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a b s t r a c t 

Given the importance of a diverse and vast amount of realistic and labeled electrocardiogram (ECG) sig- 

nals in improving the performance of biomedical signal processing algorithms, and the situation of se- 

vere lack of the signals, three generative models based on deep learning are introduced for the genera- 

tion of ECG signals: The WaveNet-based model, the SpectroGAN model, and the WaveletGAN model. The 

WaveNet-based model adopts μ-law companding transformation as a preprocessing method and then is 

followed by a sequence of convolutional layers with dilation; SpectroGAN and WaveletGAN use short- 

term Fourier transform (STFT) and stationary wavelet transform (SWT) respectively to obtain suitable 

input form for the generative adversarial networks (GAN). Our proposed models are capable of generat- 

ing ECG signals containing three different heartbeat types: normal beat, left bundle branch block beat 

and right bundle branch block beat. The synthetic ECG signals generated by our models are more real- 

istic since deep artificial neural networks can discover intricate structure and characteristics of real ECG 

signals instead of manually setting specific parameters for synthesis. Besides, ECG signals produced by 

one of our proposed models could be naturally continuous and be up to more than 20 seconds. Further- 

more, we first provide an evaluation approach for quantitatively demonstrating the performance of ECG 

generative models. The study demonstrates that deep learning is a feasible and effective method for ECG 

generation. Our proposed ECG generative models can be utilized to assess biomedical signal processing 

algorithms so as to improve their performance in clinical trials. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

ECG has become a promising tool to achieve automatic disease

detection by using ECG related signal processing algorithms [1 , 2] .

At present, these algorithms are usually based on those already

existed databases such as the Physionet database to evaluate the

feasibility and accuracy of the algorithms [3] . However, due to the

exponential booming of information, the amount of the existing

database is limited and insufficient. In addition, with the fact

that data annotation is quite a time, labor and money consuming

task, it is impossible to obtain such a large amount of data with

labels. Meanwhile, the performance of the algorithms could vary

greatly in different clinical conditions, which shows the necessity

of large amounts of annotated data to ensure the efficiency of

the algorithms. In other words, without the support of plenty of

labeled data, even if the algorithms can perform very well on the

given database, it may not be wildly used in reality. Therefore,
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ynthesizing realistic artificial ECG signals is of immense signifi-

ance for helping researchers to improve the performance of their

lgorithms in the field of ECG signal processing. By generating

rtificial and natural-looking samples, the researchers can achieve

he goal of data augmentation, acquiring abundant samples that

re not included in the original database to increase training data,

nd they can even obtain samples with particular properties. 

So far, there are many studies on synthetizing ECG signals by

sing mathematical modeling. In 2003, McSharry et al . [4] pro-

osed a two-stage dynamic model to generate artificial ECG

ignals. Firstly, they produced an internal time series by speci-

ying spectral parameters and temporal parameters (mean heart

ate and standard deviation) of a real R-R tachogram. Secondly,

hey constructed equations of motion, a three-dimensional (3-D)

rajectory model, and specify locations and heights of the peak of

ach heartbeat to produce the average morphology of ECGs. P, Q,

, S and T waves are respectively represented by a set of gaussian

quations within this trajectory model, and the ECG signal can be

egarded as the sum of the gaussian equations of these waves. By

djusting the angular velocity of the trajectory, the waveform of

he R-R interval could be changed. In 2005, Li and Ma [5] proposed

https://doi.org/10.1016/j.neucom.2020.04.076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.04.076&domain=pdf
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 data flow graph method based on piecewise curve to model ECG

ignals. The algorithm needs to model the P wave, QRS wave and T

ave respectively and then synthesize a heartbeat, which involves

any parameters, thus increasing the complexity of the algorithm.

ameni et al. in 2007 [6] proposed a 3-D dynamic model, which is

 single dipole model for the heart and combines a linear model

o indicate the temporal motion and rotation of the cardiac dipole.

he model can be generalized into a multi-lead model. Compared

ith the single-lead model proposed by McSharry above, the

ulti-lead model proposed by Sameni avoids the problem of re-

eated calculation of parameters during the multi-lead modeling.

rom the perspective of the dipole model of the heart, the ECG

ignals of different leads are actually the projection of the dipole

ector of the heart onto the axis of the ECG recording electrode.

he disadvantage of this algorithm is that the ECG signals recon-

tructed from this model do not match the real ECG signals very

ell, especially at low frequencies such as P wave. This shows

he limitation of the single dipole model in representing the

ow-frequency components of ECG. On the basis of Sameni’s 3-D

ynamic model, Clifford et al. in 2010 [7] proposed a method that

sed first-order Markov chains to alternately generate normal and

bnormal heartbeats and used transition matrix to represent the

robability of the transition between normal and abnormal heart-

eats. In 2013, Roonizi et al. [8] proposed a signal decomposition-

ased method to model ECG signals since a single ECG heartbeat

an be viewed as a sum of basis functions. They tried many dif-

erent basis functions in the method such as the gaussian model,

olynomial spline models (including B ́ezier and B-splines) and

inusoidal model. During their experiments, they found that the

inusoidal model and B ́ezier function didn’t meet the requirements

n the local control, and B-spline function could provide good

ocal control required for modeling. Those traditional mathematical

odeling methods have some deficiencies as follows: 

� Although in terms of ECG morphology their model can produce

very realistic heartbeats, these synthetic heartbeats are too

“standard”. In other words, the morphology of each heartbeat in

a synthetic ECG signal is too normal and is basically the same. 

� Despite that this model is able to be modified to produce

abnormal heartbeat, such a modification could be complicated

and cumbersome since every type of abnormal heartbeat is

corresponding to a certain set of equations. 

� Operators using this kind of model need to possess the exper-

tise to make sure the accuracy, rationality, and reliability of the

parameter setting. 

� Besides, the evaluation of the quality of generated signals

mainly relies on visual observation with professional knowl-

edge rather than scientific and objective methods. 

On the other hand, the rapid development of deep learning

ver past years has made it be applied successfully in many

omains such as speech recognition [9] , image recognition [10] ,

bject detection [11] , as well as in biomedical field [12 –21] . Nowa-

ays, many ECG related detecting algorithms and signal processing

lgorithms based on deep learning has far exceeded traditional

ethods in the aspect of accuracy. For example, in 2017, the team

f Professor Andrew Y. Ng from Stanford University used a deep

onvolutional network combined with a residual network to realize

ingle-lead arrhythmia signal detection, which claimed that the de-

ection accuracy of the algorithm was close to or even outstripped

rofessional cardiologists [22] . Besides the above-mentioned dis-

riminative model, the generative model has also progressed dra-

atically in recent years. In 2014, Ian J. Goodfellow from Université

e Montréal proposed Generative Adversarial Networks (GAN) [23] ,

hich had been widely used in computer vision for generating

uman face [24 , 25] , producing a variety of realistic scenes [26 –

8] , painting [29 , 30] , etc. Moreover, GAN is also applied to solve
roblems of speech and language processing [31 , 32] . Besides GAN,

oogle’s DeepMind team in 2016 proposed a network WaveNet

33] specifically for generating one-dimensional (1-D) signals. It

an produce fairly natural-sounded speech signals with long-range

emporal dependencies. This method is also able to be used to

enerate different voices by conditioning on speaker identity. 

