
Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Android sensitive data leakage prevention with rooting detection using
Java function hooking
https://doi.org/10.1016/j.jksuci.2020.07.006
1319-1578/� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: bsoewito@binus.edu (B. Soewito).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Benfano Soewito ⇑, Agung Suwandaru
Computer Science Department, Binus Graduate Program – Master of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 May 2020
Revised 1 July 2020
Accepted 14 July 2020
Available online 21 July 2020

Keywords:
Android rooting
Java hooking
Rooting detection
Rooting detection bypass
Running applications on a rooting device makes the application vulnerable to data leakage. Therefore,
many applications that require a high level of security are not allowed to run on rooted device.
Common technique of detecting rooted device is by using Android API to discover rooting trace.
However, the detection can be bypassed using Java function hooking script by the people who want to
run the app on rooted device. This research will give illustration that the bypassing process becomes
more easy with automation tool and hybrid analysis. In order to create the script, we use combination
of static and dynamic analysis with three phases with specific function. Phase 1 aims to detect the esti-
mated Java method that detect rooting, phase 2 will analyze that method on an unrooted device, then
phase 3 will create the bypassing script based on the previous result. We also use automation tool to
speed up the static analysis. We create two types of script: one that can be used on general application,
and the other one that only can be used on specific app. Those types implement different scope: one with
the certain Java method, and the other one with specific parameter or return value. In the end, we find
that bypassing rooting detection is not complicated if the app use Java function to detect the rooted
device. To complicate bypassing process, we encourage the developers to implement more advanced
detection rooting technique.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rooting is the process of getting root access on Android. To be
able to access and explore the Android system freely, and take
advantage of the full functionality of the Android, users are willing
to rooting their devices. Some benefits gained by users after root-
ing include doing full backups, removing bloatware (Shao et al.,
2014), running paid applications for free (Sun et al., 2015), running
applications in external memory, changing user interfaces, running
background services, overclocking hardware, even installing a cus-
tom OS to get the latest features and updates.

With the development of the current rooting method, rooting
can be done safely and easily. Currently some OEMs provide a
way to open their bootloader (Apply for unlocking Mi devices),
even Google provides an image containing a binary file su which
can be used for rooting Google Nexus (Factory Images for Nexus
and Pixel Devices).

Rooting can cause security problems on Android. Malware does
not have to exploit vulnerabilities in the kernel, but can easily ask
users to grant root access. Because many users do not pay attention
to security warnings to grant access when installing an application,
malware is easier to enter and has root access. This is exacerbated
by the installation of applications from unofficial stores (Zhou and
Jiang, 2012) for example in China where the average level of app
store trust is 47.37 over 100 (Ng et al., 2014). 37% of malware also
uses root exploit to get root access (Zhou and Jiang, 2012). If the
malware has gained root access, the malware can obtain sensitive
data from another application’s sandbox (Bojjagani and Sastry,
2017) and method calls (Casati and Visconti, 2018), get user input,
change the method call when the application runs (Sun et al.,
2015). If the user unroot the device, the malware can still have root
access because it has created a backdoor (Zhang et al., 2014).

Because rooted device is insecure, applications requiring high
level of security (sensitive applications) should not be allowed to
run devices rooting. OWASP MASVS (Mobile AppSec Verification)
(Xing et al., 2014) recommends detecting and responding to root-
ing devices by alerting the user or closing the application.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2020.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2020.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bsoewito@binus.edu
https://doi.org/10.1016/j.jksuci.2020.07.006
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957 1951
Rooting checking by calling the Android API can be done by
checking whether there are traces of rooting left behind. Neverthe-
less, users can deceive the application to bypass rooting detection.
Four techniques can be used to bypass rooting detection: hooking
the method call at runtime, reverse engineering, patching binary,
disabling rooting temporarily (Sun et al., 2015), and debugging.
Hooking method call is the most dangerous technique because it
is the easiest of all technique. Previous research hook the Android
API based on hybrid analysis, and reading web forum. There is no
detailed and structured way of doing hybrid analysis. If the source
code is obfuscated, studying the source code is even more difficult.

