expresses each command type. Attribute relates to fields 
(columns) used in a query. Read_table include the name of 
tables have been read in a query. Write_table include the 
name of tables have been written in a query. Values depict 
the value assigned to each field. Where_condition include 
the conditionals expressions in where command while 
having_condition include the conditionals expressions in 
having command. Order by shows the attribute in order 
by command which determines the outputs are indicated 
by which attributes and group by indicates the attribute in 
group by command which determine the outputs are grouped 

Intrusion = {q ∈ D|∀i ∶ q ∈ Ci}

and indicated by which attributes. Each of aforementioned 
commands possesses several of these features. Table  1 
illustrated the commands and their possible features. Some 
commands do not have any features, which are shown with 
dash in the table.

The input to this feature extraction algorithm is an array 
of strings including training queries. The output is feature 
vectors of queries. For queries have not some of the above 
feature null is set as feature value. For all queries query is 
split to words and the first word for command is checked. 
Then in order to string normalization, unnecessary charac-
ters and words are eliminated and important features accord-
ing to relevant command are extracted.

4.1.2 � Training query clustering

This stage starts with calculating the distance between que-
ries. Distance is defined inspiring by the similarity measure. 
In Shirzad and Keyvanpour (2017) distance is applied to find 
similarity. Here, the result is a symmetric matrix applying tri-
angular matrix for saving in memory. Then, eps is calculated 
which is the threshold for radius neighbor of each query (Ester 
et al. 1996). Next the minPts which determines the minimum 
number of points for constructing a cluster is computed. The 
procedure is followed by clustering based on density. Figure 3 
illustrates four components of clustering phase.

Fig. 2   Clustering-based intrusion detection scheme
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a.	 Computing the distances between features
	   Since here the queries are not digital data and are 

string, for computing the distances the metrics which 
determine the similarity or difference between two 
strings are required (Gomaa and Fahmy 2013). In this 
research the fields’ name and tables’ name are saved 
as string and compared with each other. Features such 
as attributes, read_tables, write_tables and values each 

word shows a value. In order to compute distance of 
each of these features of two queries, the similar values 
are counted. Whilst for features such as where condi-
tion and having_conditions, since the value of them are 
sentences other measure is needed. To this end, a string 
metric called Levenshtein distance is applied. Leven-
shtein distance between of two strings is computed by 
summation of the minimum number of operations such 
as insert, delete and substitution of letters applied in 
order to transform one string to the other string (Miller 
et al. 2009) Levenshtein is defined as follows.

where Leva,b (i,j) is the distance between word i of the 
first string and word j of the second string. I(a! = b) is an 
indicator function which equals to zero if ai and bj are 
equal otherwise set to 1. In above equation first expres-
sion in min relates to delete, second relate to insert oper-
ation and the third one relates to equality or inequality 
of letters (Miller et al. 2009). Herein, two example for 
Levenshtein distance between two words is indicated 
(Rani and Sing 2018).

	   Levenshtein (Right, fight) = 1 (substitution operation 
of ‘f’ for ‘r’).

	   Levenshtein (book, books) = 1 (insert operation of s).
	   In following some examples for Levenshtein distance 

method on queries are depicted. For followings three 
queries A, B and C, Levenshtein are computed.

	   Query A = select 1, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock 
where i_id = :11 and s_w_id = :31 and s_i_id = i_id.

(1)

Leva,b(i, j)

⎧
⎪⎪⎨⎪⎪⎩

max(i, j)ifmin(i, j) = 0

min

⎧⎪⎨⎪⎩

Leva,b(i − 1, j) + 1

Leva,b(i, j − 1) + 1

Leva,b(i − 1, j − 1) + I(a! = b)

otherwise.