In this paper, we presented three methods for synthesizing arti-

cial ECG signals by using deep learning techniques. To our knowl-

dge, this is the first study using deep learning for the purpose of

enerating ECG signals. Compared with traditional algorithms, the

roposed approaches have a number of advantages as follows: 

� The synthetic ECG signals are more realistic since they can

reproduce the essential characteristics and intricate structure

of real ECG signals. 

� The synthetic ECG signals have longer dependence and correla-

tion in time, which can last up to 20 seconds. 

� The synthetic ECG signals are more abundant in morphology. 

� The synthetic ECG signals could be of a certain type of

heartbeats. 

� The synthetic ECG signals could be of different sampling

frequencies. 

� The lower complexity of the operation and less man-made

control of parameters. 

In addition, we first put forward a quantitative approach to

valuate the performance of generative models for ECG gener-

tion. This paper is organized as follows: Section Ⅱ illustrates

he database and datasets used in our study and three different

ethods for generating ECG signals. The results are presented in

ection Ⅲ . Section Ⅳ discusses the performance of our proposed

hree generative models, and we conclude the paper in Section Ⅴ . 

. Methods 

We designed three different methods to produce ECG signals

epending on the two popular approaches for generating data

entioned above: WaveNet and GAN. Fig. 1 shows the whole

rchitecture of our proposed methods for ECG generation. The first

ethod uses data in the encoded form as the input of WaveNet to

roduce continuous ECG signals. The second and third approaches

re aiming at generating signal heartbeat via data transformation

nd GAN. The reason for using GAN to merely synthesize a single

eartbeat is primarily due to the characteristics of GAN itself and

ts training method, and we will discuss this in detail later. In the

nd, an evaluation method based on a support vector machine

SVM) is originally used to demonstrate the performance of our

roposed ECG synthetic models by comparing GAN-train and

AN-test scores. 

.1. Database and ECG signal preprocessing 

In this study, we use the MIT-BIH arrhythmia database [34] ,

hich is publicly accessible from PhysioNet, to train our models.

he MIT-BIH arrhythmia database contains 48 ECG recordings,

ach about 30 minutes long with a sampling rate of 360 Hz.

ach ECG record contains two leads called MLII and V5. In this

tudy, we only choose the MLII for generation. Our training set

ncludes three types of heartbeats: normal beat (N), left bundle

ranch block beat (L) and right bundle branch block beat (R).

even records (#106, #114, #203, #213, #221, #222, #228) of the

IT-BIH arrhythmia database were excluded in this study because

hey contain too many other types of heartbeat, such as atrial

remature beat, which can cause trouble in obtaining continuous

ata of type N for the purpose of generation. The other four

ecords (#102, #104, #107, #217) were also excluded since they

ontain paced heartbeats. 
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Fig. 1. Schematic overview of the proposed approaches. 
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Every remaining ECG record was segmented by a certain length

of time T (4 seconds in our study) to obtain a number of data

segments of length T. Each data segment can only be labeled as

one type of N, L or R, for example, a data segment of type N

means that all heartbeats it contains are N-type. Considering the

situation for making the neural networks converge quickly and the

training stable, each data segment was filtered using a 0.1–100 Hz

band-pass filter to remove noise. Of course, this step could be

omitted if one wants to produce ECG signals with noises. In our

study, we extracted 10,659 4-s data segments of N-type, 1371 4-s

data segments of L-type and 1311 4-s data segments of R-type.

We randomly extracted 50 samples from 10,659 data segments

of N-type, 50 samples from 1371 data segments of L-type and 50

samples from 1311 data segments of R-type to compose a test set

to assess the performance of our ECG signals synthetic methods. It

can be obviously observed that the number of samples of the three

different types is so unbalanced that we cannot use them to di-

rectly build our training set. To address this problem, we expanded

the number of data segments of L-type and R-type by four times

through replicating those remaining data segments of L-type and

R-type, and then randomly extracted 5500 N-type data segments.

Ultimately, the training set has 15,828 4-s samples and the test
et has 150 4-s samples. This data set is used for the WaveNet

ethod. 

Another training set containing complete heartbeat samples

as also constructed for our proposed GAN related methods

ccording to their characteristics. We used the Pan-Tompkins algo-

ithm [35] to locate QRS waves on those ECG records we selected.

n the basis of the position of QRS wave, we intercepted 100

ampling points forward and 150 sampling points backward (250

oints in total) to form a heartbeat. Although this interception

ethod is a rough approach to obtain a heartbeat, it is commonly

sed by researchers considering the difficulty to detect the starting

r ending points of P and T waves. Besides, such an interception

ethod is able to avoid overlap between heartbeats since the

riginal sampling frequency of the MIT-BIH arrhythmia database

s 360 Hz. If we use the length 360 points as a unit, we could

robably obtain a data segment with incomplete heartbeats, for

xample including the last half of the former heartbeat and the

rst half of the latter heartbeat. This will cause a lot of trouble

n constructing ECG signals because a complete single heartbeat

s essential to build up a very long ECG signal. We marked each

eartbeat according to the annotation offered by the MIT-BIH ar-

hythmia database. Finally, we obtained 42,636 N-type heartbeats,
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Fig. 2. Samples of the training set 1: (a) N-type sample, (b) L-type sample, (c) R-type sample. 

Fig. 3. Sample of the training set 3. 
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068 L-type heartbeats, and 6254 R-type heartbeats. We randomly

elected 50 0 0 heartbeats from each of the three types of data

espectively to form a training set and 500 beats from the rest of

he data respectively to form a test set. 

Besides the two training sets mentioned above, we also built a

raining set of R-wave peaks of N-type. This R-wave peaks data set

epresents a simple form of ECG, as a result, we can use this data

et to design an initial generating model which is then capable of

eing modified into an appropriate model for a complete ECG data

egment. To build this data set, we first used the Pan-Tompkins

lgorithm over a data set of N-type to detect QRS waves. Then a

indow with a width of 50 points is used to intercept each of

he 25 sampling points near the left side and right side of each

-peak, finally obtaining an R-peak segment of length 50 points.

ach sample in the R-wave peaks data set consists of 5 R segments

hus its length is 250 points. Finally, the training set is composed

f 10,0 0 0 samples, and the corresponding test set includes

00 samples. 

For simplicity, we orderly name the above-mentioned data sets

s the training set 1, the test set 1, the training set 2, the test set 2,

he training set 3 and test set 3. Here we only give images of the

raining set 1 and the training set 3 as shown in Fig. 2 and Fig. 3 ,

espectively, since the morphology of the sample in the training

et 2 is just the same as one single heartbeat in the training set 1.
.2. WaveNet-based method 

WaveNet is a likelihood-based autoregressive model, which was

nitially used for generating audio waveforms like speech or music

33] . The joint probability of an ECG signal x = { x 1 , x 2 , . . . , x T }

an be expressed in terms of chain of conditional probabilities as

ollows: 

p(x ) = 

T ∏ 

t=1 

p( x t | x 1 , ..., x t−1 ) (1) 

Therefore, each sample point x i of an ECG signal is conditioned

n sample points of all previous timesteps. WaveNet is built using

tacks of convolutional layers with residual, and skip connections

n between and is no pooling layers. The last layer of the model

s the softmax layer which is used to output a categorical dis-

ribution over x i . The most remarkable characteristic of WaveNet

s its ability to generate relatively long signals with high quality,

nd this is the main reason for us to adopt this method for ECG

eneration. In order to produce long signals, WaveNet uses dilated

onvolutional layers to exponentially increase the receptive field

nd to simultaneously make sure that the model gives its predic-

ion in the order that the prediction p( x i +1 | x 1 , . . . , x i ) at timestep

 can merely depend on the previous timesteps but not on any

uture timesteps. With dilated convolutional layers, WaveNet is no

eed superimposing many layers or enlarging filters to expanding

he receptive field, which is able to greatly reduce computational

ost. Besides, WaveNet uses skip connections [36] to speed up

onvergence and enable the training of much deeper models [33] .

he gradient for the early layers doesn’t need to pass through all

onsecutive layers (that could cause the “vanishing gradient” prob-

em), but can go straight from the output of the neural network

hrough a skip connection. Skip connections allow us to produce

ong ECG signals by adding more layers without worsening the

erformance of the network but making it better. 