This research will provide another approach in hooking method
call so that it gives an understanding that the hooking can be made
more efficient in terms of making the script and preventing the
error. Therefore, we will provide solutions that developers should
apply to avoid hooking techniques with this approach. In relation-
ship with the danger of sensitive applications running on rooted
device, we will provide examples of data leakage. The scope of this
research is that the hooking is applied on Java function, and
inspected data leakage is on application’s sandbox.

Several rooting detection techniques have been found in several
studies (Sun et al., 2015; Nguyen-Vu et al., 2017; Geist et al., 2016).
Static and dynamic are used to detect rooting trails in the device
such as installed application, file, build tags, system properties,
process, directory permission, and command shell execution.

Several techniques that can be performed to bypass rooting
detection (Geist et al., 2016) are hooking method call, reverse engi-
neering, binary patching, temporarily disable root, and debugging.
The most dangerous method used for bypass rooting detection is
hooking method call because the application is downloaded from
the Google Play store so the user will assume the application is
safe, it is easier than binary patching, it can be used for the
intended target application only so other applications that require
root access run normally, and it does not need to enable debug.
2. Related works

The S4URC Root Checker was created by doing static analysis on
applications (Nguyen-Vu et al., 2017). The results are used to hook
Java API. Native hooking is also done but with trial and error based
on information found in the memory device. The RDAnalyzer was
made by getting rooting detection information from the XDA
Developer website (Sun et al., 2015). If rooting cannot be bypassed,
the static analysis will be carried out. Comparison of rooting detec-
tion techniques and rooting detection bypass techniques on iOS
has been done (Geist et al., 2016).

There are other studies related to hooking, although not related
to bypassing rooting detection, which can be used as a reference.
The hooking technique is used for bypassing SSL Pinning
(Ramírez-López et al., 2019). The SSL pinning bypass technique is
explained simply and clearly using common applications (Sierra
and Ramirez, 2015). Hooking techniques are also performed on
rooted devices to verify sensitive data leakage (Casati and
Visconti, 2018). The hooking can also be used to study malware’s
behavior in the sandbox and determine the risk (Jiang et al.,
2018). From the literature study we can summarize some of the
drawbacks of previous rooting detection bypass as follows:

1. The Android API used for rooting checks is collected from the
XDA developer site and from static analysis done manually.
The static analysis is used to find the API used for rooting check-
ing, and certain keywords (method names and variable) that
might be used for rooting detection. Static analysis done manu-
ally has a high likelihood of errors and requires a lot of time
especially if the application has been obfuscated.
2. The return value or parameter used on the API may increase
over time. For example, a newer application may check the
availability of package B and the older version do not.

3. API used for rooting detection may be increased or changed
with an update on the Android API.

4. If the application performs string encryption, keywords related
to rooting detection cannot be read on static analysis.

3. Research method

Rooting detection bypass in this research focuses on Android
API and custom-made method in Java. These are points we make
to improve previous drawbacks:

1. If the application detects rooting, the method that is currently
and has been called will be displayed. we will use the detected
method to avoid rooting detection and call it the target method.
To prevent false positives, we will detect an API list and variable
that are commonly used for rooting detection.

2. Inside the target method, there is API used for rooting detection,
we call it the target API. There are two options that can be used
to create scripts: one which is specific to an application (option
1) and the other is more general (option 2). Option 1 hook the
target API and the child target method only while the parent
target method is being run. Hooking can also be done on the
parent target method itself. Option 2 hook the target API with
a certain return or parameter. So, the difference between these
options is the scope (Fig. 3). After that, we can update our API
and variable list easily.

3. We can hook the target API to find out the encrypted parame-
ters. We can also hook the target method or the target API as
long as a method is running. With option 1, we do not need
to know the encrypted variable.

We divide the stages into three phases and each will do static
and dynamic analysis. This can be seen in Fig. 1.