Table 1   Commands’ features

Command Attribute Read table Write table Values Where 
condition

Having 
condition

Order by Group by

Select 1 ✓ ✓ – – ✓ ✓ ✓ ✓
Select into 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Insert into 2 ✓ ✓ ✓ – – – –
Insert into table 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Update 3 – – ✓ ✓ ✓ – – –
Delete 4 – – ✓ – ✓ – – –
Alter 5 ✓ – ✓ – – – – –
Drop/truncate table 6 – – ✓ – – – – –
Create table 7 ✓ – ✓ – – – – –
Create table as … select 7 ✓ ✓ ✓ – ✓ ✓ ✓ ✓

Fig. 3   Clustering phase
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	   Query B = select 10, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock 
where i_id = :22 and s_w_id = :3 and s_i_id = i_id.

	   Query C = select 1, stock.rowid, i_price, i_name, i_
data, s_dist_%02d, s_data, s_quantity from item, stock 
where i_id = :11 and s_w_id = :31 and s_i_id = i_id 
UNION ALL.

	   Levenshtein (A, B) = 4 indicates the number of opera-
tions including insert, substitution and delete, which are 
needed to transform query A to query B. Levenshtein 
(A, C) = 10 shows the number of required insert opera-
tions for converting query A to query C including inser-
tion of characters and spaces. Differences in B and C 
queries from query A are also highlighted in example 
queries. Obviously, the Levenshtein distance for two 
identical queries is equal to zero. The distance between 
two queries is achieved by summation of difference of 
all features. In distance computation the command fea-
ture is not considered. In following the pseudocode for 
distance algorithm is shown. Input is array of feature 
vectors of queries, and output is an upper triangular 
matrix including distances between queries.

Algorithm1 : compute the distance of queries
1
2
3
4
5
6

7

8
9
10
11
12
13

counter = 0
FOR i = 1 TO (number of queries-1) DO 
//constructing an upper triangular matrix

FOR j = i+1 TO number of queries DO
split features attributes, read_tables, 

write_tables, values into words
compare words of every relevant 

feature in Q[i] and Q[j], and find number of
uncommon words
use levenshteinDistance function for 

features where_condition and    
having_condition ( levenshteinDistance 
(where_condition[i], where_condition[j]),
levenshteinDistance(having_condition[i], 

having_condition[j]) )
TotalDistance = sum of the number of 

all uncommon words and levenshtein 
distances

DA[counter] = TotalDistance
counter++

ENDFOR
ENDFOR
EN

b.	 Calculating the radius neighbor (EPS)
	   Study of (Ester et  al. 1996) showed the distance 

function determines the clustering shape. Here a new 
2-dimensional distance function is introduced. For cal-
culating the radius neighbor, first the average and vari-
ance of distance for each query against others is com-
puted, then the absolute of their differences is set as the 
query’s radius neighbor. The average of distances from 
one query indicates the mean distance of other queries 
from it. Standard deviation (Bland and Altman 1996) 
is shown by δ and is a distribution identification which 
expresses the data’s distance from mean value in aver-
age. Following equation defines the standard deviation.

where xi here is the queries’ distance from the consid-
ered query, N is the number of queries, µ is the average 
distance. If the standard deviation value is near to zero 
it means the data are near to average and the has small 
distribution, whilst large variance expresses the con-
siderable data distributions. Standard deviation equals 
to square of variance. Herein, the absolute difference 
between average and standard deviation is considered as 
radius neighbor. Following formula indicates the radius 
neighbor.

where epsi is radius neighbor related to ith query, µi is 
average and δi is the standard deviation from i query. 
Algorithm 2 shows the process of computing EPS. Input 
is array of distances between queries (DA[]) and output 
is an array of queries’ EPS.