The model takes digitized ECG signal waveform as input, which

hen flows through these convolutional layers and outputs a

aveform sample point. At generating time, this sample point is

hen used with previous samples to generate the next sample. In

rder to digitize ECG signal, we first applied a μ-law encoding

37] to every data segment, and then quantized it: 

f ( x t ) = sign ( x t ) 
ln (1 + μ| x t | ) 

ln (1 + μ) 
(2) 
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where -1 < x t < 1 and μ is an integer which is equivalent to

2 i − 1 ( i = 1 , 2 , . . . ) . After that, we embedded the quantized data

segment into a continuous vector by making each sample point of

this data segment represented as a one-hot vector. Accordingly, the

softmax layer would need to output μ probabilities per timestep

to model all possible values [33] . 

2.3. GAN-based method 

WaveNet has two biggest disadvantages. One is the extremely

slow speed of training and generation. The other is that the gener-

ation of sampling points only depends on the previous information.

By comparison, GAN generates time series in a parallel manner. Its

generation needs to take context information into consideration

and its speed is greatly improved. GAN consists of two models: a

generative model G and a discriminative model D. Both G and D

can be made up of deep neural networks. D is a two-class classifier

that is used to determine whether the input data is real or not.

The task of G is to capture the distribution of real data. The train-

ing process of this framework is similar to a minimax two-player

game, in which the ultimate goal is that the distribution of gener-

ated data is as consistent as possible with the distribution of raw

data. The loss function of the original GAN is defined as below: 

min 

G 
max 

D 
V (D, G ) = E x ∼P r [ log (D (x )) ] + E x ∼P g [ log (1 − D (x )) ] (3)

The first D ( x ) is the discrimination for real data and the second

D ( x ) is the discrimination for generated data. P r and P g represent

the distribution of real data and generated data, respectively. When

optimizing the discriminative model D, we expect the first D ( x ) to

be as close to 1 as possible and the second D ( x ) to be as close to

0 as possible, that is, maximizing the following equation: 

max 
D 

V (D, G ) = E x ∼P r [ log (D (x )) ] + E x ∼P g [ log (1 − D (x )) ] (4)

After finishing the optimization of the discriminative model

D, we begin to optimize the generative model G by getting the

second D ( x ) to be close to 1, which means minimizing the following

equation: 

min 

G 
V (D, G ) = E x ∼P g [ log (1 − D (x )) ] (5)

Compared with the original GAN, deep convolutional GAN (DC-

GAN) [24] almost completely replaces fully connected layers with

convolutional layers. D and G are almost symmetrical, and the

entire network does not have a pooling layer and an upsampling

layer. Instead, it uses convolution kernels with stripes because

convolution kernels have a good effect on extracting image fea-

tures and can also increase the stability of training. Moreover,

it is relatively a good and simple GAN at present to generate a

relatively high-resolution image, which is exceedingly critical for

postprocessing of the GAN-based methods I proposed. 

Unlike DCGAN mainly modifying the network structure of the

original GAN, WGAN [38] focuses on modifying the loss function

of the original GAN in order to address the problem of unstable

training theoretically. When the discriminative model D is optimal,

the loss function of the generative model G is to add a term

independent of G to Eq. (5) : 

min 

G 
V (D, G ) = E x ∼P r [ log (D (x )) ] + E x ∼P g [ log (1 − D (x )) ] (6)

Minimizing Eq. (6) is equivalent to minimizing Eq. (5) . Since

the original GAN uses Jensen-Shannon (JS) divergence to measure

the distance between P r and P g . Therefore, Eq. (6) could be written

as the following expression: 

min 

G 
V (D, G ) = 2 JS( P r || P g ) − 2 log 2 (7)

In the paper of WGAN, they demonstrated [38] that as long as

P r and P g don’t overlap at all or their overlap is negligible, their
S divergence is the constant log2, and that means the gradient is

ero. At this point, for the optimal discriminator D, the generator G

s definitely not going to get any gradient information, that is, the

enerator G has a great chance of facing the problem of gradient

anishing. Hence, they replaced JS divergence with Wasserstein

istance. Compared with JS divergence, Wasserstein distance could

till well reflect the distance between P r and P g even if there is no

verlap between them. The loss function of WGAN is: 

 = E x ∼P r [ f w 

(x ) ] − E x ∼P g [ f w 

(x ) ] (8)

f is a continuous function with the Lipschitz constraint. Lip-

chitz constraint requires that the gradient of the discriminator

hould not exceed k. This restriction is realized by weight clipping.

uring the training process, the weight is clipped into a certain

ange, such as [-0.01, 0.01], to ensure that all parameters of the

iscriminator are bounded, which ensures that the discriminator

annot give significantly different scores to two slightly different

nput data, thus indirectly realizing the Lipschitz constraint. 

However, weight clipping can cause two huge problems. First,

ince the discriminator wants to make the difference between

cores of true and fake data as large as possible, and weight

lipping limits the value range of all parameters, the value of

arameters will take extreme values, that is, the maximum value

such as 0.01) or the minimum value (such as -0.01). In this case,

he discriminator is very much inclined to learn a simple function

ike a binary mapping and fails to take full advantage of its strong

tting ability. Then the gradient returned back to the generator

lso becomes worse. The second problem is that weight clipping

an easily lead to gradient vanishing or gradient exploding. If

he clipping threshold is set a little bit smaller, the gradient will

ecrease gradually with each layer of the network and will decline

xponentially after multiple layers. Otherwise, there will be a

radient exploding [39] . 

Gradient penalty [39] is an alternative approach to enforce the

ipschitz constraint in order to resolve the problem of gradient

anishing and gradient exploding when training WGAN. Gradient

enalty is to set an additional loss to satisfy the requirement

etween gradient and k , then this additional loss is added with

eight to the original loss of WGAN. The objective of WGAN-GP

s: 

 = E 

˜ x ∼P g 

[ D ( ̃  x ) ] − E 

x ∼P r 

[ D (x ) ] + λ E 

ˆ x ∼P ˆ x 

[ (∥∥∇ ˆ x D ( ̂  x ) 
∥∥

2 
− k 

)2 
] 

(9)

here k is the Lipschitz constraint and λ is the penalty

actor. E 
˜ x ∼P g 

[ D ( ̃  x )] − E 
x ∼P r 

[ D (x )] is the original critic loss and

E 
ˆ x ∼P ˆ x 

[ ( ‖ ∇ ˆ x D ( ̂  x ) ‖ 2 − 1 ) 
2 
] is the gradient penalty. WGAN-GP

as faster convergence speed than DCGAN and provides a stable

AN training method. In this method, we choose DCGAN for ECG

enerating. In particular, we merely referred to DCGAN to design

ur own generator and discriminator rather than directly use the

hole structure of DCGAN. 