3.1. Static analysis

Static analysis is a method of studying an application from
source code or results of reverse engineering. The static analysis
itself has a relatively high error rate because of the complexity
and obfuscation. The application must first be installed on the
device via Google Play. Once installed, the APK file will be
in /data/app/. The APK file is a ZIP containing DEX file, AndroidMan-
ifest.xml, binary, and other files. With certain tools, DEX file can be
converted back into Java file. This Java file is not in the original
form because there is lost information when compiling Java files
(Pan and Ma, 2017). In general, we can use Java files to understand
the flow of the application although the result is uncertain.

Smali/Baksmali is an assembler/disassembler of the DEX file.
The Baksmali process on the DEX file will produce a Smali file
which is a representation of bytecode in a more readable form than
DEX file. Smali file is more difficult to read than Java file because it
is in assembly-like languages but it can be changed back into the
DEX file. So the focus of static analysis in this study is on the Smali
file where study and modifications are made. This reverse engi-
neering process is illustrated in Fig. 2a.

3.2. Dynamic analysis

Dynamic analysis is an analysis performed on a device when the
application runs. Dynamic analysis is needed to verify and reduce
the false positive from static analysis while static analysis is still
needed to limit the scope of dynamic analysis (Tuan et al., 2019).
In this research, dynamic analysis is performed on a rooted and



Fig. 3. Rooting Detection Bypass Option.

Fig. 2. (a) Static Analysis (b) Dynamic Analysis.

Fig. 1. Bypassing Rooting Detection Methodology using Java Function Hooking.

1952 B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957
an unrooted device. The device will run a hooking service (Frida)
and automation script (JavaScript) from the computer, then the
log will be analyzed. We can hook parameter and return from a
method. This is illustrated in Fig. 2b.

3.3. Phase 1

The flow of phase 1, 2, and 3 can be seen in Fig. 1. The purpose
of phase 1 is to determine which method used for detecting root-
ing. In process 1a until 1b, once we get the APK, we can reverse
engineer into the Smali file using the apktool tool. In the process
1c, we can see that each Smali file is created for each class, and
folder structure shows the package or class location.
Parsing app 1d will list the method name on the Smali files
marked with .method, class name, parameter, and return informa-
tion of each method. Each method will be given an identification
number. Parameter of a method from a Smali file must be correctly
parsed into the script. For example parameter I[[IILjava/lang/String;
[Ljava/lang/Object; in Smali code must be changed into int,[[I,int,
java/lang/String,[Ljava/lang/Object; in JavaScript. In this parsing
app, we include API and variable detection in method and class
to reduce false positive when determining root detection method.
To simplify the analysis, we can limit to only return the invoked
method from certain packages or classes.

The parsing the app will form the script 1e to determine and
estimate which method detects rooting. Frida service run on rooted



B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957 1953
device and the script will be run in the process 1f. Rooting is
needed because Frida needs to hook the target application’s ptrace
and the rooting method on the log will be marked when applica-
tion detect rooting. We will call this method the parent target
method. Every invoked method will be logged so using string
encryption (Dong et al., 2018) to hide rooting detection method
is useless.

3.4. Phase 2

Fig. 3 explains two rooting detection bypass options that will be
applied in phase 2 and phase 3. The purpose of phase 2 is to get the
return or parameter of the target method or target API on an
unrooted device. The result from phase 1 and the original Smali file
will be the input of parsing app 2 to extract target API and child
target method. Target API and child target method is the method
/ API called inside the parent target method scope in Smali file.
Parsing app 2 will generate script that will be used on an unrooted
device. To reduce unnecessary information in log, we can exclude
some API such as logging, exception, etc. The generated script will
differ depending on the option we choose in Fig. 3. On option 1,
script will get the return and parameters of the target method (par-
ent and child) and target API. On option 2, script will get return and
parameters of the target API. Both options are hooked while parent
target method is being run.

To run script on an unrooted device, we need to tamper with
APK by inserting Frida Gadget binary (stage 2d) so that the binary
will be called the first time application is run. After the tampered
APK is installed, Frida service can be called with script injected
from stage 2c.