(2)
δ =

√
1

N
[(x1 − μ)2 + (x2 − μ)2 +⋯ +

(
x2 − μ)2

]

where μ =
1

N
(x1 +⋯ + xN)

(3)epsi = |μi − δi|
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Algorithm 2: compute EPS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int sum = 0;
FOR i = 1 TO number of queries DO

FOR j = 1 TO number of queries DO
int m;           
IF (i == j) THEN

continue; 
IF (j < i) THEN

m = (j*n)-(((1+j)*j)/2)+(i-(j+1));
ELSE

m = (i*n)-(((1+i)*i)/2)+(j-(i+1));
sum += DA[m];  //sum the distances 

between query i and all the other queries
ENDFOR

compute average of distances
compute standard deviation of 

distances
eps[i] = absolute value of average-

deviation;
sum = 0;

ENDFOR
END

	   Radius neighbor is computed for each query, this lead 
to have difference density for clusters. In other words, 
radius neighbor for each query depends on points’ dis-
tance from it. This method leads to change in density 
based on query which made the algorithm dynamic.

c.	 Determining the number of points for clustering 
(minPts)

	   The minimum number of points is set to find all 
instances member of the same cluster (Ester et al. 1996). 
Queries’ distances are applied here to gain minPts. To 
this aim, first for each query the number of queries 
which their distance values are lower than or equal to 
eps is gained. Then average is computed. The following 
equation shows the minPts.

(4)
minPts =

∑n

i=1

∑n

j=1
Distancei,j

n
Such that Distancei,j ≤ epsi

	   this value is identical for all queries.
d.	 Labeling the training queries by density-based clustering
	   The main strategy in clustering based on query is to 

model the clusters according to dense area in space to 
separate them from sparse area. Clustering methods are 
able to clustering arbitrary [7]. In this research the center 
of a cluster is selected considering the distance matrix of 
queries opting for queries near to each other. Then, the 
number of near queries for each query is achieved. After 
that, the query’s points are sorted in descending order 
according to their distances. So that, there exists a set of 
points can be chosen as cluster centers. First the number 
of each label is assigned as its label. In Hassanzadeh 
and Keyvanpour (2013) sequence labeling is addressed. 
First point which has the largest number of points with 
lowest distances is considered as cluster center. Then, 
the list of query candidate for cluster center are inves-
tigated. If the query’s distance from the first selected 
center cluster is lower than or equal to eps, then it gains 
the label of first query. Otherwise, it keeps its previous 
label. After tracing the list and labeling its members, 
the queries which own the shortest distance with center 
are assessed. If their distance with current point is lower 
than or equal to eps then receive the current query’s 
label, else keeps its own label. This process continues 
for all queries; in cases which query had been labeled 
before its label would not change anymore. The clusters 
are constructed as a result of aforementioned steps. The 
number of minimum points for cluster should satisfy 
the minPts. A query is labeled as intrusion in following 
conditions.

If the number of a cluster’s member is lower than 
minPts, all quires belong to that cluster are considered as 
outlier or intrusion. A query is considered as intrusion if 
it is not a member of any cluster, its label is unique. Input 
to this algorithm is array of unlabeled queries, array of 
EPSes, minPts and output is the labeled queries as normal 
or intrusion.

Intrusion
(
qi
)
= {if qi ∈ Ci and

||Ci
|| ≤ MinPts, or qi ∉ C}
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Algorithm 3: density based clustering (PMMD)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

FOR i = 1 TO number of queries DO
find the nearest query to query[i]

ENDFOR
keep the queries that are nearest to others 

in an array and sort them decently (NQ[]) 
FOR i = 1 TO number of queries DO

label[i] = i; // default label of each query 
count_label[i] = 1; //number of each 

label is 1
ENDFOR
FOR i = 1 TO number of nearest queries in 

sorted array DO
FOR j = i+1 TO number of nearest 

queries in sorted array DO
IF (NQ[j] is not visited)

IF(dist(i,j) <= eps[NQ[i])
count_label[j]--;
label[j] = label[i]; 
count_label[i]]++; 
visited[j] = true;

ENDIF
ENDIF   

ENDFOR
FOR x = 1 TO number of queries that 

NQ[i] is nearest to them DO
IF (distance(x,i) <= eps[i] and order of 

x is not higher than i) THEN
count_label[x]--;
label[x] = label[i];
count_label[i]++;

ENDIF
ENDFOR   

ENDFOR
FOR i = 1 TO number of queries DO

IF (count_label[label[i]] < minPts) 
THEN

label[i] = a number bigger than the 
number of training queries; //to show that a    
query is not normal

ENDIF
ENDFOR

END

4.2 � Test phase

Test phase is the last part of every learning based model 
(James 2013). This step includes the new data which are 
different from training data are applied in order to evaluate 
the final model. Herein, this part works in two segments 
including feature extraction in which queries are trans-
formed into vectors of features and CID in which a label 
assigned to query and the intrusion detection is happened.