.3.1. SpectroGAN method 

Since DCGAN is initially designed for generating images, we use

hort-term Fourier transform (STFT) over 1-D ECG signals to obtain

 2-D array as the input of DCGAN. In this way, we are allowed

o train the GAN like training an image without modifying the

tructure of DCGAN into 1-D form. STFT converts a time-domain

ignal into a 2-D time-frequency representation and shows the

requency domain variation of the signal [17] . Mathematically, the

TFT is defined as: 

T F T { f (t) } = 

∫ 
R 

f (t) g(t − u ) e − jωt dt (10)
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here f ( t ) is a long time signal and g ( t ) is a window function. In

rder to accelerate the convergence of the network during training,

e normalized the matrix before inputting it to the network. We

rained our GAN with the gradient penalty method [39] since we

ound that loss failed to converge if we used the original loss

unction of DCGAN. After attaining a synthetic matrix generated

y our SpectroGAN, we used the Griffin-Lim algorithm [40] to

econstruct the corresponding ECG signal from the generated ma-

rix. The griffin-lim algorithm is able to estimate a signal from its

ynthetic matrix by minimizing the mean squared error between

he matrix of the estimated signal and the synthetic matrix [40] .

imply, we call this method the SpectroGAN. 

.3.2. WaveletGAN method 

In the SpectroGAN method, it is vital to choose an appro-

riate window size during STFT since it is directly connected

ith obtaining a good resolution. With a narrow window, the

requency resolution is poor but the temporal resolution becomes

atisfactory; with a wide window, it is the other way around.

hus, it is less likely to find an accurate trade-off in both time and

requency. Wavelet transform (WT) is another effective approach

o analyze ECG signals in the time-frequency domain. A prominent

dvantage of WT is that it can address the problem of the un-

hanged window in STFT by automatically changing the window

ize depending on the frequencies it focuses on: narrowing the

indow at high frequencies and widening the window at low

requencies. Such a multiresolution analysis allows us to observe

he characteristics of the signal concentrated on different scales

41] . The WT of a signal f ( t ) is defined as: 

 (a, b) = 

1 

a 

∫ 
R 

f (t) ψ 

(
t − b 

a 

)
dt (11) 

here a is the scale factor, b is the translation and ψ represents

avelet. With a large a , we can have an overall view of the signal

ecause of the expansion of the wavelet, and with a small a , we

re shown with a localized and detailed view of the signal since

he wavelet is shrunk in the time domain. 

Among several wavelet transform techniques, we chose the

tationary wavelet transform (SWT) [42] because SWT is time-

nvariant at each decomposition level, which means that the

ime resolution of each coefficient time series is consistent with

hat of the original signal segment [43] . In our study, we used

WT with J -levels over each data segment to obtain 2 J ( J detail

oefficients and J coarse coefficients) time series of each segment.

articularly, when using SWT with J -levels, we need to make sure

hat the signal length is a multiple of 2 J . Before we input these

 J coefficient time series into GAN, we performed normalization

ver each coefficient time series. Different from conventional

perations that the 2 J coefficient time series are organized into a

hole to input into a GAN, we input each coefficient time series

nto a GAN separately and then train the 2 J GANs to generate

orresponding coefficient time series. This is because we found

hat training a GAN using all 2 J coefficient time series as an input

as far more difficult than the above-mentioned method due to

he more complex the input, which leads to the more complicated

he network and then harder training process. Moreover, the GAN

ith all 2 J coefficient time series as an input forced us to use 1-D

onvolution or long short-term memory (LSTM) [44] , which can

lso add difficulty to train the GAN. By contrast, with our proposed

ethod, we can train the GAN of each coefficient time series with

nly a few layers of a linear transformation. In this way, the

raining speed has been greatly improved and the difficulty of

djusting parameters has been greatly reduced, especially when

he length of the input time series becomes longer. 

After finishing training 2 J GANs, we applied inverse stationary

avelet transform over the 2 J coefficient time series separately
roduced by 2 J GANs to reconstruct the ECG data segment to

btain the synthetic ECG. This ECG-generating approach is called

aveletGAN. Specifically, different from SpectroGAN, WaveletGAN 

s no need to use the gradient penalty method since the original

oss function of DCGAN can work perfectly well. 

.4. Evaluation 

To evaluating a generative model, we need to test its perfor-

ance in two aspects: the fidelity of generated data, and the

iversity of the data. In other words, if the synthetic data are not

enuine enough, the model does not perform well. And even if

he data are realistic enough, we still have to confirm whether

he data are various. If the model can merely produce limited

ypes of data, it falls into the so-called mode collapse. At present,

here are several indicators [45] , such as Inception Score (IS) [46] ,

ode Score [47] , Fréchet Inception Distance [48] and so on, for

valuating the performance of a GAN. However, most of them are

ot suitable to evaluate the generative model for ECG since they

re all based on the Inception V3 model. Inception V3 model is

rained on a huge ImageNet dataset, therefore, it cannot be used

or small ECG datasets. 

In our study, we adopted an approach calculating GAN-train

nd GAN-test scores, which is proposed by Shmelkov [49] , to test

he performance of our conditional GANs. Firstly, we designed a

lassification method to classify different types of heartbeats. We

erform a multilevel one-dimensional wavelet analysis on each

eartbeat with a length of 250 to obtain wavelet decomposition

f the heartbeat at level n. Then we extract the coarse-scale

pproximation coefficients at level n to form a feature vector.

inally, we use SVM to classify different types of heartbeat based

n the feature vector. For computing GAN-train score, SVM needs

o be trained on fake data produced by our generative models

nd be tested on real data. GAN-train is capable of measuring

he difference between the learned and the target distribution. If

VM can correctly classify real data, it shows that the generated

ata are similar to the real ones. In other words, GAN-train can

e viewed as a recall measure, the higher the GAN-train score, the

ore diverse the synthetic data. GAN-test is trained on real data

nd tested on generated data. This measure is akin to precision, a

igh value suggesting that the distribution of generated data and

he unknown distribution of real data is approximate. 

. Experiments and results 

The Pytorch deep learning framework [50] is used for con-

tructing our synthetic models. 

.1. Experiments on WaveNet 

The optimizer we used in all the WaveNet related experiments

s Adam with an initial learning rate of 0.0 0 01. When loss con-

erges, the learning rate will decrease by a factor of 0.1. In order

o determine the best parameters of the WaveNet-based method

or synthesizing ECG signals, we conducted more than 30 exper-

ments. Table 1 only shows 15 representative experiments. For

stimating the basic parameters to generate complete ECG signals,

e first applied the WaveNet to training set 3, each sample of

hich has a length of 250 and includes 5 R-peak data segments, as

hown in Fig. 3 . Training set 1 of complete ECG signals containing

hree heartbeat types N, L and R have higher complexity and vari-

tion in the signal waveform than training set 3, therefore, before

rocessing complex data set, relatively simple data set should be

rocessed first, which is helpful for later parameter setting. 