3.5. Phase 3

The purpose of phase 3 is to replicate the return or parameter of
target API or target method from phase 2 to bypass rooting detec-
tion. The script 3b can be made from the script 2c and phase 2
result. Option 1 and option 2 scripts will differ because the scope
is different. Option 1 scope is the parent target method, while
option scope 2 is the return or parameter of the API target obtained
from phase 2. This is illustrated in Fig. 3 the script will be run on
rooted device to make sure rooting detection can be bypassed.

3.6. Sensitive data

If the application is running on a rooted device, the application’s
sandbox can be exposed by malware that has root privilege. The
Fig. 4. Phase 2 Option
impact will be bigger if the data is sensitive and not encrypted.
Malware that has root access can also access sensitive data through
the application’s API call. In this study, the sensitive data observed
was only in the application sandbox. Sensitive data stored inse-
curely is explained in the OWASP Top 10 M2 (M2: Insecure Data
Storage) and OWASP MSTG Data Storage on Android (Data
Storage on Android).
4. Result and discussion

In this research, there are two options that can be used. The
script in phase 1 can be used in options 1 and 2 because the script
is only used to determine parent target method. While in phase 2
and phase 3, each option will specify a different script. Following
are examples of scripts used in phase 2 and phase 3.

Fig. 4 is phase 2 option 1 sample script where variable a is used
to limit the logging parameter and return of contains API, and the
return of childTargetMethod only when parentTargetMethod is being
run.

Fig. 5 is phase 2 option 2 sample script where logging parameter
and return of contains API is executed only when parentTar-
getMethod is being run. Option 2 only focuses on the target API.

Fig. 6 is phase 3 option 1 sample script that hooks the return of
contains API and childTargetMethod only when parentTargetMethod
is being run.

Fig. 7 is phase 3 option 2 sample script that will return false if
parameter of exists API is test-keys. The test-key parameter is
obtained from phase 2.

We will conduct this experiment on 4 applications. 1 Applica-
tion testing will be made to see the effectiveness of rooting detec-
tion bypass on applications that have done string encryption. Three
financial applications from Google Play Store are used to try to
avoid rooting detection using option 1, option 2, and hybrid
options.
4.1. Application with string encryption

In this experiment we create application that uses string
encryption to hide rooting detection variable. We implement
method numbering to identify invoked method because many
methods have the same name even in one class due to obfuscation.

Fig. 8.a is snippet of string encryption in Smali code that detects
rooting. By scoping parent target method, we can intercept the
decrypted value from parameter of target API in phase 2, then
we can bypass rooting detection by changing the parameter of that
1 Sample Script.



Fig. 6. Phase 3 Option 1 Sample Script.

Fig. 5. Phase 2 Option 2 Sample Script.

1954 B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957
Fig. 7. Phase 3 Option 2 Sample Script.

Fig. 8. (a) String Encryption in Smali File (b) Decrypted String Detecting Rooting Found.
API once the decrypted parameter if hooked. Fig. 8.b shows the
decrypted value of variable in Fig. 8.a.

4.2. Implementation with option 1

We use different financial application from Google Play for
implementation with option 1, option 2, and hybrid. After
Fig. 9. (a) Analyzing Child Target Method for Option 1 (b) Analyzing Targ
obtaining the parent target method in phase 1, we get the return
of child target method in phase 2. Fig. 9.a shows that return
method 2207 (child target method) is false on rooted device. In
method 2207, we also detect 28 method variables and APIs that
indicate that this method detects rooting. If false return value of
that method is applied in phase 3 when parent target method is
being run, rooting detection can be bypassed.
et API for Option 2 (c) Rooting Detection in Class for Hybrid Option.



B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957 1955
4.3. Implementation with option 2

Fig. 9.b is log from phase 2 where target API is being analysed to
get parameter and return on unrooted device. Root detection check
in method equals to 1 because the app check API that might detect
rooting in parent target method, and in this case variable is not
detected because it is located in class variable. That log shows that
target API 20112 and 202111 is connected. So, to bypass rooting
detection, we must always return API 20111 false when API
20112 have certain parameters from phase 2 e.g. /system/app/Supe-
ruser.apk.