4.2.1 � Feature extraction

The input of this part is a new query and the output is 
feature vector. To label new instance, features introduced 
in (Kamra et al. 2008) are extracted for this new query. 
Nine features including command, attributes, read_tables, 
write_tables, values, where_conditions, having_condi-
tions, order by, group by similar to training feature extrac-
tion section are extracted for test data. The extracted fea-
ture vectors are delivered to test phase as input.

4.2.2 � CID model

The aim of density based clustering is to separate the dense 
area of instances from the spars space. In the clustering 
based intrusion detection issue the instances which are not 
belong to any clusters are considered as intrusion query. In 
this part the new query represented by a feature vector is 
received to CID learned from training phase and the proper 
label is assigned to it. Hans-Peter et al. (2011) defined the 
dense cluster as areas of higher density than the other area 
of the data space. Therefore, in order to assign a label to 
a new test data which is an unlabeled query, the closest 
query to the test query is found then assess if their distance 
is lower than or equal to the threshold i.e. eps value (Ester 
et al. 1996). If the condition is satisfied, the test query 
obtains the nearest query’s label otherwise it is labeled as 
intrusion. This relation is formulated as following formula:

where Labelnew-query shows the test query, D(new-query-
nearest-query) indicates the distance between test query and 
the nearest query to it. epsnearest-query expresses the radius 

(5)

Labelnew−query ={
Labelnearest−query if D(new query.nearest query) ≤ epsnearest−query

intrusive else.
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neighbor for nearest query. Therefore, here the issue is 
transformed to finding nearest query to the test query. For 
this purpose, the distances are computed applying distance 
algorithm and finding the minimum value representing the 
nearest query. In following algorithm 4 is presented the test 
process.

Algorithm 4: Labeling Test Query
1
2
3
4
5
6
7
8

find the minimum distance between new 
query and training queries  

keep the distance(d) and label of nearest 
query     

IF (d <= eps (nearest query)) THEN       
Label [new query] = label [nearest 

query]    
ELSE        

Label [new query] = "intrusive"    
ENDIF 

END

5 � Experiments

5.1 � Experimental setting

Datasets. The experiments are conducted on two databases 
from TPC benchmark similar to other valid studies (Rao 
and Singh 2017; Ronao and Cho 2014; Kundu et al. 2010). 
This benchmark consists of several datasets.1 We use TPC-C 
(online transaction processing benchmark)2 and TPC-E sim-
ulates the online transaction processing (OLTP)3 database. 
Transactions of both datasets are standard and have ACID 
properties. Table 2 lists the features for each dataset. We 
have used 3120 normal queries and 220 abnormal queries 

on TPC-E dataset. In order to test the algorithm on TPC-C 
dataset, 622 normal queries and 158 abnormal queries have 
been employed.

Evaluation Measures. Popular metrics applied for intru-
sion detection assessments include: true negative, false 
positive, false negative, true positive, precision, recall and 
F-score. True positive rate indicates the number of intru-
sions detected correctly. True negative rate shows the rate 
of normal activities that determined as normal. False posi-
tive rate depicts the number of normal activities that incor-
rectly indicates as intrusion. False negative rate measures 
the number of intrusions that detected as normal (Zhang 
et al. 2008). Precision and Recall are defined based on these 
measures. Precision addresses the percentage of relevant 
results, whilst Recall indicates the percentage of total rel-
evant results correctly detected. Following equation formu-
lates the Precisions.

Following equation formulates the Recall measure.

To balance these metric F-score (Sasaki 2007) has been 
proposed. F-score is shown in following equation.