Initially, we thought that samples of the training set 3 had

elatively simple waveform and strong regularity, thus, we set the
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Table 1 

The comparisons of different parameter settings and data sets in WaveNet. 

# Sr (Hz) Data set Length Heartbeat type Dilation μ Residue Skip Dilation depth Blocks Generated 

1 360 Training set 3 250 N No 64 32 256 5 7 Yes 

2 360 Training set 3 300 N Yes 64 32 256 8 1 Yes 

3 3600 Training set 3 2500 N Yes 32 16 64 10 2 No 

4 3600 Training set 3 2500 N Yes 64 32 256 10 2 Yes 

5 360 Training set 3 150 N No 64 32 256 5 4 Yes 

6 1800 Training set 3 1250 N Yes 64 32 256 10 1 Yes 

7 360 Training set 3 150 N Yes 64 32 256 7 1 No 

8 360 Training set 1 1440 N Yes 64 32 256 10 1 No 

9 360 Training set 1 1440 N, L, R Yes 64 32 256 10 1 No 

10 360 Training set 1 1440 N Yes 256 128 512 10 1 No 

11 360 Training set 1 1440 N Yes 64 64 512 10 1 Yes 

12 360 Training set 1 1440 N Yes 64 64 1024 10 1 Yes 

13 360 Training set 1 1440 N Yes 32 32 1024 10 1 Yes 

14 360 Training set 1 1440 N, L, R Yes 64 64 1024 10 1 Yes 

15 360 Training set 1 1440 N, L, R Yes 32 32 1024 10 1 Yes 

Sr = Sampling rate. 

‘Length’ means the number of sampling points in one sample. ‘ μ’’, ‘Residue’, ‘Skip’, ‘Dilation depth’, and ‘Blocks’ are parameters of WaveNet. ‘Generated’ stands for whether 

or not the network can generate ECG signals under its corresponding parameter setting. 
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parameters μ, residue and skip very small. Through experiments,

however, we found that we can generate nothing in such a pa-

rameter setting. Then, we tried something larger, for example,

μ= 64, residue = 32, and skip = 256, as shown in Table 1 . Notably,

in Table 1 , “No” in the column of “Dilation” means the parameter

dilation = 2 × (i + 1) not dilation = 0 in every layer, where i is the

number of convolutional layers in WaveNet. The reason why we

didn’t set dilation = 0 was that under the circumstances that dila-

tion was 0 and the length of each sample of the training set 3 was

250, we needed an enormous number of convolutional layers to

synthesize data, which would undoubtedly increase the amount of

computation and training time. Hence, we use dilation = 2 × (i + 1)

to reduce the impact of dilation = 2 i on the WaveNet generation

results to attest the effect of dilation. 

(1) In Table 1 , according to experiment 1 and 2, we found that

for shorter data whose length was less than 500, WaveNet

can generate data no matter with or without dilation, but

the data generated by experiment 2 was much longer than

that of experiment 1. This shows that dilation is indeed

beneficial for a signal generation as said in the paper

[33] and greatly decrease the number of layers needed by

WaveNet, resulting in less training time and computation.

In particular, in the case of the length of input data being

close to that of the receptive field of WaveNet and being at

least one more R-peak segment (whose length is 50) larger

than that of the receptive field, we found the generation

results of WaveNet would be better. Since the receptive

field in experiment 2 was 2 8 = 256, if we just use a sample

with length 250, we cannot satisfy the above-mentioned

finding. Therefore, we used samples with length 300 in our

experiment 2 rather than 250. 

(2) In order to test generation results of signals with different

sampling rates, we up-sampled over training set 3, changing

its sampling rate from 360 Hz to 1800 Hz and 3600 Hz,

correspondingly, the length of input data changing from

250 to 1250 and 2500. In the light of experiment 4 and

6, WaveNet can also generate signals for upsampling data.

Comparing with experiments 1 and 2 which can synthesize

very long signals containing more than 20 R-wave peaks,

experiments 4 and 6 can merely generate signals with an

extremely short length which were composed of 1 to 2

R-wave peaks. We speculated that in terms of high sampling

rate data in experiment 4 and 6, if we want to generate

longer signals, we might need to input much longer data

during training, for instance, data containing more than 10
R-wave peaks instead of the current 5 R-wave peaks, which

may contribute to WaveNet better learning the intrinsic

characteristics of signal waveforms. Of course, increasing the

training time of experiment 4 and 6 might also be of help. 

(3) Experiments 3 and 4 show that WaveNet with μ= 32,

residue = 16 and skip = 64 is not suitable for generating

R-wave peaks data. 

(4) Although data can be synthesized in experiment 5, the

R-wave peaks of its generated data were highly dispersed in

the comparison of that of experiment 1. We concluded that

when input data had fewer R-wave peaks, it is difficult for

WaveNet to generate longer realistic signals since such input

is harmful to WaveNet to capture the changing pattern of

signals in the waveform. 

(5) Comparing experiment 7 with experiment 5, we figured

that WaveNet with dilation might not be fit for producing

data with very short input (less than or equal to 150), which

could also prove the finding mentioned above that WaveNet

with very short input data has difficulty in producing longer

signals. 

Fig. 4 (a) shows one representative generating result (experi-

ent 1) of the training set 3 by WaveNet, which looks quite good.

he seed in Fig. 4 , in blue, is the real R-wave peak data segment.

asically, WaveNet can learn the characteristics of each single

-wave and the features of the motion of the data segment as a

hole. However, it was noted that the produced R-wave peak data

egment is not smooth, but rather a bit rectangular. This is mainly

ecause our quantization parameter μ is relatively small, which

s 64, the original sampling points with similar amplitude are all

he same after quantization. If we make μ bigger the jagged effect

ill be reduced. However, the network parameters will increase

xponentially due to the large size of μ, and our experimental

quipment cannot provide such a large computing resource at

resent. We up-sampled 10 times all the data in training set 3,

ach data segment containing 2500 sampling points, and then in-

ut them into WaveNet for training in experiment 4. The synthetic

esults are shown in Fig. 4 (b). It can be found that the smoother

ignal can be generated after up-sampling, but meanwhile, the

raining time will be greatly prolonged. Moreover, it can only

enerate relatively short data, including 2 or 3 R-wave peaks, com-

ared with Fig. 4 (a), which contains more than 20 R-wave peaks. 

Starting from experiment 8, we applied WaveNet to training

et 1 (with all heartbeat types (marked as N, L, R in Table 1 ) or

nly normal heartbeat type (marked as N in Table 1 )) as shown

n Fig. 2 . Each data segment in the data set has a length of 4s,
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Fig. 4. Samples of training set 3 generated by WaveNet:(a) sampling rate = 360Hz, the result of experiment 1; (b) sampling rate = 3600Hz, the result of experiment 4. 

Fig. 5. Samples of the training set 1 generated by WaveNet: (a) N-type sample, (b) L-type sample, (c) R-type sample. All of them are the results of experiment 14. 
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440 sampling points. The reason why we used 4s data segments

ot 3s or 5s was that through previous experiments on training

et 3, we thought that 3s was so short that it was not conducive

o obtaining good generation results, and when parameter dilation

epth is 10 and parameter blocks is 1, meaning that the receptive

eld of WaveNet was 1024, in such a case, input data of 5s (1800

ampling points) was much longer than the receptive field, leading

o the poor performance of WaveNet. 