4.4. Implementation with hybrid option

Fig. 9.c is log from phase 2 that shows root detection variable in
the class. In this experiment, several methods detect rooting so we
apply multiple parent target methods. We can implement different
option for each parent target method. These are the techniques we
use to bypass rooting detection on multiple parent target methods:

� Hooking return value of the parent target method (option 1).
� Hooking target API when the parent target method is being run
(option 1).

� Hooking child target method when the parent target method is
being run (option 1).

� Hooking target API so that always return constant value when
certain parameters are found (option 2).

4.5. Data sensitive

In this research, the sensitive data in the sensitive application’s
sandbox is examined which can only be accessed in rooted device.
We found that sensitive data in the form of plaintext such as ses-
sion, log, XML, SQLite database, or other files. We also found photo
of ID card, and sensitive documents. Therefore, more advanced
technique is needed to detect rooting that cannot be bypassed so
that sensitive data especially on the sandbox cannot be found.

4.6. Discussion

Running applications on a rooted device makes the application
vulnerable to data leakage. Any data movement in the application
can be stolen by hooking up the method call. Data in the sandbox
can also be stolen. Application’s rooting detection can be bypassed
by hooking Java function. Obfuscation such as identifier renaming
and string encryption cannot prevent rooting detection bypass. In
this research, firstly we determine which method detecting root-
ing, then we observe the method on an unrooted device, finally
we create bypassing script.

We use two options Java function hooking. Option 1 is the easi-
est option because we can hook the API or custom method then
Fig. 10. Detection Rooting Bypass Script
limit hooking when a parent method is being run. We can hook
parameter or return without having to know the original value.
The drawback of this option is that we cannot use the same script
for other applications or for the same application with different
version. This is because the method name can change due to obfus-
cation or developer use another name. Errors can occur if the par-
ent target method is used besides rooting detection so the right
scope is needed.

Option 2 script is the most difficult to create because we need to
know the parameter or return of target API. Sometimes, some APIs
are correlated in Smali file so we to hook the right API with the
right value and reading API documentation necessary. Another dif-
ficulty is that if a parent target method has child target methods
and target APIs, we sometimes have to analyze the flow of the
application. The advantage of option 2 is that the script could be
made for other application if we update the API and needed vari-
able in the script.

In the previous studies, rooting detection was done by checking
the APIs and variables in the source code (static analysis), then the
results were used to bypass rooting detection by hooking Java
function. There are no detailed steps on how static and dynamic
analysis are carried out, and the source used is not provided. There-
fore, we will compare the rooting detection bypass technique
found in the open source code (fridantiroot) with the technique
we use. We assume that that source code is similar to the one
found on previous method because the script was made general
for many applications.

Fig. 10 is script snippet from Frida codeshare. It is seen certain
parameters become the scope of target API. This means that the
technique used in that script is the same as the technique we use
in this research option 2. To increase the efficiency of rooting
detection, we detect invoked methods when the application
detects rooting in phase 1.

Fig. 11 is the same script from Frida codeshare. It appears that
the code hooks several APIs. To add list of APIs, firstly we analyse
the parent target method in phase 2. To decrease false positive in
determining parent target method, we detect variables in the
method (Fig. 9.a) and in the class (Fig. 9.c) that may be used for
rooting detection. Detection of variables is done in phase 1, while
the use of that variable on the API is done in phase 2. By knowing
which APIs are used, we can update list of APIs in Fig. 11. At the
same time, we also update the list of variables then apply them
to parsing app 1. If the variables that detect rooting are encrypted,
these variables can be detected in phase 2. Updating list of vari-
ables and APIs lead to increase of bypassing rooting detection
efficiency.

Option 1 is not found in the general rooting detection bypass
technique as in Fig. 10 and in previous studies because option 1
is specific to a particular application. To prevent error when the
application is run, we only run child target method and target
API only when parent target method is being run. So, if child target
from Frida Codeshare (fridantiroot).



Fig. 11. Target API from Frida Codeshare (fridantiroot).

1956 B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957
method or target API is used other than for rooting detection, the
script does not cause error.