These measures are widely used, studies such as (Ronao 
and Cho 2014; Pourkazemi and Keyvanpour 2017; Hassan-
zadeh and Keyvanpour 2013; Kundu et al. 2010) applied 
these metrics to evaluate their work.

5.2 � Experimental Results

5.2.1 � Experiments 1. Test on TPC‑C dataset

For TPC-C dataset we compare CID with WRBDDRM (Rao 
and Singh 2017) and RBDDM (Ronao et al. 2015) methods. 
In the study by Rao and Singh (2017) 600 normal query 
and 100 intrusive query had been generated. The results 
reported here are average values. The results indicated in 

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F − score =
(
2*Precision*Recall

Precision + Recall

)

Table 2   Databases’ attributes

Database No. fields Min no. 
fields’ table

Max no. 
fields’ table

Data type No. 
primary 
keys

No. 
foreign 
keys

No. constraint Referential 
integrity 
rule

TPC-E 33 188 2 24 UID, CHAR, NUM, DATE, 
BOOL, LOB

33 50 22 Y

TPC-C 9 92 3 21 UID, CHAR, NUM, DATE 8 9 0 N

1  Available at: https​://www.tpc.org.
2  TPC, TPC Benchmark C, Standard Specification, Ver. 5.1, available 
at: https​://www.tpc.org/ tpcc, July 11, 2016.
3  Transaction Processing Performance Council (TPC): TPC bench-
mark E, Standard specification, Version 1.13.0, 2014.

https://www.tpc.org
https://www.tpc.org/
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Fig. 4 express that CID outperforms the baselines in terms of 
TP and TN. Based on TP metric CID gained 100% and 28% 
higher than what WRBDDRM obtained which illustrates its 
power in finding all the normal queries. RBDDRM has been 
gained the least amount for this metric. Also, according to 
TN, RBDDRM reaches the highest value, it shows 62%. CID 
gained the second highest amount and shows a 7% improve-
ment against WRBDDRM. Based on FN our method gained 
zero value, which indicates the robustness of our method, 
which have not detect any intrusions as normal in average 
and outperforms the two baselines. Whilst according to FP 
measure CID find a rate of about 48% of normal queries as 
intrusions. In comparison to WRBDDRM, CID experienced 
a decrease of about 8% whilst it reaches a higher value rather 
than RBDDRM gained. On the whole proposed method did 
better on TPC-C database against WRBDDRM in all met-
rics, and in terms of TP and FN outperforms RBDDRM.

Figure 5 depicts the result of CID and baselines WRB-
DDRM (Rao and Singh 2017) and RBDDRM (Ronao 
et al. 2015) on TPC-C Database in Terms of Precision, 
Recall and F-score. As it can be seen, based on recall CID 
obtained 1 which is the highest possible amount. It reaches 
an improvement of 28% against WRBDDRM and 50% 
against RBDDRM. This result rooted in TP values, which 
CID outperforms baselines in terms of TP values. Turning 
to precision value CID emphasizes its merit with a 11% and 

10% improvement in comparison to baselines. According 
F-score CID witnessed a significant improvement of 27% 
and 37% against the basedlines and gained the highest value.

On the whole CID outperform WRBDDRM and RBD-
DRM in terms of several metrics. Also, it gained the high-
est possible value based on true positive and Precision. 
The improvement in the result of CID can be the result 
of applying clustering which is not sensitive to the uncor-
rected labeling. Morevoer, in suggested algorithm the con-
ditional expressions in queries are considered, whilst the 
WRBDDRM only considered the attributes and tables. Two 
baselines depend on support and confidence for each role 
to create rules. RBDDRM applied the same support and 
confident whereas WRBDDRM utilized different values for 
supprot and confident. Obviously, assigning and investigate-
ing supprot and confident need extra operation and exceed 
the reqiured time.