(1) Due to the failure of producing ECG signals in experiments 8

and 9, we concluded that μ= 64, residue = 32, and skip = 256

are not suitable for the generation of complete ECG signals,

though they can work well for training set 3. 

(2) At first, we thought that larger values for parameters were

needed owing to the high complexity of the complete

ECG signal in the waveform. However, from the results of

experiment 10, we can see that our conjecture was wrong. 

(3) Then with experiment 11 and 12, although the synthetic

ECG signals were not as perfect as we thought, which might

because there were not enough iterations, we could at

least make sure that WaveNet with such parameter settings

is capable of producing ECG signals and might have the

potential to generate a quite good one. On the basis of

our observation, the synthetic results of experiment 12 are
superior to that of experiment 11, and the results of exper-

iment 13 are better than that of experiment 12. Therefore,

we had another finding that large differential between the

value of μ and skip was conducive to producing complete

ECG signals with relatively good quality. 

(4) Finally, due to the generating results of experiment 15 are

slightly inferior to that of experiment 14, we decided to

use the parameter setting of experiment 14 to generate

ECG signals. Specifically, although the parameter settings of

experiment 13 and experiment 15 were the same, the effect

of 15 on the training set 1 was not as good as that of exper-

iment 14 because we thought that the data in training set 1

were more diverse and complex, and the range of amplitude

varies more widely, so it is more advantageous to adopt

larger parameter settings to avoid the sampling points that

have similar amplitude being quantified into the same value.

As can be seen from Fig. 5 , WaveNet can perfectly generate ECG

ata with three different types of heartbeats. The generated single

eartbeat accords with the characteristics of the corresponding

ypes of real heartbeats, and the overall waveform fluctuation also

as a natural transition. 

However, one of the biggest problems of WaveNet is that

ynthesis is seriously time-consuming. If we want to produce an
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Fig. 6. One sample of training set 3 generated by SpectroGAN: (a) signal, (b) spectrogram. 

Table 2 

The detailed architecture of SpectroGAN. 

Generator Kernel Stride Pad Output shape 

Latent vector - - - 100 × 1 × 1 

ConvTrans2d 2 × 4 1 0 256 × 2 × 4 

IN and Relu 

ConvTransd 2 × 4 2 0 × 1 256 × 4 × 8 

IN and Relu 

ConvTrans2d 2 × 4 2 0 × 1 128 × 8 × 16 

IN and Relu 

ConvTrans2d 3 × 5 2 0 × 1 1x 17 × 33 

Sigmoid 

Discriminator Kernel Stride Pad Output shape 

Input data - - - 1 × 17 × 33 

Conv2d 3 × 5 2 0 × 1 32 × 8 × 16 

LRelu 

Conv2d 2 × 4 2 0 × 1 128 × 4 × 8 

IN and LRelu 

Conv2d 2 × 4 2 0 × 1 256 × 2 × 4 

IN and LRelu 

Conv2d 2 × 4 2 0 1 × 1 × 1 

Sigmoid 

IN: Instance normalization, LRelu: LeakyRelu. 
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ECG signal in high quality, we need to iterate a set of parameters

tens of thousands or even hundreds of thousands of times, costing

several months with the help of GPU cluster. Because of the

limited computing power of our computer (2 CPUs at 2.1 GHz, 1

NVIDIA Tesla K40c GPU, and 32-Gb memory), it is difficult for us

to iterate thousands of times during training to verify whether

a set of parameters is able to generate the ECG signals, and to

simultaneously conduct a great deal of control experiments to

determine the optimal set of parameters. Moreover, it is difficult

for WaveNet to parallel owing to the structure of its networks,

which is another reason for long training time. Therefore, in all

of our experiments related to the WaveNet-based method, each

experiment, that is, a set of parameters, has approximately 1,0 0 0

iterations, taking roughly half a month, and ultimate loss is about

0.1–0.3. Even though the synthetic results of some experiments

may not as good as expected, at least we can see from the existing

experiments that WaveNet-based method can certainly generate

ECG signals with relatively good quality. 

3.2. Experiments on SpectroGAN 

For the same purpose of the WaveNet related experiments, we

also used GAN on training set 3. At first, we applied STFT over the

data set to obtain a matrix of each data segment and normalized

the absolute value of each matrix to [0, 1]. Then, GAN accepted the

normalized matrix whose size is 16 × 32 as input. Actually, since
fft is set to 32 and hop length is set to 8, the size of the matrix

fter STFT is 17 × 33. During training, we cropped the size of the

atrix to 16 × 32, and when using the Griffin-Lim algorithm, we

xpanded the matrix by padding zeros to the size of 17 × 33.

n the end, the signal was reconstructed in a 100 iterations of

riffin-Lim phase reconstruction algorithm. The details of our

etwork settings are shown in Table 2 . We used RMSprop with

nitial learning rate 0.0 0 01. 

In general, the last layer of the generator in DCGAN is tanh

unction, which means that the output matrix needs to be nor-

alized to [ −1, 1]. In our experiments, however, the network can

ardly converge when the last layer is tanh function. Hence, we

ake the place of tanh function with a sigmoid function. Besides,

ccording to WGAN-GP, the sigmoid function of the last layer of

he discriminator is removed, whereas in our study, the loss of the

etwork decreases only when we keep sigmoid function. In addi-

ion, we chose instance normalization rather than batch normaliza-

ion in our study. Batch normalization is to normalize all the data

n the whole batch, whereas instance normalization is to normalize

 single data in a batch. For data generation, the overall informa-

ion obtained by batch normalization will not bring any benefits

ut will bring about the noise that will weaken the independence

f instances. Thus, it is better to use instance normalization. 

Fig. 6 shows that although some local regions are not well gen-

rated, the R-wave peak data segment restored by the Griffin-Lim

hase reconstruction algorithm is good. After this, we conducted

ur experiments on the training set 2. The network structure of

pectroGAN and the values of parameters are identical to Table 2 ,

xcept that we added a condition to SpectroGAN and modified

earning rate to 0.0 0 015 and iterations of Griffin-Lim algorithm

o 500. The condition was the one-hot encoding of the type of

eartbeat: N, L, and R. Fig. 7 shows the generated heartbeats

f three types and their corresponding spectrograms. As can be

een from spectrogram in Figs. 6 and 7 , energy is concentrated

n the low-frequency part of 0–40 Hz, while the high-frequency

omponent greater than 40 Hz is lower in energy. This is also

onsistent with the energy distribution of the frequency of the

eneral ECG signal. And since the spectrogram is obtained by STFT,

e can see how the peak changes over time, similar to how it

hanges in the time domain. 

To obtain a long time ECG signal, here we first generate a single

eartbeat, and then we construct an ECG signal by replicating the

ingle heartbeat, as presented in Fig. 8 . This is because it is very

ifficult for SpectroGAN to directly generate an STFT 2-D matrix

f a long signal with high quality. The longer the signal, the larger

he size of STFT of the signal, and the higher quality of STFT

he method needs to reconstruct the signal by the Griffin-Lim

lgorithm. At present, GAN’s generating ability is not very strong.

s a result, it is less likely to generate large-high-quality pictures,
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Fig. 7. Samples of the training set 2 generated by SpectroGAN: (a) heartbeat of N-type, (b) spectrogram of the N-type heartbeat, (c) heartbeat of L-type, (d) spectrogram of 

the L-type heartbeat, (e) heartbeat of R-type, (f) spectrogram of the R-type heartbeat. 