Our research can be used for application owners to assess how
resistant their application against rooting detection bypass, and for
developer to implement more robust detection. Generally,
researcher can also use it to analyze application’s behavior even
on unrooted device.

5. Future work

This research can be developed into the following studies:

� This research’s methodology can be modified and used to
bypass jailbreak detection on iOS devices then measure its
effectiveness. The possibility of using automation can also be
considered. Previous research (Kellner et al., 2019) and scripts
openly available can be used as a starting point to study jail-
break detection and evasion using the hooking function.

� On Android, rooting detection can be done by native code and
script can be developed to bypass it. Technique to analyze appli-
cation using hooking on binary file has been done (Totosis and
Patsakis, 2018). Several binary detecting rooting can be
bypassed but still using manual inspection (Nguyen-Vu et al.,
2017). Future research will focus on developing bypass method-
ology for native code.

Final goal of these both future works are to create more
advanced rooting detection difficult to bypass. Action prior to
bypassing rooting detection might be taken into consideration
such as deobfuscation (Kan et al., 2019).

6. Conclusion

We found that sensitive data might have been found in the
application’s sandbox on the rooted device because developers
do not properly encrypt sensitive data. We prove that the rooting
detection bypass technique with Java function can be easily done.
Therefore, we need a detection technique which is difficult to be
bypassed. Some techniques that developers can use to make
bypassing difficult are:

1. Using native library made with C to detect rooting. This tech-
nique can actually be bypassed by hooking native code but it
is more difficult to reverse engineer the binary file.

2. Applying hooking detection and obfuscation to the native
library (Lim et al., 2017). This technique makes reverse library
native engineering more difficult. Hooking is also more difficult
because we need to bypass hooking detection first.

3. Most applications that detect rooting will pop up an alert that
requires user interaction. To make determining rooting detec-
tion method difficult, the application should be left running
but with limited functionality. Alert can be used that don’t
require user interaction.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors would like to thank the Ministry of Research, Tech-
nology and Higher Education of the Republic of Indonesia for their
support in making this research possible. This research was sup-
ported by Awarded Research Grant scheme 2019, No. 12/AKM/
PNT/2019, 039/VR.RTT/IV/2019.

References

Shao, Y., Luo, X., Qian, C., 2014. Rootguard: protecting rooted android phones.
Computer 47 (6), 32–40.

Sun, S.T., Cuadros, A., Beznosov, K. Android rooting: Methods, detection, and
evasion. In Proceedings of the 5th Annual ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices 2015 Oct 12 (pp. 3-14).

Apply for unlocking Mi devices. Retrieved from miui: from: https://en.miui.com/
unlock/.

Factory Images for Nexus and Pixel Devices. Retrieved from google: https://
developers.google.com/android/images.

Zhou, Y., Jiang, X. Dissecting android malware: characterization and evolution. In
2012 IEEE Symposium on Security and Privacy 2012 May 20 (pp. 95-109). IEEE.

Ng, Y.Y., Zhou, H., Ji, Z., Luo, H., Dong Y. Which android app store can be trusted in
china? In 2014 IEEE 38th Annual Computer Software and Applications
Conference 2014 Jul 21 (pp. 509-518). IEEE.

Bojjagani, S., Sastry, V.N. VAPTAi: A Threat Model for Vulnerability Assessment and
Penetration Testing of Android and iOS Mobile Banking Apps. 2017 IEEE 3rd
International Conference on Collaboration and Internet Computing (CIC) 2017
Oct 15 (pp. 77-86). IEEE.

Casati, L., Visconti, A., 2018. The dangers of rooting: data leakage detection in
android applications. Mobile Inf. Systems 2018.

Zhang, Z., Wang, Y., Jing, J., Wang, Q., Lei, L. Once root always a threat: analyzing the
security threats of android permission system. In Australasian Conference on
Information Security and Privacy 2014 Jul 7 (pp. 354-369). Springer, Cham.

Xing, L., Pan, X., Wang, R., Yuan, K., Wang, X. Upgrading your android, elevating my
malware: privilege escalation through mobile os updating. 2014 IEEE
Symposium on Security and Privacy 2014 May 18 (pp. 393-408). IEEE.