5.2.2 � Experiments 2. Test on TPC‑E dataset

Figure 6 shows the result of CID and the base line RF 
(Ronao and Cho 2015) method in terms of TP, FN, FP, TN 
on TPC-E dataset. The RF applied 11,000 labeled query 
which 30% of them are intrusions. In this paper tenfold 
cross validation is utilized. Similar to TPC-C dataset CID 
gained 100% in terms of TP and outperforms the baseline. 
Here CID has 5% improve against the RF. According to FN 

0

20

40

60

80

100
CIDRMDDRMWRMDDRM

TNFPFNTP

100%

72%

28%

0%

48%
55% 52%

45%

66%

38%
54%50%

Fig. 4   Results on TPC-C dataset based on TP, FN, FP, TN

0.0

0.2

0.4

0.6

0.8

1.0
CIDRMDDRMWRMDDRM

F-scorePrecisionRecall

1

0.72 0.67
0.56

0.8

0.63
0.5

0.57 0.53

Lorem ipsum

Fig. 5   Results on TPC-C database in terms of precision, recall and 
F-score

0

20

40

60

80

100
RFCID

TNFPFNTP

100% 95%

0% 5%

21%
13%

79%
87%

Fig. 6   Results on TPC-E dataset based on TP, FN, FP, TN

0.0

0.2

0.4

0.6

0.8

1.0
RFCID

F-scorePrecisionRecall

1

0.82
0.9010.95

0.87 0.908

Fig. 7   Results on TPC-E database in terms of precision, recall and 
F-score



CID: a novel clustering‑based database intrusion detection algorithm﻿	

1 3

our method gained 0 zero. Whereas based of FP suggested 
model gained higher amount in comparison to RF. It shows 
a growth of 8%. Considering the TN measure our method 
experienced a decrease of 8% against the RF. Appling vari-
ous Principal Component Analysis in RF can be the reason 
of its merit.

Turning to the precision, recall and f-score as Fig. 7 
shows CID has competitive results against RF. Clearly CID 
gained 100% in terms of recall and outperform baseline. 
Same as TP measure CID has a growth of 5% against its 
baseline. According to precision evaluation measure, our 
model reached 82% which is 5% lower than what RF gained. 
These near values for precision and recall lead to almost 
equal result based on f-score for both CID and RF.

Generally, CID shows competitive performance with its 
base line RF. Whilst in terms of TP, FN and recall CID out-
performs the RF according to other measure such as FP, 
TN and precision it received weaker results. In worst state 
our model just has 8% difference with the baseline. Con-
sidering high values of TN and precision, and low amount 
of FP gained here CID showed acceptable performance. 
The advantage of CID against other clustering model is its 
capability in detection of unknown attack or apparently nor-
mal intrusion. In addition, RF required constructing trees, 
clearly RF used 30 trees which is a time consuming process. 
Order of complexity for constructing each tree in RF is O 
(v*nlog(n)), which n shows the number of instances and 
v indicates the number of variables. In CID clustering is 
fulfilled offline and order of our model in the worst case is 
O(n2) in labeling part.

Considering results based on evaluation metrics, CID 
noticeably performs the better than baselines. In addition, 
CID is not limited to role based databases whilst all base-
lines rely on roles in the database. Morevoer in suggested 
algorithm the conditional expressions in queries are con-
sidered whereas baseline merely focused on attributes and 
tables. Here clustering is applied which inherit sound prop-
erties such as fairly low complexity. CID is a density based 
algorithm which does not require to determine the number of 
clusters and find non-overlapping clusters led to high accu-
racy. This kind of clustering is robust against outliers, which 
the results on two datasets proved it.

6 � Conclusions and future works

In this research, a new density-based clustering method 
called CID is proposed to intrusion detection problem. The 
results of CID compared to two articles using two datasets 
show that in comparison with WRBDDRM, FN and FP are 
improved. In comparison with RF, it has an improvement in 
FN, but FP higher than FP of RF, showing that it has a lower 
performance in this part. Generally, the results show that the 

proposed method, has a valuable improvement in FN. For 
future work developing a distance metric which based on 
semantic rather than words and letter is suggested. Improv-
ing the clustering performance by tuning eps and minPts 
parameter can be another future plan. Other open challenge 
is about supplying standard databases that provided specifi-
cally for the intrusion detection issue.
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