Fig. 8. Signals generated by SpectroGAN: (a) signal of N-type heartbeat, (b) signal of L-type heartbeat, (c) signal of R-type heartbeat. 
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Table 3 

The detailed architecture of WaveletGAN. 

Generator Output shape Discriminator Output shape 

Latent vector 100 × 1 Input data 256 × 1 

Linear 512 × 1 Linear 350 × 1 

Relu LeakyRelu 

Linear 350 × 1 Linear 512 × 1 

Relu LeakyRelu 

Linear 256 × 1 Linear 1 × 1 

Tanh Sigmoid 

3

 

t  

o  

[  

w  

t

hat is, the STFT 2-D matrix in our study. Thus, we have difficulty

n directly reconstructing long ECG signals. Moreover, the network

tructure has to be modified a lot and the parameters have to be

eadjustment if we want to generate signals of different lengths,

hich is a time-consuming process. Therefore, we replicated the

enerated single heartbeat to build a long ECG signal, which

ot only avoids modifying the network structure and adjusting

arameters for generating signals of different lengths but also

nsures the quality of the generated single heartbeat and the

hole signal. Of course, one can also construct a long ECG signal

y combining multiple different heartbeats of one kind or mixed

inds according to their research purposes. Here for simplicity, we

nly give the results of a single heartbeat construction. It is worth

oting that although many sampling points have been removed

rom the previous interceptive operation in Section Ⅱ and the ECG

ignal obtained here by repeating a single heartbeat is not really a

omplete signal, the omitted data are actually a smooth transition

art, which does not contain any important information, so this

ill not affect the use of the ECG in signal processing algorithms

nd diagnostic algorithms. 
.3. Experiments on WaveletGAN 

In WaveletGAN, SWT with 4 levels was first used on the

raining set 3 to obtain 8 coefficient time series of each sample

f the data set. Each coefficient time series was normalized to

 −1, 1] and then was input into the same network. Daubechies 2

avelet is chosen as the mother wavelet to implement the wavelet

ransform. Our network settings are shown in Table 3 . 
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Fig. 9. Sample of the training set 3 generated by WaveletGAN: (a) R-peak segment, (b) C1, (c) D1, (d) C2, (e) D2, (f) C3, (g) D3, (h) C4, (i) D4, C = coarse coefficients, D = 

detailed coefficients. 

Fig. 10. N-type sample of training set 2 generated by WaveletGAN: (a) heartbeat, (b) C1, (c) D1, (d) C2, (e) D2, (f) C3, (g) D3, (h) C4, (i) D4 C = coarse coefficients, D = detailed 

coefficients. 
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We used RMSprop with an initial learning rate of 0.0 0 015.

Fig. 9 presents the synthetic coefficient time series and the signal

reconstructed by these time series. We can see that the 8 coef-

ficient time series generated by WaveletGAN are very realistic,

and the reconstructed R-wave peak data segment is also very

good. 

Then, experiments are conducted on the training set 2, and the

results are shown in Figs. 10–12 . All parameter settings are the

same as Table 3 , except that we added a condition to WaveletGAN

and modified the learning rate to 0.0 0 0 06. Although there is some

tiny noise in the generated heartbeats, the overall effect is good,

and the characteristics of each type of heartbeat are similar to the

real ones. 

Fig. 13 presents the synthetic signals constructed by replicating

the single heartbeat of Figs. 10–12 . The duration time the ECG

signals is about 10 s. The overall signals shown in Fig. 13 seem

to be very similar to real ECG signals except for lacking some

transition part. 

3.4. Evaluation 

In the evaluation section, we used a db6 wavelet to decompose

each heartbeat at 4 levels. Since the length of each heartbeat was

250, we obtained approximation coefficients at level 4 with a

length of 25 and used this coefficient as a feature vector. Before
he feature vector is input into SVM, it needs to be normalized into

0,1]. We used the feature vector extracted from data in training

et 2 to train SVM, and used the feature vector extracted from

ata in the test set 2 to test in order to obtain the benchmark of

lassification accuracy. 

For computing the GAN-test score of SpectroGAN, we used

his trained SVM to test 500 heartbeats of each type produced

y SpectroGAN. The calculation of GAN-test score for Wavelet-

AN and WaveNet follows the same operation. As for GAN-train

core for SpectroGAN, we extracted feature vector from 15,0 0 0

eartbeats with each type of 50 0 0 generated by SpectroGAN to

rain SVM and then used the test set 2 to test the performance

f the SVM. We did the same operation for heartbeats produced

y WaveletGAN to calculate GAN-train score for WaveletGAN.

evertheless, here it is difficult for us to give the exact GAN-train

core for WaveNet because WaveNet requires to input real data

s a seed to generate fake data, which means that if we want to

roduce 5,0 0 0 heartbeats of L-type, we at least need 500 real data

o generate fake data since we can obtain 10 heartbeats depending

n one seed. However, under the circumstances that the severe

ack of data of L-type and R type that we mentioned in Section

 and we have to make sure the variety of the training set 1 in

rder to train a good WaveNet, it is hard for us to extract enough

eal data from training set 1 to serve as seeds to generate enough

ake data for the purpose of training SVM. Thus, the GAN-train
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Fig. 11. L-type sample of training set 2 generated by WaveletGAN: (a) heartbeat, (b) C1, (c) D1, (d) C2, (e) D2, (f) C3, (g) D3, (h) C4, (i) D4. 

Fig. 12. R-type sample of training set 2 generated by WaveletGAN: (a) heartbeat, (b) C1, (c) D1, (d) C2, (e) D2, (f) C3, (g) D3, (h) C4, (i) D4. 

Fig. 13. Signals generated by WaveletGAN: (a) signal of N-type heartbeat, (b) signal of the L-type heartbeat, (c) signal of R-type heartbeat. 

s  

h

 

s  

t  

d  

o  

o  

t  

t  
core for WaveNet in Table 4 was calculated by using only 500

eartbeats as a training set for SVM. 

The results are shown in Table 4 , we can see that the GAN-train

core of WaveNet and SpectroGAN are nearly 35% and 30% respec-

ively lower the benchmark, which manifests that the generated
ata have less variety and reality. By contrast, the GAN-train score

f WaveletGAN is almost 20% higher than that of SpectroGAN and

nly 10% lower than the benchmark, from which we can speculate

hat WaveletGAN is superior to SpectroGAN in the diversity of syn-

hetic data. In the comparison of the GAN-test score of WaveNet,
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Table 4 

The comparison of results between different generative models proposed by us. 

Model GAN-train (%) GAN-test (%) 

Real data 99.93 99.93 

WaveNet 54.67 73.40 

SpectroGAN 68.80 99.96 

WaveletGAN 89.07 92.33 

GAN-train score of real data means using real data to train and test. 
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SpectroGAN, and WaveletGAN, it is obvious that the score of the

latter two is much higher than the first one, indicating that the

distribution of the generated data of SpectroGAN and WaveletGAN

is approximate to that of real data. 