Nguyen-Vu, L., Chau, N.T., Kang, S., Jung, S., 2017. Android Rooting: An Arms Race
Between Evasion and Detection. Security and Communication Networks.

Geist, D., Nigmatullin, M., Bierens, R. Jailbreak/Root Detection Evasion Study on iOS
and Android. MSc System and Network Engineering. 2016 Aug 23.

Ramírez-López, F.J., Varela-Vaca, Á.J., Ropero, J., Luque, J., Carrasco, A., 2019. A
framework to secure the development and auditing of SSL pinning in mobile
applications: the case of android devices. Entropy 21 (12), 1136.

Sierra F, Ramirez A. Defending your android app. In Proceedings of the 4th Annual
ACM Conference on Research in Information Technology 2015 Sep 29 (pp. 29-
34).

Jiang, X., Liu, M., Yang, K., Liu, Y., Wang, R., 2018. A Security Sandbox Approach of
Android Based on Hook Mechanism. Security and Communication Networks.

Pan, J.Y., Ma, S.H. Advertisement removal of Android applications by reverse
engineering. In 2017 International Conference on Computing, Networking and
Communications (ICNC) 2017 Jan 26 (pp. 695-700). IEEE.

Tuan, L.H., Cam, N.T., Pham, V.H., 2019. Enhancing the accuracy of static analysis for
detecting sensitive data leakage in Android by using dynamic analysis. Cluster
Comput. 22 (1), 1079–1085.

Dong, S., Li, M., Diao, W., Liu, X., Liu, J., Li, Z., et al., 2018. Understanding Android
obfuscation techniques: a large-scale investigation in the wild. In: International
Conference on Security and Privacy in Communication Systems. Springer,
Cham, pp. 172–192.

M2: Insecure Data Storage. Retrieved from OWASP: https://owasp.org/www-

http://refhub.elsevier.com/S1319-1578(20)30420-1/h0005
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0005
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0040
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0040
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0055
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0055
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0065
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0065
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0065
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0075
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0075
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0085
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0085
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0085
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0090
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0090
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0090
http://refhub.elsevier.com/S1319-1578(20)30420-1/h0090


B. Soewito, A. Suwandaru / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1950–1957 1957
project-mobile-top-10/2016-risks/m2-insecure-data-storage.
Data Storage on Android. Retrieved from github: https://github.com/OWASP/

owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md.
fridantiroot. Retrieved from Frida: https://codeshare.frida.re/@dzonerzy/

fridantiroot/.
Kellner, A., Horlboge, M., Rieck, K., Wressnegger, C. False sense of security: a study

on the effectivity of jailbreak detection in banking apps. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P) 2019 Jun 17 (pp. 1-14). IEEE.

Totosis, N., Patsakis, C. Android hooking revisited. In 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology Congress (DASC/PiCom/
DataCom/CyberSciTech) 2018 Aug 12 (pp. 552-559). IEEE.

Kan, Z., Wang, H., Wu, L., Guo, Y., Xu, G. Deobfuscating Android native binary
code. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion) 2019 May 25 (pp. 322-323).
IEEE.

Lim, K., Jeong, J., Cho, S.J., Choi, J., Park, M., Han, S., Jhang, S. An anti-reverse
engineering technique using native code and obfuscator-LLVM for Android
applications. In Proceedings of the International Conference on Research in
Adaptive and Convergent Systems 2017 Sep 20 (pp. 217-221).


	Android sensitive data leakage prevention with rooting detection using Java function hooking
	1 Introduction
	2 Related works
	3 Research method
	3.1 Static analysis
	3.2 Dynamic analysis
	3.3 Phase 1
	3.4 Phase 2
	3.5 Phase 3
	3.6 Sensitive data

	4 Result and discussion
	4.1 Application with string encryption
	4.2 Implementation with option 1
	4.3 Implementation with option 2
	4.4 Implementation with hybrid option
	4.5 Data sensitive
	4.6 Discussion

	5 Future work
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