4. Discussion 

This is the first study successfully generate ECG signals using

deep learning. We proposed three generative models to produce

realistic ECG signals, each of which is able to generate three

different types of heartbeats. As we can see in Table 5 , compared

with traditional algorithms that need the expertise to prescribe

specific parameters to control characteristics of ECG signals, which

may introduce uncertainty and inaccuracy, our models are capable

of discovering some authentic characteristics of real ECG signals by

deep learning, contributing to the generated data getting closer to

real data in waveform and other features. These methods can also

provide much convenience to operators since they don’t have to

spend a great amount of time in seeking suitable parameters for

generation. Besides, most traditional algorithms are dependent on

3-D trajectory model, which requires the design of very complex

mathematical formulas to model a single heartbeat of a single lead

ECG recording. Such a complex modeling process not only brings

a great deal of work to the researchers but also greatly limits the

performance of model extendibility in generating multi-lead ECG

signals. Because they may need to design models higher than 3-D

and introduce more parameters to better serve the purpose of

multi-lead signal generation [6] . However, our proposed methods

do not need to design complicated formulas for the generative

model but only need to design the neural network architecture.

The proposed methods can also easily achieve multi-lead signal

generation via feeding data from other different leads into the

currently used single-lead signal generation model nearly without

modifying any parameter setting. 

One advantage of traditional algorithms is that they can pro-

vide local control. For example, they could adjust the position

of P-wave by modifying some parameters in their models. Our

proposed methods now do not have this characteristic. The main

reason is that we don’t think this kind of local control really makes

much sense, especially since we’ve been able to generate many

types of heartbeats. In traditional algorithms, local control can be

used to enrich the morphological diversity of a certain type of

heartbeat or to generate an abnormal heartbeat. However, in our

proposed methods, the morphological diversity of a certain type of
Table 5 

The comparison of performance of ECG generating algorithms. 

Method Expertise in 

parameter setting 

Modeling 

complexity 

Local control 

McSharry et al. [4] Yes High Yes 

Li and Ma [5] Yes High Yes 

Sameni et al. [6] Yes High Yes 

Clifford et al. [7] Yes High Yes 

Roonizi and Sameni [8] Yes High Yes 

Our proposed methods No Low No 
eartbeat can be realized by feeding random seeds to the network.

he generation of different specific types of heartbeats is exactly

ne of the major contributions of our proposed methods. That is,

he deep neural network designed by us can directly generate a

pecific abnormal heartbeat such as left bundle branch block beat

L) or right bundle branch block beat (R). However, the traditional

ethods can only generate heartbeats that are different from nor-

al heartbeats by adjusting some parameters of the 3-D trajectory

odel and call them abnormal heartbeats. In other words, tradi-

ional methods can’t easily generate a particular type of abnormal

eartbeat. The specific type of heartbeat produced by our methods

ctually eliminates the heavy process of heartbeat labeling and

rovides great convenience for heartbeat classification algorithms. 

In addition, traditional algorithms use a model of the heart rate

ynamics to produce a long time ECG signal, in the meantime, they

lso need a first-order Markov model and a state transition matrix

STM) to switch between normal and abnormal beat dynamics. The

ynamic heart rate model makes all R-R intervals of a generated

CG signal the same, while in fact the R-R intervals are different

n a certain ECG signal. Moreover, the first-order Markov model

eans that the state at time T is only related to the state at time

-1 and has nothing to do with the state before or after. However,

ognitively, for the time series, the state at time T is related to the

tate at all previous moments. Therefore, the first-order Markov

odel is actually not suitable. In traditional algorithms, they have

o use the higher-order Markov model to realize the long-term de-

endency, which undoubtedly increases the complexity of calcula-

ion. Nevertheless, our WaveNet model can produce long time ECG

ignal with natural transition and different R-R intervals within a

enerated ECG signal easily and directly, as shown in Fig. 5 . 

Specifically, the WaveNet model can produce continuous ECG

ignals rather than obtain long ECG signals by replicating one

eartbeat, which means it can generate ECG signals with verisim-

lar transition information since every R-R interval of one ECG

ignal may be different. However, data generated by WaveNet

re a bit rectangular. In contrast, the overall data synthesized

y SpectroGAN and WaveletGAN are relatively smoother. Besides,

ompared with WaveNet, SpectroGAN and WaveletGAN can syn-

hesize data by using noise coming from normal distribution as

eed, which is able to significantly increase the diversity and

bundance of synthetic data and is more advantageous to generate

arge-scale data. Nevertheless, a minor drawback of SpectroGAN

nd WaveletGAN is that they cannot generate data of arbitrary

ength like WaveNet. They can only generate new data of the same

ength as those in their training set. Besides, our proposed eval-

ation method is able to help researchers quantitatively analyze

nd judge the advantages and disadvantages of the generation

lgorithms. However, traditional algorithms do not provide a

eneral and quantitative evaluation indicator to explain the quality

f the generated data, that is, the degree to which the distribution

f generated data conforms to that of real data. 

Finally, there are still some problems with our method worth

iscussing. By examining the data synthesized by SpectroGAN, we

ound a fact that the diversity within each category of the gen-
Specific 

abnormal beats 

Temporal 

continuity 

Multi-leads 

extendibility 

Evaluation 

indicator 

No No Low No 

No No Low No 

No No High No 

No No High No 

No No Low No 

Yes Yes High Yes 
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rated data is indeed insufficient. For example, in our training set

, there are two different patterns of L-type heartbeat, whereas in

ata set generated by SpectroGAN there is only one form. We have

ried to train generator once every five times of training discrim-

nator in order to improve the ability of discriminator to avoid the

enerated data within one class converging into one similar form.

onetheless, this strategy is basically useless for our experiments. 

Moreover, from the results of evaluation in Table 4 , it indicates

hat in our experiments and settings, WaveNet is less capable

f producing data in high quality and capturing the target dis-

ribution. Considering the excellent performance of WaveNet in

enerating speech and music, we think that the following three

easons may account for its unsatisfactory results: 

� Too few samples of the training set. In the task of speech

generation, the number of training data is usually tens of

thousands or even hundreds of thousands. In contrast, we

only have 5,0 0 0 data of each category and a part of them are

obtained by data augmentation. 

� Too short of the length of training samples. It is not conducive

to generate data with long-term dependence if the duration

time of training data is short since this may result in that the

data generated later is of poor quality. In our experiments,

after weighing the sample length and the number of samples,

the maximum length we can give is 4 seconds, which is far

less than dozens of seconds of data used in speech generation. 

� Too small of the value of μ-law companding. From Fig 4 , we

can see that the generated data is distinctly rectangular instead

of smooth. Due to the limitation of the experimental environ-

ment and resources, we can only set 64 as the maximum value

of μ-law companding. However, if using 256, the synthetic

effect could be better because sampling points with similar

amplitudes can be encoded into different values without being

grouped into the same value. 

Admitted to these limitations described above, we have demon-

trated the feasibility and simplicity in ECG generation by deep

earning and achieved relatively good synthetic effect. 

. Conclusion 

Our proposed models greatly improve the generating results

nd performance compared with traditional methods. It is believed

hat our generative models can contribute to the development of

CG signal processing techniques or ECG classification algorithms,

hen finally help to achieve better results for clinical applications. 
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